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PREFACE

Carbon is often designated as The Material of the 21st century.
Graphene, carbon nanotubes, fullerenes and other highly organized
carbon nanostructures are under investigation worldwide for advanced
functional materials in diverse fields. Among the numerous applica-
tions, they will likely play a key role in modern energy storage de-
vices such as Li-ion batteries, supercapacitors, or fuel cells; they are
thought to have the potential to revolutionize electronics by at least
partly replacing silicon technology by carbon technology; and most im-
portantly in the present context, they have extraordinary mechanical
properties, making them attractive for light-weight structural applica-
tions. Graphene is the strongest material ever tested, with a tensile
strength 200 times greater than that of steel and a tensile modulus
beyond 1000 GPa. Some few applications were realized with this
unique material already and numerous others are envisaged. Sim-
ilar prospects hold also true for the rolled-up graphene versions in
1D (nanotubes) and 2D (fullerenes). Beside these ”modern”, highly
ordered carbon nanomaterials, there exist a broad variety of more dis-
ordered carbons. A whole continuum of partly disordered, defect rich
materials such as carbon fibres, carbon black, activated carbons, etc.,
are widely applied in diverse fields and their properties are continu-
ously improved. It is important to note that the outstanding mechan-
ical properties of carbon materials are not only useful for structural
applications (e.g. in composites), they are also of critical importance
for the mechanical integrity of essentially all functional devices based
on them.

There have been numerous conferences, workshops, and schools
on the functional properties of carbon nanomaterials in the past, and
a number of monographs and edited books, as well as many dedi-
cated conference proceedings have been published. Nevertheless, sel-
dom the main focus was laid on mechanical properties with the em-
phasis on engineering aspects. The aim of the CISM advanced course
on ”Structure and Multiscale Mechanics of Carbon Nanomaterials”
held in Udine 21.-25.07.2014 was to close this gap by bringing to-
gether scientists from diverse fields related to the mechanics of car-
bon nanomaterials. It was considered important to have a balance
between state-of-the-art experimental work combined with theoreti-



cal modelling and simulations, the latter covering all scales from
ab-initio DFT and atomistic modelling up to continuum mechani-
cal approaches. Among the topics presented carbon nanotubes were
dominant, but also graphene as well as classical carbon fibres were
covered. An overall focus was set on highly sophisticated in-situ ex-
perimental techniques such as micro Raman spectroscopy or micro
X-ray diffraction applied during mechanical testing or the application
of high pressure. A further focus was on the composite mechanics
of carbon nanomaterial reinforced polymers and on the collective me-
chanical behaviour of aligned carbon nanotubes. The lectures have
been given by:

Claudia Draxl, Humboldt Universitaet Berlin, Germany
David J. Dunstan, Queen Mary University of London, UK
Markus A. Hartmann, Montanuniversitaet Leoben, Austria
Oskar Paris, Montanuniversitaet Leoben, Austria
Siddhartha Pathak, Los Alamos National Laboratory,USA
Robert J. Young, University of Manchester, UK

This volume was prepared based on the lecture notes by the lec-
turers and in some cases by additional co-authors, and covers most
of the topics discussed in the advanced course. First of all, I wish to
warmly thank all contributors to this volume for their excellent work.
My thanks also go to the CISM directors Franz G. Rammerstorfer
for the initiation of this advanced course and Frederic Pfeiffer for the
smooth monitoring of the course, and to all the CISM staff in Udine.

Oskar Paris
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1 Single Carbon Fibres: Structure from X-ray Dif-
fraction and Nanomechanical Properties  

Oskar Paris* and Herwig Peterlik† 

*Institute of Physics, Montanuniversitaet Leoben, Leoben AUSTRIA 
†Faculty of Physics, University of Vienna, Vienna AUSTRIA 

 

1.1. Introduction 

High performance carbon fibres are mainly used as reinforcement in fi-
bre-reinforced structural components in aerospace-, automotive-, sports-, and 
energy applications. For example, many of the lightweight and stiff structural parts 
of bicycles, sport cars or wind turbine blades are nowadays made of carbon fibre 
reinforced plastics (CFRP), and the demand for such materials is continuously 
increasing. The dominant part (more than 90%) of carbon fibres are produced from 
polyacrylonitrile (PAN) precursor fibres with intermediate moduli of a few 100 
GPa, but very high tensile strength up to 8 GPa. The second important class are 
fibres produced from mesophase pitches (MPP), leading to fibres with extremely 
high moduli (almost 1000 GPa) as well as good thermal and electrical conductivity. 
Together with their low weight, chemical resistance, biocompatibility, temperature 
tolerance and low thermal expansion, carbon fibres may only be beaten by other 
carbons such as carbon nanotubes (chapter 3) or graphene (chapter 4) as reinforcing 
materials. Although being much cheaper than those “modern” carbon nanomateri-
als, still carbon fibres are relatively expensive as compared to, e.g., glass fibres. 
Nonetheless, the world-wide carbon fibre production is steadily increasing and is 
expected to double from 68.000 tons in 2015 to 130.000 tons in 2020 (Holmes 
2013). This demonstrates that carbon fibres are - and will further remain - the ab-
solutely dominating carbon nanomaterials for light weight structural parts.  

Basic fibre production routes have been refined and up-scaled over the last 50 
years. They are described in many textbooks, e.g., (Fitzer and Manocha 1998; Paris 
and Peterlik 2009; Peterlik 2015), and review articles (Liu and Kumar 2012) and are 
not considered here in any detail. We just mention the most important processing 
step common to all carbon fibres, which is the final high-temperature treatment 
(HTT) in inert atmosphere at temperatures ranging from 1500°C – 3000°C. This 
final treatment determines decisively the desired mechanical properties. As a gen-
eral rule, the tensile modulus increases with HTT, while the tensile strength is rather 
unaffected. It increases for PAN-based fibres for a HTT up to about 1500°C and is 
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2 O. Paris and H. Peterlik

then rather constant up to a HTT of more than 2500°C (Fitzer et al. 1986; Fitzer 
1989; Fitzer and Frohs 1990). A slight hot stretching during HTT might further 
increase the tensile strength to some extend (Ozbek and Isaac 2000). Many 
light-weight structural components do not only require high strength but they are 
also stiffness-limited due to Euler buckling. Therefore, the high tensile modulus 
together with the high strength is the main reason for the incredible success and the 
increasing demand for carbon fibres in composites, since they outperform in this 
respect practically all other materials given the restriction that they must be available 
in sufficient quantities. Weak points remain the mechanical properties of carbon 
fibres under compression and/or shear, which are a consequence of the extreme 
anisotropy of the in-plane and inter-plane bond structure of sp2-bonded graphene 
sheets. There is considerable progress in recent years on the role of defects that 
determine local curvature of the sheets (Meyer et al. 2008) and critically influence 
inter-plane bond strength (Telling et al. 2003; Kis et al. 2004). This research was 
also strongly triggered by the hype around carbon nanotubes, and more recently, 
graphene, particularly by theoretical work and atomistic modelling (Yazyev and 
Louie 2010; Kotakoski and Meyer 2012)  (see also chapter 6). Since carbon fibres 
can be seen as a form of defective multilayer graphene composites, graphene re-
search has also contributed to a better fundamental understanding of the structure – 
mechanics relationships in carbon fibres.  

In this chapter, we show how X-ray diffraction, in particular in combination with 
in-situ mechanical testing of single carbon fibres has contributed to this progress 
from the experimental point of view. This field is quite recent, since only the 
availability of X-ray micro- and nanobeams at third generation synchrotron radia-
tion sources allowed performing such experiments starting at around the beginning 
of the new millennium. For an introduction into X-ray diffraction we refer to one of 
the many textbooks available, e.g. by Klug and Alexander (1974) or Zolotoyabko 
(2013), and with respect to synchrotron radiation, the most classic introductory 
textbook is probably the one by Als-Nielsen and McMorrow (2011). 

 

1.2. X-ray diffraction from carbon fibres   

1.2.1. Structural parameters from X-ray diffraction (XRD) 
The basic structural unit of all carbon fibres is the (defective and finite size) 

graphene sheet. Stacks of graphene sheets form crystallites, which can be wrinkled 
and folded and which at their edges are connected to other crystallites at different 
angles, forming elongated and wedged pores (Figure 1.2a). The most important 
difference between these crystallites and graphite is that two adjacent sheets are 
typically fully out of registry, having neither orientational nor positional correla-
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tions. This so-called turbostratic structure is common to most carbon fibres and 
leads to characteristic X-ray powder patterns1 (Figure 1.1). Since a turbostratic 
crystallite is in fact a one-dimensional (1D) stack of 2D graphene sheets, only 
reflections of the type hk0 and 00l are present in the diffractogramm. Only very few 
carbon fibre types are graphitisable at very high temperatures, exhibiting also mixed 
reflections hkl. Due to the non-perfect packing, the layer distance between two 
carbon planes, denoted d002=2 /q002, is larger than the corresponding distance in 
graphite. However, the criterion whether a carbon fibre (or any other soft carbon) is 
graphitic should not be the sharpness of the reflections or a “degree of graphitiza-
tion” (which measures the deviation from the graphite value, d002=0.335 nm), but 
exclusively the appearance of mixed reflections with l and (h or k) being different 
from zero. To make this important difference more clear we stress this in the present 
chapter by using the nomenclature 00l for the layer stacking peaks and hk for the 
in-plane peaks of the 2D graphene structure. 

Figure 1.1. Left: Sketch of the turbostratic structure. Right: corresponding powder XRD 
pattern for two typical carbon fibres (see Table 1.1). 

An additional apparent feature in the powder patterns of carbon fibres is the 
strong anisotropy of the hk reflections, being very steep at the low-q side and quite 
shallow at the high-q side. This feature is a direct consequence of the 2D crystal 
nature of stacked graphene sheets, which give each rise to layer-lines in reciprocal 
space. As a major difference to most other disordered carbons, the graphene sheets 
in carbon fibres are preferentially arranged parallel to the fibre axis (see Fig. 1.2a). 
The layers are turbostratically stacked, and in most cases (for exceptions see section 
1.2.3) the resulting crystallites are arranged either randomly or rotationally sym-

——————————
1 In this chapter we present X-ray diffraction patterns by the scattering intensity versus the 

scattering vector q, or its length q where q=|q|=(4 / )sin( ), 2  being the scattering angle 
and  the X-ray wavelength. 
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metric with respect to the fibre axis. Thus, the hk layer-lines from single graphene 
sheets are smeared into “disks” in reciprocal space leading to the characteristic 
shape of these reflections in a 2D X-ray fibre diffraction pattern2 (see Fig. 1.2b). 
After averaging over all orientations this gives rise of the characteristic hk peak 
shape discussed above for X-ray powder profiles of carbon fibres. These so called 
random-layer line profiles are described in more detail in Paris and Peterlik (2009), 
and have been treated mathematically already by Warren (1941) and later by Ruland 
(1967a), and Ruland and Tompa (1968).    

 
Figure 1.2. (a) Hierarchical structure of carbon fibres and (b) corresponding 2D X-ray fibre 
diffraction pattern from a single carbon fibre. The fibre axis is horizontal except for the 
rightmost panel in a), where the fibre cross section with three different cross-sectional texture 
patterns is sketched. 

—————————— 
2 A fibre diffraction pattern is measured with a 2D position-sensitive detector in transmission 

geometry with the fibre axis perpendicular to the primary X-ray beam. Since the structure 
is rotationally symmetric around the fibre axis, a single 2D detector image contains the 
entire accessible information. 
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In addition to the hk reflections on the meridian, a fibre diffraction pattern con-
tains the equatorial 00l reflections from which not only the layer spacing d002 is 
readily obtained. Also the main mis-orientation of the crystallites with respect to the 
fibre axis (indicated by the angle  in Fig. 1.2) can be deduced. A simple way of 
defining a preferred orientation parameter fC is to use 

 
 

                (1.1), 
 
 
where w002 is a measure for the azimuthal peak broadening (e.g. the full width at 

half maximum, FWHM). More sophisticated measures of fC were proposed in the 
literature by taking the azimuthal orientation distribution p( ) of crystallites explic-
itly into account (Ruland 1967b). Frequently, such parameters are defined by the 
even cosine moments of the orientation distribution (Northolt et al. 1991; Shioya et 
al. 1996) 

 
 
 

                (1.2). 
 
 
 
For instance, the Herman’s orientation function ( f = (3Z2 – 1) / 2 ) is widely used 

in polymer science and was also sometimes applied to carbon fibres (Zussman et al. 
2005). The axial preferred orientation of crystallites is the key to understand and 
quantitatively describe the tensile modulus of carbon fibres (see section 1.3). Hence, 
when comparing absolute values from literature, it is important to consider the 
different measures of preferred orientation. Eq. 1.1 for instance gives fC = 1 for 
crystallites perfectly aligned with respect to the fibre axis and fC = 0 for fully ran-
domly aligned crystallites, while Eq. 1.2 (for n = 2) gives Z2 = 0 for perfectly 
aligned, and Z2 = 1/3 for fully randomly oriented crystallites. 
Beside of their preferred orientation with respect to the fibre axis the crystallites 
sketched in Fig. 1.2a are characterized by two characteristic length scales, named the 
stacking height LC, and the in-plane crystallite size La. These parameters are most 
often determined from X-ray diffraction by applying the Scherrer Equation  
 

(1.3), 
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where q is the radial peak width and the parameter K depends on the detailed 
geometry of the crystallites.  For the stacking height LC in carbon fibres, K is usually 
taken to be K ≈ 0.9 which is very close to the original calculation by Scherrer 
(1918). For La, the corresponding value K ≈ 1.84 was calculated by Warren (1941). 
In practice, mostly the FWHM is taken for q, although several authors claim that 
the integral breath (i.e. the width of a rectangle having the same area and the same 
height as the actual peak) should be taken (Langford and Wilson 1978). While the 
difference is small (only 6.4%) for a Gaussian peak shape, for other peak shapes 
such as Cauchy peaks the difference may be considerably larger. Therefore, most of 
the data from literature should be seen as “apparent” length scales which should be 
taken with some caution when comparing them. The stacking height LC, can also be 
estimated from lattice fringe images in the transmission electron microscope (TEM), 
and was found to be in good agreement with X-ray data (Bennett et al. 1976; Guigon 
et al. 1984a; Guigon et al. 1984b). However, La values from TEM and X-ray dif-
fraction can differ considerably and should not be directly compared. Comparison 
with more elaborate models for La determined from X-ray diffraction (Ruland and 
Smarsly 2002) has shown that the classical Scherrer evaluation gives acceptable 
values for a broad range of carbon fibres (Zickler et al. 2006). A frequently used 
method to conveniently determine La for single fibres is Raman spectroscopy. 
Tuinstra and Koenig (1970) found that the intensity ratio of the Raman D and G 
bands (see chapter 2) can be used to determine La, which was found to hold reliably 
for carbon fibres if the crystallite size is > 2nm (Zickler et al. 2006). It should also be 
mentioned here that the peak broadening of a Bragg reflection may be caused also 
by other contributions (e.g. microstrains of the crystal lattice), and thus the 
straightforward Scherrer size gives only a crude estimate of the crystallite size. 
Using the different q-dependence of size and strain, these contributions can be 
separated by using standard approaches such as the Williamson-Hall Method 
(Zolotoyabko 2013), or more sophisticated structural modelling of the structure of 
carbon fibres (Perret and Ruland 1968a; Shioya and Takaku 1988; Ruland and 
Smarsly 2002). For completeness, we also note here that some authors evaluate two 
values for La, one parallel (La||) and one perpendicular (La┴) to the fibre axis. 
Table 1.1 summarizes some important X-ray structural parameters for several 
commercial carbon fibres. There is a clear correlation of all these parameters with 
the Young’s modulus E of the fibres, i.e. d002 decreases, and LC, La and fC increase 
monotonically with increasing E. It is seen that for the PAN-based fibres with 
known HTT in Table 1.1, this trend is also clearly related to the final heat treatment 
temperature. This demonstrates that HTT is indeed one of the most important pro-
cessing steps to influence fibre stiffness. While generally there is also a correlation 
of the fibre density with the X-ray parameters, there is a clear difference between 
PAN and MPP-based fibres, suggesting generally a higher porosity in PAN based 
fibres. The issue of porosity will be discussed in the next subsection. 



Single Carbon Fibres 7

Table 1.1. Structural parameters of several commercial carbon fibres. The fibres were 
characterized as received (AR), and in addition the PAN fibres were heat-treated at 1800°C, 
2100°C, and 2400°C. Data taken from Loidl et al. (2005). 

Fibre-HTT 
(precursor) (g/cm3) 

E 
(GPa) 

d002 
(nm) 

LC 
(nm) 

La 
(nm) 

fC 
( ) 

HTA7-AR (PAN) 1.77 198 0.354 1.47 2.83 0.89 
HTA7-1800 (PAN) 1.77 273 0.350 2.18 3.60 0.91 
HTA7-2100 (PAN) 1.71 332 0.346 3.78 6.30 0.93 
HTA7-2400 (PAN) 1.91 349 0.344 5.11 7.61 0.95 
FT500-AR (MPP) 2.11 380 0.343 10.06 10.22 0.96 
K137-AR (MPP) 2.12 500 0.343 13.38 11.61 0.98 

 

1.2.2. What can we learn from small-angle X-ray scattering (SAXS)? 

As already discussed in section 1.2.1, a carbon fibre is built from crystalline 
domains of turbostratically stacked graphene sheets with distance d002, which are 
characterized by the average dimensions LC and La and by an average preferred 
orientation parameter fC with respect to the fibre axis. How these crystalline domains 
are connected at their edges to form a 3D network separated by slit-like or nee-
dle-like pores has been in the focus of research for many years. While it is generally 
true that all three parameters LC, La and fC tend to increase with HTT (Table 1.1), 
there are crucial differences in particular between different types of carbon fibres 
which are not expressed by these simple average structural parameters. In 
MPP-based fibres, the crystallites can be seen as quite well defined geometrical 
entities or grains, separated by grain boundaries and pores. This is a consequence of 
the disk-shaped liquid-crystalline molecules which form the precursor phase of 
these crystallites which eventually grow and coalesce upon HTT. In contrast, fibres 
from polymeric precursors such as PAN-based carbon fibres form rather ribbon like 
structures of undulating graphene sheets forming fibrillar pore structures (see Fig. 
1.2a).  

With respect to the porosity of carbon fibres, again X-ray methods, in this case 
small-angle X-ray scattering (SAXS), play an important role. Fig. 1.2b displays the 
SAXS pattern close to the direct X-rays beam, which contains information on the 
shape, size and orientation of pores within the fibre. Already the shape of the 2D 
SAXS pattern indicates that the pores are elongated and preferentially aligned along 
the fibre axis. When a 2-phase system of pores in a carbon matrix with homoge-
neous electron density (at length scales considerably larger than atomic distances) 
can be assumed, more quantitative information on porosity, specific surface area, 
and geometrical aspects of the pores can be deduced. SAXS allows in particular 
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obtaining a general correlation length from integral parameters of the spherically 
averaged SAXS intensity, i.e., the mean chord length (Glatter and Kratky 1983) 
 

(1.4), 
   
 
where  is the “invariant” obtained from the integrated SAXS intensity, P is the 
Porod constant,  is the pore volume fraction, and S/V is the total pore surface area 
per unit volume. T is different from the above mentioned crystallite dimensions and 
is related to the chord length of the pores lp by lp=T(1- ) and to the chord length of 
carbon lC=T . (Smarsly et al. 2002). For slit- or needle like pores (pore width << 
pore length) and LC << La, one can assume lC ≈ LC, i.e., the chord length of carbon 
corresponds to the crystallite stacking height from XRD. Then, the pore volume 
fraction  LC / T and volume specific surface S / V=4 (1- ) / T can be deter-
mined from X-ray diffraction and SAXS without any additional information. This 
can be of great practical value, since most of the pores in carbon fibres are typically 
closed and these parameters are therefore not accessible by the usual nitrogen sorp-
tion method. 

Interpretation of details of SAXS curves from carbon fibres has been considered 
by Ruland and coworkers (Perret and Ruland 1968b; Perret and Ruland 1969; Perret 
and Ruland 1970) and others (Shioya and Takaku 1985; Gupta et al. 1994; Peterlik 
et al. 1994). With the availability of 2D detectors, also the shape of 2D SAXS 
became of interest, due to the rather straight forward interpretation of orientational 
correlations. Perret and Ruland (1969) pioneered the theoretical considerations by 
deriving a transformation equation from the angular intensity distribution in recip-
rocal space to the orientation distribution of needle-like pores. Even simpler, the 
orientation distribution of large slit-like pores corresponds directly to the intensity 
distribution extracted from 2D SAXS. It has to be considered however that there is 
also a broadening of the SAXS intensity in fibre-axis direction due to the finite 
length h of slit-like pores.  Figure 1.3 sketches the basic strategy how to separate 
these contributions in order to derive both, a measure for the large dimension of 
pores h and the width of the orientation distribution wp of pores (Paris et al. 1997)  

 
 

                              (1.5). 

 

qw
h

qw pSAXS
2)(

S
V

P
IT )1(4
~4



Single Carbon Fibres 9

In the case of slit like pores separating the multilayer graphene stacks, this width 
should correspond essentially to the azimuthal width of the 00l reflections w ob-
tained from XRD in Eq. 1.1. 

Figure 1.3. 2D SAXS pattern of HTA7-1800 (left) and sketch of the procedure to determine 
the pore length h and the orientation distribution of pores wp. 
 
 
1.2.3. What additionally can we get by using X-ray microbeams? 

Since the graphene sheets in carbon fibres are mainly oriented parallel to the fibre 
axis, they can be viewed edge-on in the TEM when the electron beam is parallel to 
the fibre axis. Fig. 1.4 shows a lattice fringe image from a PAN-based fibre. This 
image confirms the picture of crystallites of different orientation viewed edge-on, 
although the boundaries between these crystallites are not so well defined. The 
corresponding electron diffraction pattern suggests that the orientation distribution 
is fully random. The sketch of the fibre cross-sections in Fig. 1.2a indicates however 
that the graphene layers must not necessarily be randomly oriented within the fibre 
cross section. Such cross-sectional textures are readily seen in scanning electron 
microscopy (SEM) images of fractured fibres (Kobets and Deev 1997; Qin et al. 
2012; Peterlik 2015). The most frequent patterns are radial or onion-type of orien-
tations, but also other more complex patterns are found (Edie 1998). Often, these 
textures are also not homogeneous within the fibre cross-section. In particular in 
PAN based carbon fibres the fibre core exhibits frequently a random texture with a 
thin onion-type skin layer (Bennett and Johnson 1979). Such cross-sectional tex-
tures are believed to be particularly important for fibre strength (Endo 1988), and it 
is therefore an important detail in carbon fibre research to quantitatively determine 
the cross-sectional orientation distribution.    
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Figure 1.4. TEM lattice fringe image (left) and corresponding electron diffraction pattern 
(right) from the cross section of the PAN-based fibre HTA7-2400. 

TEM is an excellent tool to characterize such textures quantitatively, see e.g. Qin et 
al. (2012). However, beside the tedious and time-consuming sample preparation, 
issues of statistical significance and preparation artefacts are serious. X-ray diffrac-
tion and/or SAXS can help in this respect, although the experimental effort becomes 
similar to TEM since thin fibre cross-sections of a few microns have to be prepared 
and scanned within an X-ray microbeam at a synchrotron radiation source with 
beam size considerably smaller than the fibre diameter. The advantage of 2D scan-
ning is the potential of directly imaging the cross-sectional crystallite orientation by 
making use of the anisotropy of the 2D SAXS/XRD patterns. While this works quite 
well for SAXS (Paris et al. 2000), the interpretation of XRD patterns becomes rather 
difficult due to subtle geometric aspects related to Ewald sphere curvature and local 
sample tilt (Paris and Muller 2003). Experimentally much simpler is the scanning of 
a microbeam across a single carbon fibre in fibre geometry, i.e., measuring fibre 
diffraction patterns as a function of (linear) scan position across the fibre. For rota-
tionally symmetric textures such as radial or onion-type orientation, a detailed 
modelling of the position dependent intensity of the different diffraction peaks 
allows to obtain quantitative parameters describing the degree of orientational order 
within the fibre cross-section (Paris et al. 2001). If the X-ray beam is not consider-
ably smaller than the fibre diameter, additional convolution of the model 
calculations with the beam profile is necessary as shown in Fig. 1.5.   

10 nm 5 nm-1
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Figure 1.5. Cross-sectional texture in the MPP-based fibre FT500-AR: a) SEM image of the 
fibre with X-ray beam and beam profile; b) SEM image of fibre cross-section; c) Model fit of 
the position dependent 002 and 10 peak intensities with the model shown in d). Reproduced 
from Paris et al. (2001) with permission from the International Union of Crystallography. 

Measuring single fibres with a microbeam in fibre geometry does not only allow 
determining the “real” axial preferred orientation by avoiding the artefacts due to 
fibre tilt in fibre bundle experiments. Scanning gives also information on the local 
axial preferred orientation and thus, gradients due to a skin-core structure in 
PAN-based fibres can be quantitatively resolved (Paris et al. 2002). Detailed anal-
ysis of such data allows even to distinguish different “phases” of carbon in some 
MPP-based fibres, i.e., a cross-sectional randomly oriented phase and a radial folded 
phase, the two phases exhibiting different axial preferred orientation. Hence, the 
concept of some fibres being “carbon/carbon composites” can be proven by mi-
crobeam X-ray diffraction (Paris et al. 2002). 

Although modern synchrotron radiation sources provide nowadays micron- and 
even sub-micron sized beams almost routinely, the characterization of carbon fibres 
by these techniques has remained limited due to the quite high experimental effort 
(Kobayashi et al. 2011). Some recent work shows however impressively to which 
detail scanning XRD can provide local structural parameters (Baimpas et al. 2014), 
with the advantage over TEM of still covering the whole fibre. Several new tech-
niques, which are based either on an extension of microbeam scanning to 
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tomographic principles (Stribeck et al. 2008), or the use of coherent X-ray diffrac-
tion imaging to get 3D real-space images from carbon fibres with sub-100nm 
resolution (Diaz et al. 2014) are very promising for future carbon fibre research.  

The real success of microbeam X-ray diffraction techniques for carbon fibres is 
however connected to the possibility of performing mechanical tests of single fibres 
while monitoring structural changes in-situ. This has opened fascinating new op-
portunities for a better understanding of structure – mechanics relationships in 
carbon fibres and will therefore be discussed in more detail in the next section.  
 

1.3. In-situ mechanical testing of single carbon fibres 

1.3.1. Stiffness of carbon fibres 

The tensile modulus of carbon fibres is one of the highest of all materials known 
Table 1.1), reaching for high modulus MPP-based fibres almost the value of 1 TPa 
(Edie 1998). One peculiar feature of stress-strain curves of single carbon fibres, 
depicted in Fig. 1.6, is the apparent non-linearity with the clear tendency of the 
fibres to stiffen with increasing stress (Reder et al. 2003). It is clear that this non- 
linearity must be related to changes in the nanostructure of the fibres, in particular to 
the orientation of single crystallites with respect to the fibre axis.  
 

 

Figure 1.6. Stress-strain curves of a PAN- and MPP based carbon fibre. The inset shows the 
increase in the Young’s modulus normalized to its initial value. Adapted from Reder et al. 
(2003) with permission from Elsevier.  

strain [%]
0,0 0,2 0,4 0,6 0,8

st
re

ss
 [G

P
a]

0,0

0,5

1,0

1,5

2,0

2,5

3,0 PAN-fiber HTA-2100 
MPP-fiber K137-AR

strain [%]
0,0 0,2 0,4 0,6 0,8

E
/E

0

0,9
1,0
1,1
1,2
1,3
1,4
1,5



Single Carbon Fibres 13

Carbon fibre tensile tests are frequently performed on fibre bundles. This has the 
advantage that with one single test a complete strength distribution of thousands of 
fibres is obtained. However, the method has some serious drawbacks, starting 
already from the non-identical fibre cross sections. While this problem can be 
overcome by carefully determining an average fibre diameter with the help of 
SEM, when performing X-ray in-situ tensile tests on fibre bundles to obtain 
nanomechanical properties additional problems arise. For instance, the inevitable 
fibre tilt with respect to the tensile direction makes it difficult to relate mechanical 
response to axial preferred orientation of the crystallites. Moreover, the stress 
distribution may be quite different within different fibres, which will smear out 
changes of structural parameters measured by in-situ XRD. This is the reason why 
single fibre mechanical experiments with accompanying structural investigations 
are urgently needed. Micromechanical models for the measured effective (i.e., 
corrected for porosity) Young’s modulus of a single fibre typically need infor-
mation on crystallite elastic properties, such as their Young’s modulus and their 
shear modulus. An early model was Ruland’s elastic unwrinkling model under the 
assumption of uniform stress (Fischer and Ruland 1980), which was later ex-
tended and refined by several groups (Northolt et al. 1991; Shioya et al. 1996; 
Loidl et al. 2003; Sauder and Lamon 2005). 
 
 

                              (1.6). 
 
 
Here eeff and geff are effective (or apparent) crystallite Young’s and shear moduli, 
respectively, and Zi are crystallite orientation parameters calculated with Eq. 1.2. 
The term effective means here that when plotting the fibre modulus versus (Z2-Z4), 
a linear behaviour is observed. Fig. 1.7 indicates that this is indeed the case for a 
series of MPP- and PAN-based fibres, respectively. While the effective Young’s 
moduli eeff ≈ 700 GPa are similar for both, MPP- and PAN-based fibres, the 
effective shear modulus is geff ≈ 12 GPa for MPP-based fibres, and is roughly 
twice as large for PAN-based fibres. To test the validity of such micromechanical 
models, the direct measurement of the crystallite moduli is highly desirable.  
 
 
1.3.2. In-situ XRD during tensile testing of single carbon fibres 
In-situ XRD single fibre tensile testing using a microbeam with a similar size as 
the fibre diameter allows directly obtaining an apparent crystallite Young’s 
modulus ecr (Loidl et al. 2003; Kobayashi et al. 2012). This is achieved by meas-
uring the change in the 10 lattice spacing with applied stress in the direction of the 
fibre axis in a fibre diffraction pattern (see Fig. 1.2b) and assuming that the same 
stress is acting on all crystallites (uniform stress model). Fig. 1.8 shows these 
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crystallite moduli for several carbon fibres versus the orientation parameter Z2 - Z4. 
For almost perfect crystallite orientation (Z2 - Z4 < 0.02), the crystallite modulus 
was found above 1.0 TPa, which is in the same range as experimental values 
reported for graphite, carbon nanotubes, or graphene3. However, for larger crys-
tallite mis-orientations the crystallite modulus is not constant as would be 
suggested by Eq. 1.6 (i.e., ecr ≠ eeff in Eq. 1.6). This needs to be considered when 
discussing micromechanical deformation models of carbon fibres such as the 
uniform stress model. 

 

Figure 1.7. Effective Young’s modulus of different MPP-based (black symbols) and 
PAN-based carbon fibres (open symbols) versus the orientation parameter Z2-Z4. Repro-
duced from Loidl et al. (2003) with permission from Elsevier. 

Information about the crystallite shear modulus can also be obtained from the 
in-situ XRD single fibre tensile tests by evaluating the stress dependent change of 
the crystallite orientation determined from the azimuthal orientation distribution 
p( ) = I( ). Northolt et al. (1991) derived a simple analytical expression 
                               
 

(1.7) 
 
 

—————————— 
3 In reality the concept of a Young’s modulus should not be used for single-layer graphene 

since this requires knowledge of the layer thickness which is obviously not defined for a 
true 2D material. 
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where m( ) is a measure of the mean mis-orientation angle derived from the 
orientation distribution.  

Figure 1.8. Crystallite Young’s moduli from X-ray diffraction for several MPP-based (black 
symbols) and PAN-based carbon fibres. Reproduced from Loidl et al. (2003) with permis-
sion from Elsevier. 

Fig. 1.9 displays m( ) for a series of PAN- and MPP-based fibres. In contrast to 
the crystallite Young’s modulus, there seems to be one single crystallite shear 
modulus for all investigated PAN based fibres, and the same is true when con-
sidering the limit of low stress values for MPP-based fibres. However, for both 
fibre types gcr ≈ geff/2, with the absolute value for MPP-based fibres being very 
close to the bulk shear modulus of graphite (G ≈ 4 GPa). Hence, even though Eq. 
1.6 seems to work for a wide range of fibres from the same type (Fig. 1.7), the 
effective crystallite moduli geff and eeff do not coincide with the crystallite moduli 
gcr and ecr determined from X-ray diffraction under the assumption of uniform 
stress. This shows that the simple uniform stress model is not able to describe all 
details of the complex tensile behaviour of carbon fibres. Though the increase of 
the stress-strain curve and thus the increase in the Young’s modulus is predicted 
from the unwrinkling model, the above mentioned differences suggest that this is 
not the only structural change of carbon fibres during loading. Nevertheless, it is 
clear that PAN based fibres exhibit generally better shear properties than MPP 
based fibres, which points to a fundamentally different inter-plane bonding of 
these two types of fibres.  
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Figure 1.9. Crystallite shear moduli for different PAN-based (open symbols) and 
MPP-based carbon fibres (black symbols). Solid lines are fits with Eq. 1.7 giving gcr = 13.6 
GPa for the PAN-based and gcr = 4.5 GPa for the MPP-based fibres. Reproduced from Loidl 
et al. (2003) with permission from Elsevier.  

A more recent approach to describe the complex deformation of carbon fibres was 
a skin-core model, which combined amorphous and crystalline regions in the fibre 
core with a skin layer exhibiting a higher degree of orientation, and thus, a higher 
modulus (Kobayashi et al. 2011). The authors combined tensile testing of single 
fibres with in-situ microbeam XRD to obtain information from the fibre centre and 
in-situ Raman scattering to determine the deformation on the surface of the fibre. 
The latter method is a powerful tool to probe single fibre mechanical properties 
(see also Chapter 2). A heterogeneous stress distribution within the fibres was also 
observed experimentally (Kobayashi et al. 2012; Kobayashi et al. 2013). Unfor-
tunately, the model is restricted to a linear stress-strain behaviour and is not able to 
describe the non-linear stress-strain curve (Fig. 1.6) and thus the real elastic 
behaviour of fibres. However, it opens the discussion on the tensile strength of 
carbon fibres and the origin of failure. It is not clear, whether a skin-core structure 
is favourable or unfavourable for the mechanical properties of carbon fibres. If 
there is a considerable difference in the strains within skin and core, this might 
lead to failure from shear in the interface region. It is clear that inhomogeneities 
and surface structure will certainly have an effect. For instance, a thin coating - 
which is used in practice to improve the processability of carbon fibres – is known 
to improve the tensile strength, while thick coatings show the opposite effect 
(Helmer et al. 1995). It was also frequently observed that large defects are not the 
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origin of failure of fibres, in contradiction to the theory of brittle fracture. Thus, in 
an early and fundamental work it was stated that interlinking and misalignment of 
crystallites are responsible for failure (Reynolds and Sharp 1974). In a recent work 
failure was attributed to continuous defective graphene nanoribbons arranged as 
stacks (Emmerich 2014). Hence, even after 40 years of research, the structural 
origin of the failure of carbon fibres is still a matter of scientific discussion. 
 
 
1.3.3. Compressive properties from in-situ X-ray diffraction 
Mechanical stability under bending load is critical for carbon fibres, since essen-
tially all fibre weave pattern in composites induce some amount of bending. 
Failure occurs mostly due to Euler buckling on the compression side of the fibres, 
making detailed analysis of compressive properties at a local scale necessary. In 
particular the compressive Young’s modulus of single fibres is not easy to de-
termine.  
In-situ compression combined with in-situ microbeam XRD/SAXS have recently 
been demonstrated for single carbon fibres (Sugimoto et al. 2013). In their work, 
the change of X-ray structural parameters such as d002, LC and axial preferred 
orientation of crystallites fC (Eq. 1.1) from XRD, as well as measures for the pore 
length h and pore orientation fp (derived from an equation similar to Eq. 1.5) and a 
measure for the pore cross sectional dimension assuming needle like pores from 
SAXS were followed as a function of compressive stress. The structural changes 
were found in agreement with the picture of buckling of carbon layer stacks as the 
source of fracture, but also reversibility of the structural changes up to 90% of the 
compression strength was found. 
Another way of probing compressive properties is single fibre bending. Fig. 1.10 
shows the sketch of a microbeam bending experiment were a single fibre loop is 
created by threading the fibre ends through a hollow needle. The bending radius, 
determining the stress in the fibre is easily adjusted by pulling down the ends of 
the fibre. The fibre was scanned with an X-ray nanobeam (roughly 100 nm beam 
width in scanning direction) from the tensile to the compression side of the bent 
fibre, and the experiments were repeated for different bending radii. The axial 
fibre strain was determined as a function of position from the shift of the 10 
reflection, and the change of the axial preferred orientation fC was derived from 
the change of the azimuthal width of the 002 reflection. While the data for the 
PAN-based fibre showed a symmetric change of fC on the tension and compres-
sion side, these changes were strongly asymmetric for MPP-based fibres. Here, 
the increase in fC on the compression side was much larger than its corresponding 
decrease at the tensile side, giving a clear indication of extensive crystallite 
buckling. A further result of this study was a clear shift of the neutral zone of the 
fibre from the fibre centre towards the tension region as a consequence of the 
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different Young’s moduli of the fibres in tension (ET) and compression (EC). 
Simple force balance together with the quantitative shift of the neutral zone allows 
calculating the ratio between compressive and tensile moduli EC/ET. Fig. 1.10b 
demonstrates that beside a general decrease of this ratio with the in-plane crys-
tallite size La, it is considerably smaller for MPP based fibres. This difference was 
attributed to covalent cross-links between crystallites in PAN fibres, while in MPP 
fibres these cross-links are largely absent. A recent attempt to model this in a 
simple scenario by a finite element (FEM) mechanical model by Todt et al. (2010) 
revealed that the distribution of such cross-links critically influences the buckling 
behaviour (see also chapter 6). Experimentally, these cross-links and in particular 
their distribution are extremely difficult to grasp, and an experimental verification 
is therefore still missing. 
 

 

Figure 1.10. Scheme of an in-situ bending experiment with X-ray nanobeam diffraction (a), 
and the resulting ratio of the compressive and tensile Young’s moduli for a series of 
PAN-based (black symbols) and MPP-based carbon fibres (red symbols). Reproduced from 
Loidl et al. (2005) with permission from the American Physical Society. 

1.3.4. High-temperature in-situ creep 
The high-temperature mechanical properties of carbon fibres are unrivalled. The 
tensile strength of PAN-based fibres is constant up to more than 2500 oC. It may 
even increase in the regime between 2000 oC and  2500 oC due to a plastification 
process, which leads to a higher orientation of the graphene planes (Fitzer and 
Hyem 1978). For pitch-based carbon fibres, also a constant tensile strength up to 
1300 oC in nitrogen atmosphere was reported (Tanabe et al. 1991).  
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In-situ high-temperature experiments on carbon fibre bundles date back to the 
seventies of the last millennium (Fitzer and Weisenburger 1974). High tempera-
ture testing of fibres with a diameter in the micron range faces two main problems. 
One is the homogeneity of the temperature distribution within the fibre, and the 
other the accurate temperature measurement. Concerning the first point, carbon 
fibres exhibit an extremely high strength and clamping is in general not sufficient 
to ensure that the fibres do not slip during the experiment. One solution is keeping 
the fibres in a hot zone and fixing them with cold grips outside of the furnace. 
Then, an epoxy glue can be used, which guarantees a good contact to the fibres. 
Unfortunately, this procedure leads to a strong temperature inhomogeneity along 
the fibres. To avoid this, a more suitable approach is the application of hot grips 
(Villeneuve et al. 1993). This requires the attachment of fibres to a holder with a 
high-temperature stable ceramics-based cement. The disadvantage is that not for 
all test materials suitable cements are available which are harmless to the fibres 
themselves. In addition, the temperature of ceramic-based cements is limited to 
about 1500 oC (Sauder et al. 2002). For carbon fibres, graphite grips with carbon 
based cement were successfully applied by Sauder et al. (2004). In their work no 
furnace was used, but the fibres were directly heated. For carbon fibre bundles, a 
temperature gradient was observed in the case of direct heating, as inner fibres 
were shielded by outer ones. Heating single fibres leads to a more uniform tem-
perature distribution, where a temperature gradient appears only in a small region 
towards the grips (Rennhofer et al. 2010; Rennhofer et al. 2014).  
While direct heating is appealing due to its simplicity, the main difficulty which 
arises is the accurate temperature measurement of the fibres. Whereas for fibre 
bundles a bichromatic pyrometer can be used, for single fibres the most promising 
method is using the relationship between fibre temperature and the supplied 
electrical power. The fibre temperature has to be cross-calibrated with a pyrometer 
or thermocouples (Sauder et al. 2002; Rennhofer et al. 2014). This method is 
insensitive to a change of the resistivity of the sample as a consequence of the 
structural change at high temperatures, as long as the geometrical diameter of the 
fibre is not affected.  
The tensile strength of some carbon fibres is known to increase in a range up to 
more than 2000 oC  (Fitzer 1985). This rather unexpected effect was followed in 
detail by Sauder et al. (2004). It was attributed to the viscoelastic behaviour of 
carbon fibres at temperatures above 1400 oC, and even to viscoplastic behaviour 
above 1800 oC. Molecular-like deformations are activated by temperature and 
contribute to the shear strain, leading to viscoelasticity, whereas above a critical 
shear stress, the deformation becomes inelastic. This was the starting point for 
in-situ XRD of carbon fibre bundles (Rennhofer et al. 2010) and single carbon 
fibres (Rennhofer et al. 2014) under load at high temperatures. Three different 
mechanisms were proposed in these papers: Crystallite size La and LC grow by a 
rearrangement of crystallites with graphene layers facing either their edges (in-
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crease of La), or with graphene layers facing the planes (increase of LC). The third 
possibility is a process similar to dislocation gliding, which leads to a simulta-
neous increase of both, La and LC (Rennhofer et al. 2010). In-situ XRD of single 
carbon fibres could quantitatively show the influence of HTT on the structure of 
carbon fibres. As depicted in Fig. 1.11, both the pore orientation (determined from 
SAXS) and the crystallite orientation (determined from XRD) are unaffected up to 
a temperature of about 1400 oC (Rennhofer et al. 2014). Above this temperature, 
likewise PAN- and MPP-fibres without heat treatment exhibit a structural change, 
i.e., an increasingly higher orientation with increasing temperature.  
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Figure 1.11. Change of pore orientation (SAXS data, open symbols) and orientation of 
graphene planes (XRD data, grey symbols) of different PAN-based and MPP-based fibres. 
All values are normalized to their initial value. Adapted from from Rennhofer et al. (2014) 
with permission from Elsevier. 

An important observation was that a heat treatment without load leads to a com-
plete stabilization of the structure. This concerns mechanical behaviour (the 
absence of creep, see (Rennhofer et al. 2006)) as well as structural parameters (no 
change in orientation for the fibres with a high temperature treatment as shown by 
Rennhofer et al. (2014) (Fig. 1.11). The same effect was observed for the size of 
structural features in carbon fibres. Neither the pore size (characterized by the 
radius of gyration from SAXS) nor the crystallite size (from the out-of-plane 
stacking height of graphene planes LC) changed up to 1400 oC. However, at higher 
temperatures a pore and crystallite growth is observed, which can be supressed by 
a heat treatment without load (Fig. 1.12). 



Single Carbon Fibres 21

 For the Young’s modulus the situation is different: Although it is generally 
accepted that a thermal treatment leads to an increase of the Young’s modulus of 
PAN-based fibres, the Young’s modulus decreases, if stress-strain curves at 
different test temperatures are evaluated (Sauder et al. 2004). However, this is no 
contradiction. Referring to the results in Fig. 1.11 and Fig. 1.12 it can be con-
cluded that the structure of carbon fibres is unstable, but can be stabilized by a 
suitable heat treatment without load. In this case, the Young’s modulus increases 
due to the increase of orientation of the graphene planes, as shown in the sections 
1.2 and 1.3. A prerequisite is of course the stability of the structure. 

As carbon fibres are very sensitive to the application of temperature and strain, 
combining these two parameters has a strong influence on density, Young’s 
modulus and crystallite orientation (Ozbek and Isaac 2000). This treatment of 
carbon fibres is named hot stretching graphitisation (Li et al. 2007). It leads to an 
increase of the Young’s modulus and the tensile strength of rayon-based carbon 
fibres up to a factor of 2.5 and 1.8, respectively (Zhang et al. 2014). Certainly, this 
method is also limited, as for very high stresses and temperatures the fibres will 
disintegrate and fail.  
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Figure 1.12. Change of pore size (radius of gyration from SAXS, open symbols) and crys-
tallite size (stacking height of planes LC from WAXD, grey symbols). All values are 
normalized to their initial value. Adapted from Rennhofer et al. (2014) with permission from 
Elsevier. 
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1.4. Conclusions 

Carbon fibres are probably the best reinforcing material for stiff and strong 
light-weight components when larger scale structural parts are needed. Although 
the properties of single layer graphene or carbon nanotubes might be even superior 
for some applications, they are currently not available in the quantities needed. 
Amongst the most fascinating properties of carbon fibres are values for the 
Young’s modulus of more than 900 GPa (Naito et al. 2008), or a tensile strength of 
more than 5 GPa (Naito et al. 2010). When relating to their specific values (i.e. 
normalised to density) these values outperform other engineering materials (e.g. 
steels) by typically an order of magnitude. Moreover, also the excellent thermal 
conductivity and biocompatibility make these materials attractive for many ap-
plications. 
There is obviously a huge demand for carbon fibres for an increasing number of 
applications. For instance, carbon fibre reinforced composites as structural parts in 
aeroplanes increased from about 10 % in the Boeing 777 to more than 20 % in the 
Airbus A380 and to almost 50 % for the Airbus A350 and the Boeing Dreamliner. 
The worldwide request for sustainable and energy-saving products together with 
the need for a low carbon footprint will probably bring carbon fibre reinforced 
composites increasingly stronger into the automotive market. Cars with up to 50% 
weight safe due to the consequent application of carbon fibre reinforced compo-
sites for structural parts are already on the market today. It can be expected that the 
massive entering into this marked will drastically influence the production costs, 
enabling mass applications of carbon fibres and other carbon products based on 
“multilayer graphene”.  
Although intense application-driven research on carbon fibres was conducted for 
roughly 50 years now, there remain still some fundamental open questions. These 
include in particular the understanding and control of the defect structure at the 
atomic scale, notably covalent cross-links between graphene sheets. It is still open 
to discussion whether these out-of-plane bonds are located within the graphene 
sheets or at the boundaries of the crystallites, or whether highly crystalline regions 
are interlinked with more amorphous regions. In addition it is still a matter of 
debate how non-carbon impurities – in particular nitrogen - influence structure and 
mechanical properties of carbon fibres.  
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2.1. Introduction 

In the quest to understand reinforcement by high performance fibres, such as carbon 
fibres, the development of the subject of composite micromechanics is traced from its 
earliest roots. It is shown first how, employing concepts introduced by Kelly, it is 
possible through the use of shear-lag theory to predict the distribution of stress and 
strain in a single discontinuous fibre in a low-modulus matrix. For a number of years 
the shear-lag approach could only be used theoretically as there were no techniques 
available to monitor the stresses within a fibre in a resin. It is then shown that the 
advent of Raman spectroscopy and the discovery of stress-induced Raman bands 
shifts in reinforcing fibres, has enabled us to map out the stresses in individual fibres 
in a transparent resin matrix, and thereby both test and develop Kelly’s pioneering 
analytical approach.  

2.2. Fibre Reinforcement – Theory 

2.2.1. Composite micromechanics 

Interest in the mechanics of fibre reinforcement can be traced back to the first uses of 
high-modulus fibres to reinforce a low modulus matrix. A useful relationship de-
veloped to describe this reinforcement is the so-called ‘rule of mixtures’ in which, for 
stress parallel to the fibre direction, the Young’s modulus of a composite Ec con-
sisting of infinitely-long aligned fibres is given by an equation of the form  

 mmffc VEVEE  (2.1) 

where Ef and Em are the Young’s modulus of the fibre and matrix and Vf and Vm are 
the volume fraction of the fibre and matrix respectively (Young and Lovell, 2011). 
This equation captures the essence of fibre reinforcement and is found to work well in 
the specific conditions outlined above when high modulus fibres are incorporated 
into low modulus matrix materials. Since the strain in the fibre and matrix are the 
same, the stress in the fibres is much higher than that in the matrix - hence the fibres 
take most of the load and so reinforce the polymer matrix.  
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In reality, however, composites do not consist of infinitely-long aligned fibres and 
are not always stressed parallel to the fibre direction. The full analysis of the situation 
in reality is the subject of many composites textbooks (Hull and Clyne, 1996; Gibson, 
2012). The deformation of composites containing fibres of finite length deformed 
axially has been considered by a number of authors including Krenchel (1964). In 
addition he also analysed the situation with fibres aligned randomly in plane and also 
randomly in three dimensions (Krenchel, 1964).  

The problem of transfer of stress from the matrix to a fibre and the subsequent 
variation of stress along a fibre of finite length in a matrix was first tackled properly 
by Kelly (1966) in his classical text, ‘Strong Solids’. This ground breaking work 
involved both the revival of the shear lag concept of Cox (1952) and considerable 
intuition on his part. Indeed, in the introductory text to Chapter V of Strong Solids 
(Kelly, 1966) he makes the following statement. “In this chapter we will discuss 
firstly how stress can be transferred between the matrix and fibre. This will be done 
in a semi-intuitive fashion since it is a difficult problem to solve exactly”. 

Kelly’s analysis became the foundation of a new research field known as ‘com-
posite micromechanics’. It will be shown how it gave us the framework for the study 
of fibre reinforcement at both a theoretical and practical level, also enabling us to use 
the approach to tailor the properties of fibre-matrix interfaces in composites.  

 

Figure 2.1. Deformation patterns for a discontinuous high-modulus fibre in a low-modulus 
polymer matrix. The top diagram shows the situation before deformation and the bottom 
diagram shows the effect of the application of a tensile stress, 1, parallel to the fibre. 
(Adapted from Young and Lovell, 2011 with permission from CRC Press). 
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Figure 2.2. Balance of stresses acting on an element of the fibre of thickness dx in the 
composite. (Adapted from Young and Lovell, 2011 with permission from CRC Press). 

2.2.2. Discontinuous Fibres 

In the case of discontinuous fibres reinforcing a composite matrix, stress transfer 
from the matrix to the fibre takes place through a shear stress at the fibre-matrix 
interface as shown in Figure 2.1. It is envisaged that parallel lines perpendicular to 
the fibre can be drawn from the matrix through the fibre before deformation. When 
the system is subjected to an axial stress 1 parallel to the fibre axis, the lines become 
distorted since the Young’s modulus of the matrix is much lower than that of the 
fibre. This induces a shear stress at the fibre/matrix interface and the axial stress in the 
fibre builds up from zero at the fibre ends to a maximum value in the middle of the 
fibre. The assumption of uniform strain means that in the middle of the fibre the strain 
in the fibre equals that in the matrix, if the fibre is long enough. Since the fibres 
generally have a much higher Young’s modulus than the matrix, the fibres then carry 
most of the stress (and hence load) in the composite – this is essentially how com-
posites work (Kelly and Macmillan, 1986). 

It is now necessary to introduce the concept of interfacial shear stress (Kelly, 
1966). The relationship between the interfacial shear stress i near the fibre ends and 
the fibre stress f can be determined by using a balance of the shear forces at the 
interface and the tensile forces in a fibre element, as shown in Figure 2.2. The main 
assumption is that the force due to the shear stress i at the interface is balanced by the 
force due to the variation of axial stress d f in the fibre such that  

 f
2

i ddπ2 rxr   (2.2) 

and so 
rx

if 2
d

d  (2.3) 
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Figure 2.3. Model of a fibre undergoing deformation within a resin used in shear-lag 
theory. The shear stress  acts at a radius  from the fibre centre. (Adapted from Young and 
Lovell, 2011 with permission from CRC Press). 

2.2.3. Elastic Stress Transfer 

The behaviour of a discontinuous fibre in a matrix can be modelled using shear lag 
theory, developed initially by Cox (1952) to model the mechanical properties of 
paper. It is assumed in the theory that the fibre is surrounded by a cylinder of resin 
extending to a radius  from the fibre centre, as show in Figure 2.3. In this model it is 
assumed that both the fibre and matrix deform elastically and that the fibre-matrix 
interface remains intact. If u is the displacement of the matrix in the fibre axial 
direction at a radius  then the shear strain   at that position is be given by  

 
d
du   (2.4) 

The shear modulus of the matrix is defined as Gm = / , hence it follows that  

 
md

d
G

u   (2.5) 

The shear force per unit length carried by the matrix cylinder surface is 2   and is 
transmitted to the fibre surface though the layers of resin and so the shear stress at 
radius  is given by  

 i22 r   (2.6) 

and so i
r   (2.7) 
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It follows using Equation (2.5), that 

 
m

i

d
d

G
ru   (2.8) 

It is possible to integrate this equation using the limits of the displacement at the fibre 
surface (  = r) of u = uf and the displacement at  = R of u = uR  
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hence  
r
R

G
ruu ln

m

i
fR   (2.10) 

These displacements can be converted into strain since the fibre strain ef and matrix 
strain em can be approximated as ef  duf/dx and em  duR/dx. It should be noted that 
this shear-lag analysis is not rigorous, as shown by Nairn (1997), but it serves as a 
simple illustration of the process of stress transfer from the matrix to a fibre in a 
short-fibre composite. In addition, i is given by Equation (2.3) and so differentiating 
Equation (2.10) with respect to x leads to  
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Furthermore, multiplying through by Ef gives 
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This differential equation has the general solution 

 
r

nxD
r

nxCeE coshsinhmff  

where C and D are constants of integration. Now, equation (2.12) can be simplified 
and solved by double differentiation of the general solution, if it is assumed that the 
boundary conditions are that there is no stress transmitted across the fibre ends, i.e. if 



34 R. J. Young

x = 0 in the middle of the fibre where f = Efem then f = 0 at x = l/2 where l is the 
length of the fibre. This leads to C = 0 and comparing terms gives 

 
rnl

eED
2/cosh

mf  

Finally, the equation for the distribution of fibre stress as a function of distance, x 
along the fibre is  

 
)2/cosh(
)/cosh(1mff rnl

rnxeE  (2.13) 

2.2.4. Interfacial shear stress 

It is possible, now, to determine the distribution of interfacial shear stress along the 
fibre using Equation (2.3) which by differentiation of Equation (2.13) leads to 

 
)2/cosh(

)/sinh(
2 mfi rnl

rnxeEn  (2.14) 

It is convenient to introduce the concept of fibre aspect ratio s (= l/2r) which is 
dimensionless so that the two above equations can be rewritten as  

 
)cosh(

2cosh
1mff ns

l
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eE  (2.15) 

for the axial fibre stress and as  

 
)cosh(

2sinh
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eEn  (2.16) 

for the interfacial shear stress. The effect of the different parameters upon the varia-
tion of stress in a fibre is demonstrated in Figure 2.4 for different values of the 
product ns. It can be seen from this figure that the fibre is most highly stressed, i.e. the 
most efficient fibre reinforcement is obtained, when the product ns is high. This 
therefore implies that a high aspect ratio s is desirable along with a high value of n, for 
the best reinforcement. 
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Figure 2.4. (a) Predicted variation of fibre stress with distance along the fibre for a short 
fibre in matrix. (b) Predicted variation of interfacial shear stress with distance along the 
fibre for a short fibre. The values of the product ns are indicated in each case. (Adapted 
from Young and Lovell, 2011 with permission from CRC Press). 
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Figure 2.5. Schematic diagram of the Raman scattering from a single fibre. 

2.3. Fibre Reinforcement – Experiment 

2.3.1. Raman Spectra of Carbon Fibres 

Following this original theoretical determination of stresses in discontinuous fibres, 
researchers had to rely upon it for the analysis of the micromechanics of composites, 
since there were initially no experimental methods available to measure local fibre 
stress or strain. Experimental measurement of the fibre stress and strain in discon-
tinuous fibres in a composite under stress has now become available through the use 
of Raman spectroscopy (Huang and Young, 1994). This is shown schematically in 
Figure 2.5 where a sample such as a carbon fibre is irradiated with a laser beam of 
frequency, 0. Most of the light is scattered at the same frequency (or energy) with a 
small amount scattered at different frequencies of  . This is the Raman scattered 
light and many high-performance fibres have well-defined Raman spectra (Young, 
1995). Moreover when the fibres are deformed in a Raman spectrometer large 
stress-induced band shifts are obtained as the result of the externally applied stress 
distorting the covalent bond in the fibre backbone. This type of behaviour has been 
found for fibres such as Kevlar, polyethylene and PBO (Young, 1995). This is not so 
surprising since the excellent mechanical properties of high performance fibres are 
the result to the covalent bond in the backbone taking the load during deformation. 
Indeed, carbon fibres are found to behave in a similar manner.  

Raman spectra are shown in Figure 2.6 for PAN- and pitch-based carbon fibres. 
In all cases the spectra exhibit the same appearance, that is, four well-resolved bands, 
namely D (~1330 cm-1), G (~1580 cm-1), D’ (~1620 cm-1) and 2D (~2660 cm-1) along 
with additional weaker features. Figure 2.6 shows spectra for the fibres both un-
treated and treated with oxygen plasma to improve fibre-matrix adhesion 
(Montes-Morán and Young, 2002a). No differences were observed in Raman band 
positions and widths after the plasma treatment of the fibres but the intensity ratio of 
the two first-order bands D and G is always higher after the plasma treatment, 
showing that this treatment introduces defects and functionality into the fibre surface 
which we will see results in better fibre-matrix adhesion. 
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Figure 2.6. Raman spectra of (a) a T50 PAN-based carbon fibres and (b) a P100 
pitch-based carbon fibres (untreated (top) and plasma treated (bottom)). (Adapted from 
Montes-Morán and Young, 2002b with permission from Elsevier). 
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2.3.2. Stress-induced Raman Band Shifts 

The positions of all the Raman bands are found to shift when the carbon fibres are 
subjected to tensile deformation and this phenomenon can be employed to follow the 
deformation micromechanics.  

Figure 2.7 compares the 2D band of a P100 fibre in the undeformed state and two 
levels of tensile and compressive strain (0.6% and 0.2% respectively). The band 
moves towards lower wavenumbers (red shift) when the fibre is in tension, the shift is 
in the opposite direction (blue shift) when in compression. A significant broadening 
of the Raman band when the fibre is deformed can be also seen from Figure 2.7. 
Similar stress-induced Raman band shift behaviour is also found for PAN-based 
carbon fibres such as T50.  

It is found that there is an approximately linear shift of the band position with 
tensile strain as shown in Figure 2.8 for the 2D band of both the T50 and P100 fibres. 
Since the fibres deform in an approximately linearly elastic manner there is also a 
linear shift with stress. It will be shown that Figure 2.8 can be used as a simple 
calibration to determine the distribution of stress along a fibre using a Raman laser 
beam focused onto individual fibres inside the matrix resin. 

 

Figure 2.7. Shift of the 2D band peak on the application of tensile and compressive strain to 
a P100 carbon fibre. (Adapted from Montes-Morán and Young, 2002b with permission 
from Elsevier). 
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Figure 2.8. Variation of the 2D Raman band peak position with strain in as-received T50 
and P100 carbon fibres. (Adapted from Cooper et al. 2001 with permission from Elsevier). 

It is also important to point out that it is found that the slope of the lines in Figure 
2.8 is found to depend upon the Young’s modulus of the carbon fibres (Cooper et al, 
2001). This is shown in Figure 2.9 for a number of pitch-based carbon fibres. The 
measured Raman band shifts of PAN-based carbon fibres are found to fall upon the 
same line (Young, 1995) 

It can be seen that there is an approximately linear dependence of the band shift 
rate upon the fibre Young’s modulus and the slope of the dashed line is of the order of 
-50 to -60 cm-1/TPa. It is found that this is a universal relationship for the 2D band 
applicable to all different forms of graphitic carbon materials (Cooper et al, 2001). It 
is now used widely to follow the deformation behaviour of other types of sp2 carbon 
materials such as carbon nanotubes (Deng et al, 2011) and graphene (Young et al, 
2012). The rates of Raman band shift (per unit strain) for such materials in nano-
composites are found to be proportional to the effective values of their Young’s 
moduli.  
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Figure 2.9. Shift rate of the 2D Raman band per unit strain as a function of the tensile 
Young’s modulus for a number of different pitch-based carbon fibres. 

 

Figure 2.10. Schematic diagram of a model composite specimen containing a single fibre 
embedded within a transparent polymer resin. The matrix strain is determined by the 
resistance strain gauge and fibre strain by obtaining Raman spectra along the length of the 
fibre. (Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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2.3.3. Analysis of Micromechanics 

The fibre stress or strain can be determined from the stress-induced shift of the 
Raman bands obtained from the fibre using a laser beam focused onto an individual 
fibre inside the matrix resin as shown in Figure 2.10. The laser beam diameter in a 
typical modern microscope-based Raman spectrometer is typically 1 m. This is 
significantly smaller than the usual fibre diameter (5-10 m) which means that fibre 
stress and strain mapping can now be undertaken at high precision along individual 
fibres (Montes-Morán and Young, 2002b).  

 

 
Figure 2.11. Determination of strain from Raman spectra obtained along a carbon fibre. 
(Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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Figure 2.11 shows how the strain along a carbon fibre within a matrix can be 
determined from the local positions of the 2D band in the Raman spectra obtained 
from the fibre. Well-defined Raman bands can be obtained from the fibres since the 
Raman scattering from the fibres is generally much stronger than that of the resin 
matrix. The band shift need to be calibrated first of all by deforming single fibres in 
air producing data such as those shown in Figure 2.8. The fibre strain can then be 
readily determined since the bands tend to shift approximately linear with strain.  

 

 

Figure 2.12. Scanning electron micrographs of (a) untreated and (b) plasma-treated T50 
carbon fibres. (Adapted from Montes-Morán and Young, 2002a with permission from 
Elsevier). 

(a) 

(b) 
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2.3.4. Effect of Fibre Surface Treatment 

The carbonaceous nature of the surface of carbon fibres leads to low levels of stress 
transfer from the matrix to the fibres. This lack of fibre/matrix adhesion has been 
partially overcome with the development of surface treatments that nowadays are 
implemented fully in the carbon fibre fabrication process. The conventional surface 
treatment used by carbon fibre manufacturers is an electrochemical oxidation.  Apart 
from the relative success they achieve in the improvement of the interfacial properties 
of composites, increasing concern about environmental pollution problems has 
limited wide industrial application of such chemical surface treatments. The devel-
opment of alternative environmental-friendly methods is an attractive prospect, from 
both scientific and technological points of view. Among these new methods, the 
surface modification of fibres by cold plasma is becoming popular and it is now an 
important branch of plasma technology 

High modulus (HM) carbon fibres are possibly one of the most impressive re-
inforcements of composites in terms of specific tensile properties. These properties 
are related to the high degree of orientation of the crystallites and this highly graphitic 
character is also responsible for high level of thermal and electric conductivity. All 
these properties confer upon HM carbon fibres an unquestionable role in the aero-
space industry.  On the other hand, the enhanced crystallinity of this type of fibre is 
often reflected in a lower efficiency of industrial methods for increasing the carbon 
surface activity, in comparison with the high strength (HT) carbon fibres in that HM 
carbon fibres are more resistant to electrochemical oxidation than HT ones 

The behaviour of untreated and unsized T50 PAN-based HM carbon fibres has 
been studied by Montes-Morán and Young (2002b). Plasma-treated samples were 
obtained (-O series) from the as-received fibres. Microwave (2.45 GHz) plasma 
treatments were carried out in a cylindrical chamber where the fibres were placed 
during 3 min of residence at 75 W.  Yarns of fibres (2k, 20 cm long) were attached to 
a glass rack, running parallel to the cylinder axis.  Oxygen (99.999%) was employed 
as the activation gas with a chamber pressure of 1.0  0.1 mbar during the treatment 
time.  Such a configuration gave rise to a very homogeneous treatment confirmed by 
several fibre surface characterisation techniques. Scanning electron micrographs of 
the two types of fibres are shown in Figure 2.12. 

Figure 2.13(a) shows the variation of fibre strain ef (= f/Ef) along a T50-O 
plasma-treated carbon fibre in an epoxy resin subjected to different levels of matrix 
strain, em. The data have been fitted to Equation (2.15) using the aspect ratio of the 
fibre, s and by choosing appropriate values of n and it can be seen that there is a close 
correlation between the theoretical curves and experimental data points. Moreover, it 
can be seen that the strain in the fibre is that same as the matrix strain in the middle of 
the fibres as was assumed in the theoretical analysis earlier.  
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Figure 2.13. (a) Fibre strain distributions determined from strain-induced Raman band 
shifts at different levels of matrix strain in an epoxy resin for a plasma treated T50-O fibre 
up to 0.7% strain. (b) Derived distribution of interfacial shear stress along the fibre. 
(Adapted from Montes-Morán and Young, 2002b with permission from Elsevier). 
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It should be noted, however, that Equation (2.15) cannot be used to determine n 
since the value of ln(R/r) is essentially indeterminate. It is more appropriate to think 
of n as a fitting parameter that characterises the efficiency of stress transfer between 
the matrix and fibre (Young and Lovell, 2011). It is possible, however, to determine 
the distribution of interfacial shear stress i along the fibre as shown in Figure 2.13(b). 
It can be seen that the interfacial shear stress is highest at the fibre ends (where there 
is a gradient of fibre strain or stress). For a matrix strain of 0.7% the value increases 
to around 45 MPa which is approaching the shear yield stress of the resin. 

 

Figure 2.14. Fibre strain distributions determined from strain-induced Raman band shifts 
at different levels of matrix strain (up to 1.1%) in an epoxy resin for a plasma-treated T50-O 
fibre showing the effect of fibre fragmentation. (Adapted from Montes-Morán and Young, 
2002b with permission from Elsevier). 

The effect of increasing the matrix strain to 0.9% is shown in Figure 2.14. At this 
matrix strain level the T50-O fibre undergoes fragmentation (the strain falls to zero at 
the fibre breaks) which saturates at a matrix strain of 1.1%. In this case the interfacial 
adhesion has been lost and stress transfer at the interface is essentially frictional so 
that there is an approximately triangular variation along the length of each fragment 
(Kelly and Tyson, 1965). Moreover, it can be seen that the peak fragment strain are 
well below the matrix strain, indicating that once the fibres have undergone frag-
mentation reinforcement is diminished.  
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Figure 2.15. Fibre strain distributions determined from strain-induced Raman band shifts 
at different levels of matrix strain in an epoxy resin for an untreated T50 fibre, showing the 
effect of debonding at the fibre matrix interface at the higher strain level. (a) Low strain 
region and (b) high strain region. (Adapted from Montes-Morán and Young, 2002b with 
permission from Elsevier). 

(a) 

(b) 
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The behaviour of a T50 fibre that had not been modified by plasma treatment is 
shown in Figure 2.15. The distribution of strain in the fibre at 0.35% matrix strain 
follows the shear-lag model defined by Equation (2.15). When the matrix strain is 
increased to 0.7%, however, the distribution of strain is somewhat different with 
approximately linear behaviour at the two ends. This is an indication that the fibre has 
undergone debonding that starts at the fibre ends and progresses along the fibre as the 
level of matrix strain is increased (Montes-Morán and Young, 2002b). This can be 
compared with the behaviour shown in Figure 2.12(a) for the T50-O fibre at 0.7% 
strain.  

At high strain Figure 2.15(b) shows that the fibre-matrix interface has failed 
completely and the fibre has broken into two fragments with approximately triangular 
strain distributions. The length of the two fragments is around 1000 m (around 1 
mm). This is significantly longer than that of the fragments of the T50-O fibre shown 
in Figure 2.14 which are only around 300 m long. This is a clear demonstration of 
the effect of fibre surface treatment upon the micromechanics of deformation.  

2.3.5. Interfacial Shear Stress 

So far the ability of Raman spectroscopy has been demonstrated for the assessment, 
in a qualitative manner, of the changes on fibre/matrix adhesion after the plasma 
treatment of the T-50 HM carbon fibres. It is necessary, however, to quantify such an 
adhesion enhancement. For a given matrix strain level, the interfacial shear stress, i, 
at any point along the fibre can be derived from a consideration of the balance of 
forces at the interface. Equation (2.3) can be recast to give 

 
x
erE

xτ
d
d

2
=)( ff

i  (2.17) 

where Ef and r are the fibre modulus and radius, respectively, ef is the fibre strain, and 
x is the position along the fibre. Since Raman spectroscopic studies of single-fibre 
composites provide the fibre strain distribution, it makes it also possible to determine 
the point-to-point variation of the interfacial shear stress using either analytical 
models or directly from the measured fibre strain distribution.  

The maximum value of the interfacial shear stress, i, max, can be determined di-
rectly from plots of the variation of i(x) with distance along the fibre (e.g. Figure 
2.13(b)). Figure 2.16 compares the evolution of i, max with applied matrix strain for a 
T50-O single-fibre/epoxy composite. It can be seen that max initially increases with 
increasing matrix strain and reaches a maximum value of 45 MPa at 0.9% matrix 
strain. There are basically two possible routes to interface failure in fibre-reinforced 
composites. Firstly interface failure occurs when i, max reaches the interfacial shear 
strength (IFSS), i.e., the parameter used conventionally to quantify the degree of 
adhesion between fibre and matrix. Secondly, the interface failure can also occur 
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when i, max reaches the shear yield stress of the matrix, y. The shear yield stress of the 
matrix used in this study was thought to be around 45 MPa as indicated in Figure 
2.16. Hence it appears that the strength of the fibre-matrix interface in the case of the 
T50-O plasma-treated fibre was limited by the shear yield stress of the matrix. This 
should be contrasted with similar measurements upon the untreated T50 fibre where 

i max was found to be only around 20 MPa and its value is controlled by cohesive 
failure of the fibre-matrix interface (Montes-Morán and Young, 2002b).  

In conclusion it is found that the fibre surface treatment increases the value of 
i,max significantly compared with the untreated fibre but the strength of the interface 

is eventually limited by shear yielding of the epoxy resin matrix. 

 

Figure 2.16. Variation of maximum interfacial shear stress i, max with applied matrix strain 
for T50-O fibre/epoxy composite. (Adapted from Montes-Morán and Young, 2002b with 
permission from Elsevier). 

2.4. Conclusions 

It has been shown that a relatively simple theoretical analysis can be used to predict 
the local distribution of stress and strain in a fibre in a composite. Moreover, it has 
been demonstrated that the local stress or strain distribution can be determined 
experimentally using Raman spectroscopy and that there is a good correlation be-
tween the theoretical and experimental approaches.  
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It is clear that the issue of reinforcement by a single discontinuous fibre is now 
well understood but there are still challenges to be addressed in terms of the funda-
mental mechanics such as developing better analytical methods that do not suffer 
from some of the issues that arise using the shear-lag approach. There continue to be 
developments in numerical methods such as finite element analysis and the increas-
ing power of computer systems offers scope for solving even more complex 
problems. 

There are, however, a number of unsolved problems in the field of composite 
micromechanics that include: 

– Fibre compression – the extent to which failure occurs through geometrical 
instabilities or internal compressive failure processes is still not resolved.  

– Effect of fibre orientation and waviness – it is still not fully understood how 
fibre waviness affects properties especially when a composite is subjected to 
axial compression.  

– Reinforcement with nanofibres and nanotubes – there is no clear indication as 
yet as to the extent to which the deformation of nanofibres and nanotubes 
within a composite can be modelled using continuum mechanics. Experience 
with graphene (Gong et al, 2010) now indicates that it may also be applicable 
in this case. 

There is no doubt that future developments of the theoretical and experimental 
approaches outlined in this review will enable further significant advances to be 
made.  
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3 Carbon Nanotubes and Nanotube-Based Compo-
sites: Deformation Micromechanics 
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3.1. Introduction 

The pioneering work upon the two-dimensional graphene, a one-atom thick planar 
sheet of sp2-bonded carbon atoms, was awarded the Nobel Prize in Physics in 2010. 
Carbon nanotubes (CNTs) are related nanostructures that can be envisaged as being 
made by rolling the two-dimensional graphene sheets into cylinders. This gives rise 
to fascinating materials, which have been attracting great deal of research interest in 
the last two decades, due to their impressive properties and wide range of potential 
applications. Their applications in mechanical reinforcement and electronic device 
are particularly promising. The excellent mechanical properties of nanotubes are 
related to the strong sp2 hybridized carbon-carbon bonds and the perfect hexagonal 
structure in the graphene sheet from which they are built up, while the unique elec-
tronic properties are due largely to the one-dimensional confinement of electronic 
and phonon states which results in van Hove singularities in the density of states 
(DOS) of nanotubes (Dresselhaus et al., 2005).  

Raman spectroscopy has become an important technique to both characterise the 
electronic structure and follow the deformation behaviour of CNTs. This technique 
provides insight into their intrinsic properties and the interaction of nanotubes with 
the surrounding environment, as well as the mechanical reinforcing efficiency of 
nanotubes in composites. 

This chapter aims to give a brief introduction to the structure, preparation and 
properties of carbon nanotubes, and to review the background and main properties of 
nanotube Raman bands, with an emphasis on the effect of deformation upon the 
Raman bands. More comprehensive reviews on the physical properties and Raman 
spectroscopy of CNTs can be found elsewhere (Dresselhaus et al., 2002 and 
Dresselhaus et al., 2005).  

3.2. The Preparation, Structure and Properties of CNTs 

3.2.1. Preparation 

Three methods are employed widely to prepare nanotubes: arc-discharge, laser 
ablation, and chemical vapour deposition (CVD) (Moniruzzaman and Winey, 2006). 
O. Paris (Ed.), Structure and Multiscale Mechanics of Carbon Nanomaterials, 
CISM International Centre for Mechanical Sciences 
DOI 10.1007/ 978-3-7091-1887-0_3 © CISM Udine 2016
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The first two methods involve the condensation of hot gaseous carbon atoms gener-
ated from the evaporation of solid carbon, while in the CVD process, a gaseous 
carbon source is decomposed catalytically and the nanotubes are deposited on a 
substrate or grown from a substrate. Catalytic-grown nanotubes have fewer impuri-
ties but have more defects than the arc-grown nanotubes. The arc-grown CNTs are 
therefore mechanically stronger than the CVD-CNTs, but the latter will almost 
certainly find more applications. This is because the length and structure are more 
controllable in a CVD process, and this process is also more amenable to being 
scaled-up for industrial production (Moniruzzaman and Winey, 2006). 

 

Figure 3.1. Schematic representations of single- and double-walled carbon nanotubes. 
Multi-walled nanotubes can have up to 20 layers of nested tubes. (Courtesy of Dr F. Ding, 
Hong Kong Polytechnic University). (Adapted from Young and Lovell, 2011 with per-
mission from CRC Press). 

3.2.2. Structure 

CNTs are long cylinders of covalently bonded carbon atoms. The carbon atoms are 
arranged on a hexagonal network and each of them has three neighbours with which 
they form strong sp2 hybridized carbon-carbon bonds. There are basically two main 
types of carbon nanotubes according to the numbers of graphene cylinder in their 
structure as shown in Figure 3.1: single-wall nanotubes (SWNTs) and multi-wall 
nanotubes (MWNTs); double-wall nanotubes (DWNTs) are a special case of 
MWNTs (Saito et al., 1998). 

An SWNT can be considered as a seamless roll of a single graphene sheet. The 
nanotube is one atom in thickness (which is 0.34 nm), tens of atoms in circumference, 
and up to a few millimetres in length. The different ways of rolling graphene into 
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tubes are described by the chirality as defined by the circumferential vector (Saito et 
al., 1998; Moniruzzaman and Winey, 2006)  

 21 amanCh   (3.1) 

where n and m is the length along the unit vectors of the two lattice vectors, respec-
tively, as shown in Figure 3.2. MWNTs are made of many coaxial single-wall 
nanotubes with an interlayer separation of 0.34 nm, and each of the walls may possess 
different chiralities. 

The diameter and chiral angle are two important parameters that define the 
nanotube structure, which can be derived from the chirality indices (n, m). The 
diameter dt is given by: 

 /)( 22
0t mnmnad  (3.2) 

where a0 is the length of lattice vector and has a value of 0.249 nm. The chiral angle 
 is defined as the angle between the chiral vector and the zigzag direction x (Figure 

3.2). It varies in the range of 0 - 30º and is given by: 

 
nm

nΦ
2

3tan 1  (3.3) 

 

Figure 3.2. Schematic diagram of a graphene sheet showing the chiral vectors. 
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3.2.3. Properties 
The high aspect ratio, the strong sp2 carbon-carbon bonds, and the one-dimensional 
confinement of electronic states, confer CNTs with a range of interesting physical 
properties such as unique electronic properties, excellent mechanical properties, and 
good thermal conductivity and electrical conductivity.  

SWNTs behave as either semiconductors or metals, depending on the remainder 
of (n-m) divided by 3: those with n-m = 3k are metallic nanotubes while those with 
n-m = 3k±1 are semiconducting nanotubes (where k is integer) (Moniruzzaman and 
Winey, 2006). Therefore, approximately one third of SWNTs are metallic and the 
rest are semiconducting. For semiconducting nanotubes, the band gap decreases as 
the diameter increases. 

Deformation has a significant effect on electronic structure of nanotubes. The 
effect of strain on the electronic structure depends on the deformation mode (i.e. 
uniaxial strain, torsional strain or radial deformation) and nanotube chirality. For 
example, uniaxial strain opens the band gap of non-armchair metallic nanotubes but 
has no effect on armchair nanotubes. Torsional strain can change the electronic 
structure of armchair nanotubes but does not affect zigzag nanotubes. 

Nanotubes and graphite share the same hexagonal network of sp2 carbons in 
their structure. Mechanical properties of nanotubes are therefore expected to be 
comparable with graphene which has in-plane Young’s modulus of 1.06 TPa and 
strength of 130 GPa (Coleman et al., 2006a, 2006b). In fact, some computer simu-
lation work soon after the discovery of nanotubes did predict similar mechanical 
properties to those of graphene (Lu, 1997). The first actual mechanical measurement 
on nanotubes was performed using transmission electron microscopy (TEM) 
(Treacy et al, 1996). Since then, bending tests using an atomic force microscopy 
(AFM) tip have been developed and used widely (Wong et al., 1997). A Young’s 
modulus for SWNTs of 1.0 TPa and 0.3 - 0.9 TPa for MWNTs, and tensile strength 
of 50 - 150 GPa for SWNTs and 10 - 50 GPa for MWNTs are generally quoted by 
the scientific community. The actual values vary from nanotube to nanotube, cover a 
wide range, and depend on many factors such as the nanotube type, preparation 
method, purity and diameter. 

Theoretical work has predicted a very high thermal conductivity for CNTs, of 
approximately 6000 W m-1 K-1, while experimental work has recorded a value of 
3000 W m-1 K-1. MWNTs have been found to also exhibit good electrical conduc-
tivity, which is in the range of 106 - 107 S/m (As a comparison, the copper has a 
thermal conductivity of 400 W m-1 K-1 and electrical conductivity of 6×107 S/m). 
The physical properties of CNTs and a comparison with typical engineering mate-
rials are summarized in Table 3.1. 



Carbon Nanotube Composites 55

Table 3.1. Physical properties of CNTs compared with other engineering materials 

 
Material Mechanical properties Thermal  

conductivity 
(W m-1 K-1) 

Electrical  
conductivity 

(S/m) 
Modulus 

(GPa) 
Strength 

(GPa) 
Carbon  

nanotubes 
1000 30 - 100  >3000 106 - 107 

Carbon fibre 
(Pitch) 

300 - 700 5 - 7 1000 2 - 8.5 106 

Copper 110 - 128  400 6 107 

3.3. Raman spectroscopy of SWNTs 

The Raman spectroscopy of CNTs has becoming an important research topic since 
the first work was published in 1997. This technique is particularly useful for inves-
tigation of the properties of SWNTs due to the resonance effects and the discussion in 
the following section is confined to SWNTs only. 

Four characteristic Raman bands, namely the radial breathing modes (RBMs), 
G-band, D-band and 2D -band (also called the G’-band) carry a large amount of 
structural information and have been studied in most detail, although several other 
weaker and broader features have also been observed in the nanotube spectra. A 
typical Raman spectrum of SWNTs is shown in Figure 3.3. 

3.3.1. Radial Breathing Modes 

The RBM features appear between 100 and 500 cm-1, and are vibrational modes in 
which all the carbon atoms move radially, perpendicular to the nanotube axis, as if 
the nanotube was breathing. The lineshape of the RBM peak for a single nanotube is 
a simple Lorentzian line and the natural linewidth is 3 cm-1. The RBM peak is quite 
often broadened to exhibit a linewidth of 4 - 10 cm-1 due to the interaction of nano-
tubes with the environment (Dresselhaus et al., 2005). 

The RBM frequency ωRBM is independent of the chiral angle  but depends 
linearly on the reciprocal nanotube diameter dt through the relation (Dresselhaus et 
al., 2002 and Dresselhaus et al., 2005): 

 B
d
A

t
RBM  (3.4) 
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where the parameters A and B (B is associated with the effect of environment on the 
ωRBM) are determined experimentally. Although the form of the relation is well 
established, a variety of values for the parameters A and B have been found by 
different groups with different samples. The interaction with the different environ-
ments leads to each sample having its own set of parameters to determine dt from 
ωRBM. Table 3.2 summarizes the values for the ωRBM/dt relation reported in the 
literature. 

 

Figure 3.3. A typical Raman spectrum of SWNTs showing the four characteristic bands. 

Table 3.2. A and B values for Equation (3.4) reported in the literature. 

 
Sample A B Reference 

SWNTs on a silicon substrate 248 0 Jorio et al., 2001 
SDS-dispersed HiPco SWNTs  223.5 12.5 Bachilo et al., 2002 
SDS-dispersed HiPco SWNTs  218 17 Fantini et al., 2004 

Alcohol-assisted CVD-SWNTs 217 15 Araujo et al., 2007 
Laser ablation bundled SWNTs 232 0 Milnera et al., 2000 
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Figure 3.4. A theoretical Kataura plot for individual SWNTs. The blue box indicates a 
resonance window for an excitation laser with energy of 1.58 eV. The arrows indicate the 
down-shift of S

22E  for two individual nanotubes when they aggregate into bundles, 
showing the roping effect on RBMs. All Eii values were calculated using a nearest-tight 
binding model. 

The most important information one can determine from the RBMs is the nano-
tube chirality, which is given by the (n, m) indices. The identification of the (n, m) 
indices is based on resonance theory which gives rise to the so-called Kataura plot 
which is a plot of interband transition energy Eii versus nanotube diameter (or ωRBM) 
(Kataura et al., 1999). The diameter can be determined from ωRBM using Equation 
(3.4). The interband transition energy Eii for the Kataura plot can be determined using 
resonance Raman spectroscopy equipped with a tunable laser (this method gives a 
precision of 3 meV for each Eii), photoluminescence spectroscopy (with the precision 
of 20 - 30 meV) and theoretical approaches (Bachilo et al., 2002 and Fantini et al., 
2004). 

The value of Eii is influenced by many factors such as whether the nanotubes are 
in bundles or isolated, whether they are wrapped by surfactants, the type of solvent in 
which nanotubes are dispersed, the type of substrate and the temperature. As for the 
influence of intertube interaction, the Eii value shifts to lower energies and RBM 
peaks shift to lower frequencies by 1 - 10 cm-1 when isolated individual nanotubes 
aggregate into bundles. Theoretical studies predicted that the value of Eii can shift as 
much as 0.25 eV upon bundling (O'Connell et al., 2004), and they determined ex-
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experimentally an average value of 86 meV for the down-shift. The down-shift of 
the Eii may lead to the so-called “roping effect” on RBM peaks, that is, some RBMs 
that are seen in the isolated state disappear when in bundles (there is an opposite 
case: some RBMs that are absent for isolated nanotubes appear when they are in 
bundles) (Doorn et al., 2003 and Heller et al., 2005). Figure 3.4 illustrates the roping 
effect upon two nanotubes: the (10, 2) and (11, 3) nanotubes that are off resonance 
and in resonance with a 785 nm laser, respectively, when isolated, are brought into 
and outside the resonance window when in bundles due to the changes of Eii.

The uncertainties in Eii values and RBM/dt relation bring difficulty in identifying 
nanotube chirality. Additional information for identification of nanotube chirality 
can be provided by deforming nanotubes which affects the electronic structure and 
consequently the Raman bands. Lucas and Young (2007) managed to assign a 
unique nanotube structure to each RBM separated by just 1 - 2 cm-1 by studying the 
effect of deformation upon the RBM intensity. 

3.3.2. G-band
The G-band originates from the vibrations of neighbouring carbon atoms in opposite 
direction along the nanotube axis and its circumference and is observed in the 1500 - 
1605 cm-1 region for SWNTs. In most cases, the G-band can be fitted with two most 
intense peaks labeled by G+, for atomic vibration along the tube axis; and G-, for 
modes with atomic vibration along the circumferential direction (Dresselhaus et al., 
2002). G is independent of the diameter while G decreases with the decreasing 
diameter. The dependence of G on nanotube diameter is given by: 

2
tGG / d  (3.5) 

where  has a value of 47.7 nm2 cm-1 and 79.5 nm2 cm-1 for semiconducting and 
metallic nanotubes, respectively (Dresselhaus et al., 2005). This equation allows the 
determination of nanotube diameter when the RBM is absent, although the infor-
mation is less accurate than direct RBM measurement. 

The lineshape of the G-band of semiconducting SWNTs is quite different from 
that of metallic nanotubes. Specifically, the difference in G- lineshape allows one to 
readily distinguish between semiconducting and metallic nanotubes (Dresselhaus et 
al., 2002). For semiconducting nanotubes both the G+ and G- peaks are of a Lo-
rentzian profile with linewidths of 6 - 15 cm-1, whereas for metallic nanotubes, the 
G+ peak has a Lorentzian lineshape similar to the semiconducting tubes, but the G-

peak is a broad and asymmetry peak and is usually fitted using a Breit-Wigner-Fano 
(BWF) function (Dresselhaus et al., 2002). The BWF broadening is related to free 
electrons in nanotubes with metallic character. There are however conflicting re-
ports in the G- lineshape of metallic nanotubes. Paillet et al. (2005) demonstrated 
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BWF line is an intrinsic feature of metallic nanotube bundles but the BWF compo-
nent vanishes in isolated metallic nanotubes. In contrast, Bose et al. (2005) predicted 
the BWF lineshape to be intrinsic in single metallic nanotubes. 

Interacting with the environment can also influence the G-band of nanotubes 
significantly. Important environmental factors include the aggregation state (i.e. 
isolated nanotube or bundles), the charge transfer arising from doping a SWNT and 
the substrate. For SWNTs debundled with the assistance of dispersant, the dispersant 
molecules wrapping the nanotube can suppress the vibration in the circumferential 
direction, giving rise to a weak G- peak (Kawamoto et al., 2006). In addition, the G+ 
linewidth is lower for individual nanotube than for nanotube bundles. As for the 
influence of charge transfer, removing charge from a SWNT (i.e. p-doping or oxi-
dizing) leads to an up-shift of the G+ peak around 1592 cm-1, while adding charge (i.e. 
n-doping or reducing) to a SWNT results in a down-shift (Wise et al., 2004). 

3.3.3. D-band and 2D-band 

The D-band and its second order overtone 2D-band (also called 2D band) are ob-
served in the 1250 - 1450 cm-1 and 2500 - 2900 cm-1 regions, respectively. The 
D-band scattering involves one-phonon emission while the 2D-band scattering 
involves emission of two phonons. The causes of these two bands both involve a 
double resonance Raman process as shown in Figure 3.5. The D-band scattering 
consists of one-elastic and one-inelastic scattering process, in which the elastic 
scattering arises from defects (such as vacancies, impurities and hetero-atoms) in the 
crystal. On the other hand, the 2D-band is due to two-inelastic scattering process, in 
which the two emitted phonons possess vectors of +q and –q, respectively. The 
momentum constant is therefore automatically preserved and no defect is required to 
observe the 2D-band. 

The D- and 2D- bands are known as dispersive bands because they change their 
frequencies when the laser excitation energy changes. For example, a function 
ω2D=2420+106Elaser has been found for the dependence of 2D-band position upon 
Elaser (Dresselhaus et al., 2002). The dependence of ωD and ω2D on Elaser is due to the 
dependence of phonon energy on Elaser. 

Both the ωD and ω2D are found to be dependent also on both the nanotube di-
ameter dt and the chiral angle , a property unique to nanotubes. The diameter 
dependence is a more complex issue. When considering the 2D/dt dependence in a 
broad range of dt where different Eii interband transitions are involved in resonance, 
the value of the 2D decreases as the dt decreases and follows the relation: ω2D= 
2708.1-35.4/dt. On the other hand, when analysing the data within the same interband 
transition where the dt varies over a small range, 2D decreases with increasing dt 
through the dependence: ω2D= ω0+Ci/dt, where the parameter Ci has a value of 34 nm 
cm-1 for SE33  and 182 nm cm-1 for SE44  (Filho et al., 2003). 
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Figure 3.5. Second-order resonance Raman spectral processes for D-band and 2D-band. 
The dashed lines indicate elastic scattering. Resonance points are shown as solid circles. 

In most cases, the 2D-band shows a single Lorentzian peak, but a two-peak 
2D-band has also been observed from individual SWNTs. The two-peak structure of 
2D-band is observed when two independent double resonance processes are in-
volved. Specifically, for semiconducting SWNTs this occurs when one level of the Eii 
transition is in resonance with the incident laser while a lower level of interband 
transition is in resonance with the scattered photon; while for metallic SWNTs, each 
Eii transition is split into an upper and lower subbands, and both the upper and lower 
subbands can be involved simultaneously in the two independent resonance pro-
cesses (Filho et al., 2002a and Filho et al., 2002b). There are 16 (n, m) nanotubes that 
exhibits a two-peak 2D-band when excited with a 514 nm laser. 

For individual SWNTs, the linewidth ranges from 7 to 40 cm-1 for the D-band and 
from 30 to 35 cm-1 for the 2D-band. The 2D-band linewidth is a measure of the 
dispersion state as its value decreases with the decrease of bundle size (Cardenas and 
Gromov, 2009). The 2D-band position is most sensitive to stress and is usually 
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employed to follow the deformation of nanotubes. The effect of both the dispersion 
state and deformation on nanotube Raman bands are important topics in this study 
and will be discussed next. 

3.4. Carbon Nanotube Composites 

In view of the impressive mechanical properties of carbon nanotubes, one obvious 
application of the materials is in the reinforcement of polymer matrices. Examples 
will now be given of different systems in which SWNTs have been used to produce 
polymer-based composites (Deng et al., 2011). 

 

 

Figure 3.6. Tensile testing of PVT/SWNT nanocomposites. (a) Tensile specimen and (b) 
stress-strain curves. (Adapted from Deng et al., 2011 with permission from the American 
Chemical Society). 

20 mm 

(a) 

(b) 
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Table 3.3. Mechanical properties of PVA and PVA/SWNT films (Deng et al., 2011). 
 

Material Modulus (GPa) Strength (MPa) Elongation (%) 
PVA 1.9 36 130 

PVA/SWNT 2.3 42 110 
 

3.4.1. Bulk SWNT nanocomposites 

Bulk composites were prepared consisting of 0.2% by weight of HiPco single-walled 
carbon nanotubes in a poly(vinyl alcohol) matrix. Tensile specimens were cut out 
from the as-cast nanocomposite film as shown in Figure 3.6(a). Mechanical testing 
was carried out with the film samples using an Instron testing machine, and typical 
stress-strain curves are shown in Figure 3.6(b). For both neat the PVA and 
PVA/SWNT films, the stress increased linearly with the strain in the low strain range 
(< 2.5% strain) and the polymers yielded at around 3% strain. The films fractured 
when the strain exceeds 100%, showing good ductility of the sample. The moduli of 
the films were calculated in the strain range of 0.5 - 2.5% where good linearity was 
found. It was found the modulus increase from 1.9 GPa for neat PVA film to 2.3 GPa 
for PVA/SWNT composite film (see Table 3.3) and the ultimate tensile strength 
increased from 36 MPa to 42 MPa with just 0.2% of SWNTs in the composite film. 

It is also possible to use Raman spectroscopy to follow the deformation of the 
nanotubes with in the composites. Figure 3.7(a) shows the Raman spectra of the 
PVA/SWNT composite film and HiPco SWNTs. It can be seen that the spectrum of 
the nanocomposite is very similar to that to that of the pure nanotubes, even though 
the nanocomposite only contains 0.2% of SWNTs by weight. This is because the 
nanotubes undergo very strong resonance Raman scattering (Dresselhaus et al., 2002; 
Dresselhaus et al., 2005), whereas the PVA matrix only shows weak scattering. It 
also means that Raman spectroscopy is a very useful technique to analyse many 
aspects of the structure and properties of nanotube composites.  

The PVA/SWNT films were deformed using a four-point bending rig and Figure 
3.7(b) shows the 2D-band position as a function of the strain applied to the compo-
sites. Good linearity between 2D peak position and strain can be seen over the strain 
range. The nanotube 2D-band shift per unit strain, observed in the elastic deformation 
region in PVA/SWNT film, of -23 cm-1/% strain, is the highest found in isotropic 
polymer/nanotube films. The Raman band shift rate can be converted to the nanotube 
modulus using a universal calibration of -5 cm-1%-1/GPa. This calibration was es-
tablished by Cooper et al. (2001) by in-situ Raman spectroscopic study of a number 
of different carbon fibres. The high band shift rate measured for the PVA/SWNT film 
implies that the effective Young’s modulus of the SWNTs in the nanocomposites is 
600 GPa (Deng et al., 2011). It is also similar to the effective modulus of the SWNTs 
in the film determined from the data in Figure 3.6. 
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Figure 3.7. (a) Raman spectra of HiPco SWNTs and the PVA/SWNT film. (b) Variation of 
2D-band position for nanotube in PVA/SWNT film as a function of strain. (Adapted from 
Deng et al., 2011 with permission from the American Chemical Society). 
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3.4.2. SWNT nanocomposites fibres 

PVA/SWNT composite fibres containing 0.2% by weight (relative to the polymer) of 
HiPco SWNTs were prepared by electrospinning (Deng et al., 2011). The spinning 
conditions were: voltage, 20 kV; flow rate, 0.01 mL/min; and needle tip-to-collector 
distance, 8 cm. The fibres were collected using either 1) a grounded stationary stage 
or 2) for deformation studies a rotating disk on which a PMMA beam was attached. 
The angular velocity of the disk was 1500 rpm. 

Narrow-diameter electrospun nanocomposite fibres, an example of which is 
shown in Figure 3.8, were collected after being aligned macroscopically using the 
rotating disk. The fibre diameter was controlled by varying the processing conditions 
such as the concentration of polymer solution, the flow rate and the speed of disk 
rotation. A range of different fibre diameters were obtained. The average diameter 
decreased from 700 nm for fibres collected at 0 rpm (a grounded stationary stage) to 
590 nm for those collected with a disk rotating at an angular velocity of 1500 rpm. 
The macroscopic orientation of the fibres collected on the PMMA beam could be 
controlled by changing the position of the beam on the rotating disk relative to the 
direction of disc rotation (Deng et al., 2011).  

Figure 3.9 shows the Raman spectra of a single PVA/SWNT fibre. Because of the 
resonantly-enhanced signal from the nanotubes, well-defined Raman bands such as 
the RBMs, G-band and 2D-band from nanotubes can be seen even at the low loadings 
of nanotubes employed (0.2%). The strong G band was used to characterize the 
orientation of the SWNTs in the nanocomposites and the highly stress-sensitive 2D 
band was employed to follow their deformation.  

The 2D-band position in the electrospun fibres collected at 0 rpm was 2 cm-1 
higher than in the film while the 2D-band position in fibres collected with 1500 rpm 
was 2 cm-1 lower than in the films. This suggests that the electrospinning process 
alone induces a small residual compression of the nanotubes in the fibres, possibly 
due to shrinkage as the solvent evaporates. In contrast, in fibres collected with a 
high-speed rotating disk the nanotubes are pre-stretched and had a slight residual 
tension that is not relaxed by solvent evaporation. Weak but resolvable Raman bands 
in the 600-1200 cm-1 region corresponding to PVA polymer are shown in the inset. 
They also enable the orientation of the polymer to be followed through the use of 
Raman spectroscopy (Deng et al., 2011). 
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Figure 3.8. SEM micrograph of a single electrospun nancomposite fibre. (Adapted from 
Deng et al., 2011 with permission from the American Chemical Society). 

 

Figure 3.9. Raman spectra obtained from a single electrospun PVA/SWNT fibre and the 
HiPco nanotubes. The spectra have been offset for clarity and the region of the spectrum 
showing the PVA bands is inset. (Adapted from Deng et al., 2011 with permission from the 
American Chemical Society). 
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The orientation of the nanotubes in the nanofibres was characterized using po-
larized Raman spectroscopy using VV laser polarization with the incident laser beam 
and analyser both polarized parallel to the fibre axis (Deng et al., 2011). Figure 3.10 
shows the normalized intensity of the nanotube G-band of a single nanocomposite 
fibre oriented at different angles  between fibre axis and the laser polarization 
direction. It can be seen the intensity decreases dramatically as the angle   increases, 
indicating a high degree of alignment of the nanotubes in the fibre. The solid line is 
generated for a relationship of I  cos4  which is expected to apply for perfect 
orientation of the nanotubes in the fibre (Liu and Kumar, 2003). The data follow the 
curve very closely until  > 60  but deviate a little from the theoretical line above this 
angle, showing some slight misorientation. The strong drawing force exerted by 
electrical field results in a high draw ratio in electrospinning jets and a high degree of 
nanotube alignment. 

Along with the high degree of orientation of nanotubes achieved in the electro-
spun fibre, the polymer molecules can also be oriented under the strong electrical 
forces together with the drawing force exerted by the rotating disk. The ~2 m 
diameter laser spot is significantly larger than both the nanotubes and fibre diameter. 
Hence these measurements determine only the average orientation of the SWNTs – 
there may be significant local variations of both of these parameters within the 
nanofibres (Deng et al., 2011). 

 
Figure 3.10. Variation of nanotube G-band intensity recorded using the VV configuration, 
as a function of the angle between the fibre axis and the laser polarization direction for an 
electrospun PVA/SWNT fibre. (Adapted from Deng et al., 2011 with permission from the 
American Chemical Society). 
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Figure 3.11 shows the stress induced shift of the G’-band for an electrospun 
nanofibre. The electrospun fibre exhibited a Raman band shift rate of -35 cm-1/% 
strain which is higher than that shown for the film in Figure 3.7(b) as a consequence 
of the better orientation of both the nanotubes and polymer molecules in the nano-
fibres (Deng et al., 2011). Cooper et al. (2001) measured the Raman band shift rate 
for the 2D band for a number of different carbon fibres and showed that there was a 
universal calibration of -5 cm-1%-1/GPa. Assuming that the calibration was also valid 
for the stress-induced shift of the same 2D band in carbon nanotubes, they used it to 
determine the effective Young’s modulus of both single- and multi-walled carbon 
nanotubes in epoxy-matrix composites.  

The 2D Raman band shift rate can be used to determine the effective modulus of 
the SWNTs in the electrospun nanofibres and it is again found to be of the order of 
600 GPa, i.e. about 60% of the accepted value of around 1000 GPa. The slightly 
lower value for the nanocomposite films determined from Figure 3.7(b) may be due 
to all of the nanotubes not lying exactly in the plane of the films. The discrepancy 
with the accepted value can further be accounted for by factors such as SWNT 
bundling and finite length effects (Deng et al., 2011). 

 

Figure 3.11. Variation of 2D-band position for nanotubes in the PVA/SWNT electrospun 
fibre as a function of strain. (Adapted from Deng et al., 2011 with permission from the 
American Chemical Society). 
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3.4.3. Aramid/nanotube fibres 

Poly(p-phenylene terephthalamide)/single-walled carbon (PPTA/SWNT) composite 
fibres with different draw ratios (DR) were spun using a dry-jet wet spinning process 
and their structure and deformation behaviour has been analysed using Raman 
spectroscopy (Deng et al., 2010).  

Figure 3.12 shows the Raman spectrum of a neat PPTA fibre, the original carbon 
nanotubes and a PPTA/SWNT composite fibre. Characteristic bands of both nano-
tubes and PPTA polymers can be seen from the composite fibres, and this enables the 
use of Raman spectroscopy for further characterization. Two features have been 
found by comparing the spectrum of composite and the original SWNTs: 1) The 
2D-band from the composite fibre is higher in wavenumber than that from the orig-
inal SWNTs in air, and fibres with higher DRs show a higher peak position, 
indicating residual compressive stress in the fibre upon drawing; and 2) The multiple 
peaks observed in the low-frequency region (radial breathing mode, RBM), together 
with the peak position and bandwidth of G’-band suggest the nanotubes were still in 
bundles even the processing condition were optimized to exfoliate nanotubes (Deng 
et al., 2010).  

 

Figure 3.12. Raman spectrum of neat PPTA, SWNTs and PPTA/SWNT composite fibres. 
(Adapted from Deng et al., 2010 with permission from Elsevier). 



Carbon Nanotube Composites 69

The mechanical properties were determined for both the neat PPTA and 
PPTA/SWNT fibres and typical stress-strain curves are shown in Figure 3.13 for the 
composite fibres. It can be seen the slope in these curves decreases when the strain 
exceeds 0.5% and increases after 1%. The variation in modulus is thought to be due 
to change of the molecular configuration under strain and the variation becomes less 
pronounced as the DR of fibres increases (Deng et al., 2010).  

It was found that the Young’s modulus of reinforced fibres was improved by 15% 
for composite fibres relative to the neat fibres for a DR of 2. For fibres with higher 
DRs, the mechanical properties were degraded, an effect that has been observed for 
other high performance polymer/nanotube composites as well. It should be noted that 
mechanical reinforcement of polymers by nanotubes has been mostly on relatively 
low modulus polymers such as PVA (Deng et al., 2011). It appears that attempts to 
reinforce high-performance fibres such as PPTA have been less successful. Me-
chanical degradation by pristine nanotubes has also been reported where poor 
dispersion of nanotubes and weak interfacial interactions occur. The use of Raman 
spectroscopy to follow the mechanisms of stress transfer in the PPTA/SWNT fibres 
will now be presented.  

 

Figure 3.13. Typical stress-strain curves of PPTA/SWNT fibres. (Adapted from Deng et 
al., 2010 with permission from Elsevier). 
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In-situ Raman spectroscopy was employed to follow the deformation behaviour 
of the composite fibres by Deng et al. (2010). Figure 3.14 shows the variation of 
Raman band positions during tensile deformation. The PPTA 1610 cm-1 peak shifted 
to lower wavenumber linearly with increasing strain up to fibre fracture. On the other 
hand, the nanotube 2D-band and G-band wavenumbers were found to decrease as the 
strain increased until it reached 0.35%, and the downshift for both bands ceased when 
the strain exceeded 0.6%. This indicates breakdown of the interface in the strain 
range of 0.35-0.6%, which can be a result of interfacial sliding at SWNT-SWNT 
interface and/or SWNT-polymer interface. 

The Raman shift rate increases with the DR of the fibre, and is found to scale with 
the modulus of the composite fibre. The large band shift rate of nanotube 2D-band 
within small strain range is clearly an indication of stress transfer from the matrix to 
the nanotubes. Molecular dynamics simulation carried out by Yang et al. (2005) has 
demonstrated that strong interfacial adhesion exists between nanotubes and polymers 
that contain aromatic rings in their backbone, as is the case for PPTA molecules. This 
strong interfacial interaction should give rise to mechanical reinforcing on PPTA 
fibres, but is not the case for PPTA/SWNT fibres except for the fibre with a DR of 2. 
Chang et al. (2006) have also observed the phenomenon that high efficiency of stress 
transfer results in very limited reinforcement and the reason remained unclear in their 
work. In the work of Deng et al. (2010), the matrix became degraded compared to the 
neat PPTA due to the orientation deterioration, which consequently resulted in the 
negative reinforcing effect in the composite even when good stress transfer was 
observed. 

The overall downshift of nanotube 2D-band in the fibre deformation process re-
flects the strength of the interface. For fibres with a DR of 11 in which the nanotubes 
are highly aligned, a maximum down shift of 8 cm-1 has been observed. This level of 
band shift is significantly less than that observed for the PVA/SWNT materials 
described above. It is difficult to compare the shift rate for different composites 
system as it depends on the orientation and type (preparation method) of nanotubes, 
as well as the properties of polymer matrix. Nevertheless, it is clear that the poor level 
of reinforcement in the case of PPTA/SWNT fibres shows why the material has 
inferior properties to the PPTA fibres without the nanotubes.  

The examples given above show the use of employing stress-induced Raman 
band shift to characterize stress transfer from polymer matrices to carbon nanotubes 
in a variety of different composite systems.  
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Figure 3.14. Variation of Raman band peak position for composite fibre with different DRs 
under tensile deformation: a) nanotube 2D-band and b) PPTA 1610 cm-1 peak. (Adapted 
from Deng et al., 2010 with permission from Elsevier). 
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3.5. Conclusions 

It has been shown that carbon nanotubes have a range of different well-defined 
nanostructures that control their electronic and mechanical properties. Moreover, it 
has been demonstrated that Raman spectroscopy is a powerful technique to charac-
terize the nanotubes and the origin of the different Raman bands found in nanotubes 
has been discussed in detail. 

The deformation behaviour of the nanotubes in both PVA/SWNT composite 
films produced by solution casting and composite fibres fabricated by electrospin-
ning and coagulation spinning has been discussed. Significant levels of reinforcement 
were shown to be found upon the addition of carbon nanotubes, even at loading levels 
as low as 0.2% by weight.  

Raman spectroscopy has again been demonstrated to be extremely powerful in 
characterizing the deformation of these PVA/SWNT composite materials. Large 
Raman band shift rates were observed in the composite film and electrospun fibres 
corresponding to high levels of stress transfer between the polymer matrix and the 
nanotubes. This good stress transfer was shown to the consistent with the bulk me-
chanical properties of the PVA/SWNT composite materials. 

The modification of aramid fibres with the addition of carbon nanotubes has also 
been described. Although it is demonstrated that through the use of Raman spec-
troscopy, reasonable levels of stress transfer are found between the aramid matrix and 
the nanotubes, it is found that there is generally poor reinforcement in this system due 
to slippage of the nanotubes at high strain levels.  

Overall it has been shown that Raman spectroscopy is a powerful technique to 
characterize a range of important aspects of the structure and properties of carbon 
nanotubes. 
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4.1. Introduction 

The study of graphene is one of the most exciting topics in materials science and 
condensed matter physics (Geim and Novoselov, 2007) and graphene has good 
prospects for applications in a number of different fields (Novoselov, 2011; Geim, 
2011). There has been a rapid rise of interest in the study of the structure and prop-
erties of graphene following the first report in 2004 of the preparation and isolation of 
single graphene layers in Manchester (Novoselov et al, 2004). It had previously been 
thought that the isolation of single-layer graphene would not be possible since such 
2D crystals would be unstable thermodynamically and/or might roll up into scrolls if 
prepared as single atomic layers (Young et al, 2012). A large number of studies since 
2004 have shown that this is certainly not the case. There was excitement about 
graphene initially because of its electronic properties, with its charge carriers exhib-
iting very high intrinsic mobility, having zero effective mass and being able to travel 
distances of microns at room temperature without being scattered (Geim and No-
voselov, 2007). Thus the majority of the original research upon graphene had 
concentrated upon electronic properties, aimed at applications such as using gra-
phene in electronic devices (Avouris, 2010).  

 
Figure 4.1. A molecular model of a single layer of graphene. (Courtesy of F. Ding, Hong 
Kong Polytechnic University). (Adapted from Young and Lovell, 2011 with permission 
from CRC Press). 
O. Paris (Ed.), Structure and Multiscale Mechanics of Carbon Nanomaterials, 
CISM International Centre for Mechanical Sciences 
DOI 10.1007/ 978-3-7091-1887-0_4 © CISM Udine 2016



76 R. J. Young

Graphene is the basic building block of all graphitic forms of carbon. It consists 
of a single atomic layer of sp2 hybridized carbon atoms arranged in a honeycomb 
structure as shown in Figure 4.1. Research upon the material has now broadened 
considerably as it was soon realised that graphene might have other interesting and 
exciting physical properties such as high levels of stiffness and strength, and thermal 
conductivity, combined with an impermeability to gases. One obvious application of 
graphene is in the field of nanocomposites (Young et al, 2012) and researchers 
working upon other forms of nanocomposites, such as those reinforced by nano-
tubes or nanoclays, have now refocused their efforts towards graphene 
nanocomposites. Additionally there was pre-existing expertise in the exfoliation of 
graphite (e.g. expanded graphite) and in the preparation of graphene oxide (origi-
nally termed “graphite oxide”). The advantages and disadvantages of using 
graphene oxide in composite materials in comparison with pristine graphene has 
been discussed elsewhere (Young et al, 2012). 

4.2. Graphene

4.2.1. Preparation 
There has already been considerable effort put into the development of ways of 
preparing high-quality graphene in large quantities for both research purposes and 
with a view to possible applications (Rao et al, 2009). Since it was first isolated in 
2004 several approaches have been employed to prepare the material. One is to 
break graphite down into graphene by techniques such as a mechanical cleavage or 
liquid phase exfoliation (sometimes termed “top-down”). The other methods is to 
synthesize graphene using techniques such as chemical vapour deposition (CVD) 
(often known as “bottom-up”), epitaxial growth on silicon carbide, molecular beam 
epitaxy, etc (Young et al, 2012). 

Expanded graphite was developed more than 100 years as a filler for the polymer 
resins that were being developed at the same time and investigated extensively over 
the intervening period. More recently there have been developments in the prepara-
tion of thinner forms of graphite, known as graphite nanoplatelets (GNPs) 
(Kalaitzidou et al, 2007). They can be produced by a number of techniques that 
include the exposure of acid-intercalated graphite to microwave radiation, 
ball-milling and ultrasonication. The addition of GNPs to polymers has been found 
to lead to substantial improvements in mechanical and electrical properties at lower 
loadings than are needed with expanded graphite. The definition of GNPs covers all 
types of graphitic material from 100 nm thick platelets down to single layer gra-
phene (Kalaitzidou et al, 2007). It is, however, the availability of single- or few-layer 
graphene that has caused the most excitement in recent times. 
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Figure 4.2. Optical micrograph of a graphene monolayer (indicated by an arrow) prepared 
by mechanical cleavage and deposited on a polymer substrate. (Adapted from Young and 
Lovell, 2011 with permission from CRC Press). 

The simplest way of preparing small samples of single- or few-layer graphene is 
by the mechanical cleavage (i.e. the repeated peeling of graphene layers with adhe-
sive tape) from either highly-oriented pyrolytic graphite or good-quality natural 
graphite (Novoselov et al, 2004). Figure 4.2 shows an optical micrograph of a sample 
of monolayer graphene prepared by mechanical cleavage and then deposited upon a 
polymer substrate. Typically, this method produces a mixture of one-, two- and 
many-layer graphene flakes that have dimensions of the order of tens of microns. 

The rapid rise of interest in graphene for use in applications that require high 
volumes of material, such as in composites, led to investigations into methods of 
undertaking large-scale exfoliation. One of the first successful methods was the 
exfoliation and dispersion of graphite in organic solvents such as dimethylformamide 
or N-methylpyrrolidone (Hernandez et al, 2008). Depending on the levels of agita-
tion and purification suspensions with large (>50%) fractions of graphene 
monolayers could be prepared. The material produced by this method is relatively 
free of defects and is not oxidised but the lateral dimensions of the graphene layers 
are typically no more than a few microns. 

An important breakthrough has been the growth graphene films with macroscopic 
dimensions on the surfaces of metals.  In the case of copper, growth takes place upon 
Cu foils via a surface-catalyzed process and thin metal films do not have to be em-
ployed (Suk et al, 2011). For both metals, it was found that the graphene films could 
be transferred to other substrates. This process has now been scaled-up to a 
roll-to-roll production process in which the graphene is grown by CVD on cop-
per-coated rolls. It can then be transferred to a thin polymer film backed with an 
adhesive layer to produce transparent conducting films (Bae et al, 2010). It has been 
found that such films have a low electrical sheet resistance and optical transmittance 
of the order of 97.7%. They are found to be predominantly covered with a monolayer 
graphene film but also have some bilayer and multilayer islands. 
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Figure 4.3. High resolution TEM image from CVD graphene showing regions of (a) 
non-Bernal stacking and (b) Bernal stacking (Scale bars = 5 nm). The selected area dif-
fraction patterns are given and number of layers in the different areas is indicated (Courtesy 
of Jamie Warner and Sarah Haigh) 

4.2.2. Characterisation 

A single atomic layer of graphene absorbs ~2.3 % of visible light and its absorption is 
virtually independent of wavelength (Nair et al, 2008). Thus, being significantly 
optically active, graphene can be observed on certain substrates by simple methods, 
Figure 4.2. In fact, it is possible to distinguish between flakes of graphene with 
different numbers of layers relatively easily in a transmission optical microscope. 

The atomic structure of graphene can be observed directly using transmission 
electron microscopy (TEM) (Meyer et al, 2007) as shown in Figure 4.3. It is rela-
tively easy to resolve individual carbon atoms by TEM and the differences between 
Bernal-stacked and irregularly stacked material can be seen.  

It is found that both an image of the graphene lattice and well-defined electron 
diffraction patterns can be obtained from suspended graphene sheets in the TEM 
(Meyer et al, 2007). The sheets, however, are not exactly flat but have static ripples 
out of plane on a scale of the order of 1 nm (Bangert et al, 2009). It was also found 
that there was no tendency for the graphene sheets to scroll or fold in contradiction to 
one of the preconceptions of its behaviour. Moreover, it was found that a sliver of 
graphene could extend nearly 10 m from the edge of a metal TEM grid without any 
external support. This was taken as an indication that the graphene monolayers have a 
very high level of stiffness (Booth et al, 2008). 
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Figure 4.4. Raman spectra of monolayer graphene showing full spectrum with the G and 
2D/G' bands (top). Details of the 2D/G' band for monolayer, bilayer, trilayer and 
many-layer materials (bottom). 
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Raman spectroscopy is a particularly useful technique to characterize graphene 
monolayers, bilayers and trilayers since, quite remarkably, Raman spectra can even 
be obtained from a single layer of carbon atoms (due to strong resonance Raman 
scattering in this material (Ferrari et al, 2006)). Moreover, graphene samples with 
different numbers of layers show significant differences in their Raman spectra as can 
be seen in Figure 4.4. In the case of single layer graphene, the G’ (or 2D) Raman band 
is twice the intensity of the G band whereas in the two-layer material the G band is 
stronger than the 2D band. In addition, the 2D band is shifted to higher wavenumber 
in the two-layer graphene and has a different shape, consisting of 4 separate bands 
due to the resonance effects in the electronic structure of the 2-layer material (Ferrari 
et al, 2006). In fact it is possible to use Raman spectroscopy to determine the stacking 
order in several layers of graphene (for instance to distinguish between two separate 
single layers overlapping and a graphene bilayer in which the original Bernal crys-
tallographic stacking is retained (Young et al, 2012)). As the number of layers is 
increased the 2D band moves to higher wavenumber and becomes broader and more 
asymmetric in shape for more than around 5 layers very similar to the 2D band of 
graphite. It should also be noted that in the Raman spectra shown in Figure 4.4 the D 
band, which is normally found in different forms of graphitic carbon due the presence 
of defects, is not present indicating that the mechanically-exfoliated graphene used to 
obtain the spectra in Figure 4.4 has a very high degree of perfection (Ferrari et al, 
2006). More prominent D bands are found in samples of imperfect or damaged 
graphene such as some CVD material or in the vicinity of edges of small exfoliated 
fragments. 

4.2.3. Mechanical properties 

Lee et al (2009) undertook the direct determination of the mechanical properties 
of monolayer graphene through the nanoindentation of graphene membranes, sus-
pended over holes of 1.0 - 1.5 m in diameter on a silicon substrate, in an atomic 
force microscope (AFM). They isolated the monolayers through the use of optical 
microscopy and identified them with Raman spectroscopy. They determined the 
variation of force with indentation depth and derived stress-strain curves by assuming 
that the graphene behaved mechanically as a 2D membrane of thickness 0.335 nm. It 
was found that failure of the graphene took place by the bursting of the single mo-
lecular layer membrane at large displacements with failure initiating at the 
indentation point. The stress-strain curve for the graphene derived from the analysis 
of the indentation experiments is shown in Figure 4.5. It can be seen that the 
stress-strain curve becomes non-linear with increasing strain and that fracture occurs 
at a strain of well over 20%. 

Using density functional theory, Liu, Ming and Li (2007) had earlier undertaken 
an ab initio calculation of the stress-strain curve of a graphene single layer. This is 
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also plotted in Figure 4.5 and it can be seen that there is extremely good agreement 
between the theoretical analysis and the experimentally-derived curve. The value of 
Young’s modulus determined from the indentation experiment (Lee et al, 2009) is 
1000  100 GPa and this compares very well with the theoretical estimate (Liu, Ming 
and Li, 2007) of 1050 GPa. It is also similar to the value of 1020 GPa determined 
many years ago for the Young’s modulus of bulk graphite In addition, the strength of 
the graphene monolayer was determined experimentally to be up to 130  10 GPa. 
This is the order of E/8, where E is the Young’s modulus, and so is close to the 
theoretically-predicted value of the strength of a defect-free material (Kelly and 
Macmillan, 1986).  

The theoretical failure stress can also be determined from the maximum stress in 
the calculated stress-strain curve in Figure 4.5. Liu, Ming and Li (2007) found that 
the behaviour of the graphene at high-strains should differ slightly depending upon 
the crystallographic direction in which the graphene is deformed. They predicted the 
strength to be in the range 107 - 121 GPa, which is again in very good agreement with 
the range of values measured experimentally. 
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Figure 4.5. Measured (Lee et al, 2009) and calculated (Liu, Ming and Li, 2007) 
stress-strain curve for the deformation of a graphene monolayer. 
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Figure 4.6. Deformation patterns for a discontinuous graphene flake in a low-modulus 
polymer matrix. The top diagram shows the situation before deformation and the bottom 
diagram shows the effect of the application of a tensile stress, 1, parallel to the flake. 
(Adapted from Gong et al., 2010 with permission from Wiley-VCH). 

4.3. Nanoplatelet Reinforcement – Theory 

In view of the growing interest in the study of polymer-based nanocomposites, it will 
be shown how the shear-lag methodology can be modified to predict the distribution 
of stress and strain in nanoplatelets reinforcing a polymer matrix and an analogous set 
of relationships is obtained for nanoplatelet reinforcement to those obtained for fibre 
reinforcement. Because of the very strong resonance Raman scattering, it will be 
shown that well-defined Raman spectra can be obtained from graphene monolayers. 
Large stress-induced band shifts can be obtained from these sheets when embedded 
in a polymer matrix which has enabled the prediction of the shear lag model to be 
validated. It will be shown further how the shear-lag model (Cox, 1952; Kelly, 1966; 
Kelly and Macmillan, 1986) can be used to model reinforcement by few-layer gra-
phene. 
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4.3.1. Micromechanics 

It is of interest to see if the reinforcement of composites with nanoplatelets can also 
be analyzed using continuum mechanics. In the case of nanoplatelets such as a 
discontinuous graphene flake reinforcing a composite matrix, stress transfer from the 
matrix to the flake will also be assumed to take place through a shear stress at the 
flake/matrix interface (Gong et al., 2010). This can also be represented diagram-
matically by Figure 4.6 where the rectangle in this case represents the 
two-dimensional section through a nanoplatelet in a matrix rather than along the 
middle of a fibre. Before deformation parallel lines perpendicular to the flake can 
again be drawn from the matrix through the flake before deformation. When the 
system is subjected to axial stress, 1, parallel to the flake axis, the lines become 
distorted since the Young’s modulus of the matrix is much less than that of the flake. 
This induces a shear stress at the flake/matrix interface. The axial stress in the flake 
will build up from zero at the flake ends to a maximum value in the middle of the 
flake. The uniform strain assumption means that, if the flake is long enough, in the 
middle of the flake the strain in the flake equals that in the matrix. Since the nano-
platelets have a much higher Young’s modulus it means that the nanoplatelets carry 
most of the stress, and therefore load, in the composite. 

The relationship between the interfacial shear stress, i, near the flake ends and 
the flake stress, f, can be determined by using a force balance of the shear forces at 
the interface and the tensile forces in a flake element as shown in Figure 4.7. The 
main assumption is that the forces due to the shear stress at the interface, i, is 
balanced by the force due to the variation of axial stress in the flake, d f, such that if 
the element shown in Figure 4.7 is of unit width 

 fi d=d σtxτ  (4.1) 

and so  
t
τ

x
σ if =
d

d
 (4.2) 

 
Figure 4.7. Balance of stresses acting on an element of length, dx, of the flake of thickness, 
t, in the composite. (Adapted from Gong et al., 2010 with permission from Wiley-VCH). 
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Figure 4.8. Model of a flake within a resin used in shear-lag theory. The shear stress  acts 
at a distance z from the flake centre. (Adapted from Gong et al., 2010 with permission from 
Wiley-VCH). 

The behaviour of a discontinuous flake in a matrix can be modelled using shear lag 
theory in which it is assumed that the flake is surrounded by a layer of resin at a 
distance, z, from the flake centre as shown in Figure 4.8. The resin has an overall 
thickness of T. It is assumed that both the flake and matrix deform elastically and the 
flake-matrix interface remains intact. If u is the displacement of the matrix in the flake 
axial direction at a distance, z, then the shear strain, , at that position is be given by  

 
z
u

d
d   (4.3) 

The shear force per unit length carried by the matrix is transmitted to the flake surface 
though the layers of resin and so the shear strain at any distance z is given by 

 
m

i=
d
d

G
τ

z
u

 (4.4) 

This equation can be integrated using the limits of the displacement at the flake 
surface (z = t/2) of u = uf and the displacement at z = T/2 of u = uT 
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It is possible to convert these displacements into strain since the flake strain, ef and 
matrix strain, em, can be approximated as ef  duf/dx and em  duT/dx. It should be 
noted again that this shear-lag analysis is not rigorous but it serves as a simple illus-
tration of the process of stress transfer from the matrix to a flake in a graphene-flake 
composite. In addition, i is given by Equation (4.2) and so differentiating Equation 
(4.6) with respect to x leads to 
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since T >> t. Multiplying through by Ef gives 
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This differential equation has the general solution 
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where C and D are constants of integration. This equation can be simplified and 
solved if it is assumed that the boundary conditions are that there is no stress trans-
mitted across the flake ends, i.e. if x = 0 in the middle of the flake where f = Efem then 

f = 0 at x = l/2. This leads to C = 0 and 

 ( )tnl
eE

D
2/cosh

= mf  

The final equation for the distribution of flake stress as a function of distance, x along 
the flake is then 

 )
)2/cosh(
)/cosh(

-1(= mff tnl
tnx

eEσ  (4.9) 



86 R. J. Young

4.3.2. Interfacial Shear Stress 

Finally it is possible to determine the distribution of interfacial shear stress along the 
flake using Equation (4.2) which leads to 

 
)2/cosh(

)/sinh(
= mfi tnl

tnx
enEτ  (4.10) 

It is convenient at this stage to reintroduce the concept of flake aspect ratio, defined in 
this case as s = l/t so that the two equations above can be rewritten as 

 ]
)2/cosh(
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for the axial flake stress and as  
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for the interfacial shear stress. 
It can be seen that the nanoplatelet is most highly stressed, i.e. the most efficient 

flake reinforcement is obtained, when the product ns is high. This implies that a high 
aspect ratio, s, is desirable along with a high value of n. The similarity of this analysis 
for the nanoplatelet to the shear lag analysis for a fibre and of the equations derived is 
remarkable. The reason for this is that the shear-lag analysis considers only axial 
stresses and the shear-lag model represented by Figure 4.6 is applicable to both 
situations. 

 

 
Figure 4.9 Schematic diagram (not to scale) of a section through a single monolayer 
graphene composite. (Adapted from Gong et al., 2010 with permission from Wiley-VCH). 
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4.4. Nanoplatelet Reinforcement – Experiment 

As in the case of carbon fibres (Montes-Morán and Young, 2002), Raman spec-
troscopy can be employed to follow the micromechanics of reinforcement by 
graphene nanoplatelets in nanocomposites (Gong et al, 2010). Figure 4.9 shows a 
schematic diagram of a model composite specimen consisting of a single graphene 
monolayer sandwiched between two polymer layers. The SU-8 epoxy was 
spin-coated onto a poly(methyl methacrylate) (PMMA) beam and allowed to cure. 
The graphene monolayer was produced by repeated cleavage of a graphite crystal 
with adhesive tape and pressed onto the beam. The PMMA top coat was spin coated 
to seal the monolayer on the beam. Deformation was applied by bending the PMMA 
beam and monitoring the matrix strain using a resistance strain gauge (Gong et al, 
2010). 

4.4.1. Monolayer graphene 

Graphene undergoes very strong resonance Raman scattering (Malard et al, 2009) 
which means that it is possible to obtain a spectrum from a single-atom thick mon-
olayer embedded in several microns of PMMA (Gong et al, 2010). Figure 4.4 shows 
a Raman spectrum obtained from a single graphene monolayer. It can be seem that it 
consists of two sharp bands with the 2D band being characteristically stronger than 
the G band for the monolayer (Ferrari et al, 2006). The absence of a D band also 
shows that the graphene is relatively free of defects.  

The 2D band is found to shift to lower wavenumber with tensile deformation as 
shown in Figure 4.10. It can be seen that there is a large, approximately linear shift of 
the band, with a shift rate of the order of -60 cm-1/% strain.  Cooper et al (2001) found 
that there was a simple linear relationship between the 2D band position for carbon 
fibres. Assuming that the relationship for carbon fibres between band shift rate and 
Young’s modulus determined by Cooper et al (2001)  is also applicable to monolayer 
graphene, this would imply that the graphene has a Young’s modulus in excess of 
1000 GPa, which is similar to the value determined by direct measurement (Lee et al, 
2008).  

As with carbon fibres (Montes-Morán and Young, 2002), the relationship shown 
in Figure 4.10(b) can also be used in a number of different situations to determine 
stress or strains distributions in graphene nanoplatelets in nanocomposites (Young et 
al, 2012). Examples of this approach will now be presented. 
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Figure 4.10. Effect of tensile deformation upon the position of the 2D Raman band for a 
graphene monolayer. (a) Shift of the band with a strain of 0.7%. (b) Shift of the band as a 
function of strain. (Adapted from Gong et al., 2010 with permission from Wiley-VCH). 
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Figure 4.11. (a) Distribution of strain at 0.4% matrix strain in direction of the tensile axis 
across a graphene monolayer. The curves are fits of Equations (4.11) (b) Variation of 
interfacial shear stress with position determined from Equation (4.12). (Adapted from Gong 
et al., 2010 with permission from Wiley-VCH). 
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The experimental data on the variation of graphene strain across the middle of a 
monolayer flake are shown in Figure 4.11(a). The data were fitted to Equation (4.11) 
from the shear lag analysis derived above (Gong et al, 2010). It can be seen that the 
fits of the theoretical shear-lag curves to the strain distribution are sensitive to the 
value of ns chosen. The derived interfacial shear stress distributions are shown in 
Figure 4.11(b) and the value of interfacial shear stress at the flake ends is also very 
sensitive to the values of ns chosen.  The best fit to the experimental data is for an ns 
value of 20, giving a maximum interfacial shear stress of around 2 MPa, well below 
the value of 50 MPa found for the carbon fibres (Montes-Morán and Young, 2002). 
The graphene has an inert atomically-smooth surface such that any interactions with 
the polymers will be through van der Waals bonding. The T50-O carbon fibres used 
by Montes-Morán and Young (2002) on the other had been plasma oxidized and had 
rough surfaces, leading to much stronger bonding with the polymer matrix. In the 
case of fibres that had not received the plasma oxidation treatment, lower levels of 
interfacial shear stress, approaching those found in similar investigations upon  
graphene, were obtained (Montes-Morán and Young, 2002). 

Young et al (2011) showed in a further study, that the strain distribution in a 
single graphene atomic layer sandwiched between two thin layers of polymer on the 
surface of a PMMA beam (Figure 4.9) could be mapped in two dimensions with a 
high degree of precision from Raman band shifts as shown in Figure 4.12. The 
distribution of strain across the graphene monolayer was found to be relatively 
uniform at levels of matrix strain up to 0.6% strain but that it became highly 
non-uniform above this strain. This change in strain distribution was shown (Young 
et al, 2011) to be due to a fragmentation process as a result of the development of 
cracks, most likely in the polymer coating layers, with the graphene appearing to 
remain intact. Between the cracks, the strain distributions in the graphene were 
approximately triangular in shape and the interfacial shear stress, i, in the fragments 
was found to be only about 0.25 MPa. This is an order of magnitude lower than the 
interfacial shear stress before fragmentation (Gong et al, 2010). This relatively poor 
level of adhesion between the graphene and polymer layers again has important 
implications for the use of graphene in nanocomposites.  

Although these investigations upon monolayer graphene have produced inter-
esting an important insight into the reinforcement of polymers by graphene, 
large-scale graphene production invariably produces few-layer material. The be-
haviour of this material will be considered next. 
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Figure 4.12. Contour maps of strain mapped over the graphene monolayer in a model 
composite. Maps are shown for the original flake before coating with the top polymer layer 
and then after coating with the top polymer layer at different levels of matrix strain indi-
cated. (Adapted from Young et al, 2011 with permission from the American Chemical 
Society). 

4.4.2. Few-layer Graphene 

The deformation micromechanics of few-layer graphene in composites has also 
been investigated using Raman spectroscopy as shown in Figure 4.13 (Gong et al, 
2012). The distribution of strain across a graphene flake containing both monolayer 
and bilayer regions is shown in Figure 4.13(a). This shows two important findings. 
Firstly the data can again be fitted well to the shear-lag model (Equation (4.11)). 
Secondly it can be seen that the strain in the bilayer regions is identical to that in 
adjacent monolayer regions. Figure 4.13(b) shows the strain distribution across a 
bilayer flake that has fragmented due probably to cracking in the polymer coating 
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(Gong et al, 2012). In this case triangular strain distributions are obtained, indicating 
damage to the interface and stress transfer by frictional sliding.  
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Figure 4.13. Distributions of strain at different matrix strain levels in the direction of the 
tensile axis across a graphene nanoplatelet. (a) Region with both monolayer and bilayer 
graphene at 0.6% matrix strain. (b) Bilayer region showing the effect fragmentation at 0.6% 
and 0.8% strains. (Adapted from Gong et al, 2012 with permission from the American 
Chemical Society). 

  

Figure 4.14. Shifts with strain of the 2D band for adjacent monolayer, bilayer and trilayer 
regions along with the shift with strain for the same band of a multilayer flake on the same 
specimen. (Adapted from Gong et al, 2012 with permission from the American Chemical 
Society). 

Gong et al (2012) also undertook a systematic study of the deformation of bilayer, 
trilayer and many-layer graphene with a view to determining the optimum number of 
layers for the reinforcement of nanocomposites with graphene. The rate of 2D band 
shift per unit strain for uncoated bilayer graphene on a PMMA beam was found lower 
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to be than that for a monolayer, implying relatively poor stress transfer between the 
two layers in the bilayer material. In a subsequent paper Gong et al (2013) demon-
strated clearly that the poor stress transfer between the layers in few-layer graphene is 
due to the reversible loss of Bernal stacking that takes place during shear deformation 
of the material. 

The effect of coating the graphene was also investigated (Gong et al, 2012) and it 
was found that in this case the shift rate of the monolayer and bilayer material was the 
same. Measurements were also undertaken in the middle of adjacent monolayer, 
bilayer and trilayer regions of the same coated graphene flake up to 0.4% strain. The 
2D band shifts with strain of these four different coated graphene structures are given 
in Figure 4.15. The slopes of the plots are similar for the monolayer and bilayer 
material but somewhat lower for the trilayer. In contrast, the slope for the many-layer 
graphene is significantly lower at only around -8 cm-1/% strain. These findings were 
interpreted Gong et al (2012) as indicating that there was good stress transfer at the 
polymer-graphene interface but there were poorer levels of stress transfer between 
the graphene layers. 

Gong et al (2012) adapted the theory of Zalamea et al (2007) for multi-walled 
nanotubes to quantify the stress transfer efficiency between the individual layers 
within graphene and considered first of all the advantages of using bilayer graphene 
rather than the monolayer material. In the case of two monolayer flakes dispersed 
well in a polymer matrix, the closest separation they can have will be controlled by 
the dimensions of the polymer coil, i.e. at least several nm (Gong et al, 2012). The 
separation between the two atomic layers in bilayer graphene is, however, only 
around 0.34 nm. It will therefore be easier to achieve higher loadings of bilayer 
material in a polymer nanocomposite which will lead to an improvement in rein-
forcement ability by up to a factor of two over monolayer material.  

The optimum number of layers needed in many-layer graphene flakes for the best 
levels of reinforcement in polymer-based nanocomposites was also determined 
(Gong et al, 2012) The effective Young’s modulus of monolayer and bilayer gra-
phene will be similar and it will decrease as the number of layers decreases. For high 
volume fraction nanocomposites it will be necessary to accommodate the polymer 
coils between the graphene flakes. The separation of the flakes will be limited by the 
dimensions of the polymer coils as shown in Figure 4.15 and their minimum separa-
tion will depend upon the type of polymer and its interaction with the graphene. This 
is unlikely to be less than 1 nm and more likely several nm whereas the separation of 
the layers in multilayer graphene is only around 0.34 nm.  In an ideal case, therefore, 
the nanocomposite can be assumed to be made up of parallel graphene flakes that are 
separated by thin layers of polymer, as shown in Figure 4.15.  

The Young’s modulus, Ec, of such as nanocomposite can be estimated to a first 
approximation using the simple “rule-of-mixtures” (Young and Lovell, 2011; Gib-
son, 2012) such that 
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where Eeff is the effective Young’s modulus of the multilayer graphene, Em is the 
Young’s modulus of the matrix ( 3 GPa), and Vg and Vm are the volume fractions of 
the graphene and matrix polymer respectively. The maximum nanocomposite Yo 
ung’s modulus can be determined using this equation for different numbers of gra-
phene layers, as a function of the polymer layer thickness. The modulus is found to 
peak for three-layer graphene for a 1 nm polymer layer thickness and then decrease. 
The maximum nanocomposite Young’s modulus is found to be virtually constant for 
composites with more than four graphene layers.  

In summary, it was suggested by Gong et al (2012) that monolayer material does 
not necessarily give the best reinforcement and that the optimum number of graphene 
layers for the best reinforcement will depend upon the polymer layer thickness and 
the efficiency of stress transfer between the graphene layers.  

 

Fig. 8.15. Schematic diagram of the microstructure of graphene-based nanocomposites 
based upon either monolayer or trilayer reinforcements. The interlayer spacing of the 
graphene is 0.34 nm and the effective thickness of the polymer coils is assumed to be to be 
around 2 nm. (Adapted from Gong et al, 2012 with permission from the American Chemical 
Society). 

4.5. Conclusions 

A clear conclusion of this study is that the micromechanics of deformation of gra-
phene nanoplatelets can be analyzed in terms of the shear-lag theory developed 
originally for fibre reinforcement. Although the analysis of fibre reinforcement has 
been taking place for over 50 years, it is still not yet fully understood. The study of 
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nanoplatelelet reinforcement in nanocomposites has been undertaken over a much a 
shorter period and so is far less well-developed. It has been shown that it appears that 
continuum mechanics is still applicable at the nanoscale and so much of the analysis 
undertaken for macroscopic composites can be employed and adapted. Nevertheless 
it remains to be seen how far it is possible, at the nanoscale, to use this analytical 
methodology and when it is necessary to employ numerical techniques such as the 
finite element method.  

There are again a variety of different challenges that exist in developing micro-
mechanics at the nanoscale that include: 

– Axial compression. It is not clear how nanoplatelets respond to in-plane 
compression and what deformation modes lead to ultimate failure.  

– Nanoplatelelet/nanoplatelelet interactions, including restacking. The effect 
of nanoplatelet separation and restacking upon mechanical properties is yet 
to be analysed.  

– Nanoplatelelet /crack interactions. This is an area that has not yet been ex-
plored. 

– Effect of nanoplatelelet orientation, waviness and wrinkling. It is thought that 
waviness and wrinkling may lead to inferior mechanical properties for na-
noplatelelet-reinforced nanocomposites but this is yet to be put on a firm 
theoretical foundation.  

– Effect of nanoplatelelet surface treatment and modification. It is highly likely 
that the chemical modification of nanoplatelelet surfaces will affect stress 
transfer in nanocomposites but no systematic studies have yet been under-
taken. 

Many of these problems and issues are similar at both the macroscopic and na-
noscales. Some of them are different but the finding outlined in the present chapter 
that continuum mechanics is still applicable for the understanding of nanomechanics 
gives us confidence that there are good prospects that further rapid progress will be 
made in the years to come. 
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5.1 Introduction

Carbon nanotubes (CNTs) have extraordinary mechanical properties due to
the stiff sp2 bond resulting in the exceptionally high Young’s moduli in the
tera-pascal range, together with their tube structure (Treacy et al., 1996).
They have unique electronic properties; they can be either metallic or semi-
conducting depending on the chirality — the direction along which a tube is
rolled up (Odom et al., 1998). Pressure modifies these properties. The sp2

bond stiffens further, and the band gap in semiconducting CNTs changes
with pressure (Yang and Han, 2000). To characterize and understand the
behaviour of CNTs under pressure, the shift rates of the phonon frequencies
with pressure are very interesting, as they directly reflect the mechanics and
are closely related to the electronic properties. They can also be used as
strain sensors.

In this chapter, we will focus on the shift with pressure of the graphite
mode (GM) and the radial breathing mode (RBM). The GM is an in-plane
vibrational mode, coming from graphite and characteristic of sp2-hybridized
carbon (Tuinstra and Koenig, 1970). The study of the GM pressure coef-
ficients of CNTs thus provides a direct approach to understand the sp2

bond. It links closely to the high pressure study of other sp2-bonded mate-
rials such as graphene and fullerene. The RBM, though related to the GM,
is a unique signature of CNTs (Rao et al., 1997). Its vibrational frequency
is diameter-dependent and therefore of critical importance to the study of
features, which are related to the tube structure, including the GM pressure
coefficients. We will briefly mention other modes, such as the 2D-mode, the
second order D-mode from defects, which reflects the change in the electron
bands, essential to characterizing graphene (Ferrari et al., 2006).
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5.2 The Graphite Mode

5.2.1 The Graphite Mode Phonons in Graphite

The GM is the Raman-active E
(2)
2g optical mode of graphite at 1582 cm−1,

illustrated in Figure 5.1 by Reich and Thomsen (2004). It is a two-fold (lon-
gitudinal and transverse) degenerate mode, first reported by Tuinstra and
Koenig (1970). The degeneracy is removed if the symmetry is broken by an
external perturbation, such as strain. Mohiuddin et al. (2009) demonstrate
this in the case of graphene under uniaxial tensile strain, where the G+ (+
for higher energy) and G− denote the two perpendicular modes (see Figure
5.2).

Figure 5.1. “Phonon eigenvectors of graphene and graphite. Every phonon
eigenvector of graphene gives rise to two vibrations of graphite. For exam-
ple, the in-phase combination of the two layers for the E2g optical mode of
graphene yields E2g⊗A1g = E2g and the out-of-phase combination E2g⊗B1u

= E1u. Next to the graphite modes it is indicated whether they are Raman
(R) or infrared (IR) active and the experimentally observed phonon fre-
quencies. The translations of graphite are omitted from the figure.” After
Figure 2 of Reich and Thomsen (2004).

Hanfland et al. (1989) record the first Raman spectrum of graphite under

high pressure. Figure 5.3 shows the GM (E
(2)
2g ) frequencies with the pressure
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Figure 5.2. “Eigenvectors of G+ and G− modes determined by density-
functional perturbation theory. These are perpendicular to each other, with
G− polarized along the tensile strain axis, as expected.” Reprinted figure
with permission from [T. M. G. Mohiuddin et al., Phys. Rev. B 79, 205433
(2009)] Copyright (2009) by the American Physical Society.

under which they are obtained. The pressure dependence of the frequency

ω(P )/ω0 = [(δ0/δ
′)P + 1]δ

′
(1)

where δ0 is the logarithmic pressure derivative (dlnω/dP )P=0 and δ′ is the
pressure derivative of dlnω/dP , is least-square fitted to the experimental
data. The frequency of the GM increases sublinearly under pressure with
an initial pressure coefficient of 4.7 cm−1GPa−1.

The GM is an in-line anti-phase motion (see Figure 5.1) and therefore the
shift of its frequency with pressure (4.7 cm−1GPa−1) should be determined
by the shortening of the C−C bond. The sublinearity observed in graphite
is considered (Sun et al., 2013) to be the result of the combination of the
very soft C33, 39 GPa in graphite (Bosak and Krisch, 2007) together with
its relatively large pressure coefficient C ′

33 ∼10 (Green et al., 1972).
Experimental and theoretical efforts have been made to explain the value

of 4.7 cm−1GPa−1. The natural approach is, as we mentioned, to relate the
GM frequency to the sp2 bond length. Huang et al. (2009) give the dynamic
equations of the graphene GM as∑

β

Kαβuβ = ω2ua (2)

where u=(u1, u2) is the relative displacement of the two carbon atoms in
the unit cell, ω is the phonon frequency and K is the force constant tensor,
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Figure 5.3. Raman shifts of the two E2g modes of graphite. Lines are for
the results of a least-squares fit of Eq. (1) to the experimental data. Open
circles are for decreasing pressure. Reprinted figure with permission from
[M. Hanfland, H. Beister, and K. Syassen, Phys. Rev. B 39, 12598 (1989)]
Copyright (1989) by the American Physical Society.

which can be expanded in powers of strain as

Kαβ = K0
αβ +

∑
lm

Kε
αβlmεlm (3)

The secular equation for Eq. 2, where Kε
αβlm has only two independent

elements because of the hexagonal lattice, gives the solutions of phonon
frequencies in terms of strain. Thomsen et al. (2002) express the solutions
with the Grüneisen parameter and shear deformation potential (SDP) as

Δω

ω0
= γ(εxx + εyy)± 1

2
SDP (εxx − εyy) (4)
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where ω0 is the unperturbed frequency. Eq. 4 makes explicit the two-
dimensional nature of the analysis. The Grüneisen parameter γ and the SDP
are the two key parameters and a number of experimental (Mohiuddin et al.,
2009; Huang et al., 2009; Ni et al., 2008; Proctor et al., 2009; Soldatov et al.,
2012) and theoretical (Mohiuddin et al., 2009; Mohr et al., 2009; Thomsen
et al., 2002) papers report work on graphene under strain to define their
accurate values. The results are shown in Table 5.1. It is worth noticing that
Ghandour et al. (2013) point out that the transverse strain εT=0 rather than
εT=-νεL, where ν is in-plane Poisson’s ratio and εL is longitudinal strain,
in the case that uniaxial strain is applied by flexure of a wide beam or sheet
to which a graphene flake adheres.

Table 5.1. The Grüneisen parameter and SDP obtained from various ex-
periments and calculations of graphene. The values in square brackets are
the corrections by Ghandour et al. (2013)

Experiments γ SDP
uniaxial strain (beam flexure) 0.69[0.58] 0.38[0.435]

(Huang et al., 2009)
uniaxial strain (beam flexure) 1.99[1.34] 0.99[1.31]

(Mohiuddin et al., 2009)
uniaxial strain (substrate stretch) 1.5

(Ni et al., 2008)
hydrostatic pressure 1.99
(Proctor et al., 2009)
hydrostatic pressure 2.3
(Soldatov et al., 2012)

Calculations
uniaxial strain 1.87 0.92

(Mohiuddin et al., 2009)
uniaxial strain 1.83 1.18

(Mohiuddin et al., 2009)
biaxial strain 1.8

(Mohiuddin et al., 2009)
hydrostatic and shear strain 2.0 0.66

(Thomsen et al., 2002)

For graphite, the pressure coefficient of 4.7 cm−1GPa−1 is equivalent to
the Grüneisen parameter of 2.0. A good agreement has been achieved from
calculations. The discrepancy from the experiments is not understood, and
is currently attributed to the effect of the substrate (Nicolle et al., 2011).
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This leads to a very important problem for sp2-hybridized carbon material,
that is, why and by how much the environment (e.g., substrate, solvent,
bundles) can affect the C − C bond stiffening with pressure.

5.2.2 What We Expect in Single-Wall Carbon Nanotubes

Graphene sheets are stacked to make graphite and rolled up to make
single-wall carbon nanotubes (SWCNTs). It is reasonable to assume that
the GM pressure coefficient of SWCNTs is also determined by the shortening
of C−C bond and therefore the shift rate of a solvent-filled tube is expected
to be 4.7 cm−1GPa−1.

Now we consider an empty tube under hydrostatic pressure. Taking a
finite wall thickness into account (the thick-wall-tube model), the tangential
stress is

σt =
ro

ro − ri
P (5)

and the axial stress is

σa =
r2o

r2o − r2i
P (6)

where ro is the outer radius of the wall and ri is the inner radius. Set-
ting, for example, the diameter at a typical value of 1.3 nm and the wall
thickness at 0.36 nm (the interlayer distance a33 of graphite), we expect
the pressure coefficients of the ‘tangential’ mode to be 8.5 and the ‘axial’
to be 5.9 cm−1GPa−1. Jorio et al. (2002) assigned the lower energy G−

to the tangential mode, the frequency of which is sensitive to the tube wall
curvature and the higher energy G+ to the axial mode which is independent
of the curvature. A caveat here is the significant electron-phonon coupling
due to a Kohn anomaly, which softens only the axial mode of metallic tubes
and hereby makes it G−. This has been predicted (Dubay et al., 2002)
and confirmed (Farhat et al., 2007), while its effect on the GM pressure
coefficients, however, is still unclear.

If we keep compressing an empty tube, there is a critical point, beyond
which it will collapse. Therefore we expect the GM to shift with pressure as
illustrated in Figure 5.4 — the shift rate is at the value of a thick-wall hollow
tube initially and the frequency and its shift rate should both decrease to
the values of graphite when the tube collapses (Caillier et al., 2008). In this
chapter, we will focus on the behaviour of CNTs below the critical pressure
and the problem of the collapse will be discussed in details in Chapter 7.
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Figure 5.4. The solid line is for the GM shift with pressure of a hollow
SWCNT and the dash line is for graphite. This illustration is based on the
results reported by Caillier et al. (2008).

5.2.3 What We Find (Not What We Expect)

First, we introduce early published results of the GM pressure coefficients
which were not assigned to a specific tube diameter. Venkateswaran et al.
(1999) perform the first high pressure experiment on SWCNTs. They loaded
samples into a diamond anvil cell (DAC) and recorded their Raman spectra
at various pressures (see Figure 5.5). They plot the frequencies of the G+

(T3) and the wall-curvature (tube diameter) dependent G− band (T1 and
T2) with pressure (see Figure 5.6 (b)), and obtain the initial linear shift
rates at 7.1, 10 and 8 cm−1GPa−1 for T3, T2 and T1, respectively.

Since then, many high pressure studies on the GM of SWCNTs have been
published, using various laser excitation wavelength and different pressure
transmit media (PTM). Only recently were the GM pressure coefficients
assigned to a specific diameter; we return to this point later. Meanwhile,
no consensus on the value of the pressure coefficient was achieved, as shown
in Figure 5.7 (Venkateswaran et al., 1999; Christofilos et al., 2007, 2005;
Ghandour et al., 2011; Venkateswaran et al., 2001; Proctor et al., 2006;
Thomsen et al., 1999; Lebedkin et al., 2006; Sood et al., 1999; Sandler
et al., 2003; Merlen et al., 2005; Yao et al., 2008), which gives a summary
of some early work on the shift rates of the dominant G+ band (the signal
is clear enough to extract accurate frequencies despite to the weaker signals
from inside diamond-anvil high-pressure cells). Nevertheless, what can be
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Figure 5.5. The pressure dependence of the room-temperature Raman
spectra of SWCNTs bundles for the RBM (a) and the GM (b). The GM
intensity drops significantly above 1.5 GPa. The spectra were recorded
using 514.5 nm excitation. The observed laser plasma lines are labelled by
� in panel (a). Reprinted figure with permission from [U. D. Venkateswaran
et al., Phys. Rev. B 59, 10928 (1999)] Copyright (1999) by the American
Physical Society.

seen from Figure 5.7 is that effects such as PTM, laser excitation energy and
bundling/surfactant can all affect the GM pressure coefficients observed.

Although we cannot yet give a clear answer what the GM pressure coef-
ficients are, some facts are worth noticing before considering the assignment
of data to particular diameters. First, the evolution of the GM shift with
pressure is reported to indicate tube collapsing as expected. Yao et al.
(2008) and Caillier et al. (2008) present a representative GM shift with
pressure (see Figure 5.8), clearly showing that the GM frequency of empty
tubes shifts faster than graphite (4.7 cm−1GPa−1) initially and both the
frequency and its shift rate drop to about the values of graphite after the
tubes collapse. Second, the GM pressure coefficient of solvent-filled tubes,
against expectation, is not 4.7 cm−1GPa−1. Merlen et al. (2006) report the
GM pressure coefficients of open-ended tubes as 6.5 cm−1GPa−1 in argon
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Figure 5.6. Pressure dependence of the RBM (a) and the GM (b) frequen-
cies of SWCNTs bundles. The results of the calculations using different
models are indicated by solid and dotted lines. Experimental data (T1, T2,
and T3) measured during the upward and downward cycles of pressure are
plotted as solid and open circles, correspondingly. Dashed line in (b) corre-

sponds to generalized tight-binding molecular dynamics result for the E
(2)
2g

mode frequency in graphite. Reprinted figure with permission from [U. D.
Venkateswaran et al., Phys. Rev. B 59, 10928 (1999)] Copyright (1999) by
the American Physical Society.

and in 4:1 methanol-ethanol, and as 10 cm−1GPa−1 in paraffin oil. This
raises another issue: what molecules can enter, and how much they can
enter, into a SWCNT through an open end. Third, doping shifts the GM
frequencies. Skakalova et al. (2005) report the doping effects on the GM
frequency (see Figure 5.9), which indicate that the charge transfer shifts
the GM frequency, but whether it changes the GM pressure coefficient is
unclear — an increase in charge transfer with pressure is plausible, and this
would impact on the pressure coefficient.

Recent reported experimental work enables the assignment of the ob-
served GM pressure coefficients to a specific tube diameter. This can be
done in two ways: using resonance-enhanced Raman spectroscopy (RRS),
which generally requires a Raman system equipped with a wavelength-
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Figure 5.7. The GM pressure coefficients of SWCNTs reported in previ-
ous literature are plotted against the laser excitation wavelengths, at which
they were obtained. Symbols identify the PTM used. The stars are for the
individual tubes dispersed by surfactants. Three points are labelled with
specific chiralities, to which they are assigned. M:Methanol; E:Ethanol;
W:Water; SDS:Sodium dodecyl sulfate; SDBS:Sodium dodecylbenzene sul-
fonate. i: samples produced by pulsed-laser vaporization process, with a
diameter range of 1.22–1.36 nm; ii: high pressure catalytic decomposition
of carbon monoxide, 0.8–1.2 nm; iii: arc discharge method, 1.2–1.6 nm; iv:
synthesis method not specified, 1.3±0.2 nm, labelled as dark green, blue,
black and grey, respectively.
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Figure 5.8. The frequencies of two RBMs (circles) and the most intense G+

peak (squares) are plotted with pressure. Reprinted figure with permission
from [Mingguang Yao et al., Phys. Rev. B 78, 205411 (2008)] Copyright
(2008) by the American Physical Society.

tunable laser, or using SWCNTs samples of a single diameter. Liu et al.
(2011) successfully synthesised SWCNTs of a single chirality (and therefore
diameter) but these tubes are not yet commercially available and no high
pressure study of them has been reported. Hence, here we focus on the
other method, picking out tubes of a specific diameter by RRS.

RRS depends on the electronic structure of SWCNTs. As one-dimensional
materials, they have the feature that their density of states (DOS) is not
a continuous function of energy, but descends gradually and increases in a
spike. The sharp peaks are called Van Hove singularities and the gaps be-
tween them are found to be related to the tube diameters. This is presented
by Kataura et al. (1999) in the famous Kataura Plot (Figure 5.10).

For Raman scattering, the resonance condition is given by Martin and
Falicov (1975) as

I(Elaser) ∝ | 1

(Elaser − Eii − iΓ)(Elaser ± Eph − Eii − iΓ)
|2 (7)

where I is the intensity of Raman scattering, Elaser is the laser energy, Eii

is the transition energy (gap between Van Hove singularities), Eph is the
energy of a specific phonon mode, and Γ is the broadening factor deriving
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Figure 5.9. Raman shifts of the GM for SWCNTs chemically treated with
different molecules as labelled are compared to the values for the pristine
sample (dotted lines). The order of samples along the horizontal axis is
of increasing conductivity. Aniline data (open squares) are not included in
the trend lines. Adapted with permission from (V. Skkalov, A. B. Kaiser,
U. Dettlaff-Weglikowska, et al, J. Phys. Chem. B, 2005, 109 (15), pp
71747181). Copyright (2005) American Chemical Society.

from the life time of the resonant states. Because Γ is usually tiny compared
to other terms, the Raman intensity will increase significantly when either
the incident photon at Elaser or the outgoing photon at Elaser ± Eph (+ for
anti-Stokes and – for Stokes scattering) matches the transition energy Eii

(resonance). Practically, the amount of such increase can easily reach up
to 106. Therefore, at selected laser excitation wavelength, we can obtain a
Raman spectrum dominated by the SWCNTs of a specific diameter, which
are in resonance. A 3D plot by Fantini et al. (2004) gives a clear demon-
stration for RBM (see Figure 5.11). The GM behaves similarly, as long as
we pay attention to the Eph, which is about 200 meV for the GM and about
50 meV for the RBM.

A specific tube diameter corresponds to a unique chirality. In principle,
the GM pressure coefficient can be assigned to a specific chirality, while the
practical difficulty rises as lots of chiralities may correspond to very similar
diameters. The uncertainty of the chirality assignment can be decreased
by a further analysis of the Katuara plot — the branches in Figure 5.10
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Figure 5.10. “Calculated gap energies between mirror-image spikes in den-
sity of states for γ = 2.75 eV. Solid circles indicate the metallic SWNTs and
open circles the semiconducting ones. Double circles indicate the armchair-
type SWNTs. Gap energies for all the chiral indexes with larger diameter
than (5, 5) are plotted as a function of diameter. Arrows show diameter
distributions for the each catalyst. Two horizontal lines in each catalyst
area show metallic window in which the optical transitions only by the
metallic tubes would be observed.” Reprinted figure with permission from
[H. Kataura,Y. Kumazawa,Y. Maniwa,I. Umezu,S. Suzuki,Y. Ohtsuka,Y.
Achiba, Synthetic Metals 103, 2555–2558 (1999)] Copyright (1999) by the
Elsevier.
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Figure 5.11. The RBM Raman measurements of SWCNTs dispersed in
SDS aqueous solution (O’Connell et al., 2002), measured with 76 differ-
ent laser lines. The non-resonance Raman spectrum from a separated CCl4
solution is obtained after each of the RBM measurement, and is used to cal-
ibrate the intensities of the spectra and to check the frequency calibration.
Reprinted figure with permission from [C. Fantini et al., Phys. Rev. Lett.
93, 147406 (2004)] Copyright (2004) by the American Physical Society.

refer to semiconducting or metallic tubes, which is determined by the chi-
rality (Odom et al., 1998), and the order of transitions (E11 for the nearest
van Hove singularities and so on). It says that chiralities corresponding
to similar tube diameters but belonging to different branches will not con-
tribute to the ambiguity in chirality assignment. Further refinement of the
Kataura plot has been carried out by detailed comparison of experiment
and theory. Figure 5.12 by Maultzsch et al. (2005) is a good reference for
chirality assignment in RRS experiments of SWCNTS under high pressure,
with the caveat that we do not know exactly how the whole diagram shifts
with pressure.

Ghandour et al. (2013) give an experimental example of achieving the



Carbon Nanotubes Under Pressure 113

Figure 5.12. “Experimental (large open and closed circles, left and bottom
axes) and theoretical (small gray circles, right and top axes) Kataura plot.
The second transitions of semiconducting tubes ES

22 and the first transitions
EM
11 of metallic tubes are shown. The solid lines give the approximate 1/d

dependence of the transition energies. The dashed lines indicate the ‘V’-
shaped branches, where the chirality of a tube is related to its left neighbour
(n1, n2) by (n′1, n

′
2)=(n1–1, n2+2). In the experimental data, the assignment

is given for the first tube in each branch, where upright numbers indicate
semiconducting and italic numbers indicate metallic tubes. The semicon-
ducting tubes are divided into two families with ν=(n1–n2) mod 3= –1 (full
circles, lower branches) and with ν= +1 (open circles, upper branches).”
Reprinted figure with permission from [J. Maultzsch et al., Phys. Rev. B
72, 205438 (2005)] Copyright (2005) by the American Physical Society.
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GM pressure coefficient of a specific chirality. They applied high pressure to
SWCNTs at selected laser excitation wavelength and recorded the Raman
spectra as shown in Figure 5.13. We see only one dominant and identifiable
RBM peak at each of these particular excitation energies and therefore the
GM peak at that excitation energy is known to be acquired from tubes of
the same chirality (after some analysis of the Eph). The pressure coefficients
are presented in Figure 5.7, marked with the tube chiralities to which they
belong.

Figure 5.13. “RBM and G-mode spectra for the excitation energies and
pressures marked, offset vertically for clarity. The spectra under 1.75-eV
excitation (upper group) are assigned to the (9, 1) chirality, the spectra
under 1.64-eV excitation (middle group) to the (11, 0) and (10, 2) chiralities,
and the spectra under 1.53 eV (lower group) to the (12, 1) and (11, 3)
chiralities.” Reprinted figure with permission from [A. J. Ghandour et al.,
Phys. Rev. B 87, 085416 (2013)] Copyright (2013) by the American Physical
Society.

Experimental data for more chiralities is required in order to reliably
establish a relationship between the GM pressure coefficients and the tube
chiralites. Sun et al. (2014) report the GM pressure coefficient of (6, 5)
tubes, which are of similar diameter to the (9, 1) tubes reported by Ghan-
dour et al. (2013) (Figure 5.7). Unexpectedly, the result is very different
from the (9, 1) tubes and from the value predicted by the thick-wall-tube
model (see Figure 5.14). Though the ovalization of tubes before collapsing
may be responsible for abnormal shifts of the GM (Aguiar et al., 2012), no
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evidence shows that it can increase the pressure coefficient of the G+, not
mentioning by the amount about twice as much.
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Figure 5.14. The pressure coefficients of carbon nanotubes are plotted
against their diameters. The solid lines are for the values predicted by the
thick-wall-tube model. The colour red is for the G+ and the blue is for the
G−. The experimental data is presented as labelled. The data of (9, 1),
(11, 0) and (12, 1) tubes are from Ghandour et al. (2013) and the others are
from Sun et al. (2014), with the corresponding laser excitation wavelength
labelled. Solid symbols are for the data obtained in water and open symbols
are for in hexane. The ‘mixture G+’ refers to the mixture of (6, 5) and (6,
4) tubes. After Figure 3 of Sun et al. (2014).

In conclusion, we cannot yet give a clear answer to what the GM pres-
sure coefficient is, but we may expect to be able to, after obtaining sufficient
chirality-assigned data. At the same time, we need to quantify and under-
stand the exogenous effects, such as the laser energy, PTM, doping and
bundling on the shift rates, based on variable controlled and of course chi-
rality assignable experiments. The summary of the current understanding
of these effects is as follows. First, the laser energy dependence of the GM
pressure coefficient shown in Figure 5.7 can be explained that tubes of dif-
ferent chiralities are picked out at different excitation energy. Therefore it
is in fact the intrinsic tube chirality dependence. This is thereby under-
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standable as we do not expect the laser energy to have any effect (only
what affects the C − C bond shortening with pressure is expected to have
an effect) on the pressure coefficients. This however needs to be confirmed
by measurements on samples of a single chirality in the same conditions
except the excitation energy. Second, it is reported that PTM shift the
transition energy (Ghandour et al., 2012) and therefore the PTM effect in
Figure 5.7 can be again interpreted as the chirality dependence, as tubes
of different chiralities are picked out in different PTM, even at the same
excitation energy. The PTM should not affect the GM pressure coefficient.
But the results of the (6, 5) tubes in Figure 5.14 contradict such expec-
tation and hence cannot be understood yet. Third, doping shifts the GM
frequency at ambient pressure but no evidence shows whether it affects the
shift rates with pressure. And fourth, bundling effects are more complicated
than all the above. CNTs tend to form bundles (Bandow et al., 1998), which
means that, if not otherwise specified, all the reported results of the GM
pressure coefficients are of CNTs bundles. Moreover, bundling effects on
the GM pressure coefficient of the tube picked out by RRS may vary with
parameters such as the diameters of the surrounding tubes, the bundling
configuration (tangled, etc) and the degree of bundling, which is affected
by the sample concentration but cannot be precisely controlled. On the
other hand, surfactants stably disperse CNTs, which allow to exclude the
bundling effects and their uncertainties, while possibly introduce surfactant
effects (via interactions between tubes and surfactants molecules). Early
work compared the GM shift rates of individual tubes dispersed by surfac-
tants to the shift rates of bundles (see Figure 5.7) (Christofilos et al., 2007;
Lebedkin et al., 2006), but they were not assigned to a specific chirality.

5.2.4 Double-Wall Carbon Nanotubes

We briefly discuss the GM pressure coefficients of double-wall carbon
nanotubes (DWCNTs). We expect the outer tube to behave similarly to a
SWCNT and the inner tube to be protected by the outer tube from external
pressure, because the strong sp2 bonds, compared with the soft C33 of
graphite, leads to only a small shrinkage of the outer tube under pressures in
the gigapascal range. However, Puech et al. (2006) report the GM pressure
coefficients of the inner tube at 3.3, 4.1 and 5.1 cm−1GPa−1 in methanol-
ethanol, oxygen and argon, respectively, about 2/3 of the corresponding
values of the outer tube. These values vary with the PTM, even there is no
contact at all between the inner tube and the PTM. A possible explanation
is that the π-electrons compressed through the sp2 network of the outer wall
may act as a PTM and this might be the link.
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To summarize, we expect the GM pressure coefficients of DWCNTs to be
consistent with the predicted value from the thick-wall-tube model. They do
not appear to be, and more data from tubes assigned to a specific chirality
is required.

5.3 The Radial Breathing Mode

5.3.1 Experimental Pressure Coefficients

The RBM is a unique signature of CNTs, derived from tube structure,
first reported by Rao et al. (1997). The frequency of the RBM is propor-
tional to the inverse tube diameter (Reich et al., 2004), which is refined
as

ωRBM =
c1
d

+ c2 (8)

where c1=215 cm−1nm and c2 is introduced to account for external forces
from environment (Maultzsch et al., 2005). So if individual RBM peaks
are resolved, the pressure coefficients of RBM obtained in a high pressure
measurement can be assigned to tubes of specific chiralities without finely
tuning the excitation wavelength to make tubes of only one specific chirality
in resonance, thereby dominating the spectrum. In the first high pressure
experiment on SWCNTs, Venkateswaran et al. (1999) report a pressure co-
efficient of the observed RBM band of about 7 cm−1GPa−1 (see Figure 5.6
(a)). Figure 5.5 (a) presents their RBM spectra recorded under various
pressures. It is typical to observe decreasing intensities of RBM peaks with
increasing pressure leading to the peaks disappearing beyond a certain pres-
sure (1.5 GPa here). This decrease of the intensities is not fully understood
(a possible interpretation is the ovalization of tubes under pressure) and the
disappearance may be correspond to the collapse of tubes.

With the aid of the Kataura plot and Eq. 8, Lebedkin et al. (2006)
assign each of the RBM peaks in their spectrum to specific chiralities (see
Figure 5.15). They track these peaks under pressure and obtain the shift
rates shown in Table 5.2.

5.3.2 Theoretical Pressure Coefficients

Now we try to explain the experimental pressure coefficients of the RBM.
There is a direct relation between the GM and RBM. Gerber et al. (2009)
first consider Newton’s equation for a linear chain of atoms with spring
constant k and the out of phase stretching motion of neighbouring atoms
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Table 5.2. “Pressure coefficient of the RBM frequency, ωRBM , versus the
nanotube helicity index (n, m). Data are for HiPco nanotubes dispersed
in water-sodium cholate under low pressure conditions (�1 GPa). Three
groups of metallic and semiconducting (n, m) nanotubes were probed at
laser excitation wavelengths of 514, 633, and 785 nm (from top to bottom).
Italic (n, m) indices denote metallic nanotubes.” Reprinted table with per-
mission from [Sergei Lebedkin et al., Phys. Rev. B 73, 094109 (2006)]
Copyright (2006) by the American Physical Society.
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Figure 5.15. “The RBM Raman spectrum of water-1wt.% sodium cholate
dispersion of HiPco nanotubes at ambient pressure as excited at 633 nm
(black). Also shown are Lorentzian fits of contributing bands as well as
their assignment to (n,m) nanotubes. Italic n,m indices denote metallic
nanotubes.” Reprinted figure with permission from [Sergei Lebedkin et
al., Phys. Rev. B 73, 094109 (2006)] Copyright (2006) by the American
Physical Society.

(GM) with mass mC . The frequency of the GM is

ω2
G =

4k

mC
(9)

For a closed linear chain in circumferential direction,

1

Ktube
=

∑
i

1

k
⇒ Ktube =

ka

πd
(10)

where a is the bond length and d is the diameter. The mass is

Mtube = mC
πd

a
(11)
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Then they introduce a spring constant along the radial direction and the
Lagrangian L for a tube section is

L =
1

2
Mtubeṙ

2 − 1

2
KtubeΔl2 (12)

L =
1

2
Mtubeṙ

2 − 1

2
Ktube(2πΔr)2 (13)

L =
1

2
Mtubeṙ

2 − 1

2
Kradial

tube (Δr)2 (14)

where ṙ is the speed in radial direction and Δl is the change in the circum-
ference. Using the Euler-Lagrange equation, they obtain

ω2
RBM =

Kradial
tube

Mtube
= 4π2 ka

πd

a

mCπd
= ω2

G

a2

d2
(15)

Given that ωG=1581 cm−1 and a=1.42 Å,

ωRBM (cm−1) = ωG
a

d
=

225

d
(nm−1) (16)

This shows the relationship between the frequency of the RBM and GM.
The frequency of the GM and RBM can be calculated separately in the

framework of appropriately-handled continuum models. We start by sup-
posing the tube wall to consist of a two-dimensional sheet of continuum ma-
terial with the two-dimensional graphene elastic constants k11 = C11hG =
372 Nm−1 and k12 = C12hG = 47 Nm−1 (Bosak and Krisch, 2007), where
we use the value of graphite interlayer distance for hG, hG = a33 = 3.35 Å.
In the RBM motion, the wall has tangential strain but no axial strain, so
the relevant elastic stiffness constant is k11. The potential energy per unit
length of tube at the extreme of a radial sinusoidal motion r = Acosωt is

Umax =
1

2
k11ε

2 × 2πRC = πRCk11
A2

R2
C

(17)

while the kinetic energy at the centre of the motion is

Emax =
1

2
mA2ω2 =

1

2
A2ω2 × 2πRCNm0 (18)

where N = 3.8×1019 is the number of carbon atoms of mass m0 in a unit
area of graphene and RC is the tube radius measured at the carbon nuclei.
Equating Umax and Emax, and rearranging, we have

ωRBM =
1

RC

√
k11
Nm0

=
235

d(nm)
cm−1 (19)
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where the diameter d = 2RC . Eq. 19 is in excellent agreement with one of
the recent experimental values of the numerator at 227 (Araujo et al., 2008).
Not surprisingly, the continuum model works very well for this large-scale
deformation of the nanotube.

To relate the frequency of the RBM to GM, it is necessary to discre-
tise the continuous mechanics model, by concentrating the mass into lines
or points representing atoms. We take n mass concentrations equispaced
around the circumference of the tube, connected by springs of length a0
and an ad-hoc effective spring constant k between adjacent atoms, and an
effective mass m – these account for the hexagonal lattice with sp2 bonds at
various orientations. In the GM alternate atoms move in anti-phase, with
a tangential displacement x = AcosωGt, we have:

Umax =
1

2
nk(2A cos

π

n
)2 ≈ 2nkA2 (20)

Emax =
1

2
nmω2

GA
2 (21)

ωGM = 2

√
k

m
(22)

The cosine term in Eq. 20 comes from the angle between the spring and the
motion; it is approximated to unity here. For the RBM mode,

Umax =
1

2
nk(2A sin

π

n
)2 ≈ 2nkA2

2

n2
(23)

Emax =
1

2
nmω2

RBMA2 (24)

ωRBM =
2π

n

√
k

m
(25)

Approximating the diameter d to na0/π with a0 equal to the sp2 bond
length of 1.42Å, Eq. 20 to Eq. 25 lead directly to Eq. 16 by Gerber et al.
(2009):

ωRBM =
a0
d
ωG =

0.142nm× 1590cm−1

d(nm)
=

226

d(nm)
cm−1 (26)

and in excellent agreement with Eq. 19. It is remarkable that the GM fre-
quency is thus directly related to the continuum properties without needing
any details of the hexagonal structure, the bond potentials, or even the
carbon atomic mass. It would be interesting to derive k and m from bond
potentials or from ab initio theory — this would be a good test of these
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models. Meanwhile, this gives confidence that the continuum approach is
good even to the atomic scale in graphene and CNTs.

The consequence of this is that the pressure coefficients of the GM and
the RBM should be in proportion to their frequencies, i. e. the pressure
coefficient of the RBM is predicted to be 0.8 cm−1GPa−1, according to
the data of Venkateswaran et al. (1999) — ωGM = 1590cm−1, ωRBM =
185cm−1 and the pressure coefficient of the GM is 7 cm−1GPa−1. But it
equals 7 cm−1GPa−1. There have to be other major effects responsible for
the ∼90% unexplained part of the observed shift rates of RBM. See the next
section.

5.3.3 Interaction With The Environment

A simulation work performed by Longhurst and Quirke (2007) shows
that the RBM is coupled with an absorbed fluid shell (highlighted in Figure
5.16) via the van der Waals interaction. The pressure coefficient of the
RBM is thereby mainly induced by the decrease of the interlayer spacing
between the tube and the absorbed fluid shell, rather than the shortening
of C − C bonds which is related to the shift of the GM. This indicates
that, unlike the GM, the shift of the RBM with pressure could be strongly
affected by environment, such as the nature of the PTM and the bundling
status of the CNTs samples. A caveat, however, is that under compression
it is the repulsive part of the interaction which becomes more important,
and the repulsive part (Pauli exclusion) would not vary so much with these
variables.

Ghandour et al. (2013) compare the experimental pressure coefficients of
Venkateswaran et al. (2003), Lebedkin et al. (2006), and their own, to this
model and find reasonably good agreement (see Figure 5.17), confirming its
validity.

5.3.4 Resonance and Effects of Solvents

In this section, we introduce how the RBM is used to study the effects
of solvents on the CNTs resonance condition. A preferable way to present
the results is to plot the RBM peak intensity with the excitation energy and
the RBM frequency. It has to be mentioned that when making the chirality
assignment of the RBM peaks according to the Kataura plot, we need to
consider both the first and second optical transition (E11 and E22). Telg
et al. (2007) give an example as shown in Figure 5.18. According to the
study by Cambré et al. (2010), solvent-filling effect shifts not only excita-
tion energy, but also the RBM frequency, as clearly shown in Figure 5.19.
Maultzsch et al. (2005) find small shifts in excitation energy peaks for metal-
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Figure 5.16. “Representation of the simulation cell for a (16, 0) carbon
nanotube immersed in water. The adsorbed shell of water is highlighted
for clarity.” Reprinted figure with permission from [M. J. Longhurst and
N. Quirke, Phys. Rev. Lett. 98, 145503 (2007)] Copyright (2007) by the
American Physical Society.

lic and semiconducting tubes, but in opposite directions, when comparing
the tubes in two different surfactants. The Figure 5.20 by Ghandour et al.
(2012) shows that the effects of solvents and pressure on tubes of a specific
chirality are roughly orthogonal to each other — solvents shift the reso-
nance energy without shifting the RBM frequency (with exception of air)
and pressure shifts the frequency with only a slight shift in energy.

5.3.5 Double-Wall Carbon Nanotubes

To study the RBM of DWCNTs, we need to assign the Raman peak not
only to a specific chirality, as we do for SWCNTs, but also to the inner or
the outer tube. We do not know whether the excitation energy of an inner
or outer tube is the same as for a SWCNT of the same chirality, whereas
the RBM frequency is different due to the coupling between the inner and
outer tube (Dobardzic et al., 2003). Aguiar et al. (2011) and Alencar et al.
(2014) report that the RBM frequencies of inner tubes, with few exceptions,
shift little under pressure, as a result of the small shrinkage of the outer
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Figure 5.17. Pressure coefficients are plotted against the tube diameters.
Open circles and crosses are for SWCNTs bundles in water (Ghandour et al.,
2013). Triangles are for bundled semiconducting tubes in ethanol/methanol
(Venkateswaran et al., 2003). Small solid circles are for unbundled semicon-
ducting tubes in water/surfactant (Lebedkin et al., 2006). And open squares
are for MD simulation results of unbundled semiconducting tubes in water
(Longhurst and Quirke, 2007). After Figure 4 (a) of Ghandour et al. (2013).

tube and hence little change of the coupling. For further study on both the
excitation energy and RBM frequency under pressure, a wavelength-tunable
laser is highly desirable. We acknowledge that C. Rice from University of
Manchester provides an unpublished figure, as a very good example (see
Figure 5.21).

5.4 The 2D-mode

Here we only briefly mention the 2D-mode of SWCNTs under pressure, by
showing the results of Wood et al. (1999) (see Figure 5.22). Compared to
pressure, the frequency of the 2D-mode is more sensitive to solvent, which
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Figure 5.18. “The plotted intensities are proportional to the Raman sus-
ceptibility. Upper plots contain anti-Stokes(a) and Stokes(b) Raman spectra
excited resonantly via E11. Lower plots show anti-Stokes(c) and Stokes(d)
spectra in resonance with E22.” Reprinted figure with permission from [H.
Telg, J. Maultzsch, S. Reich, C. Thomsen, Phys. Status Solidi (b) 244,
4006–4010 (2007)] Copyright (2007) by John Wiley and Sons.

is linked to the study of graphene.

5.5 Conclusion

In this chapter, we discuss the GM and the RBM of SWCNTs under pressure
and briefly mention DWCNTs and the 2D-mode of SWCNTs. For the GM,
we give expectations for the pressure coefficients from its origin in graphite
(the shift of frequency with pressure is induced by the shortening of C −C
bond) and the tube structure. We review early studies but find no consensus
on the value of the pressure coefficient. This emphasizes the importance of
chirality assignment in high pressure studies of the GM. From recent results,
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Figure 5.19. The Raman-excitation maps of the first electronic transition
of the (5, 4) tubes. The sample used for the upper panes contains less open
(solvent-filled) tubes than the sample used for the lower ones. Reprinted
figure with permission from [Sofie Cambré et al., Phys. Rev. Lett. 104,
207401 (2010)] Copyright (2010) by the American Physical Society.
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Figure 5.20. Data points corresponding to the RBM frequency and the
excitation resonance energy for HiPCO semiconducting nanotubes with the
chiral indices (m,n) labelled. The squares are for dry nanotubes in air; the
down triangles for sulphuric acid; the up triangles for hexane. The solid
circles are for bundled tubes in water and the open circles for unbundled in
water with surfactant. Data taken under the pressure of 2GPa is shown by
the crosses (+) for bundled nanotubes in water. The arrows show the shifts
due to pressure. After Figure 2 of Ghandour et al. (2012).

we find the effects of chirality, solvent and bundling, which are unexpected
and lack full understanding. In contrast, the pressure dependence of the
RBM is well-explained. It is mainly determined by the decrease of the
interlayer spacing between the absorbed fluid shell and the tube. The C−C
bond shortening with pressure, related to the GM, contributes only about
10% of the experimental shift of the RBM. The high pressure study of
DWCNTs is similar to SWCNTs in the need for chirality assignment, but
differs in having the extra complexity of inner and outer tubes, the behaviour
of which are not fully understood. The frequency of the 2D-mode, being
intensively studied for graphene, is much more sensitive to solvents than
pressure. For the future work, we think the study of CNTs under pressure
relies on high resolution Raman spectroscopy equipped with a tunable laser
or the manufacturing of CNTs samples of specified chiralities.
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Figure 5.21. The RBM frequencies of both inner and outer tubes of DWC-
NTs are plotted against the laser excitation wavelength, with the colour
coding for Raman intensity. From C. Rice, University of Manchester, un-
published.
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6.1 Introduction

Nanometer sized particles formed by carbon atoms mainly arranged in a
hexagonal atomic structure are called carbon nanostructures (CNS). In this
chapter we focus exclusively on sp2-bonded CNS that include graphene
(Geim, 2009; Geim and Novoselov, 2007), single- and multi-walled carbon
nanotubes (Iijima, 1991; Pantano et al., 2004), fullerenes (Kroto et al.,
1985), and carbon onions (Banhart and Ajayan, 1996; Kroto, 1992; Ugarte,
1992, 1995). Especially graphene has drawn a lot of attention within the
last years, because it possesses exceptional mechanical and electrical prop-
erties (Geim, 2009; Novoselov et al., 2004) and a high thermal conductivity
(Lau et al., 2012). It is the main building block of all other CNS based on
sp2-bonded carbon, which therefore should inherit its exceptional properties
making them promising candidates for applications in the field of structural
mechanics and the electronics industry, as fillers in nanocomposites (Choi
and Lee, 2012; Baughman et al., 2002; Stankovich et al., 2006) and as solid
lubricants (Hirata et al., 2004). This chapter will focus on the amazing me-
chanical properties of CNS only. Information regarding the extraordinary
electronic and thermal properties can be found elsewhere (Novoselov et al.,
2004; Castro Neto et al., 2009; Balandin, 2011).

For an expedient and reliable application of CNS their (mechanical)
properties have to be well understood. Besides experimental characteriza-
tion (Banhart and Ajayan, 1996; Iijima, 1991; Kroto et al., 1985) different
computational simulation techniques have shown to be powerful tools for
investigating the formation and properties of CNS (Chuvilin et al., 2010;
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Pantano et al., 2004; Yakobson et al., 1996). The different simulation tech-
niques that can be used range from ab initio (first principle) studies to con-
tinuum mechanical methods. The choice of the appropriate method mainly
depends on the size, i.e., the number of atoms forming the CNS and the
property to be investigated.

Ab initio simulations require the solution of the many-body Schrödinger
equation, which is a computational expensive task. Therefore, the applica-
bility of this technique is limited to small CNS consisting of a few hundred
to thousand atoms. The biggest advantage of this method is that only the
atomic number (i.e., the number of electrons) of the involved atoms is re-
quired as input. Ab initio methods are used, e.g., in (Lier et al., 2000) and
(Dumlich and Reich, 2011) to investigate the mechanical properties of CNS
and the binding energy and intertube distance of bundles of carbon nan-
otubes, respectively. In (Dumlich and Reich, 2011) van der Waals (vdW)
interactions are considered in the model, which is not a straight forward
task in ab initio simulations. Workarounds are presented, e.g., in (Dion
et al., 2004; Grimme, 2004). Ab initio techniques are not further discussed
in this chapter, but more details can be found, e.g., in (Dreizler and Gross,
1990; Rafii-Tabar, 2008).

Classical atomistic simulation methods like Monte Carlo or molecular
dynamics give the possibility of investigating larger systems than can be
done using ab initio techniques. But the quality of the results of these
classical methods crucially depends on the quality of the used potentials or
force fields. These methods will be discussed in detail in section 6.2.

Compared to the previously described atomistic simulation techniques
the computational requirements of continuummechanical methods are rather
low. This allows the investigation of single and multi-layered CNS consist-
ing of many million atoms. CM methods have shown – within some limits –
to be appropriate to investigate the mechanical properties of CNS, see e.g.,
(Li and Chou, 2003a; Yakobson et al., 1996; Xin et al., 2000) and allow the
treatment of vdW interactions in multi-layered CNS (Kelly, 1981; Lu et al.,
2009b; Todt et al., 2011). The required input parameters are derived from
atomistic simulations (Li and Chou, 2003a; Yakobson et al., 1996; Pantano
et al., 2004) and are the subject of intense discussion in the scientific com-
munity, see e.g., (Hartmann et al., 2013; Lu et al., 2009a; Pantano et al.,
2004; Wu et al., 2008a; Yakobson et al., 1996). Continuum modeling tech-
niques and the determination of appropriate input parameters are discussed
in more detail in Section 6.3.

For the sake of completeness also multi-scale methods are mentioned but
not discussed in detail. An exhaustive review of these methods can be found,
e.g., in (Liew and Sun, 2010; Liu et al., 2004). Multi-scale methods take
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advantage of both, atomistic and continuum mechanical approaches. Thus,
they can be used to investigate the mechanical behavior of large CNS, where
at specific positions the local atomic configurations are of importance. The
main issue of multi-scale approaches lies on the smooth bridging between
the atomistic and continuum length scale. A multi-scale approach is, e.g.,
used in (Xu et al., 2012b) to investigate the crack propagation in a graphene
sheet.

6.2 Monte Carlo Simulations and Molecular
Dynamics

In classical physics the state of a many-body system is described by spec-
ification of the momenta and positions of all N particles in the system.
This information is summarized in a vector r which is an element of the
6N -dimensional phase space Γ

Γ � r(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1
z1
...
pxN
pyN
pzN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Here x1, y1, z1 · · ·xN , yN , zN and px1 , p
y
1, p

z
1 · · · pxN , pyN , pzN describe the

three components of the position and the momentum vectors of particles 1
to N and the time dependency of the vector r is explicitly indicated. r(t)
describes a one-dimensional curve in phase space. This curve is given by
Hamilton’s equations of motion (that are equivalent to Newton’s equations
of motion)

dpk
dt

= − ∂H

∂xk
(2)

dxk

dt
=

∂H

∂pk
,

with the Hamilton function

H(p, x) =

3N∑
k=1

p2k
2m

+
N∑
i=1

Ui(xj). (3)

The Hamilton function gives nothing else than the total energy of the sys-
tem. The first sum gives the kinetic energy of the system, while the second
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sum corresponds to the potential energy. While the kinetic energy depends
solely on the momenta (velocities) of the particles, the potential energy de-
pends on the positions of the particles in the system. This is why this part
is also called the configurational part of the energy. It is the quality of the
potential used that largely determines the reliability of the results obtained
from a molecular dynamics or Monte Carlo simulation. The different types
of potentials used for the simulation of CNS will be discussed in Chapter
6.2.3

In principle, when the interactions between the particles are defined,
then Equations (2) to (3) suffice to calculate the time evolution of the sys-
tem and, thus, to know the system in every detail, i.e. to calculate the
positions and the momenta of the particles at all times starting from an
initial configuration. This route taken is what classical molecular dynamics
is doing: macroscopic variables like energy, pressure or density are obtained
by performing a time average over the microscopic trajectories. In contrast,
Monte Carlo simulations produce a sequence of states of the system, where
in equilibrium each state occurs with its proper Boltzmann weight. Macro-
scopic parameters are then determined by an ensemble average. It should
be noted that while molecular dynamics also gives the time evolution of a
system (in particular, the route the system takes to equilibrium), the re-
sults of Monte Carlo simulations are strictly valid only when the system has
reached equilibrium.

This chapter can only very briefly introduce the two methods. For more
detailed information the interested reader is referred to textbooks on this
topic, e.g., the excellent treatise (Landau and Binder, 2009) or (Frenkel and
Smit, 2002).

6.2.1 Molecular dynamics simulations

Molecular dynamics starts from Equations 2. The equations of motion
are then numerically integrated. This means that the result of a MD sim-
ulation is the vector r(t) as given in Equation (1). When this trajectory is
known, then any desired quantity can be obtained by performing an aver-
age over the obtained configurations. This kind of average corresponds to
a time average. Many different algorithms exist that allow an efficient inte-
gration of the equations. The most famous is probably the Verlet Algorithm
(Verlet, 1967). Here the positions a time step Δt ahead can be calculated
via

xi(t+Δt) = 2xi(t)− xi(t−Δt) +
Fi(t)

mi
Δt2 +O(Δt4), (4)



Atomistic and Continuum Modelling of Graphene 139

with Fi(t) the total force exerted on particle i from all other particles and
external forces. The forces can be calculated from the potential by building
the negative gradient

Fi(t) = −∇V (x1, · · ·x3N ). (5)

Note, that to calculate the new positions the positions of the particles at
time step t and t−Δt are needed.

One of the most common variants of the MD method is to change from
the microcanonical ensemble of constant energy as desribed above to the
canonical ensemble of constant temperature. Here the Andersen or the
Nosé-Hoover thermostat are two of the most common methods to switch
between the ensembles (Frenkel and Smit, 2002).

6.2.2 Monte Carlo simulations

Another approach taken is the Monte Carlo method. Here one considers
a system in contact with a heat bath at temperature T . The probability of
finding the system with an energy U is given by

p(U) =
1

Z
exp

(
− U

kBT

)
, (6)

with the normalization

Z =
∑
r

exp

(
− Ur

kBT

)
, (7)

where the sum runs over all possible configurations of the system. Z(V, T,N)
is called the canonical partition sum of the system and contains all thermo-
dynamic information of the system. In particular Z is connected to the free
energy F (V, T,N) of the system via

F (T, V,N) = −kBT lnZ(V, T,N). (8)

Only for very simple systems it is possible to calculate the partition sum
analytically. These special cases include non-interacting particles like the
ideal gas or non-interacting spins in an external field.

Direct estimation of the partition sum via numerical integration in a
computer simulation is often not possible. The problem is twofold. First,
already for a small number of particles the number of grid points, where
the function has to be evaluated, becomes astronomically large. A regular
grid of P points per phase space dimension results in P 3N grid points.
Thus, for N = 100 particles and only 10 points per dimension the sum in
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Equation (7) has to be evaluated at 10300 points. Second, the partition
function is sharply peaked and non-zero only in a limited region in phase
space. This is a direct consequence of the central limit theorem and the
law of large numbers. Consequently, the mesh has to be very fine to resolve
these details of the partition sum.

Monte Carlo simulations give a possibility to circumvent these problems.
The idea is not to sample all regions of phase space with equal probabil-
ity, but to sample regions of phase space in which the partition sum is not
negligible small with higher weight. This concept is called Importance Sam-
pling. Of course there is also a drawback. It is not possible to calculate the
partition sum itself, but observables of the kind

〈A〉 =
∑

r Ar exp
(
− Ur

kBT

)
∑

r exp
(
− Ur

kBT

) . (9)

The idea is to generate a so-called Markov chain. This is a successive chain
of states of the system in which the single states occur with their proper
Boltzmann weight. Thus, the averaging procedure simplifies to a standard
mean

〈A〉 = 1

n

n∑
i=1

Ai, (10)

with Ai the value of the observable in the i-th configuration of the system.

Generating a Markov chain with these properties can be done in several
ways. Most importantly the algorithm has to fulfill detailed balance. This
means that the algorithm must not destroy equilibrium once it is reached.
This is achieved when on average all jumps out of a special configuration
are exactly canceled by the jumps in this configuration from all other con-
figurations. Detailed balance now poses an even stronger condition that is
more easily implemented in a computer code. The jumps out of a config-
uration o into a new configuration n have to be exactly canceled by the
jumps from n to o. One of the most prominent algorithms fulfilling detailed
balance is the Metropolis Algorithm (Metropolis and Ulam, 1949; Metropo-
lis et al., 1953). Here one chooses a new configuration, mostly by a small
perturbation of the current configuration. Then the energy of the current
and the new configuration is evaluated. The new configuration is accepted
with probability

p = min

{
1, exp

(
− ΔU

kBT

)}
. (11)
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6.2.3 Potentials for carbon

As stated before the quality of the results of atomistic simulations cru-
cially depends on the quality of the potentials/force fields used in the sim-
ulations to describe the interactions of the particles. In the following some
of the most prominent examples of potentials used for the description of
CNS will be introduced. These potentials can be roughly classified in two
groups: non-reactive force fields that do not allow for changes in bond co-
ordination and reactive force fields that do so. The free parameters of these
force fields can be obtained by ab initio calculations or semi-empirically
by fitting the potential functions to known experimental data like elastic
constants or phonon frequencies.

Non-reactive force fields One way to derive a classical potential for
carbon (and other covalently bonded structures) is to start from a Taylor
expansion of the full potential

U =
∑
i

U1(xi) +
∑
j<i

U2(xi, xj) +
∑

k<j<i

U3(xi, xj , xk) +

+
∑

l<k<j<i

U4(xi, xj , xk, xl) + · · · . (12)

Here the first, i.e. single-body term U1 corresponds to an external potential.
The second, i.e. two-body term U2 is corresponding to a pair potential de-
scribing bond stretching. The three coordinates involved in the three-body
term U3 define an angle and, thus, correspond to changes in energy due to
changes of the bond angle. The four-body term U4 corresponds to the tor-
sion angle that is defined as the angle between the planes containing atoms
(xi, xj , xk) and atoms (xj , xk, xl). The functional form of these potentials
are normally given by a Morse potential for the stretching term, a harmonic
bending term and a dihedral torsion term

U2(r) = E0

[(
1− e−β(r−r0)

)2

− 1

]
(13)

U3(θijk) =
1

2
kθ (cos θijk − cos θ0)

2
(14)

U4(φijkl) =
1

2
kφ (1− cos 2φijkl) , (15)

here E0 is the binding energy of the structure, r and r0 are the actual
and the equilibrium bond distance, respectively, and β is a measure for the
width of the stretching potential. kθ is the bending constant and θijk and
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θ0 the actual and equilibrium bond angle, respectively. kφ and φijkl are the
torsion constant and the torsion angle, respectively.

The parameters needed in this potential can be obtained by performing
ab initio calculations on the structures and fits to these results. An ex-
ample for this strategy can be found in (Maple et al., 1994; Holec et al.,
2010). Another possibility is to fit these expressions to experimental data
like lattice constants, elastic constants and phonon frequencies, respectively.
Famous examples include the DREIDING (Mayo et al., 1990; Guo et al.,
1991), CHARMM (Brooks et al., 1983) and AMBER (Weiner et al., 1984;
Cornell et al., 1995) force fields. The major advantage of such potentials is
that they are easy to implement and relatively low in computational cost.
One disadvantage is that they do not allow for changes in bond coordina-
tion of the atoms involved. One possibility to circumvent this problem is
discussed in the next section.

Reactive Empirical Bond Order (REBO) Potentials These poten-
tials were developed starting from the 80ies to take also into account changes
in the bond coordination. Pure pair potentials always lead to closed packed
structures. It was Abell who made the observation that the strength of indi-
vidual bonds decreases when the coordination of an atom increases (Abell,
1985). Thus, there is a trade-off of having either few strong or many weak
bonds. If there is a weak dependence of bond strength on coordination
then closed packed structures, i.e. structures with a maximum number
of neighbors, are favored, while a strong dependence of bond strength on
coordination favors dimers, i.e. having only one neighbor. This is the prin-
cipal idea of the family of so called reactive empirical bond order (REBO)
potentials that were first introduced by Tersoff (Tersoff, 1988b,a).

The proposed form of the potential is given by

UREBO =
∑
<ij>

fc [fR(rij) + bijfA(rij)] , (16)

where the sum runs over all pairs of atoms i and j that have a distance of
rij . fc is a smooth cutoff function taking into account the short range char-
acter of covalent bonds. In molecular dynamics, where the derivative of the
potential functions (the force) enters in the main equations (see Equations
(4) and (5)) it is beneficial to use a smooth (differentiable) cutoff instead
of a simple step function to keep the forces finite. Tersoff proposes the
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following form of the cutoff (Tersoff, 1988b)

fc(rij) =

⎧⎪⎪⎨
⎪⎪⎩
1 rij < R
1
2

(
1 + cos

[
π

rij−R
S−R

])
R < rij < S ,

0 rij > S

(17)

with R and S being two constants (see Table 6.1). This cutoff ensures
that two atoms that are closer than R together interact completely, while
particles a distance larger than S apart do not have any interaction. fc is
interpolating smoothly between these two regimes.

The two functions fR and fA correspond to the repulsive and attractive
part of the potential, respectively. Motivated by the general exponential
distance dependence of atomic orbitals they are chosen as Morse like func-
tions

fR(rij) = A exp(−λrij) (18)

fA(rij) = −B exp(−μrij), (19)

with A, B, λ and μ being constants (see Table 6.1).
Finally, bij is the term that takes into account bond order. bij is chosen

such that it effectively reduces the attractive part of the potential when the
number of neighbors of a given atom increases

bij =
(
1 + βnζnij

)−1/2n
(20)

ζij =
∑
k �=i,j

fc(rik)g(θijk) (21)

g(θijk) = 1 +
c2

d2
− c2

d2 + (h− cos θijk)
2 . (22)

Here β, n, c, d and h are constants (see Table 6.1). For any pair of atom
< ij > the sum runs over all atoms k (excluding the atoms i and j) inside
the cutoff region of atom i and θijk is the angle defined by the three atoms.

One of the advantages of the REBO potential is that the bond order
may change in the course of the simulation. This means also that bonds
may open and reform and that the covalent network may evolve.

More recent refinements of the original potential given by Tersoff is the
Tersoff-Brenner potential that corrects for overbinding of radicals (Bren-
ner, 1990), the 2nd Generation REBO, where improved analytical functions
are used (Brenner et al., 2002) and the AIREBO (Adaptive Intermolecular
REBO) potential that includes also non-bonded and dihedral interactions
(Stuart et al., 2000).
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Table 6.1. Parameters of the Tersoff potential for carbon.

A 1393.6 eV
B 346.74 eV
λ 3.4879 Å
μ 2.2119 Å
β 1.572× 10−7

n 0.72751
c 38049
d 4.3484
h -0.57058
R 1.8 Å
S 2.1 Å

6.3 Continuum Mechanics

If continuum mechanics is used for modeling CNS, the atomic layers are
represented using continuum structures. These continuum structures can
be either beams and/or trusses (Meo and Rossi, 2006; Li and Chou, 2003a;
Sakhaee-Pour, 2009) representing the interatomic bonds or continuum shells
(Pantano et al., 2004; Yakobson et al., 1996) describing the overall layer
behavior. Both concepts are briefly described in the following sections,
where the focus of this review is on continuum shell models of CNS.

In general the resulting boundary value problem is solved using the finite
element (FE) method. For continuum shell models an analytical treatment
of the mechanical behavior of single and multi-layer CNS is possible within
certain limits regarding geometry and nonlinearities see, e.g., (Hartmann
et al., 2013; Baowan et al., 2007; He et al., 2005). These analytical relations
can become rather complex for multi-layer CNS, such that a closed-form
analytical solution is not possible. In this case the set of equations has to
be solved numerically (Baowan et al., 2007; He et al., 2005).

6.3.1 Space Frame Models

Space frame models are closely related to MD simulations. Instead of
interatomic potentials structural elements like beams, trusses and/or springs
are used to describe the interatomic bonds. Truss/spring models are not
further considered within this section but are discussed in more detail, e.g.,
in (Meo and Rossi, 2006; Xu et al., 2013).

In the following, a short overview about beam models is given. Fur-
ther details can be found, e.g., in (Li and Chou, 2003a). In literature the
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continuum beam modeling of atomistic structures is often denoted as lat-
tice structure method (Arghavan and Singh, 2011) or molecular structural
mechanics approach (Sakhaee-Pour, 2009). Within this approach each in-
teratomic bond is modeled using a single beam element which usually is as-
sumed to have a circular cross section (Li and Chou, 2003a; Sakhaee-Pour,
2009). The structural properties of the beams are derived from correspond-
ing interatomic potentials used in MC or MD simulations. According to
Equation (12) the total potential energy of an atomic system can be split
into a bond-stretching, bond bending, and a dihedral torsion term, which
are explicitly stated in, e.g., Equations (13) to (15). If small strains are
assumed the potentials can be described by simple harmonic forms (Li and
Chou, 2003a) reading

U2 =
1

2
k̃S(Δr)2, U3 =

1

2
k̃θ(Δθ)2, U4 =

1

2
k̃φ(Δφ)2 . (23)

The parameters k̃S , k̃θ, and k̃φ denote the bond stretching, bond angle
bending, and bond torsional resistance, respectively. The changes in bond
length, bond angle and the twisting increment are described by Δr, Δθ,
and Δφ, respectively. Note that k̃θ and k̃φ are the limiting values for small
deformations of kφ and kθ used in Equations (14) and (15), respectively.

Under the assumption of small strains the strain energy contributions of
a beam subjected to pure tension, pure bending, and pure torsion take a
similar form given as

US =
1

2
kS(ΔL)2, UB =

1

2
kB(2Δα)2, UT =

1

2
kT(Δβ)2, (24)

where kS, kS, and kT are the axial, bending, and torsional stiffness of the
beam elements, respectively. The quantities ΔL, Δα, and Δβ denote the
change in beam length, the beam bending angle, and the torsional angle of
the beam, respectively. More details on the definition of ΔL, Δα, and Δβ
can be found in (Li and Chou, 2003a). Under the assumption of analogous
beam and bond deformations, i.e., ΔL = Δr, 2Δα = Δθ, and Δβ = Δφ,
the stiffness properties of the beam are directly obtained by comparing
Equations (23) with (24) reading

kS = k̃S , kB = k̃θ, kT = k̃φ . (25)

In contrast to using the stiffness parameters k, as proposed in (Li and
Chou, 2003a), a corresponding parameter set consisting of diameter d,
Youngs modulus E, and shear modulus G can be obtained leading to (Tser-
pes and Papanikos, 2005)

d = 4

√
kB

kS
, E =

(kS)2l

4πkB
, G =

(kS)2kTl

8π(kB)2
, (26)
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where l is the length of the beam and therefore, equal to the carbon-carbon
bond length. This parameter set has the advantage of a straight forward use
in standard FE programs. The force field parameters kS = 6.52·10−7 N/nm,
kB = 8.76 · 10−10 N nm rad−2, and kT = 2.78 · 10−10 N nm rad−2 used in
most of the space frame models are usually those used in (Li and Chou,
2003a) and stem originally from (Cornell et al., 1995) and (Jorgensen and
Severance, 1990) and were derived for benzene molecules. In (Li and Chou,
2003a) the influence of the choice of kS and kB is investigated showing that
small deviations of these values are only of minor influence on the overall
elastic properties. Furthermore, it is found that kT has almost no influence
on the obtained overall Young’s moduli of carbon nanotubes.

The model proposed by Li and Chou (2003a) and the forcefield parame-
ters therein have widely been applied to investigate the mechanical behav-
ior of graphene (Arghavan and Singh, 2011; Li and Chou, 2003a; Sakhaee-
Pour, 2009; Kordkheili and Moshrefzadeh-Sani, 2013) or carbon nanotubes
(Arghavan and Singh, 2011; Li and Chou, 2003a,b; Domı́nguez-Rodŕıguez
et al., 2014) and to derive the homogenized elastic properties of the atomic
layers see, e.g., (Sakhaee-Pour, 2009; Kordkheili and Moshrefzadeh-Sani,
2013). The overall elastic parameters derived with the space frame models
can be used as input for continuum shell models.

6.3.2 Shell Models

Continuum shell models for investigating the mechanical behavior of
CNS have first been proposed by (Yakobson et al., 1996). The shell proper-
ties are expressed in terms of the membrane stiffness C, the bending stiffness
D, and the Poisson’s ratio ν and have been derived from MD simulations.
The considerations made in (Yakobson et al., 1996) are briefly reviewed in
the following.

The parameters C andD are derived from energy considerations in which
the total energy obtained by MD simulations is assumed to be equal to the
strain energy introduced into a continuum model of a carbon nanotube
for the same deformation state. For a carbon nanotube subjected to axial
compression the induced energy change per atom ΔUA in a MD simulation
can be expressed as

ΔUA =
1

2
(ΔUA)

′′ε2x. (27)

The quantity (ΔUA)
′′ denotes the second derivative of ΔUA with respect

to the axial strain εx where a value of 59 eV/atom is found for ΔU ′′
A in

(Yakobson et al., 1996). For the whole nanotube the change in total energy
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is obtained as

ΔU =

∫
S

ρΔUAdS =

∫
S

ρ
1

2
(ΔUA)

′′ε2xdS, (28)

with ρ and S being the atom density per unit area and the surface area of
the nanotube, respectively.

For the same loading case the strain energy VA reads

V =
1

2

∫
S

C

1− ν2
[(εx + εy)

2 − 2(1− ν)(εxεy)]dS, (29)

where it is assumed that the nanotube is a thin-walled cylindrical shell.
In this case V depends only on the axial strain εx and the circumferential
strain εy. If further the strains are assumed to be small, εy can be expressed
as

εy = −νεx , (30)

and Equation (29) simplifies to

V =
1

2

∫
S

Cε2xdS . (31)

A comparison between Equations (28) and (31) leads to (Yakobson et al.,
1996)

C = ρ(ΔUA)
′′ = 360N/m . (32)

The bending stiffness D is estimated under the assumption that a carbon
nanotube with radius R is a rolled graphene sheet. The change in total
energy |UNT −UG|, i.e. the difference between the total energy of a carbon
nanotube UNT and a planar graphene sheet UG is than equal to the strain
energy UR introduced by rolling a graphene sheet. If thin shells are assumed
UR can be expressed as

UR =
1

2

D

R2
, (33)

leading finally to a bending stiffness D = 0.16 nN nm (Yakobson et al.,
1996). The Poisson’s ratio ν = 0.19 is evaluated from the change in tube
diameter due to axial deformation (Yakobson et al., 1996).

Using the relations

C = Eh, D =
Eh3

12(1− ν2)
, (34)

one obtains a Young’s modulus E = 5500N/mm2 and a thickness h =
0.066 nm. Note that E and h should not be interpreted as quantities with
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a real physical meaning but as effective parameters describing the overall
mechanical properties of a single carbon layer. In (Xin et al., 2000) it is con-
firmed that modeling the atomic layer with continuum shells is consistent
with atomistic modeling techniques and that the values derived in (Yakob-
son et al., 1996) are in the correct order of magnitude. In the following the
model is denoted as Yakobson-model.

For the Yakobson-model the layers are assumed to possess isotropic linear
elastic material behavior, i.e. the model does not account for the chirality of
carbon nanotubes. Further, the type of loading seems to have an influence
on the elastic parameters (Huang et al., 2006) being also not considered
within the Yakobson-model. A more advanced continuum shell model ac-
counting also for the anisotropy and chirality of the nanotubes is proposed,
e.g., in (Wu et al., 2008a; Chang, 2010). Inelastic effects are considered in
the nonlocal shell model derived in (Ansari and Rouhi, 2012). This analyti-
cal model gives a very good representation of the fundamental frequencies of
nanotubes if appropriate nonlocal parameters are used (Ansari and Rouhi,
2012). An exhaustive review on nonlocal shell models of carbon nanotubes
is given, e.g., in (Arash and Wang, 2012). Such advanced models allow to
capture effects not considered in the Yakobson-model, but are in general
more complex. For example, the nonlocal shell parameter used in (Arash
and Wang, 2012) depends on the size of the nanotube, the boundary con-
ditions, and on the number of layers in a multi-walled carbon nanotube.
Therefore, this parameter has to be derived from atomistic models for each
tube configuration leading to high computational costs. Further, in (Chang,
2010) it is shown that the influence of chirality on the elastic properties van-
ishes fast with increasing tube radius. For nanotubes with their diameter
being larger than 1 nm this effect is already negligible. Additionally, the
assumption of isotropic layers used in the Yakobson-model is admissible as
long as small strains (deformations) are considered (Wu et al., 2008b).

Overall, the Yakobson-model seems to give a good representation of the
mechanical behavior of CNS as long as the CNS are large enough and if
small strains are considered. Continuum shell models have widely been
used to investigate the mechanical behavior of CNS like carbon nanotubes
(Yakobson et al., 1996; Pantano et al., 2004), graphene (Hartmann et al.,
2013), carbon crystallites (Todt et al., 2010), and carbon onions (Todt et al.,
2014a).

The elastic parameters of the shells in terms of E, ν, and h derived by
various authors differ significantly, see Table 6.2. This phenomenon is also
known as the Yakobson paradox (Shenderova et al., 2002). Good agreement
can only be found for the membrane stiffness C, whereas the bending stiff-
ness also seems to be a topic of ongoing discussion. To resolve this paradox,
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different solutions were discussed: in (Huang et al., 2006) it was argued
that the effective thickness of nanotubes is not constant but depends on the
size of the nanotube, its chirality and the loading type. In (Zhang et al.,
2011) it was suggested that the Yakobson paradox can be understood by
the breakdown of plate theory for a single layer of graphene. It should be
noted that the Young’s modulus of graphene or carbon nanotubes is often
calculated from the membrane stiffness C under the assumption that the
thickness of a carbon layer is equal to the interlayer spacing in graphite
and, therefore, reads h = 0.34 nm (Arghavan and Singh, 2011; Lier et al.,
2000; Xu et al., 2012a). This layer thickness leads in combination with the
corresponding values of E and ν to a strong overestimation of the bending
stiffness obtained, e.g., in (Lu et al., 2009a; Lu and Huang, 2009). However,
in (Xu et al., 2012a) it was possible to reproduce nanoindentation experi-
ments conducted in (Lee et al., 2008) with an assumed layer thickness of
h = 0.34 nm. In the nanoindentation experiments the contribution of the
bending deformation to the total strain energy is found to be three orders
of magnitude smaller than the contribution due to membrane strains. From
this outcome it is concluded that graphene has no intrinsic bending stiffness
(Lee et al., 2008). Zero bending stiffness of graphene is also proposed in
(Zhang et al., 2011), as bending of a single layer graphene sheet does not
lead to a change in the atom-atom distances. However, zero bending stiff-
ness of graphene is in clear contradiction with results obtained in (Cadelano
et al., 2010; Lu et al., 2009a; Lu and Huang, 2009). In (Lu et al., 2009a)
it is shown that further effects like three-atom bending or four-atom out-
of-plane torsion contribute to the total potential energy of the system. In
(Nikiforov et al., 2014) the π-orbital axis vector scheme is used to show that
graphene has a non-vanishing bending stiffness resulting from the torsional
misalignment of the π hybrid orbitals. This contribution can be considered
using an additional dihedral-angle term in the 2nd-generation Brenner po-
tential as is done, e.g., in (Lu et al., 2009a). However, this term has to be
parameterized appropriately (Nikiforov et al., 2014). Further, in (Nikiforov
et al., 2014) it is shown that although continuum plate/shell theory does
not correspond to the physical molecular orbital description, it can be used
to reproduce the bending behavior of graphene, at least for small strains. In
(Xu et al., 2013) the non-zero bending stiffness of graphene is attributed to
residual internal moments and not to changes in bond-lengths and used to
investigate self-buckling of free standing graphene sheets. This discussion
shows that whether or not continuum shell models can be used to describe
the mechanical behavior of CNS is far from being clarified. Especially the
question which combination of E, h, and ν gives the best description of
CNS needs further investigation. Examples for the application of contin-
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uum models for investigating the mechanical behavior of CNS and further
concepts for obtaining the elastic shell parameters are given in Section 6.4.
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6.3.3 Further aspects

Besides the layer properties, further aspects have to be considered in
continuum mechanical modeling of CNS. In multi-layered CNS vdW inter-
actions play an important role, and in curved CNS like carbon nanotubes
and carbon onions the curvature induced surface stress has to be consid-
ered. Furthermore, the carbon layers are not perfect but contain defects
like vacancies or interstitial atoms. In multi-layer CNS these defects may
also lead to covalent interlayer bonds which cross-link adjacent layers. All
of these aspects are briefly discussed in the following.

Van der Waals interactions In multi-layer CNS the van der Waals
(vdW) interactions between adjacent layers result form the vdW interac-
tions between individual atoms making up the layers. vdW interactions are
relatively week compared to the covalent interlayer bonds and result from
induced dipole interactions between uncharged atoms. vdW interactions
between individual atoms can be described as a function of the atom-atom
distance r using a pair potential, e.g., the Lennard-Jones potential (Kelly,
1981)

U12 = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (35)

where ε and σ are Lennard-Jones parameters describing the depth of the
potential well and the atom-atom distance at U12 = 0, respectively. The
first derivative of Equation (35) with respect to r describes the force F12 =
−d U12

dr between the interacting atoms. If F12 = 0, i.e., the potential U12

posseses a minimum and the two atoms have reached their equilibrium dis-
tance r0 = 21/6 σ.

In continuum mechanical modeling of CNS, vdW interactions can be
either considered using linear or nonlinear springs or trusses or using a non-
linear pressure-distance relation. Truss/spring elements are applicable for
space frame models and continuum shell models, whereas pressure-distance
relations are only applicable in continuum shell models.

The first attempt is used, e.g., in (Li and Chou, 2003b) and (Kordkheili
and Moshrefzadeh-Sani, 2013) where two interacting atoms represented by
finite element nodes are connected with a truss/spring element. The stiffness
of these elements is derived as the second derivative of the Lennard-Jones
potential given by Equation (35) with respect to r. Theoretically, one atom
of a layer interacts with all atoms of the adjacent layers meaning that each
atom has to be connected with all other atoms by truss or spring elements.
As the vdW interactions vanish fast with increasing atom-atom distance
usually only interactions between nearest neighboring layers are considered.
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Further, only atoms with a maximum distance of approximately 4 to 8 times
the equilibrium distance r0 are taken into account.

For deriving a pressure distance relation the vdW interactions between
atoms of adjacent layers can be summed up and related to the surface area
of the layers leading, e.g., to

p(α) =
C33

6

[(σ
α

)10

−
(σ
α

)4
]
, (36)

for graphite, where C33 = 36.5GPa is the compressive constant (Kelly,
1981; Zhao and Spain, 1989) and α is the current interlayer distance. If the
condition p(α = αeq) = 0 is satisfied two adjacent layers have reached their
equilibrium distance. This leads to

αeq = σ, (37)

being by factor of 21/6 smaller than the atom-atom equilibrium distance r0.
Another possible way of obtaining a pressure-distance relation for planar
CNS is to replace the discrete sum by a surface integral and use the atom
density per unit area, ρ∞, to describe the number of atoms in an infinites-
imally small area of the layers, see e.g. (Hamaker, 1937; Lu et al., 2009b;
Todt et al., 2011). This approach leads to a different result for graphite as
obtained in Equation (36) reading

p(α) = C0

[(σ
α

)11

−
(σ
α

)5
]
, (38)

with
C0 = 8 ε (ρ∞)2 σ π . (39)

In this approach the compressive constant C0 depends on the Lennard-
Jones parameters and the exponents are different than those in Equation
(36). The influence of the differences between Equations (36) and (38) are
investigated in more detail in Section 6.4.3. It should be noted that Equa-
tions (38) and (36) lead to the same αeq. The pressure distance relations
given by Equations (38) and (36) are both derived for graphite under the
assumption that neighboring layers consist of the same number of atoms.
In carbon nanotubes or carbon onions the number of atoms is different in
adjacent layers. This difference has to be considered in the pressure distance
relations. In (He et al., 2005; Ru, 2000; Wang et al., 2003) the curvature
effect in carbon nanotubes is considered by assuming that the vdW pressure
on opposing faces of adjacent layers is inversely proportional to their radii,
leading to pinRin = poutRout. In more advanced approaches like in (Lu
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et al., 2009b) for carbon nanotubes or in (Hamaker, 1937; Iglesias-Groth
et al., 1997; Todt et al., 2011) for spherical CNS the curvature effect is al-
ready considered in the derivation of the pressure-distance relations. In (Lu
et al., 2009b) it is shown that the critical pressure of carbon nanotubes is
overestimated by 25% or 75% if pinRin = poutRout or pin = pout (graphite
relation) are used, respectively, instead of the relation directly considering
the different number of atoms in the layers. In (Todt et al., 2011) the in-
fluence of the vdW formulation on the equilibrium interlayer distances and
on the layer deformation in two-layered carbon onions is investigated. It
is shown that although the simplified models lead to the same equilibrium
interlayer distance as the model considering the curvature effect, substantial
differences could be observed for the layer deformations. In the advanced
model the outer layer undergoes larger deformations than the inner layer
especially for large fullerenes. This leads also to larger membrane forces in
the outer layer, which become of major interest if the structural stability of
carbon onions is considered. Concluding it can be said that accounting for
the different number of atoms in adjacent layers in the formulation of the
vdW model is of great importance, especially if the stability of multi-layer
CNS is investigated.

Comparing the nonlinear truss/spring approach with the pressure-distance
approach one can say that the truss/spring models are cumbersome from a
modeling point of view if large CNS are considered. Nevertheless, truss/spring
models offer some advantages. If an atom of one layer is connected by
springs/trusses to all other atoms of the adjacent layers the curvature effect
is naturally taken into account. Furthermore, the interlayer shear stiffness
of the vdW interactions is considered, which is usually neglected when pres-
sure distance relations are used, see e.g., (Pantano et al., 2004; Yao et al.,
2008; Todt et al., 2014a). The interlayer shear modulus is in the range of
4 − 5GPa (Kelly, 1981). Compared to the inplane stiffness of the carbon
layers and the vdW stiffness perpendicular to the layers the interlayer shear
stiffness is small and becomes only of importance if sliding between adjacent
layers occurs, e.g., in (Byrne et al., 2010).

Intra- and interlayer defects CNS are not defect-free. Defects can oc-
cur within a single layer or lead to covalent cross linking between the layers.
Defects within a single layer can occur as point defects and one dimensional
line defects. Point defects are Stone-Wales (SW) defects, single and multiple
vacancies, carbon or foreign add atoms, and substitutional impurities. Some
of these defects are experimentally observed, e.g., in (Hashimoto et al., 2004;
Meyer et al., 2008). The one dimensional line defects comprise dislocation
like defects separating two graphene domains with different lattice orien-
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tations, see e.g., (Huang et al., 2011; Kim et al., 2011) and defects at the
edges of graphene layers involving dangling bonds and the saturation of free
atoms with, e.g., hydrogen atoms. Detailed reviews on the different defect
types, their structure, their formation, and their influence on the chemi-
cal, magnetic, electronic, and mechanical properties can be found, e.g., in
(Banhart et al., 2011; Terrones et al., 2012). Methods for the experimental
characterization of defects in graphene and graphene based materials are
reviewed in (Araujo et al., 2012).

To study the influence of defects on the mechanical properties mainly
MD simulations, e.g., (Ansari et al., 2011; Wang et al., 2012; Sharma et al.,
2014) or space frame continuum models (Tapia et al., 2012; Tserpes, 2012;
Georgantzinos et al., 2012) are used. In (Tapia et al., 2012) a structural
mechanics approach is used to show that already a single vacancy defect
significantly reduces the fracture strength of graphene but has only minor
influence on the Young’s modulus. This is in good agreement with the re-
sults obtained in (Ansari et al., 2011) using MD simulations and results
of (Georgantzinos et al., 2012; Tserpes, 2012) using space frame models.
The influence of SW defects on the fracture strength seems to be only of
minor importance due to the fact that SW defects annihilate by inverse
bond rotation under mechanical loading (Sun et al., 2012). The findings
of (Sun et al., 2012) are in contradiction to the results obtained in (Wang
et al., 2012) where a significant reduction of the fracture strength due to
SW defects is observed. With increasing number of defects also the Young’s
modulus decreases as shown in (Sharma et al., 2014) for carbon nanotubes.
Similar results have been obtained in (Tapia et al., 2012; Tserpes, 2012).
Vacancy and SW defects also reduce the axial buckling load of carbon nan-
otubes, but seem to have only minor influence on the compressive modulus
(Eftekhari et al., 2013). In general, SW defects show a stronger influence
on the buckling load and the elastic properties than vacancies (Eftekhari
et al., 2013). SW defects locally reduce the load carrying capacity of CNTs
and lead to a stress and strain concentration around the defect (Chandra
et al., 2004). To investigate the local influence of SW defects, atomic scale
stress and strain measures are employed in (Chandra et al., 2004), where
the strains are formulated in a - from a continuum mechanics point of view -
unusual form. It is shown that the stress concentration decreases for higher
overall strains, whereas the strain concentration increases. Structures con-
taining defects show a lower overall energy than defect free structures when
subjected to mechanical loading (Chandra et al., 2004), which may explain
spontaneous defect formation at higher strains. The formation of defects in
pristine graphene under mechanical loading is investigated, e.g., in (Wang
et al., 2012), revealing that vacancy defects are easier generated than SW
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defects. Dewapriya et al. (2014) studied the fracture behavior of graphene in
more detail and also investigated the capability of different continuum me-
chanics based fracture criteria to predict the fracture strength. It turned out
that the quantized fracture mechanics approach (Pugno and Ruoff, 2004)
captures the fracture strength of graphene quite well (Dewapriya et al.,
2014).

In contrast to MD simulations or space frame approaches continuum
shell models are less frequently used to investigate the influence of defects
in CNS. This is because considering the structure and local influences of
the defects is not as straight forward in continuum shell models as in space
frame models. In (Zhang et al., 2014) a generalized von Karman equation
for flexible solid membranes is utilized to account for topological defects,
like heptagonal-pentagonal pairs, via corresponding eigenstrains. The aris-
ing set of differential equations is solved using FEM and allows to predict
the stress field and the out-of-plane deformations in a graphene sheet under
uniaxial and biaxial strains, respectively. (Chen and Chrzan, 2011) use a
similar approach where the arising set of differential equations is solved in
the Fourier Space. The defects are modeled via topological constraints. The
received in-plane strains and out-of-plane deformations due to the defects
are in good agreement with results of atomistic simulations. Pentagonal
rings increase the local curvature of carbon structures (Cataldo, 2002) and
are required to form closed caged structures like fullerenes or carbon onions.
SW defects – as combination of two pentagonal and two heptagonal atomic
rings – can also increase the sphericity of fullerenes (Terrones and Ter-
rones, 1997). Further, a combination of pentagonal-heptagonal rings might
be utilized to design curved graphene structures, such as graphene funnels
(Zhang et al., 2014). In (Todt et al., 2014b) a continuum shell model of a
C240 fullerene is used to investigate the influence of the required 12 pen-
tagonal atomic rings on the membrane stiffness of fullerenes. It is shown
that the pentagonal rings lead to a local stiffening of the fullerene structure,
which is also observed in MD simulations (Todt et al., 2014b).

Intra-layer defects, such as vacancies or interstitial atoms and dangling
bonds at the edges of the graphene layers, can be the source for a formation
of covalent interlayer bonds (Telling et al., 2003; Vollath, 2008). Further,
nanoindentation of multi-walled nanotubes and multi-layer graphene can
give rise to the formation of such bonds (Guo et al., 2004). Interlayer
bonds influence the mechanical properties of CNS, like multi-walled carbon
nanotubes (Byrne et al., 2010; Huang et al., 2010; Peng et al., 2012) and
carbon nanotube bundles (Kis et al., 2004). Cross links constrain sliding
between nanotube walls (Byrne et al., 2010) and adjacent nanotubes (Kis
et al., 2004), the load transfer between the tubes being best if the bonds
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are uniformly distributed (Byrne et al., 2010). However, for covalent bonds
formed by Frenkel pair defects (Telling et al., 2003) a decrease in the axial
buckling load of double-walled nanotubes is observed, as the Frenkel pair
defect weakens the layers and stresses are concentrated around these defects
(Peng et al., 2012). Furthermore, the increased interlayer shear stiffness of
carbon crystallites forming carbon fibers (Loidl et al., 2003; Sauder and
Lamon, 2005) is attributed to the formation of covalent interlayer bonds
(Loidl et al., 2003). Interlayer bonds may also play a role in the formation
of nanodiamonds due to the irradiation induced self-compression of carbon
onions (Banhart et al., 1997).

The examples above show that interlayer defects should be considered
in a continuum mechanical analysis of CNS. As a first attempt a contin-
uum truss model is used in (Todt et al., 2010) to represent such covalent
interlayer bonds in carbon crystallites. Therein, the defects are assumed
to correspond to a fourfold coordinated interstitial atom (Telling et al.,
2003) locally reducing the interlayer distance from 0.34 nm to approximately
0.258 nm. Each defect is represented by a single truss element (Todt et al.,
2010), and hence, the actual structure of the defects is ignored. The axial
stiffness of the trusses is assumed to be high enough, so that the conflating
effect of the interlayer bonds is not significantly influenced by the membrane
stiffness of the layers. With this model it is shown that the amount and
the distribution of interlayer defects has an influence on the occurrence of
buckling in carbon crystallites, see Section 6.4.4.

Curvature induced excess surface energy In curved CNS a curva-
ture induced excess surface energy is present (Holec et al., 2010) being
defined as the curvature induced increase in total energy with respect to
planar graphene. Due to the excess surface energy a surface stress devel-
ops in curved carbon layers leading to a non-zero membrane stress state
in the absence of external loading (Fischer et al., 2008). In a continuum
mechanical model this surface stress can be taken into account by apply-
ing a corresponding inwards oriented mechanical pressure, see e.g., (Todt
et al., 2014a). The excess surface energy being present in carbon fullerenes
is discussed in more detail in Section 6.4.3 and (Holec et al., 2010).

6.4 Applications

In the following sections we discuss some examples on how the concepts
introduced in the preceding chapters can be used to study the mechanical
behavior of CNS. Starting from planar graphene it is explained how atom-
istic simulations were used to extract effective mechanical properties for this
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fascinating material. Then nanotubes are discussed. These cylindrically
shaped objects are obtained when graphene is rolled up in one direction.
Nanotubes are typically characterized by a very large aspect ratio, i.e., the
ratio of length to diameter is very large. Typical questions concern the
stability of nanotubes during uniaxial compression, bending or hydrostatic
loading, thermal buckling and the influence of defects. When graphene
is not only curved in one but in two dimensions then spherical fullerenes
are obtained. In contrast to plane graphene and nanotubes, fullerenes in-
trinsically contain structural defects, because it is not possible to close a
structure consisting of three fold coordinated particles and hexagons only.
At least 12 pentagons have to be included. When many of such fullerenes
of different size are “stacked” into each other then so called carbon onions
form. In these multilayered structures the non-covalent vdW interactions
are of utmost importance. Special care has to be taken in the description
of vdW interactions in the framework of continuum mechanics when these
forces act between curved surfaces. In carbon onions it is most likely that
vdW forces define the maximum number of layers that an onion can consist
of. Finally, the mechanics of carbon fibers is discussed. It is shown that
the mechanical properties of these fibers strongly depend on the concentra-
tion and distribution of defects in the carbon nano-crystallites the fibers are
consisting of.

6.4.1 Graphene

Graphene is a single layer of graphite, i.e., a truly 2-dimensional mate-
rial. Graphene consists of sp2 bonded carbon, i.e., each atom has exactly 3
neighbors. Note, that graphene is not a bravais lattice. The smallest unit
cell of graphene consists of 2 atoms. Although graphene seems to be a sim-
ple structure, some tricky questions may arise. One of these is: What is the
thickness of a two-dimensional material? Even if on first sight this question
may seem academical it has important implications. Graphene is the ele-
mentary building block of all other CNS, like nanotubes, fullerenes, carbon
onions, and carbon crystallites in carbon fibers. Thus, a thorough under-
standing of graphene is essential to understand also the larger structures.
Because of the small size of graphene experiments on these structures are
scarce. One of the few examples is presented in (Lee et al., 2008). Conse-
quently, computer simulations are of utmost importance to gain additional
insight into these structures. Nevertheless, studying the mechanical proper-
ties of these structures using a full atomistic description is often not feasible
due to the large number of atoms in graphene layers being sufficiently large.
A possible solution is to use methods from continuum mechanics to inves-
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tigate such structures. A natural way describing these structures is as thin
elastic shells. This demands the input of three macroscopic parameters: the
Young’s modulus E, the Poisson’s ratio ν and the thickness h of the shell. In
other words, the goal is to find effective elastic parameters of a hypothetical
shell that shall show the same elastic behavior as a sheet of graphene. While
the determination of a membrane stiffness Y = Eh can easily be done in a
simulation and partly also in experiments, the bending stiffness and, thus,
the effective thickness explicitly is harder to grasp as already discussed in
Section 6.3.2. Using potentials obtained in (Holec et al., 2010) in (Hart-
mann et al., 2013) computational loading tests were performed on graphene
using the Monte Carlo method. The membrane stiffness, Poisson’s ratio
and the strength of graphene were obtained by computational tension tests,
while the bending stiffness (and, thus, the effective thickness) were derived
by compression tests, in which buckling was enforced. It was shown that
the continuum approximation breaks down for systems composed of too few
atoms, but that a constant effective thickness of h = 1.32 Å is reached for
graphene longer than 50 Å (see also Figure 6.1).

6.4.2 Nanotubes

An infinite sheet of planar graphene is the lowest energy conformation of
sp2 bonded carbon. The edges of any finite sheet of graphene increase the
energy of this structure. Thus bending and closure of the sheet may become
energetically favorable, and structures like nanotubes (Baughman et al.,
2002) may form. Nanotubes are of cylindrical symmetry and may be single
or multi-walled. Besides inheriting the amazing mechanical properties from
graphene, nanotubes also show remarkable electronic properties. Depending
on its chirality the tube may either be metallic or semiconducting (Dai,
2002).

One convenient procedure of testing nanotubes (either in a pressure cell
using Raman spectroscopy or in a computer experiment) is to apply hydro-
static pressure from the outside (Sun et al., 2013). The deformation of the
nanotubes is first given by a reduction in radius without a change in shape
for low pressure and an ovalization of the cross section of the tube that is
accompanied by a subsequent softening of the tube for high pressure. This
behavior, which corresponds to typical buckling of thin tubes under exter-
nal pressure (Windenburg and Trilling, 1934), was predicted in computer
simulations (Sun et al., 2004) using molecular dynamics and also found
in experiments (Sun et al., 2014). Monte Carlo simulations of nanotubes
under hydroststic pressure show similar results as the molecular dynamics
calculations (see Figure 6.2) (Sun et al., 2013). Details on the continuum
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Figure 6.1. Determination of the effective elastic properties of graphene.
Top row: The membrane stiffness Y , Poisson’s ratio ν, the strength σS ,
and the ultimate strain εS of graphene is obtained by loading a sheet of
graphene in uni-axial tension (left) and recording the corresponding strains
in x and y-directions. Bottom row: Compression tests on graphene to
obtain the effective thickness h. On the left the used geometry and two
snapshots of the graphene layer before and after buckling are shown. On
the right the effective thickness obtained for different lengths of the graphene
patch is shown. For a length smaller than approximately 50 Å the effective
thickness of graphene decreases due to the breakdown of the continuum
approximation, but attains a constant value of ≈ 1.32 Å for longer patches.
(Figure reproduced with permission and adapted from (Hartmann et al.,
2013)).
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mechanical modeling of the behavior of nanotubes under external pressure
can be found in Chapter 7.

Figure 6.2. The behavior of nanotubes under radial compression (hydro-
static pressure). The figure shows the radius of the tube as a function of the
applied load as obtained by Monte Carlo simulations. The radius is defined
as the mean normal distance of all atoms with respect to the tube axis.
For low loads the radius of the tubes shrinks homogeneously. After a cer-
tain critical pressure is exceeded the cross section of the tubes ovalizes and
loses its circular shape. (Figure adapted from (Sun et al., 2013). Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission).

Using molecular dynamics methods in (Wang et al., 2005) the behavior
of nanotubes under axial load was investigated. Here it was shown that
depending on the length of the tube it fails either via local buckling or
global bending. In (Hao et al., 2008) the influence of defects (vacancies)
on the mechanical properties of nanotubes was modeled, while in (Walther
et al., 2001) the interaction of water and nanotubes was modeled to inves-
tigate the radial-breathing-mode (RBM) vibration of nanotubes that shows
a pronounced signal in Raman spectra. Also the buckling of double-walled
nanotubes can be monitored in a simulation, where it was shown that the
vdW interactions between the layers have a large influence on the buckling
load (Zhang et al., 2007).
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6.4.3 Fullerenes and Onions

In contrast to cylindrical nanotubes, spherical CNS can not be formed
solely by hexagons. According to Euler’s theorem at least 12 pentagons
are necessary to close the structure. Fulfilling Eulers theorem is a necce-
sarry but not a sufficient condition for fullerenes to be thermodynamically
stable. Additionally, the so called isolated pentagon rule (IPR) (Kroto,
1987) must be fulfilled and the fullerene must consist of an even number
of atoms (Kroto, 1987). The IPR is an implication of the fact that the
local stability – in terms of the position of the atoms – of a fullerene in-
creases if the local curvature decreases (Klein et al., 1986). It states that
only such fullerenes are thermodynamically stable for which the pentagons
are not in direct contact with each other. These pentagons can be regarded
as intrinsic intra-layer defects that result in a lower bond angle than the
perfect hexagons. Due to the pentagons fullerenes have the shape of trun-
cated icosahedrons, where the pentagons are located at the vertices of the
icosahedrons. The thermodynamic stability of fullerenes up to C240 is inves-
tigated in (Klein et al., 1986) considering only fullerenes with their number
of atoms being equal to n = 20(m2+mk+k2), 0 ≤ k ≤ m , with m and k
being integers. C60, C180, and C240 fullerenes are thermodynamically quite
stable. The fullerenes C80 and C140 show a lower thermodynamic stability
and therefore, are less likely to form than, e.g., a C60 fullerene. Thermody-
namic stability considerations on larger fullerenes (Tang and Huang, 1995)
show that all fullerenes with k = m form a closed-cage structure, which is
not necessarily the case for k = 0. Therefore, the number of atoms forming
a fullerene - in terms of a closed-cage icosahedron – can be calculated as
n = 60k2.

As mentioned in Section 6.3.3 curved CNS possess an intrinsic curvature
excess surface energy. In (Holec et al., 2010) the excess surface energy of
fullerenes of different size is investigated in detail. First, classical poten-
tials are obtained using ab initio calculations. In a second step the excess
surface energy is calculated with ab initio for small fullerenes up to C240

and with Monte Carlo simulations for larger fullerenes up to C5120. It is
shown that Monte Carlo simulations over estimate the total amount of the
surface energy by a constant factor of approximately 1.6. Nevertheless, the
Monte Carlo method as well as the ab initio calculations lead to the same
exponent β = 1.4 for the decay of the surface energy ES as a function of
radius ES ∝ R−β . The results show that the excess surface energy is only of
importance for small fullerenes, as it vanishes fast with increasing fullerene
radius. For fullerenes the resulting surface stress σS (here in terms of a
membrane force per unit area) corresponds to a plane hydrostatic stress
state and can be related to the excess surface energy by the Shuttleworth
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equation (Fischer et al., 2008) reading σS = ES + dES

dεS
. The parameter εS

denotes the strain in each circumferential direction of the sphere in a small
strain setting (Fischer et al., 2008). For a first estimate, usually the second
term of the right hand side of the Shuttleworth Equation is neglected.

Large fullerenes with k = m tend to form multi-layer arrangements as
they are more stable (Tang and Huang, 1995). Multi-layered particles were
first observed by Iijima in 1980 (Iijima, 1980). These particles were called
carbon onions (Kroto, 1992) and form from soot when subjected to intense
electron irradiation (Ugarte, 1992). They show a rather polyhedral shape
or are almost perfectly spherical. In a strict sense only the spherical par-
ticles should be denoted as carbon onions. Today, various methods are
avialable to produce carbon onions, such as electron irradiation of graphite
at elevated temperatures (≥ 300◦C) (Banhart and Ajayan, 1996; Banhart
et al., 1997), high temperature annealing of nanodiamonds (Tomita et al.,
2002), synthesis by decomposition of phenolic resin (Zhao et al., 2007),
high pressure transformation of graphite, or thermo-mechanical processing
of graphite powders (Güler and Evin, 2014). Onions produced by high-
pressure transformation of single crystal graphite seem to grow from the
inside to the outside (Blank et al., 2007; Du et al., 2007; Füller and Ban-
hart, 1996). This corresponds to the presumption (Kroto, 1992) that carbon
onions grow by the spiraling network mechanism (Kroto and McKay, 1988;
Zhang et al., 1986). If high-temperature annealing of nanodiamonds is used
to produce carbon onions, the particles grow from the outer boundaries of
the nanodiamond towards the center (Tomita et al., 2002). Due to their
multi-layer spherical structure carbon onions posses a high local electron
density leading to a high ability for absorbing electromagnetic radiation.
This makes them promising candiates as fillers in nanocomposites for elec-
tromagnetic shielding (Macutkevic et al., 2009). They have also potential
application as additives in lubricants (Joly-Pottuz et al., 2008), as solid
lubricants (Hirata et al., 2004), or as nanoscopic pressure cells for the pro-
duction of nanodiamonds (Banhart and Ajayan, 1996).

In all of these applications the mechanical properties of carbon onions
under external pressure and the size of these particles play a role. In (Peón-
Escalante et al., 2014) the “bulk modulus” B – as applied pressure per
relative change of the enclosed volume – of a C60 fullerene is predicted
with ab initio and the space frame modeling appraoch discussed in Section
6.3.1. The obtained values of B are between 750GPa and approximately
900GPa and are in good agreement with references given in (Peón-Escalante
et al., 2014). In (Peón-Escalante et al., 2014) the use of shell models for
estimating B of fullerenes is considered as problematic with allusion to the
definition of an appropriate shell thickness. This is in clear contradiction to
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the results presented in (Todt et al., 2014b), where the applicability of shell
models to describe the mechanical properties of fullerenes is investigated in
detail. In (Todt et al., 2014b) icosahedral fullerenes up to a size of C1280

are modeled using continuum shells where different parameter sets of E,
h, and ν are used. The fullerenes are subjected to an external pressure
and a circumferential ring load allowing to obtain their hydrostatic and
ringload stiffness, respectively. The results are compared to results obtained
by MC simulations. Although larger fullerenes are not perfectly spherical
the hydrostatic stiffness of the fullerenes could be well predicted by the
continuum shell model and is almost the same for all parameter sets for E,
h, and ν. This result is not surprising as hydrostatic pressure leads to a pure
membrane stress state. As can be seen from Table 6.2 all parameter sets
lead to comparable values of the membrane stiffness and therefore, to similar
values of the hydrostatic stiffness. Further, it is shown that parameter
sets for which h is choosen to be around 0.34 nm strongly overestimate
the ring load stiffness of the fullerenes. Parameter sets with h ≈ 0.07 nm
and a thereof resulting E of around 5000GPa gave the best prediction of
the ring load stiffness. It is also shown that the loading conditions in the
MC simulations and in the continuum model have to be similar to lead to
comparable results.

For investigating the mechanical properties of spherical CNS consisting
of a large number of atoms, such as carbon onions, atomistic methods be-
come computationally expensive. In this case, continuum mechanical meth-
ods can be used to investigate their mechanical behavior. For example, in
(Todt et al., 2014a) continuum mechanical shell models are applied to inves-
tigate a possible growth limit of carbon onions. There, the model used as-
sumes that carbon onions grow from the inside to the outside and considers
the excess surface energy as well as the vdW interactions between the layers.
The arising boundary value problem is solved using the FEM method. The
vdW interactions are described using the pressure-distance relations given in
(Kelly, 1981) and (Todt et al., 2011) for graphite/graphene. These relations
allow a straight forward implementation into the FEM model but neglect
the curvature effect within the vdW interactions. The question regarding
the growth limit of carbon onions is formulated as a buckling eigenvalue
problem (

K≈ N + λNΔK≈ N

)
Φ∼N = 0∼ (40)

with K≈ N being the stiffness matrix of a N -layered onion in its equilib-
rium state. The matrix ΔK≈ N represents the change in the stiffness of the
onion due to an externally applied fictitious pressure. Hence, an eigenvalue
λN = 0 means that no external pressure is required for the onion to loose its
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structural stability, and therefore, indicates the growth limit of the onion.
The vector Φ∼N is the corresponding buckling mode to the eigenvalue λN .
With this formulation it has been shown that the size of carbon onions is
most likely limited by the occurence of a structural instability. The loss
of stability is caused by a self-equilibrating stress state emerging from the
accommodation of misfitting carbon layers during the growing process. The
self-equilibrating stresses in the layers are mainly introduced by the vdW
interactions between the layers, whereas the excess surface energy is of im-
portance for the innermost layers only, for details see (Todt et al., 2014a).
Figure 6.3 a) shows the results of the eigenvalue problem, revealing that
the use of different exponents in the pressure distance relations for the vdW
interactions (see Section 6.3.3) are only of minor importance, whereas the
choice of the Lennard-Jones parameters has a strong influence on the re-
sults. From the obtained buckling mode – depicted in Figure 6.3 (b) it can
be concluded that the outermost layers start to buckle, and the innermost
layers remain almost unaffected. This is because only the outermost layers
of the onion are under compression, see Figure 6.3 (c), where the number
of layers under compression increases during the growth of the onion. The
largest onion obtained in the analysis has about 72 layers, which is close
to experimental observations, e.g, in (Banhart, 1997; Banhart et al., 1997).
In conclusion, it can be said that due to uncertainities in the parameters
describing the layer properties and the high sensitivity on the vdW param-
eters, the results rather have a qualitative than a quantitative character.
However, the model clearly indicates a growth limit of carbon onions and
can act as basis for further research.

6.4.4 Carbon Fibers

Carbon fiber reinforced plastics (CFRP) are – due to their high stiffness
and strength at low mass density – used in many lightweight applications.
Although many different parameters, like the fiber content or the bonding
between fibers and matrix influence the properties of CFRP, it is necessary
to have detailed knowledge about the mechanical properties of the fibers.
Hence, these properties are subject of intense research activities, see, e.g.,
(Gao et al., 2011; Hawthorne, 1993; Loidl et al., 2005; Naito et al., 2008;
Sauder et al., 2004). Due to the small diameters of the fibers they show a
tendency towards buckling when subjected to compressive loading, making
it difficult to assess their compressive behavior experimentally. Methods to
overcome these problems are, e.g., the loop test (Sinclair, 1950) or the ten-
sile recoil method (Allen, 1987). For a more detailed review of experimental
methods, see, e.g., (Oya and Johnson, 1999). Such experiments revealed
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Figure 6.3. a) Results of the buckling eigenvalue analysis during the growth
of carbon onions obtained with different vdW models and Lennard-Jones
parameters. The loss of structural stability is indicated by the approach
of the lowest eigenvalue to 0. b) Buckling mode of a carbon onion, where
only every second layer is shown, see (Todt et al., 2014a) (Figure appearing
with the permission of Elsevier). c) Layers under compression (black) and
tension (gray) of onions grown to different sizes.

that the nanostructure of the fibers has a strong influence on their compres-
sive behavior (Dobb et al., 1995; Oya and Johnson, 2001; Nakatani et al.,
1999; Loidl et al., 2005). For example, polyacrylonitrile (PAN) based car-
bon fibers show a skin-core structure (Paris and Peterlik, 2009), where the
outer surface of the fibers is formed by a skin-like layer, and randomly dis-
tributed so called carbon crystallites form the inner region, see Figure 6.4.
In fibers subjected to compressive loading, crystallite buckling was supposed
to occur (Oya and Johnson, 2001; Nakatani et al., 1999) and was at first
directly observed in (Loidl et al., 2005) using microbeam X-ray diffraction.
Crystallite buckling is related to fiber failure (Dobb et al., 1995) and the
non-Hookean behavior of fibers observed in loop tests (Hawthorne, 1993).
Thus, it has a strong influence on the mechanical behavior of carbon fibers.
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Besides experimental methods continuum mechanical modeling can help
to gain further insight into the dependency of the fibers properties on their
nanostructure, see, e.g., (Sauder and Lamon, 2005; Todt et al., 2010). In
(Sauder and Lamon, 2005) the tensile properties of the fibers are deter-
mined using the theory of elasticity for anisotropic solids. It is shown that
an aritificially high interlayer shear stiffness is required to obtain a good
representation of the Young’s modulus of the fibers confirming observations
made in (Loidl et al., 2003) for PAN based fibers. This model is also applica-
ble to investigate the compressive and bending behavior of carbon fibers as
long as crystallite buckling has not occurred. Crystallite buckling is inves-
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Figure 6.4. Nanostructure of PAN-based carbon fibers. (Figure taken
from (Todt et al., 2010) and appearing with kind permission from Springer
Science+Business Media.)

tigated in (Todt et al., 2010) using a detailed continuum mechanical model
of a single crystallite. In (Todt et al., 2010) the layers of the crystallite
depicted in Figure 6.4 are modeled using continuum shells. In the model
the crystallite is assumed to consist of eight layers with in-plane dimensions
of La‖ ×La⊥ = 4.32 nm× 3.87 nm, with the graphene planes being oriented
parallel to the fiber axis. The vdW interactions between the individual
layers are described using the pressure-distance relation given in Equation
(36) and the interlayer defects are modeled using the defect model briefly
discussed in Section 6.3.3. Defects randomly distributed within the whole
crystallite lead to local dimples in the graphene layers, whereas defects lo-
cated along the edges only cause an overall bending of the crystallite. This
difference in the pre-deformation has a substantial influence on the mechan-
ical behavior of carbon crystallites subjected to compressive loading along
the fiber axis. In the pre-buckling state the apparent secant modulus of the
crystallites is almost constant and independent of the amount of interlayer
defects if the defects are distributed within the whole crystallite, see Figure
6.5 (left). After the occurrence of crystallite buckling the secant modulus
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decreases significantly, where the axial load leading to the onset of buck-
ling substantially increases with the amount of defects. If the defects are
distributed along the edges only, the crystallite possesses a much lower ini-
tial secant modulus which strongly decreases already for small deformations
and is almost independent of the amount of interlayer defects, Figure 6.5
(right). This behavior can be attributed to the pre-bending deformation
introduced by the formation of the defects along the edges. Comparison
with literature (Loidl et al., 2003) reveals that it is more likely that the
defects are distributed within the whole crystallite, as in this case the ob-
tained overall Young’s modulus of the crystallites corresponds well with the
experimentally obtained value (Loidl et al., 2003). The reduction of the
secant modulus after the onset of buckling explains the observed shift in
the neutral axis during loop-testing of fibers (Loidl et al., 2005). Although
this continuum model contains some simplifications, especially regarding
the sturcture of the defects and their properties, it provides some insight
to mechanisms determining the compressive behavior of carbon fibers on a
nanostructural level.
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Figure 6.5. Deformation dependent apparent secant modulus of carbon
crystallites with their interlayer defects being distributed within the whole
crystallite (left) or along the edges only (right). The amount of interlayer
defects is varied from 1% to 5% of the maximum number of possible inter-
layer defects.

6.5 Conclusion

Computational methods, such as molecular dynamics, Monte Carlo meth-
ods, and continuum mechanical approaches can be used to investigate the
mechanical properties of carbon nanostructures. These methods should be
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seen as complementary to experimental methods, allowing to investigate
phenomena which are difficult to observe in experiments. The choice of the
method depends on the length scale on which a specific phenomena occurs
and the size of the carbon nanostructures to be investigated. Molecular
dynamics and Monte Carlo methods allow to access the position of the in-
dividual atoms within a carbon nanostructure and phenomena like bond
breaking and bond formation can directly be investigated. However, for
carbon nanostructures consisting of a large number of atoms these methods
can become computationally expensive. For such large nanostructures con-
tinuum mechanical methods can provide insight the overall mechanical be-
havior with relatively low computational costs. Overall it can be said, that
an interplay between experimental, atomistic, and continuum mechanical
methods is required to get a fundamental understanding of the mechanical
behavior of carbon nanostructures.
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carbon nanotube bundles by intertube bridging. Nature Materials, 3:
153–157, 2004.

D.J. Klein, W.A. Seitz, and T.G. Schmalz. Icosahedral symmetry carbon
cage molecules. Nature, 323:703–706, 1986.



174 M. A. Hartmann, M. Todt and F. G. Rammerstorfer

S.A. Hosseini Kordkheili and M. Moshrefzadeh-Sani. Mechanical properties
of double-layered graphene sheets. Computationa Material Science, 69:
335 – 343, 2013.

H.W. Kroto. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50,
60, and 70. Nature, 329:529–531, 1987.

H.W. Kroto. Carbon onions introduce new flavour to fullerene studies.
Nature, 359:670–671, 1992.

H.W. Kroto and K. McKay. The formation of quasi-icosahedral spiral shell
carbon particles. Nature, 331:328–331, 1988.

H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. C60:
Buckminsterfullerene. Nature, 318:162–163, 1985.

D.P. Landau and K. Binder. A Guide to Monte-Carlo Simulations in Sta-
tistical Physics. Cambridge University Press, 2009.

C.N. Lau, W. Bao, and J. Velasco Jr. Properties of suspended graphene
membranes. Materials Today, 15:238–245, 2012.

C. Lee, X. Wei, J.W. Kysar, and J. Hone. Measurement of the elastic
properties and intrinsic strength of monolayer graphene. Science, 321:
385–388, 2008.

C. Li and T.W. Chou. A structural mechanics approach for the analysis of
carbon nanotubes. International Journal of Solids and Structures, 40:
2487–2499, 2003a.

C. Li and T.W. Chou. Elastic moduli of multi-walled carbon nanotubes and
the effect of van der Waals forces. Composite Science and Technology,
63:1517–1524, 2003b.

G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerlings. Ab initio
study of the elastic properties of single-walled carbon nanotubes and
graphene. Chemical Physics Letters, 326:181–185, 2000.

K.M. Liew and Y.Z. Sun. Computational modelling and simulation of car-
bon nanotubes. In B.H.V Topping, J.M. Adam, F.J. Pallarés, R. Bru,
and M.L. Romeo, editors, Development and Applications in Engineering
Computational Technology, pages 201–217. Saxe-Coburg Publications,
Stirlingshire, Scotland, 2010.

W.K. Liu, E.G. Karpov, S. Zhang, and H.S. Park. An introduction to com-
putational nanomechanics and materials. Computer Methods in Applied
Mechanics and Engineering, 193:1529–1578, 2004.

D. Loidl, H. Peterlik, M. Müller, Ch. Riekel, and O. Paris. Elastic moduli of
nanocrystallites in carbon fibers measured by in-situ X-ray microbeam
diffraction. Carbon, 41:563–570, 2003.

D. Loidl, O. Paris, M. Burghammer, C. Riekel, and H. Peterlik. Direct
observation of nanocrystallite buckling in carbon fibers under bending
load. Physical Review Letters, 95:225501, 2005.



Atomistic and Continuum Modelling of Graphene 175

Q. Lu and R. Huang. Nonlinear mechanics of single-atomic-layer graphene
sheets. International Journal of Applied Mechanics, 1:443–467, 2009.

Q. Lu, M. Arroyo, and R. Huang. Elastic bending modulus of monolayer
graphene. Journal of Physics D, 42:102002, 2009a.

W.B. Lu, B. Liu, J. Wu, J. Xiao, K.C. Hwang, and S.Y. Fu et al. Continuum
modeling of van der Waals interactions between carbon nanotube walls.
Applied Physics Letters, 94:101917, 2009b.

J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, P. Kuzhir, and S. Maksi-
menko et al. Dielectric properties of onion-like carbon based polymer
films: Experiment and modeling. Solid State Sciences, 11:1828–1832,
2009.

J.R. Maple, M.-J. Hwang, T.P. Stockfisch, U. Dinur, M. Waldman, C.S.
Ewig, and A.T. Hagler. Derivation of Class II Force Fields. I. Method-
ology and Quantum Force Field for the Alkyl Functional Group and
Alkane Molecules. Journal of Computational Chemistry, 15:162, 1994.

S.L. Mayo, B.D. Olafson, and W.A. Goddard III. DREIDING: A Generic
Force Field for Molecular Simulations. Journal of Physics and Chem-
istry, 94:8897, 1990.

M. Meo and M. Rossi. Prediction of Young’s modulus of single wall car-
bon nanotubes by molecular-mechanics based finite element modelling.
Composites Science and Technology, 66:1597–1605, 2006.

N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the
American Statistical Association, 44:335, 1949.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of State Calculations by Fast Computing Machines.
Journal of Chemical Physics, 21:1087–1092, 1953.

J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, and
A. Zettl. Direct imaging of lattice atoms and topological defects in
graphene membranes. Nano Letters, 8:3582–3586, 2008.

K. Naito, Y. Tanaka, J.M. Yang, and Y. Kagawa. Tensile properties of
ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high
ductility pitch-based carbon fibers. Carbon, 46:189–195, 2008.

M. Nakatani, M. Shioya, and J. Yamashita. Axial compressive fracture of
carbon fibers. Carbon, 37:601–608, 1999.

I. Nikiforov, E. Dontsova, R.D. James, and T. Dumitrică. Tight-binding
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7.1. Introduction 

The collapse of tubes under external pressure is a problem that has been studied since 
the early nineteenth century, because of its importance in, for example, multi-tubed 
steam boilers. Some early experimental studies (Figure 7.1) and theoretical results 
are reported by Carman (1905) and Carman and Carr (1906); for a recent discussion 
see Corradi et al. (2011). Experimentally, end-effects tended to dominate even for 
what seemed like long tubes, while theoretically, this example of Euler buckling was 
recognized to be one of the hardest problems in elasticity theory. Indeed, exact 
solutions have been found only recently.  
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Figure 7.1.  Taken from Figures 3 and 4 of Carman and Carr (1906) showing seamless 
drawn brass tubes after collapse induced by external pressure. It was recognized that the 
multi-lobed cross-sections were the result of end effects.  Courtesy of www.ideals.illinois.edu 
/handle/2142/4114 
O. Paris (Ed.), Structure and Multiscale Mechanics of Carbon Nanomaterials, 
CISM International Centre for Mechanical Sciences 
DOI 10.1007/ 978-3-7091-1887-0_7 © CISM Udine 2016
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Continuum models include, at the extreme of simplification, the perfectly elastic 
ring defined solely by a bending modulus D and by the area A contained within it, 
under a pressure P. The criterion for the pressure of the onset of collapse, PC, is then 
that the increase in the elastic bending energy ½D R–2 integrated round the ring just 
equals the decrease in the energy term PA, as the ring undergoes an infinitesimal 
ovalisation.  This model is appropriate for thin-walled tubes; and may be made more 
complicated by taking the wall thickness into account. Such idealized continuum 
models may also be refined slightly by varying the distribution of bending 
compliance around the ring. On the other hand, atomistic models may be taken to the 
other extreme of direct density functional ab-initio theory to simulate carbon 
nanotubes, or molecular dynamics or Monte Carlo methods based on realistic 
interatomic potentials derived from DFT or from fitting to experiment (see chapter 
6). Much may be learned from a comparison of the results of these very different 
approaches.  

7.2.  The Continuum Models  

7.2.1. The Simple Elastic Ring    

Zang et al. (2004) give the exact solution for the critical pressure for the onset of 
collapse of an elastic ring of radius R and bending modulus D,  

 33DRPC  (7.1) 

and attribute the formula to Levy (1884). For the shape of the ring during collapse, as 
the pressure is increased, they use molecular dynamics simulations of armchair and 
zig-zag tubes. They find that the shapes are independent of the diameter and chirality. 
A mathematical analysis finishing with numerical solutions confirms that these 
shapes are just as predicted by the simple elastic ring model.  

An analytic solution for the shapes of the ring as the pressure is increased above 
PC has been given (Djondorov et al. 2011), and the shapes in Figure 7.2 are 
calculated using the resources (Mathematica® notebooks) available through their 
paper. It should be noted that, unlike typical Euler buckling in elastic-plastic 
engineering problems, there is no catastrophic collapse. At PC there is a bifurcation 
(of major and minor axes) with infinite rate of change for infinitesimal deformation, 
but finite increases in pressure are required for finite deviations from circularity.  The 
other key result relevant to nanotubes is that, while the collapse is very fast at first – 
the transition from entirely positive curvature to positive and negative curvature (the 
“peanut” shape) occurs at P = 1.11 PC, while completion of collapse (the two walls 
touching) requires a much higher pressure of P = 1.55 PC. For finite thickness walls, 
of course, touching will occur earlier.     
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Figure 7.2.  The shapes taken by the simple elastic ring, as the pressure is increased through PC 
and up to about 1.6 PC.  For a real ring, after touching, a straight portion is formed at the centre.  

7.2.2. The Thick-Walled Elastic Tube   

This problem is of greater engineering importance than the simple elastic ring, but 
most of the difficulties arise only when plasticity is considered. For purely elastic 
deformation, the solution for a tube of outside diameter d and wall thickness h 
(Timoshenko and Gere, 1961; Corradi et al., 2011) is similar to Eq.7.1,  

 22

3

)(
1

)1(
2

hddv
YhPC  (7.2) 

and may be recognized to have Eq.7.1 as its limit as h/d goes to zero and the usual 
expression for the bending stiffness D of an isotropic plate is considered.  As h 
approaches R the critical pressure diverges to infinity as expected, and if h is taken to 
be 0.34 nm then the critical pressures of small nanotubes would be very high. 
However, the relevance of Eq.7.2 to the carbon nanotube may be questioned.  

Graphite is not an isotropic material, and graphene should not be seen as a “plate” 
of isotropic graphite.  Single-crystal graphite is highly anisotropic, with an in-plane 
Young’s modulus of about 1 TPa due to the sp2 hybridised -bonds, but a c-axis 
modulus (c33) of only 33 GPa due to the -orbitals. It is quite incorrect to relate the 
bending stiffness D of graphene in any way to its in-plane -bonds. Some authors 
describe the bending stiffness of graphene in terms of an effective Young’s modulus 
Yeff and an effective thickness heff such that the stiffness term of Eq.7.2 with these 
values – typically, 5TPa and 0.06 nm, but values vary widely (Huang et al. 2006) – 
becomes the experimentally or theoretically determined D of graphene.  However, 
the point of expressing an uncertain but physical parameter D in terms of two 
non-physical and very uncertain parameters Yeff and heff is not clear to the present 
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author. Certainly, neither heff nor the actual spacing of graphene planes in graphite, 
0.34 nm, are suitable values for use in Eq.7.2.   

 In molecular dynamics and Monte Carlo simulations using interatomic bond 
potentials, the fact that two-atom and three-atom potentials cannot give any bending 
stiffness to a two-dimension lattice such as graphene is resolved by using suitable 
four-atom potentials to give the bending stiffness.  These may be pyramidal or 
dihedral (torsional) – see Zhang et al. (2006) – but they still do not imply a thickness 
h appropriate for use in Eq.7.2.   

Fundamentally, Eq.7.2 is inapplicable to nanotubes because the effect of h is to 
change the area that enters into the PA energy term. Consider, for example, the limit 
as h goes to d.  The tube becomes solid, the area A goes to zero, and the collapse 
pressure goes to infinity.  See Section 7.2.4 below for further discussion.  

7.2.3 The Atomistic Refinement of the Elastic Ring   

Considering the sp2 bonds between the carbon atoms as straight links and the atoms 
themselves as hinges, the elastic ring is slightly modified – discretised – by moving 
the continuously-distributed compliance to the vertices of an inscribed polygon. 
Treating the vertices as hinges with Hooke’s Law angular springs and the polygon 
sides as rigid, the angles and energies may be calculated explicitly as the pressure is 
increased (Fig.7.3).  This was done by Sun et al. (2013). For larger tubes, polygons of 
the order of the dodecagon and larger, excellent agreement was found for the collapse 
pressure both with Eq.7.1 and with Monte Carlo simulations using DFT-derived 
interatomic potentials (see chapter 6). For the smaller polygons, PC fell 
systematically below the values from Eq.7.1, as did the Monte Carlo simulations.  
The advantage of this kind of simulation is that the behaviour may be – indeed can 
only be – understood in terms as simple as the model itself.  

 The reason for the small polygons showing a smaller critical pressure is just that 
the discretisation moves the compliance from the four places of the circle that have 
little or no change in curvature at the onset of collapse, towards the four places that 
have maximum change in curvature. In the simplest example, the square, with four 
hinges, compliance has been moved from the parts of the circle corresponding to the 
centres of the sides of the square, towards the four corners of the square.  Putting the 
compliance where the bending is greatest reduces the elastic energy of bending, and 
so decreases the collapse pressure. In the case of the square, this reduction is about a 
factor of two.  

This model also makes it explicit that Eq.7.1 should apply (to large polygons or 
continuous circles) rather than seeking a thickness appropriate for use in Eq.7.2. The 
area change under deformation is entirely that of the polygon defined by the atomic 
centres. The compliance of the -bonds is irrelevant.  It is so high that the area change 
due to compression of the C—C bonds as the system goes through the transition from 
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circular to oval is completely insignificant. In contrast, in the thick-walled model 
discussed above, the tangential compliance of the material is intimately linked with 
its bending compliance, and the neutral plane moves inwards and outwards with 
changes of curvature, bringing h into Eq.7.2.   

 
 

 
 
 
 
 
 
 
 
 
 (a) (b) 

Figure 7.3.  The shapes adopted by a decagon as the pressure is increased are shown in (a).  
The angles are plotted against pressure in (b).   

In this model, what lies outside (and inside) the polygon defined by the atom 
centres and the sp2 -bonds is the p electrons and -bonds. This is what gives the 0.34 
nm thickness – spacing – of graphene in graphite. The mechanical properties of this 
layer have not been studied except as they are known from the values of c33 and c13 of 
graphite. These stiffnesses are so low compared with the in-plane stiffnesses that we 
may consider what lies outside to do no more than provide the bending stiffness and  
transmit the pressure to the -bonded polygon.  Accordingly, in what follows, we 
shall assume that the nanotube collapse is correctly described by Eq.7.1 except for 
the polygonal effects at small diameters. 

7.2.4 Continuum Structural Model   

The foregoing discussion leads to the proposal of a continuum structure rather than a 
continuum material model for graphene and the nanotube (Puech and Dunstan, 
2015).  We contrast the isotropic plate model of Figure 7.4a with the structural model 
of Figure 7.4b, in which a very thin central layer (the atomic centres and the -bonds) 
has a large in-plane stiffness but no bending stiffness, while a soft surrounding 
material (the -bonds), with isotropic elastic moduli similar to the c33 of graphite and 
a thickness of 0.34 nm, is what provides the bending stiffness.  Remarkably, taking 
the value of c11 of this material to be equal to c33 of graphite, 39 GPa, and making 
other reasonable assumptions, gives a bending stiffness of about 1 eV, within a factor 
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of two or three of any reasonable values coming from theory or experiment (see 
Section 7.3.1).  
 
 
 
 
 
 

Figure 7.4.  The isotropic solid model of graphene (a) contrasts with a structural model (b) in 
which all the in-plane stiffness comes from the thin central layer (black) and all the bending 
stiffness comes from the surrounding (grey) material.  

This structural model of graphene makes various predictions about nanotubes 
which are largely borne out by, or at least consistent with, the theoretical and 
experimental knowledge that we do have (Puech and Dunstan, 2015).  Relevant here 
is that this model is explicitly in accord with the discussion of Section 7.2.2 on the 
relevant radius. In this model, the area that changes upon ovalisation is the area 
described by the thin central layer.  To first order, the area of the grey layer outside 
does not change.  Whatever the Poisson’s ratio of this material, the changes in 
thickness due to compression and tension around the ring cancel out. 

7.3. Comparison with Experiment and Simulation 

7.3.1. Simulation using Molecular Dynamics and Ab Initio  
Many simulations have been reported, which show the expected behaviour. The main 
issue is the choice of or the value of the bending modulus D in the simulations. Lucas 
et al. (1993) give a value of D ~ 4.2 eV from tight-binding calculations.  In molecular 
dynamics, the two-atom and three-atom potentials are well-characterised from work 
on graphite, but these potentials alone give a bending stiffness of zero. Zhang et al. 
(2011) describe the pyramidal or dihedral four-atom potentials required to get a 
non-zero D.  The classic Tersoff-Brenner potentials include four-atom terms which 
give D ~ 2 eV. But Huang et al. (2006) tabulate values used in or from a variety of 
theoretical methods, ranging from 0.124 eV to 4.1 eV, and Kang and Lee (2013) cite 
values over a still larger range.  

A particularly interesting way to obtain D was reported by Sen et al. (2010).  The 
tearing of a thin film from a substrate normally produces a tear that tapers down, as 
commonly observed with Scotch tape or while stripping wallpaper. The included 
angle of the tear derives from the bending stiffness of the film, and Sen et al. deduced 
D = 2.3 eV.  They gave values for bilayers (130 eV) and thicker; these values derive 

(a) 
 
 

(b) 
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directly from the in-plane elastic constants of graphite when the graphene sheets do 
not slide over each other; if they do slide freely, of course, an n-layer just has the 
bending stiffness of nD.   

Ab initio DFT calculations of the collapse of tubes are limited because of the 
number of atoms required for a unit cell of a tube, particularly of larger diameter 
tubes. As mentioned above, DFT of graphite or graphene is used to obtain potentials 
for use in molecular dynamics or in Monte Carlo methods (see, e.g., Holec et al., 
2010 and Sun et al., 2014, for collapse calculated with Monte Carlo methods from 
potentials from DFT). A value for D can be deduced from the mechanical behaviour; 
Hartmann et al. (2013) gave D = 2.94 eV. Alternatively, methods such as DFT- tight- 
binding can be used (see, e.g. Cerqueiro et al., 2014), but here the value of D cannot 
be extracted from the calculation but only be deduced from the collapse pressures 
observed. Authors do not generally do this.  

7.3.2. Experiment 

Recognition of collapse in experiment has not been easy.  As discussed in chapter 5, 
it is expected that hollow tubes are under greater stress than the external applied 
pressure, so that pressure coefficients of, for example, the vibrational frequencies 
(Raman shifts) will be greater than in graphite.  After collapse, the nanotube is not 
unlike bilayer graphite, and a nanotube bundle not unlike multilayer graphite, and so 
the pressure dependence of a Raman shift is expected to fall back to the graphite line 
(Figure 5.4). For many years, that was not observed. Venkateswaran et al. (2003) and 
many other authors observed a breakpoints with reductions in gradient, often to 
values close to the graphite value, as discussed in chapter 5.  Most often, this 
breakpoint in the gradient coincides with a large or total loss of Raman signal 
intensity. The breakpoint is then readily identified with the collapse. However, no 
consensus was reached about the collapse pressure for any given diameter of 
nanotube.  Different authors observed breakpoints at pressures as much as an order of 
magnitude apart. The variety of breakpoints and plateaux which could be observed 
(see chapter 5) prevented any certainty on the collapse pressure – diameter 
relationship.  

Recently, the situation has greatly improved. Yao et al. (2008) reported a plateau 
that extended to the graphite line (see Figure 5.8) and then continued in approximate 
agreement with it. Caillier et al. (2008), and later Aguiar et al. (2011), in a few 
datasets, report behaviour very like the expected behaviour of Figure 5.4 with a clear 
drop to the graphite line.  Figure 7.5 reproduces the key result from Aguiar et al. 
(2011).  
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Figure 7.5.  The shifts of the G-band with pressure are plotted against pressure for SWCNTs 
and for similar nanotubes filled with C60 or with internal tubes (constituting DWCNTs).  At 
collapse, the shift falls back to the graphite line. Reprinted with permission from Aguiar et al., 
J. Phys. Chem. C115, 5378–5384, 2011. Copyright 2011 American Chemical Society. 

It is not entirely clear why these results are closer to what is expected from theory 
than earlier work.  High-purity samples and a narrow range of diameters selected by 
resonance with the 514.5 nm laser excitation and observed in the RBM spectra are 
probably key points. Several puzzles remain; in particular a dependence of the 
collapse pressure on the pressure-transmitting medium. Also, while stabilization was 
obtained in DWCNTs as expected, the presence of buckyballs inside reduced the 
collapse pressure – which is not expected. 

7.4. Conclusions 
The collapse of carbon nanotubes presents few subtleties theoretically. The 
continuum mechanics of simple elastic rings provides a good description, as 
expected, with atomistic effects for only the smallest tubes. Experimentally, major 
complications arise through bundling, through the pressure medium, and through 
filling.  However, there is now the prospect that a systematic study, of individualized 
tubes of known chirality, well-distinguished by their RBM spectra, will clarify these 
complications.   
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8.1. Definition 

In this chapter we discuss the mechanical behaviour of vertically aligned carbon 
nanotubes (VACNTs) also known as carbon nanotube (CNT) arrays, bundles, 
brushes, foams, forests, mats, and turfs. VACNTs are complex, hierarchical struc-
tures of intertwined tubes arrayed in a nominally vertical alignment due to their 
perpendicular growth from a stiff substrate. They are a unique class of materials 
having many of the desirable thermal, electrical, and mechanical properties of 
individual carbon nanotubes, while exhibiting these properties through the collec-
tive interaction of thousands of tubes on a macroscopic scale. 

8.2. Introduction 

While individual CNTs have been announced as the strongest material known 
(Treacy et al. 1996) and have shown extremely high strength and Young’s modulus 
in tensile tests on individual tubes (Treacy et al. 1996, Min-Feng et al. 2000), 
VACNTs are more likely to find use in applications requiring large compliance and 
deformability (Cao et al. 2005, Gogotsi 2006). Examples of these include microe-
lectromechanical systems (MEMS) and impact mitigation/energy absorption, where 
they are promising candidates for their multifunctional nature, wide ranging thermal 
stability, well-defined large surface area, and relative ease of manufacture (Cao et al. 
2005). A proper understanding of the collective mechanical behaviour of these 
structures, especially instabilities leading to buckling and inhomogeneity’s which 
weaken mechanical performance, is thus of great importance for their design and 
success in these and other future applications. 

VACNTs are distinct from other CNT structures (Salvetat et al. 2006) in that the 
tubes that make up the material grow perpendicularly to the support substrate, 
making them nominally vertically aligned. An important characteristic all VACNTs 
share is that the tubes themselves are long enough to become intertwined with each 
other during the growth process, leading to a highly complex and hierarchical 
O. Paris (Ed.), Structure and Multiscale Mechanics of Carbon Nanomaterials, 
CISM International Centre for Mechanical Sciences 
DOI 10.1007/ 978-3-7091-1887-0_8 © CISM Udine 2016
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microstructure with distinct organizational details at different magnification levels. 
This is in contrast to arrays of vertically aligned CNTs that are short and/or sparse 
enough that each CNT stands alone (Waters et al. 2004, Waters et al. 2005). Figure 
8.1 show the complex hierarchical nature of the VACNT microstructure with their 
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Indent on 
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Figure 8.1. SEM images reveal the hierarchical morphology of the (a) 141.5 μm thick 
VACNT films (magnification 260X), which consist of (b) nominally vertical aligned CNTs 
visible at a lower magnification of 30kX, and (c) a complex intertwined network seen at 
higher magnifications of 240kX. SEM pictures are taken at a 60 deg tilt angle. (c inset) 
Individual multiwalled CNTs of outer diameter 8.8±2.1 nm (average ± standard deviation) 
are visible in the TEM image. (Pathak et al. 2013) reproduced with permission. 
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distinct organizational details across multiple length scales. Thus, while the 
VACNT appears as a continuous film at lower magnifications of 260X (Fig. 8.1a), 
the nominally vertical alignment of CNTs growing perpendicularly to the support 
substrate in the VACNT bundle becomes visible at a higher magnification of 
30,000X (Fig. 8.1b). Increased magnification of 240,000X reveals significant in-
tertwining in the long, curved lengths of individual CNTs, revealing the isotropic 
CNT network  (Deshpande et al. 2000, Hutchens et al. 2010, Hutchens et al. 2011). 
As a result, in their as-grown states certain segments of the CNT forest appear to be 
pre-buckled/pre-bent, and the favourable contact energy between the tubes (van der 
Waals) is thought to balance the bending strain energy of their arrangement, re-
sulting in a stable low energy configuration (Mesarovic et al. 2007). At still higher 
magnifications (nanometre length scales, see TEM image in Fig. 8.1c inset) – indi-
vidual, discrete CNTs dominate the mechanical performance with details like CNT 
diameter, number of walls etc. governing their deformation. Such hierarchy in the 
VACNT microstructure governs its overall mechanical behaviour, which is a result 
of not only the properties of individual CNTs, but also of their complex mutual 
interactions and distribution throughout the array. 

The method by which these structures are synthesized is the primary factor af-
fecting their complex, hierarchical morphology. This microstructure, in turn, affects 
their mechanical behaviour, in particular the modulus, buckling strength, and re-
coverability. Synthesis techniques for VACNTs can be divided into two main 
categories: the Chemical Vapour Deposition (CVD) synthesis method, and the 
Carbide-Derived Carbon (CDC) synthesis method – which relate to the top-down 
vs. bottom-up growth processes respectively. In the CVD process, the VACNT film 
is coated onto an existing substrate. This is accomplished by depositing a thin layer 
of catalyst (e.g., Fe) on the substrate (typically Si or Quartz) and flowing a carbon 
source (e.g., ethylene) over the substrate at atmospheric pressure and temperatures 
typically around 750ºC. In the CDC method (Presser et al. 2011), on the other hand, 
carbon is formed by selective extraction of the metal or metalloid atoms in the 
carbide (e.g., silicon carbide) at high temperatures (>1600oC), transforming the 
carbide structure into pure carbon. Since the CNT layer is formed by inward growth, 
this usually retains the original shape and volume of the precursor. 

VACNTs grown by these different techniques demonstrate very different struc-
ture and mechanical properties. Even within materials grown via CVD, control of 
the growth conditions, such as the atmosphere, catalyst activity, and pressure, are 
known to significantly affect the repeatability of the VACNT’s morphology and 
hence the consistency of  mechanical properties (McCarter et al. 2006). For exam-
ple, using ‘floating’ vs. ‘fixed’ catalysts Yaglioglu et al. (2012) in the CVD 
syntheses (Kumar et al. 2010) have been shown to result in vastly different VACNT 
morphologies. Differences in the growth processes used are revealed in the widely 
varying VACNT information reported in literature, as seen in the large range in 
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properties in Table 8.1. This is not to mention variations in tube diameter (from 2-3 
nm (Pathak et al. 2009), to 20-50 nm (Hutchens et al. 2010), to greater than 100 nm 
(Qi et al. 2003)), number of walls in the CNT structure, and degree of tube align-
ment; properties which are sometimes neither measured nor reported. Further, the 
different stages of the CNT growth process can result in a height dependent inho-
mogeneity (Bedewy et al. 2009). This manifests as a gradient in both the density and 
the alignment of the tubes within the same VACNT structure. As discussed later in 
this entry, such a structure gradient may lead to a corresponding strength and stiff-
ness gradient along the VACNT height. As an extreme example of the 
microstructure-property relationship, CDC-VACNTs are known to have a consid-
erably higher average density (roughly 10 times higher than typical VACNTs), due 
to the conformal transformation of the carbide into carbon. This in turn leads to 
significantly larger values for the elastic modulus and yield stress in CDC-VACNTs 
(Pathak et al. 2009) (see Table 8.1). These promising characteristics, however, are 
unavailable for applications requiring macroscopic films as currently only VACNTs 
grown via CVD can reach macroscopic heights (~mm). Growth of CDC-VACNTs 
remains limited to only a few micrometres in height. Only CVD-VACNTs when 
used in combination with conformal coating methods, where the CNTs are coated 
with nanoscale coatings of ceramics like Al2O3 (Brieland-Shoultz et al. 2014), 
amorphous SiC (Poelma et al. 2014), etc. (Table 8.1) are able to reach a similar level 
of mechanical performances as compared to the CDC-VACNTs.  

 
Table 8.1: Summary of Reported VACNT Elastic Modulus and Yield Strength Values. 

White rows denote values for CVD synthesized VACNTs, while grey rows are for 
CDC-VACNTs. 

VACNT de-
tails (Density, 
porosity etc.) 

Measure-
ment Method Modulus 

Yield/ 
Buckling 
Strength  

Reference 

CVD-VACNTs 
87% porosity compression 50 MPa  12 MPa (Cao et al. 2005) 

/ compression < 2 MPa / (Suhr et al. 2007) 

1010 tubes/cm2  a compression 0.22-0.25 
MPa / (Tong et al. 2008) 

97% porosity compression 818 MPa 14.1 MPa (Deck et al. 2007) 

0.08 g/cm3 compression 177±11 MPa 2.69±0.12 MPa (Pathak et al. 
2012) 

/ compression 9-31 MPa 0.15 – 0.3 MPa (Pathak et al. 
2013) 

 
 
 
 

Table 8.1 continued on next page 
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Table 8.1 continued from previous page 
0.008 g/cm3 

(fixed catalyst, 
argon anneal) 

 
0.015 g/cm3 

(fixed catalyst, 
hydrogen an-

neal) 
0.2 g/cm3 

(floating cata-
lyst) 

compression 

1.86 MPa 
(range 

1.3-3.26) 
 

7.44 MPa 
(range 

5.2-13.04) 
 
 
 

138.5 MPa 

0.021 MPa 
 
 
 

0.117 MPa 
 
 
 
 
 

9.997 MPa 

(Yaglioglu et al. 
2012) 

0.018 g/cm3 

 

0.114 g/cm3 
(After 

post-growth 
CVD treat-

ment) 

compression  
/ 

0.12 MPa 
 
 

5.5 MPa (After 
post-growth 
CVD treat-

ment) 

(Bradford et al. 
2011) 

0.12 g/cm3 compression 

0.55 MPa 
(parallel to 

the nanotube 
axis) 

1.09 MPa 
(normal to 
CNT axis) 

/ (Ci et al. 2008) 

3×1010 / cm2 

(number densi-
ty) 

 
1 g/cm3 (after 
Al2O3 coating)  

compression 

14 MPa 
 
 

20 GPa (after 
Al2O3 coat-

ing)   

compressive 
strength (0.8 
MPa to 0.16 

GPa) 

(Brieland-Shoultz 
et al. 2014) 

1010 / cm2 

(number densi-
ty) 

compression 

200 MPa 
 
 
 

125 GPa 
(after amor-
phous SiC 
coating)  

compressive 
strength  

<1 MPa (un-
coated 

VACNTs)  
1.8 GPa (after 

amorphous SiC 
coating) 

(Poelma et al. 
2014) 

 

/ 

nanoindenta-
tion – 

Berkovich 
uniaxial 

compression 

15 MPa 0.2-4.3 MPa (Zbib et al. 2008) 

Table 8.1 continued on next page 
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Table 8.1 continued from previous page 

0.08 g/cm3 Flat punch 
indentation  

120-175 
MPa 1.49-1.75 MPa (Pathak et al. 

2013) 

0.13 gm/cm3 

 
0.06 gm/cm3 

Flat punch 
indentation 

7-33 MPa 
 

100-350 
MPa 

0.44±0.04 MPa 
 

0.9 MPa 

(Pathak et al. 
2013) 

/ 
nanoindenta-

tion – 
Berkovich 

58 MPa / (Zhang et al. 
2010) 

/ 
nanoindenta-

tion - 
Berkovich 

50±25 MPa / (Qiu et al. 2011) 

 

/ 
DMA(Dynam
ic Mechanical 

Analysis) 
~ 50 MPa / (Mesarovic et al. 

2007) 

0.009 g/cm3 DMA ~ 1 MPa / (Xu et al. 2010) 
CDC-VACNTs 

0.95 g/cm3 compression  30 GPa 800 MPa (Pathak et al. 
2015) 

0.95 g/cm3 
nanoindenta-

tion – 
Spherical 

18-20 GPa 90-590 MPa (Pathak et al. 
2009) 

 
Figure 8.2 highlights four literature examples of the differences in the mechanical 

response of various CVD-VACNT micro-pillars subjected to compression. Note in 
particular the higher stiffness and strength of the VACNTs grown using the floating 
catalyst technique in Fig 8.2a, (Cao et al. 2005) as compared to the ones grown using 
the fixed catalyst method (Figs. 8.2b, (Yaglioglu et al. 2012) 8.2c (Pathak et al. 
2012) and 8.2d (Hutchens et al. 2010)). Other differences between these nominally 
identical VACNT samples are the ability of some of them to recover almost com-
pletely after large compressions (Figs. 8.2a and c) (Cao et al. 2005, Pathak et al. 
2012) while others deform permanently even at modest strains (Figs. 8.2b and d) 
(Yaglioglu 2007, Zbib et al. 2008, Hutchens et al. 2010, Zhang et al. 2010, Cao et al. 
2011). 

Figure 8.2 also demonstrates the similarities in the deformation characteristics of 
the various VACNT systems. All of the four VACNT systems show 3 distinct 
regimes in their stress-strain response – elastic, plateau and densification – similar to 
open-cell foams. Unlike foams however, the plateau region in the VACNTs gener-
ally has a positive slope, which can vary significantly between VACNT samples. 
The slopes of the plateau region were calculated to be 11, 5 and 0.6 MPa for Figs. 
8.2a, c, and d, respectively.  Note also that all VACNT systems shown in  Fig. 8.2 
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Figure 8.2. VACNT behaviour under compression for (a) 860 μm thick VACNT array, 
(reprinted from (Cao et al. 2005) with permission from AAAS), (b) 400 μm diameter CNT 
column (Yaglioglu et al. 2012) (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Re-
produced with permission) (c) 30 μm × 30 μm (diameter × height) VACNT micro-pillar 
(Adapted with permission from (Pathak et al. 2012) Copyright 2012 American Chemical
Society) and (d) 50 μm × 60 μm (diameter × height) VACNT micro-pillar (Hutchens et al. 
2010) (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission). 
All of these VACNT systems show 3 distinct regimes in their stress-strain response – elastic,
plateau and densification – similar to open-cell foams. Unlike foams, the plateau region in 
the VACNTs generally has a strong positive slope. All VACNT systems shown here also 
exhibit a bottom-first sequence of buckling.  
These VACNT systems differ widely in their ability to recover from large deformations. 
Thus while both VACNT systems in (a) and (c) show an almost complete recovery, even 
after multiple cycles, the VACNT systems in (b) and (d) do not exhibit any appreciable 
recovery. 
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exhibit a bottom-to-top sequence of buckling. Here the first buckle generally nu-
cleates close to the substrate, and each subsequent lateral collapse event initiates 
only after the preceding one was completed, thus sequentially collapsing the entire 
structure. (Cao et al. 2005, Hutchens et al. 2010, Pathak et al. 2012, Yaglioglu et al. 
2012) A recent report by Pathak et al. (2013) has suggested that such sequential 
bottom-to-top buckling and hardening in stress-strain response are observed in 
samples with smaller relative density at the bottom. When the density gradient was 
insubstantial or reversed, a different buckling sequence was observed where the 
bottom regions were always found to buckle last, and a flat stress plateau was 
obtained. 

8.3. Experimental Techniques for Studying VACNT Mechanics 

Instrumented indentation, using a variety of tip geometries such as flat punch, 
spherical, Berkovich, and cube corner, has been the most common method for 
studying mechanical properties of VACNTs (Qi et al. 2003). Each geometry has its 
own strengths and weaknesses. While maintaining parallel contact between the 
indenter and the sample is a major concern for flat punch indentation, it does allow 
for more uniaxial-like, compressive loading. The sharper Berkovich or cube corner 
geometries can cause the CNTs to bend away from the indenter, testing a slightly 
different mode of behaviour (Qi et al. 2003, Waters et al. 2004, Waters et al. 2005). 
In both cases, modulus and hardness are measured from the unloading portion of the 
test. On the other hand, spherical indentation is advantageous in that it allows in-
dentation stress-strain curves to be extracted from the raw load-displacement data, 
which enables resolution of the evolution of the mechanical response in the VACNT 
array: from initial elasticity, to the initiation of buckling, to post-buckling behaviour 
at finite strains (Pathak et al. 2009). Though indentation is a relatively simple test to 
perform, analyses of the results, especially non-linear elastic behaviour is difficult 
due to their highly localized stress fields.  It is also limited in total strain.  

Another testing geometry, that of uniaxial compression, eliminates these local-
ized, applied stress fields and help reveal the existence of a localized deformation 
mechanism in VACNTs. In these tests, the samples are either large (~1 mm tall) 
bulk films and compressed between two platens (Cao et al. 2005) or microscale (up 
to tens of microns in height) cylinders and compressed using a flat punch indenter 
(Hutchens et al. 2010, Yaglioglu et al. 2012).  

Both indentation and compression tests can be performed in situ, where the 
load-displacement data is gathered simultaneously with micrographs in an optical or 
electron microscope (SEM). These tests can offer valuable insights on the mor-
phological evolution in the VACNTs during deformation and are discussed in detail 
in the next sections. 
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8.4. Compression Response under Large Strain  

The deformation of VACNTs is governed by their hierarchical microstructure, 
collective inter-tube interactions, and inherent property gradient. Taken as a whole, 
their highly porous nature gives them an overall foam-like response. The idealized 
stress-strain response of traditional foams under compression is characterized by 
three distinct loading regimes: an initial elastic loading at low strain, followed by a 
plateau in the stress during which the struts bend and buckle, and finally a densifi-
cation regime in which the space between struts has been nearly eliminated and the 
material begins to approach behaviour intrinsic to the struts themselves. For such a 
response, it is the intermediate plateau regime that is responsible for the bulk of 
energy absorption in the material, since the area under this region of the stress-strain 
curve, corresponding to the work done on the material, is largest. This foam-like 
response of a bulk VACNT film is apparent in the three distinctly differently sloped 
regions of the stress-strain responses shown in Fig 8.2. Locally, however, the re-
sponse of VACNTs is quite unlike that of traditional foams. In VACNTs, the 
accommodation of strain during uniaxial compression is accomplished entirely 
through the formation of folds or buckles of small regions of the structure while the 
remaining portion remains nearly undeformed. This is in contrast to traditional 
foams, where cell-edge bending and cell collapse are primarily responsible for the 
elastic-plastic foam response (Gibson et al. 1999, Gibson 2000).The superposition 
of an overall foam-like response with localized strain accommodation is the key 
characteristic of VACNT deformation. 

Experimental characterization of this buckle formation yields several interesting 
qualitative results. In their early study, Cao et al. (2005) compressed relatively large 
structures (area: 0.5-2 cm2, height: 860 μm – 1.2 mm) and observed that the buckles 
formed near the bottom of the structure (the end from which the CNTs grow per-
pendicularly to the substrate) are more deformed that those that formed near the top 
(Fig. 8.2a). Motivated by this observation, they hypothesized that the bottom 
buckles form first. A reversal of the loading direction, by flipping the sample upside 
down, resulted in the same deformed morphology, with the tightest buckles forming 
at what was the end of the sample attached to the growth substrate. These observa-
tions point to the idea of an inherent, axial property gradient being responsible for 
the sequential nature of the buckling. Note that each individual buckle is on the 
order of 12-25 μm in size (depending on sample height) so that several tens of 
buckles form during deformation. The sequential, localized buckling phenomenon 
was later observed in much smaller samples by other researchers (Figs. 8.2 b-d) 
illustrating the universality of this response in VACNTs. Buckles in these micro-
scopic studies were 12 μm (Zbib et al. 2008) and 7 μm (Hutchens et al. 2010) in 
wavelength (measured from the unbuckled conformation) for cylindrical samples 
with diameters of 30-300 μm (Zbib et al. 2008) and 50 μm (Hutchens et al. 2010), 
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respectively. The bottom-first buckling mechanism was visually verified by 
Hutchens et al. (2010) through in situ experiments that further revealed the mecha-
nism by which a single, localized buckle evolves. As shown in their study, each 
individual buckle does not form all at once, but rather nucleates at one point and then 
propagates laterally across the cylindrical sample until completion (Hutchens et al. 
2010).  In addition, each subsequent buckle begins only after the previous buckle 
has completely formed, i.e., the crease had spread across the entire cylinder (Cao et 

Figure 8.3. In situ video micrographs and accompanying nominal stress-strain data illus-
trating bottom-first buckling and buckle initiation and propagation events. (Hutchens et al.
2010) (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission).  
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al. 2005, Hutchens et al. 2010, Pathak et al. 2012, Yaglioglu et al. 2012). Figure 8.3 
illustrates the evolution and localization of deformation for a uniaxially loaded 
VACNT cylinder. Cross correlation of the in situ images with the accompanying 
stress-strain data reveals that the localized buckle formation and propagation cor 
respond to undulations in the nominal stress-strain curve. Specifically, softening 
corresponds to the first appearance of the buckle and the subsequent hardening 
coincides with the lateral propagation of the buckle. This localized response over-
lays the aforementioned overall foam-like behaviour seen in these materials. 

 Notable differences between the classic foam-like stress-strain behaviour and the 
overall response of VACNTs in uniaxial compression studies of VACNT structures 
have also been observed in both macroscopic (Cao et al. 2005, Suhr et al. 2007, 
Tong et al. 2008) and microscopic (Zbib et al. 2008, Hutchens et al. 2010) samples. 
First, the plateau regime is highly sloped. In typical foams, a sloped plateau indi-
cates some homogeneous variation in strut buckling stress due either to random strut 
alignment, a distribution of strut sizes (aspect ratio, diameter, etc.), or both. While 
both kinds of inhomogeneity’s exist in VACNTs, the plateau regime is too highly 
sloped to be explained by these small fluctuations. Moreover the non-local nature of 
the buckling points to an alternate cause. In fact, the sloped plateau regime is sug-
gestive of the presence of an axial property gradient in VACNTs. As discussed 
previously, a gradient in tube density arises in VACNTs as a result of the CVD 
growth process. This gradient can be such that there is a lower tube density at the 
bottom of the structure (i.e., the point at which the substrate attaches) than the top. It 
follows that such a tube density gradient would result in a corresponding strength 
and stiffness gradient. This property gradient is evident in the stress-strain responses 
seen in Figs. 8.2 and 8.3 in the progressive increase in peak stress values for undu-
lations in the plateau region. Throughout this plateau, buckles are known to form 
sequentially, bottom-to-top, and therefore each subsequent buckle forms at a higher 
(and more dense) location within the cylinder than the previous buckle, requiring a 
larger stress in order to form a new fold.  

A recent study by Pathak et al. (2013) has reported a different buckling sequence 
in VACNTs. In addition to the commonly reported bottom-to-top buckling pattern 
(where the bottom buckle forms first), these authors also observed VACNT samples 
where the bottom buckle was instead the last buckle to form (Fig. 8.4c). These 
experiments were performed on two sets of VACNT micropillars, both grown by 
the same chemical vapour deposition (CVD) synthesis on the same Si substrate but 
located on different regions of the substrate. In-situ uniaxial compression experi-
ments conveyed that the sequence in the localized folds formation was unique for 
each sample type (Figs. 8.4 b and c). In the first set (Fig. 8.4b) the first buckling-like 
instability, which corresponded to the transition from elastic loading to plateau in 
the stress-strain data, always formed at the bottom of the sample. After initiation, the 
fold propagated laterally until it fully spanned the pillar width. Bottom-to-top 
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buckling occurred in succession, with each subsequent buckle initiating only after 
the previous one, located below it, had completed, similar to the observations in Cao 
et al. (2005), Hutchens et al. (2010). Unloading from maximum compression of 
~70% strain left the top third of the pillar relatively undeformed (Fig. 8.4b, third 
panel from left), and the buckle closest to the top always formed last (Fig. 8.4b, 
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Figure 8.4. (a) Comparison of the stress-strain responses of two VACNT pillar systems 
grown on the same substrate; one showing the commonly reported bottom-to-top buckling 
sequence where the bottom buckle is the first one to form (b), vs. the ones where the 
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(Adapted with permission from  (Pathak et al. 2013) Copyright 2013 American Chemical 
Society)  
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right-most panel). In contrast, post-compression SEM images of the second set of 
VACNT pillars, unloaded from the same maximum strain of 70%, showed that it 
was the bottom third of the pillar that remained relatively undeformed (Fig. 8.4c, 
third panel from left). The first instability in these pillars always formed somewhere 
at their mid-height (Fig. 8.4c, second panel from left), and the buckle closest to the 
substrate always formed last (Fig. 8.4c right-most panel).  

The authors in Pathak et al. (2013) have suggested that the substantial differences 
in the deformation responses between the two pillar types shown in Fig. 8.4 were 
likely caused by their differing microstructural features and density gradients (the 
shapes of VACNT pillar cross-sections – square vs. circular – did not appear to 
influence their deformation characteristics). In order to capture the density gradients 
in these two pillar types the authors used edge detection analysis of systematically 
obtained SEM images to calculate the average relative number density, ζ, of tubes in 
each SEM image. Image analysis revealed that the two types of pillars exhibited 
opposite trends in relative density, which can be used to predict the location of initial 
buckling instability in a VACNT matrix (Figs. 8.4b and c). For example, it is rea-
sonable to expect the first folding/buckling event during compressions of VACNTs 
to originate close to the substrate because of its rigid constraint (Zbib et al. 2008). 
Pillars showing a bottom-to-top buckling sequence corroborated this notion (Fig. 
8.4b). These VACNT pillars had highest ζ in the top 10 μm, and their density pro-
files resembled a step function, where ζ ≈ 1 for all locations above the height of ~23 
μm, and ζ ≤ 0 at all locales below. In contrast, the incipient instability in pillars 
where the bottom buckles formed last occurred somewhere in the middle of pillar 
height, at the locales with the lowest relative CNT density (Fig. 8.4c). Maximum ζ in 
these pillars was located in the bottom ~10 μm, close to the substrate, while the 
minimum ζ was in the midsection of the pillars. It appears that the lower relative 
density trumps the constraining effects of the substrate in driving the location of the 
buckling instability in these pillars. The last buckles in both sets of pillars occurred 
in the regions with the highest relative CNT densities: near the top in the samples 
showing bottom-to-top buckling sequence and at the base in the ones where the 
bottom buckles formed last. 

In addition these two pillar types also show some key differences in their 
stress-strain response (Fig. 8.4a). The stress plateau in the pillars showing bot-
tom-to-top buckling had two separate slopes: a relatively flat section up to 30% 
strain and a steeper region, with the slope of 0.65 MPa up to unloading at 75% strain. 
In contrast the pillar set where the bottom buckles formed last had a nearly flat 
plateau (slope ~ 0.02 MPa) up to a strain of 75%. There was also a noticeable dif-
ference in the amount of recovery between the two sample types when unloaded 
from post-densification regime: pillars showing bottom-to-top buckling (R ≈ 
57.9±0.9 %) showed an almost 45% higher recovery than those where the bottom 
buckles formed last (R ≈ 39.8±3.9 %). 
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It has been suggested that such differences in the compressive responses of 
VACNTs can be predicted based on their local variations in density along the 
VACNT sample heights. Such property dependence was initially modelled by 
Hutchens et al. (2010) in a viscoplastic finite element framework which showed a 
direct correspondence between the presence and extent of an applied property 
gradient and the amount of hardening within the plateau. Details of this and other 
efforts to capture VACNT deformation mechanisms through modelling are sum-
marized in the next section. 

8.5. Modelling of VACNT Deformation  

Only a few preliminary models exist to describe the mechanical deformation of 
VACNTs. Motivated by both the morphology of the VACNTs (a series of nomi-
nally vertical struts) as well as the observed buckling behaviour, many researchers 
utilize an Euler buckling framework to mechanistically describe their findings. In 
Euler buckling, an ideal column (perfectly straight, homogeneous, and free from 
initial stress) is determined to buckle when the applied load reaches some critical 
value that causes the column to be in a state of unstable equilibrium. Up to the point 
of buckling, the column is assumed to be perfectly elastic. Scaling calculations by 
Cao et al. (2005) utilize this critical stress to estimate the transition stress value for 
departure from linear elastic behaviour, i.e., the buckling stress, given a reasonable 
estimate of the tube number density. Similarly, Mesarovic et al. (2007) included an 
additional intertube contact energy to account for favourable van der Waals inter-
actions between tubes in their energetic treatment of VACNTs. Another Euler based 
model by Zbib et al. (2008), motivated by the formation of buckles they observed, 
proposes piece-wise buckling that assumes the top of the pillar deforms via simple 
shear while the bottom undergoes collapse. Using this framework, they predict the 
buckling stress increases asymptotically with decreasing pillar height (for similar 
aspect ratio pillars). Notably, however, none of these models make predictions 
concerning the length-scale of the buckles formed or their dependence on material 
parameters such as density, stiffness, tube alignment, or size as the parameter space 
is difficult to grow in these materials. 

Another subset of mechanical analyses utilizes an alternating harden-
ing-softening-hardening local constitutive relation, and are the only theories that 
attempt to capture material response beyond the initial buckling event. The first, a 
hierarchical bi-stable spring model, captures the quantitative stress-strain response 
of VACNTs in compression (Fraternali et al. 2011). A subsequent finite element 
viscoplastic solid with a positive-negative-positive sloped flow strength captures the 
qualitative sequential periodic buckle morphology. The bi-stable spring model 
consists of mesoscale elements characterized by elastic-plateau-densification and, 
most importantly, hysteresis in the unloading curve. These mesoscale elements were 
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shown to be the limiting case of infinitely many bi-stable spring elements in series. 
Briefly, a bi-stable spring consists of two thermodynamically stable elastic loading 
sections separated by an unstable, negative stiffness region of the stress-strain curve 
across which the material snaps, similarly to a phase transition. When placed in 
series, these mesoscale elements capture the hysteretic unloading response seen by 
Cao et al. (2005) very closely. Thus, this model can be utilized to characterize the 
energy dissipation in VACNTs. In a similar vein, Hutchens et al. (2011) postulate a 

positive-negative-positive stress-strain relation reminiscent of a bi-stable spring, but 
rather than being elastic, it is used as a plastic flow-strength function governing the 
local deformation of an element post-elastic loading. The latter analyses find that 
this constitutive relation is capable of producing sequential, periodic buckles in an 
axisymmetric, circular cylindrical mesh with fixed boundary conditions at the base, 
identical to those in VACNTs. In addition, an axial gradient in the strength is not 
necessary to initiate bottom-first buckling, as seen in experiments; rather, the fixed 
boundary conditions are sufficient. However, a reversal of buckle initiation, 
top-to-bottom, can be achieved for a sufficient inverse axial gradient (having lower 
strength at the top of the pillar than the bottom). Both of these analyses capture 
essential elements of VACNT deformation, but do so for two very different sets of 
experimental observations: recoverable deformation, and plastic deformation. 
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An example of the approach proposed by Hutchens et al. (2011) is shown in Fig. 
8.5. Here the same model was utilized to predict the stress and strain responses of 
the two VACNT pillar types shown earlier in Fig. 8.4, assuming the stiffness of 
VACNTs to be linearly related to its density, E ~ ζ. The mechanical property gra-
dient was represented by a strength multiplier, SM, which is a multiplier giving the 
spatial variations of E (Young’s modulus) and σ0  where SM=E/Ebottom and similarly 
for σ0. Two particular cases are of interest (which matches the experiments most 
closely): Case 1 – SM is constant throughout the pillar height, and Case 4 – SM has a 
step-increase at the midpoint of the pillar height i.e. at z/H=0.5, where z is the co-
ordinate along the pillar height. Strength gradients over the height in terms of SM for 
the two cases considered are shown in Fig. 8.5a, and normalized stress-strain data 
are shown in Fig. 8.5b. Of special note is the similarity between the experimental 
and simulated stress vs. strain relationships (Fig. 8.5b inset) in these two cases – 
such as the flat plateau region for a constant SM function (Case 1), similar to the 
experimental case where the bottom buckles form last, as compared to the two 
different hardening slopes observed for the step function in SM (Case 4), similar to 
the experimental case of bottom-to-top buckling. 

8.6. Large Displacement Indentations in VACNTs  

In addition to uniaxial compression, large displacement (in the range of tens of 
micrometres) indentations using flat punch indenters (which offer a constant contact 
area with the sample) offers an alternative approach to analysing VACNT defor-
mation under a different loading and boundary condition. These tests, conducted by 
a variety of researchers (Lu et al. 2012, Pour Shahid Saeed Abadi et al. 2012, Pathak 
et al. 2013, Pathak et al. 2013), help in comparing the influence of the boundary 
conditions posed by the presence or absence of the external matrix.  

A comparison between the indentation responses at the sample-edge vs. the one in 
the sample interior was provided by Pathak et al. (2013) for flat punch indentations 
of a ~142-μm thick VACNT film on a Si substrate grown using an atmospheric 
pressure CVD synthesis technique (Fig. 8.6). The following salient points are of 
note from this figure. Firstly this plot indicates that while the curves are similar in 
shape, the on-edge regions deform at significantly lower loads than in-bulk locations 
at equivalent indentation depths. This result is not surprising due to the less restric-
tive boundary conditions in the on-edge setup. Secondly, in both cases the load first 
increases steeply up to an instability manifested by a large displacement burst of ~20 
μm, after which the indenter tip is unloaded (Fig. 8.6a). SEM images obtained 
immediately after this burst reveal that a portion of VACNT film sheared off nearly 
perfectly vertically along the edges of the indenter tip (Fig. 8.6c). In the sheared off 
region the deformation appears to be highly localized, occurring only at the shear 
offset regions and at the buckles formed at the bottom of the sample. The remaining  



Vertically Aligned Carbon Nanotubes 207

 

0

2

4

6

8

10

12

14

0

0.5

1

1.5

2

2.5

50 μm

(b) Before

(c) At max 
load

(d) After

20 μm

5 
μm1 μm

Lo
ad

, m
N

Displacement, μm

Indentation Stress, M
Pa

0 10 20 30

(b)

(c)

(d)

Indent on 
edge

Indent on bulk

(a)

Si Substrate 

100 nm/s

14
1.

5 
μm

VA
C

N
T 

fil
m

Flat punch indenter

Shear 
planes

Undeformed 
VACNT

Densified 
zone

Initial 
buckle

Buckle 
propagation

Figure 8.6. Large displacement indentations in VACNTs. (a) Comparative indentation load
(and stress)-displacement curves at 100nm/s loading rate of in-situ SEM indentation tests
conducted on the sample edge vs. in the interior of the sample using a 60 μm × 80 μm 
rectangular flat punch indenter . (b, c and d) For the indent on edge, the indentation process
was recorded as a video file from which individual picture frames were extracted corre-
sponding to a particular event during the loading/unloading cycle (as indicated on the load–
displacement graph).  
The double arrows in (c) mark the initiation of the first buckle at a load of around 6 mN. The 
wide lateral buckle marked by single arrows are formed after the first buckle, and increase 
in size with loading. (d) Upon unloading these lateral buckles disappear. (d inset top) The
large displacement burst results in a vertical shear of the VACNT structure along the 
indenter edges. Note the clean edge of the shear wall. (d bottom insets) The shear appears
to have been carried by a series of CNT ‘micro-rollers’ which act as effective lubricants
protecting the rest of the VACNT structure from further damage. (Pathak et al. 2013)
reproduced with permission. 



208 S. Pathak

portions of the VACNT film appear completely unaffected (Fig. 8.6d top inset). 
Thirdly, the shear appears to have been carried by a series of tangled CNTs, or 
‘micro-rollers’ seen in the magnified inset images in Fig. 8.6d, whereby original-
ly-vertical strands of several entangled CNT collectively coiled themselves into 
helical structures. The authors have speculated that these micro-rollers provide a 
low-friction path during the shear process. Finally unloading the indenter tip results 
in minimal recovery. 

The shear event and the formation of the CNT micro-rollers are unique charac-
teristics seen only in the intertwined VACNT systems. Neither foams (Sudheer 
Kumar et al. 2003, Flores-Johnson et al. 2010), where the deformation is confined 
only to regions directly beneath the indenter, nor non-interacting VACNTs (Pantano 
et al. 2004), where such shear would propagate without any micro-roller formation, 
show the unique features seen in Fig. 8.6. 

Some of these phenomena can be understood in terms of the differences in 
boundary conditions between the two loading configurations – indentation (Pathak 
et al. 2013) vs. compression (Pathak et al. 2012) (Fig. 8.7), in combination with the 
overall similarity of the VACNT deformation to that of open-cell foam materials 
(Gibson et al. 1999). The characteristics of flat-punch indentations into VACNT 
films closely resembles those reported for metallic (Andrews et al. 1999, Sudheer 
Kumar et al. 2003) and polymeric foams (Flores-Johnson et al. 2010),(Gibson et al. 
1999). In the spirit of foam-like deformation, the indentation zone for VACNTs is 
confined to the region directly beneath the indenter, while the surrounding regions 
are unaffected (see Fig. 8.6). The lack of lateral spread in the deformed region is 
typical for foams, whereby it can be attributed to the non-existent Poisson’s ratio 
(Gibson et al. 1999, Sudheer Kumar et al. 2003, Zbib et al. 2008). This is diamet-
rically opposite to monolithic materials, where the plastic zone underneath the 
indenter tip is typically represented by a continuous hemispherical plastic zone 
(Fleck et al. 1992). Another common characteristic between indentation into con-
ventional foams and VACNTs is the appearance of a so-called ‘tear line’ (Sudheer 
Kumar et al. 2003, Flores-Johnson et al. 2010) along the corner of the flat punch 
indenter where the shear force is largest. The depth of this shear line in a foam 
generally depends on its strength (Sudheer Kumar et al. 2003, Flores-Johnson et al. 
2010). Unlike foams, however, the constituents of the VACNT system – the indi-
vidual CNTs themselves – are nominally vertically aligned with respect to the 
indenter tip (Fig. 8.1), and thus the vertical plane is expected to be the plane of 
lowest shear strength in the VACNT matrix. Once the critical shear stress is attained 
during loading, the shear-off proceeds catastrophically along this vertical plane 
through the thickness of the VACNT film down to the underlying substrate. This 
results in highly localized deformation along the shear plane, with no notable per-
turbation in other regions. Subsequent loading initiates folding or buckling of the 
material close to the substrate but not in the sheared-off block.  
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On the contrary, under uniaxial compression the shear stresses acting on the 
VACNT matrix are negligible. Instead, the applied compressive strain is accom-
modated entirely via the formation of lateral folds or buckles along the length of the 
bundle, while the remaining portion remains virtually unscathed (Hutchens et al. 
2010, Pathak et al. 2012). Thus, the first instability shown in the compression 
stress-strain response in Fig. 8.7a is related to the onset of the first buckle formation 
in the VACNT matrix. Further loading beyond yield results in the compression of 
the collapsed buckles.  

A comparison of the instability stresses between compression (buckling, 2.69±0.1 
MPa) and indentation (shear, 1.75±0.3 MPa) on the CVD VACNT samples indicate 

that the instability stress in indentation is 40% lower than that of compression (Fig. 
8.7b). Interestingly, this observation is opposite to that of traditional indentation 
tests into monolithic materials, where yield in indentation typically requires 1-3 
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times higher stresses than for the uniaxial case for most solid (Johnson 1987) and 
porous (Fleck et al. 1992) as well as foam (Gibson et al. 1999, Andrews et al. 2001, 
Sudheer Kumar et al. 2003) materials. The two distinct modes of deformation in 
VACNTs – shear under indentation, and buckling in compression – are likely 
responsible for this apparent reversal in their instability stress values, i.e. during 
indentation the APCVD VACNT film reaches its critical shear stress before it can 
buckle. 

8.7. Recoverability from Large Strains  

A marked difference in material behaviour among different VACNT arrays is the 
ability (or lack thereof) to recover from large deformations; with some exhibiting 
superior creep recovery, seeing less than 15% deformation after thousands of cycles 
of strain to 85% (Cao et al. 2005, Suhr et al. 2007, Xu et al. 2010, Xu et al. 2011, 
Pathak et al. 2012), while others deform permanently even at modest strains 
(Yaglioglu 2007, Zbib et al. 2008, Hutchens et al. 2010, Zhang et al. 2010, Cao et al. 
2011) (see Fig. 8.2). Energy can be dissipated in the former as they behave like 
viscoelastic rubbers, discussed in a later section. Energy can be absorbed in the 
latter. Both appear to deform via the same structural mechanism intrinsic to the 
complex microstructure of these systems. It is still largely unclear what is respon-
sible for a VACNT material displaying plastic versus viscoelastic behaviour.   

A number of experimental studies have identified a list of potential candidates that 
affect the recoverability of VACNTs. Pathak et al. (2013) have shown that both the 
experimental loading and boundary conditions as well the VACNT morphology 
have a marked effect on VACNT recoverability (Fig. 8.7). These authors have 
reported a large difference in recoverability of the VACNT matrix in indentation 
(4.3±0.3 %) vs. compression (95.7±2.8 %) conditions. This has been attributed to 
the different deformation modes and boundary conditions under the two loading 
modes. The almost complete recovery of the VACNT structure under compression 
in (Pathak et al. 2012) is related to the elastic un-folding of the buckles created 
during loading. This recoverability has been explained by the inter-tube interactions 
of the CNTs where the zipping and unzipping of CNTs in contact has been proposed 
as the primary criteria for the superior viscoelasticity and creep recovery of 
VACNTs (Gogotsi 2010, Xu et al. 2010, Bradford et al. 2011, Xu et al. 2011). On 
the contrary, recovery in indentation (Pathak et al. 2013) is inhibited by the addi-
tional constraints of the surrounding VACNT material. Thus even at lower strains 
(before the large shear burst) the recovery under indentation is still lower (50-80%) 
than that in compression. Moreover indentation experiments cause large shear 
forces to develop along the corners of the flat punch indenter. This causes the 
VACNT films to deform by an instantaneous vertical shearing of the material 
directly underneath the indenter tip (since the vertical plane is the plane of lowest 
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shear strength in the vertically aligned CNT matrix). After the displacement burst, 
recovery of the VACNTs in indentation is further compromised by the permanent 
nature of the damage caused by the shearing of a large block of the material from the 
matrix (Lu et al. 2012, Pathak et al. 2013). 

The recoverability of VACNTs has also been shown to depend on the VACNT 
microstructure and morphology. In general, researchers growing CVD-VACNTs 
made using the ‘floating’ catalyst route (Andrews et al. 1999, Raney et al. 2011) 
have reported substantial (>90%) recovery in their samples (Cao et al. 2005, Raney 
et al. 2011, Raney et al. 2011, Yaglioglu et al. 2012), while the recoverability of 
majority of VACNTs made using the ‘fixed’ catalyst technique (Yaglioglu 2007, 
Bedewy et al. 2009) has been poor  (Zbib et al. 2008, Hutchens et al. 2010, Zhang et 
al. 2010, Cao et al. 2011) (note: Pathak et al. (2012) is a notable exception). This 
effect is thought to be correlated to the thicker (>40 nm) diameter of the tubes, and a 
correspondingly higher density for VACNTs made using the floating catalyst route. 
A systematic study by Bradford et al. (2011) analysed this effect further, where it 
was shown that VACNTs grown using a fixed catalyst technique and exhibiting low 
resilience changed to an almost complete recovery after a post growth CVD treat-
ment (Fig. 8.8a). This was attributed to an increase in the individual CNT wall 
thickness, which also caused increased surface roughness of the CNTs, resulting in a 
decrease of the van der Waals interactions. 

Other aspects of the VACNT microstructure are also known to influence their 
mechanical properties, such as their tortuosity (or waviness) and the number of 
inter-tube junctions in the matrix, both of which are expected to increase with 
increasing CNT wall thickness and/or density of the sample (Astrom et al. 2004, 
Berhan et al. 2004). The effect of tortuosity on VACNT recovery has been demon-
strated by Pathak et al. (2013) (Fig. 8.8b). In their work the authors synthesized two 
VACNT samples using the same nominal CVD growth conditions, but for different 
reaction times. This resulted in a taller VACNT film (Sample A in Fig. 8.8b), which 
in addition to having a higher density and CNT wall thickness, also showed in-
creased tortuosity/waviness in its top portions. During flat punch indentation, 
sample A showed almost full recovery, while sample B (in which the CNTs have 
negligible tortuosity and follow relatively straighter paths) showed a much lower 
(~49%) recovery (Fig. 8.8b).  

As discussed earlier, VACNTs subjected to large displacement flat punch inden-
tations often exhibit a catastrophic shear-off event, which limits their recoverability. 
Thus the very high recovery of sample A is quite unique for VACNTs, and can be 
linked to its tortuous nature. The tortuosity/waviness of the CNTs in sample A is 
expected to cause a higher number of inter-tube contacts in its as grown state, and 
such interconnections are instrumental in increasing the vertical shear strength of the 
matrix and hence prevent any catastrophic shear off under indentation. The recovery 
process is also aided by the larger CNT wall thickness of sample A and the resultant 
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increase in the bending stiffness of the tubes. On the other hand, the more vertical 
alignment of the constituent CNTs in sample B results in a lower shear strength in 
the vertical plane of this sample, resulting in the expected catastrophic shear-off 
event, and hence negligible recovery (Fig. 8.8b).  

For VACNT bundles demonstrating nearly full recovery and energy dissipation, a 
further factor that affects the resilience of these systems is the displacement (strain) 
rates at which the compression tests were conducted (Pathak et al. 2012). This is 
shown in Fig. 8.8c for VACNT systems grown using ‘fixed’ catalyst techniques for 
three explored strain rates: 4×10-2, 4×10-3 and 4×10-4 /sec (which correspond to 
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displacement rates of 1000, 100 and 10 nm/s respectively). These authors found that 
when compressed at the fastest strain rates of 4×10-2 /sec, the VACNT bundles 
recover virtually back to their original dimensions (> 95 % recovery) while at the 
slowest deformation rates of 4×10-4 /sec, they remain permanently deformed (< 86 
% recovery), as evidenced by their post-mortem morphology containing localized 
buckles. The resilience of the VACNT samples is further compromised when they 
are loaded to beyond densification threshold strains of ε≥0.65-0.7 for all strain rates. 

All of this suggests a strong dependence of deformation commencement on strain 
rate, the basic phenomenological process for which may be understood as follows. 
When compressed at the lower deformation rates, the individual CNT struts 
re-arrange themselves by twisting, bending, etc., in response to the applied com-
pressive load, thereby coming into close contact with one another. This type of 
individual strut re-configuration is not unreasonable in a high-entropy deformation 
process (i.e. many different configurations are available at each time step). In addi-
tion, CNTs are inherently “sticky,” experiencing an adhesive driving force due to 
van der Waals interactions (Ruoff et al. 1993). Therefore, in the course of com-
pression at the slower rates, an ever-increasing number of individual struts coalesce 
by coming into close proximity of one another, thereby forming localized densified 
regions (i.e. buckles). Importantly, the adhesion process appears to be largely irre-
versible, i.e. the adhesion driving force overrides the stored elastic energy upon 
unloading. This implies that after unloading the buckles remain even while under-
going elastic recovery. This all is in contrast to the deformation at higher rates, 
where the entire structure recovers completely, with no evidence of buckles’ pres-
ence upon unloading (see Fig. 8.8c). This behaviour is believed to stem from an 
insufficient interaction time between individual tubes to come in contact with one 
another. This results in a significantly reduced contact inter-tubular area as com-
pared with the slowly-deformed case, and hence leads to much lower adhesion. 
Compression at higher rates is likely a lower-entropy process since there are fewer 
configurations available during each time step, and therefore less inter-tubular 
contact occurs, leading to the lack of localized “zipped-up” densified buckles 
(Gogotsi 2010, Xu et al. 2010, Bradford et al. 2011, Xu et al. 2011). 

A corollary to the above hypothesis is that if different VACNT micro-pillars were 
allowed similar amounts of time for the reconfiguration to occur, they should exhibit 
similar % recovery for all loading rates. This was demonstrated in Pathak et al. 
(2012) by conducting two tests: one at the slowest 4×10-4 /sec rate, and a second one 
at the fast rate of 4×10-2 /sec where the sample was held at the max load for a long 
time to ensure that it spends an equivalent amount of time before unload similar to 
the sample deformed at the slowest rate. Both pillars showed (equally reduced) 
recovery values of 86%. The above results suggest that it is the time spent by the 
VACNTs under high strains, rather than the loading history, that determines the 
permanence of their deformation.  
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8.8. Carbide Derived Carbons (CDC) VACNTs  

While most of the previous sections in this chapter have focused on 
CVD-VACNTs, VACNTs prepared by the Carbide-Derived Carbon (CDC) syn-
thesis method also deserve special mention. As discussed earlier, CDC-VACNTs 
refer to a bottom-up growth process, where carbon is formed by selective extraction 
of the metal or metalloid atoms in the carbide (e.g., silicon carbide) at high temper-
atures (>1600oC), transforming the carbide structure into pure carbon. It has been 
shown (Kusunoki et al. 1997) that high temperature decomposition of SiC by the 
reactions SiC → Si(g) + C, SiC + 1/2O2 (g) → SiO (g) + C, leads to the formation of 
CNTs growing normal to the carbon terminated  C-face of hexagonal SiC 
with primarily zigzag chirality (Kusunoki et al. 2002) and graphite growth on the Si 
terminated  Si-face. These carbide-derived carbon (CDC) nanotube brushes 
have been shown to have a density close to 0.95 g/cm3 (Cambaz et al. 2008), which 
is significantly (10 times or more) higher than in catalytic CVD growth of any kind 
of nanotubes. This higher density is generally thought be due to a conformal trans-
formation of SiC into carbon. These dense CDC CNT brushes consist of 
small-diameter (1-3 nm outer diameter, 1-4 walled) non-catalytic CNTs with double 
walled CNTs being the most common, as determined from transmission electron 
microscopy (TEM), and a strong RBM mode in Raman spectra (Cambaz et al. 
2008). Assuming an average outer diameter of 3 nm and 0.35 nm as the inter-tube 
distance, this would correspond to an aerial density of ~100,000 tubes per μm-2 for a 
hexagonal arrangement of CNTs, and ~89,000 tubes per μm-2 for a square ar-
rangement. The actual aerial density of the CNTs packed randomly in a dense brush 
is likely to be somewhere in between.   

The higher density of these CDC-VACNT brushes is evident in the SEM image in 
Fig. 8.9a inset of the CNT brush grown at 1700oC, where no apparent porosity is 
visible. Such dense VACNTs are ideal for indentation testing using smaller spher-
ical indenters, something that is not possible for the wider spaced CVD-VACNTs 
(where the CNTs tend to simply bend away from the indenter). The use of spherical 
indenters is also advantageous in that, by using appropriate data analysis protocols 
(Kalidindi et al. 2008, Pathak et al. 2015), the extracted load-displacement data from 
these tests can be transformed into meaningful indentation stress-strain curves. The 
indentation stress-strain curves in turn enable one to follow the entire evolution of 
the mechanical response in the VACNT array, from initial elasticity to the initiation 
of buckling to post-buckling behaviour at finite plastic strains. In addition, the 
indentation stress-strain curves also allow one to estimate the Young’s modulus and 
the stress at buckling in the indentation experiment. For example, using a 1 μm 
spherical indenter, the Young’s modulus of 200 nm thick CDC-VACNT brushes 
was estimated to be ~17 GPa and the critical buckling stress was estimated as ~0.3 
GPa at a load of 0.02 mN (Pathak et al. 2009). 
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The authors in Pathak et al. (2009) also used indentation stress-strain curves from 
different indenter radii to explore the effects of indentation zone sizes and the ma-

terial defect density on the VACNT buckling stress. This is shown in Fig. 8.9a 
where the indentation response on a thicker VACNT brush (thickness 1.2-1.4 μm, 
see Fig. 8.9a inset) is shown as a function of 3 different indenter radii. In general all 
three indenter sizes show a similar trend in the VACNT response: an initial elastic 
behaviour (Young’s modulus ~18 GPa), followed by a sharp drop at a critical stress 
corresponding to CNT buckling. Note however that the values of buckling stresses 
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vary significantly between the three different indenters, where indentation with the 
smaller 1 μm indenter shows the highest buckling stress, followed by the 5 μm 
indenter, while buckling with the largest 13.5 μm indenter occurs at a significantly 
lower indentation stress. 

Such differences in buckling stresses can be understood by a closer analysis of the 
indentation zones sizes between the 3 indenter radii used. The indentation zone sizes 
at buckling for the larger 13.5 μm indenter (~3.58 μm) extends well beyond the 
VACNT brush thickness (1.2-1.4 μm), while only a limited thickness of the 
VACNT brush (~ 0.39 μm) is exposed to indentation stress for the smaller 1 μm 
indenter. The corresponding differences in buckling stress are thus largely a con-
sequence of the effective buckling length available in each case; with smaller 
indenters there is only a smaller buckling length and the material is able to withstand 
higher buckling stresses. Interestingly the authors in Pathak et al. (2009) also report 
a larger variation in the values of the buckling stress for the small 1 μm radii in-
denter as compared to the larger indenters. These values seem to indicate that defect 
density varies from one location to another in one VACNT brush. Thus the smaller 
volume sampled by the 1 μm indenter is more sensitive to the variation in defect 
density when different regions of the sample are probed, and causes a larger spread 
of the buckling stress values when using this indenter. The larger indenters, on the 
other hand, encounter a bigger volume, and hence they mostly register a combined 
VACNT-defect response leading to a lower buckling stress and a smaller spread in 
the buckling stress. 

The above results have been validated by conducting compression tests on 
VACNT micro-pillars machined using a focused ion beam (FIB) on the same sam-
ple. This is shown in Fig. 8.9b which shows the uniaxial compression data for a 
~600 nm diameter VACNT pillar. As seen from this figure, the values measured 
from indentation and compression tests are complementary to one another. The 
increase in the Young’s modulus values in the micro-pillar compression tests (~30 
GPa as compared to ~17-18 GPa in indentation) is due to ion-beam irradiation 
during the micro-machining process using FIB. This modifies the structure of the 
outer rim of CNTs in the VACNT pillar, which potentially results in intertube 
bridging between the densely packed CNTs and hence an increase in their Young’s 
modulus (Kis et al. 2004). 

These numbers suggest that these CDC-VACNT brushes perform significantly 
better and exhibit considerably higher mechanical properties compared to CVD 
VACNT turfs; CDC-VACNTs have values of Young’s modulus 1-2 orders of 
magnitude higher (Mesarovic et al. 2007), and buckling strengths several orders of 
magnitude higher (Waters et al. 2004, Waters et al. 2005) compared to a CVD 
VACNT turf – a difference which is explained by the much higher density of the 
tubes per unit area in the CDC-VACNT resulting in considerably higher mechanical 
properties. These higher properties are of extreme importance for making selective 
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CNT membranes for gas or liquid filtration/separation or CNT coatings for tribo-
logical applications. 

8.9. Viscoelasticity  

In addition to their distinctive buckling behaviour and their ability to recover from 
large deformations, VACNTs have also been reported to demonstrate another case 
of extreme mechanical performance – a unique viscoelastic response that spans a 
truly wide temperature range from -196oC to 1000oC – something no other material 
has shown so far. Viscoelastic materials exhibit both viscous and elastic character-
istics when subjected to load. Thus, a viscoelastic material is able to both dissipate 
energy through viscous behaviour (as in honey), while storing energy though elas-
ticity (as in rubber band). The stress-strain response of viscoelastic materials is 
typified by hysteresis in the loading-unloading cycle. 

Viscoelastic behaviour in a material is generally characterized in terms of its loss 
( ) or storage modulus ( ) (or by the ratio, known as tan δ , of these two 
moduli).  relates to the amount energy dissipated while  represents the stored 
energy in the material. The angle δ is the phase lag between the oscillatory load and 
displacement responses under a sine wave load. In a typical experiment, the material 
is loaded to a pre-determined strain and the mechanical probe is oscillated across a 
range of frequencies. By measuring the resultant load amplitude, displacement 
amplitude, and the phase lag during the test, the values of loss modulus, storage 
modulus, and tan δ are determined. Similarly, viscoelasticity can also be quantified 
by the memory or hysteresis effects during load-unload cycles under deformation, 
where the energy dissipated is given by the area of the hysteresis loop. These vis-
coelastic effects have recently been documented in the highly intertwined random 
networks of VACNTs. Viscoelasticity in CVD-VACNTs has been demonstrated by 
Hutchens et al. (2010), where both storage and loss stiffness’s were studied in a 
frequency range from 1 to 45 Hz at different strain levels (Fig. 8.10a). Note that 
these stiffness values are proportional to moduli given a known Poisson’s ratio 
which is lacking for VACNTs. The elastic response is clearly frequency inde-
pendent, indicating the VACNT’s elastic deformation is likely due to the same 
mechanism (likely tube bending) over the range of timescales tested. As shown in 
Fig. 8.10a, more energy is dissipated (higher values of loss stiffness’s) at larger 
strain levels when a higher fraction of the VACNT pillar has buckled. Interestingly, 
for the more dense CDC-VACNTs the opposite seems to be true (Fig. 8.10b). For 
the highly dense CDC-VACNTs, Pathak et al. (2009) have shown a significant drop 
in the tan δ values of the CNTs after buckling, i.e., when the material was highly 
compacted. These observations indicate that while an increase in density can sig-
nificantly increase the viscoelastic behaviour of CNTs, there appears to be a cut-off 
beyond which the contacting CNTs became increasingly bundled resulting in a 
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decrease in their ability to dissipate energy. 
A recent report by Xu et al. (2010) also suggests a rubber like viscoelastic be-

haviour in a random network of long, interconnected and tangled CNTs, similar in 
many ways to VACNTs but significantly less aligned, over a very wide temperature 
range – from -196oC to 1000oC, with a possibility of extending this behaviour 
beyond 1500oC. While the oxidizing nature of carbon may limit the application of 
these materials to only vacuum or protective (reducing) environments, CNTs are 
nevertheless the only known solids to demonstrate such behaviour at extremely low 

Figure 8.10. Visco-elastic behaviour as seen in: (a) CVD-VACNTs showing an increase in
the loss stiffness with increasing strains (Hutchens et al. 2012) (Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission) (b) CDC-VACNTs showing a
significantly decrease in values of tan δ after buckling Reproduced from (Pathak et al. 2009)
with permission from Elsevier. (c) Atomistic modelling image of a possible entangled
arrangement of single, double and triple-walled CNTs leading to their rubber-like viscoe-
lastic behaviour. Reprinted from (Gogotsi 2010) with permission from AAAS. 
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or very high temperatures. The authors attribute the reversible dissipation of energy 
in CNTs over this remarkable range to the zipping and unzipping of the CNTs upon 
contact (see Fig. 8.10c) caused by the van der Waals interactions. In this instance, 
‘reversible’ means that beyond a critical strain the zipping/unzipping process was no 
longer possible everywhere as more and more tubes become permanently entangled 
at higher strain. This would lead to a loss in their viscoelasticity, similar to the 
observations in the highly dense CDC-VACNTs (Fig. 8.10b). 

The unique combination of superior mechanical properties and the ability to dis-
sipate energy during deformation is expected to have significant implications in 
damping applications utilizing VACNTs. These, combined with the wide temper-
ature range of its viscoelastic behaviour, make VACNT based materials a promising 
choice for use in mechanical applications under extreme temperatures or tempera-
ture gradients. Possible environments range from the cold of interstellar space to 
down-to-earth viscoelastic applications, such as MEMS devices to high temperature 
vacuum furnaces. 

8.10. Applications  

Multiwall carbon nanotubes are well known for a variety of exceptional proper-
ties. These include a high tensile modulus, on the order of 1 TPa, high strength, on 
the order of tens of GPa, high thermal conductivity, recoverability after large 
bending angle deformation, and a range of electrical properties depending on the 
chirality of the graphene walls. For these reasons they are currently the subject of a 
wide range of research. In the form of VACNTs, these individual tube properties 
may be significantly altered by the collective interaction of thousands of tubes. 
Several applications of VACNT structures currently under study rely on the me-
chanical behaviour described earlier in this chapter. A remarkable, but incomplete 
list includes: components of highly compliant thermal contacts for mi-
cro-electro-mechanical-systems (MEMS) and microelectronics (McCarter et al. 
2006, Zbib et al. 2008), dry adhesives, thermally robust energy dissipating rubber 
(Gogotsi 2010, Xu et al. 2010), and energy absorption or impact mitigation (Misra 
2008). Other applications, such as optical coatings and cold cathode arrays, may rely 
less on the mechanical properties for optimization and design, but understanding is 
still necessary for evaluation of robustness and in-use lifetime analysis. 

We go through each application briefly to highlight the VACNT specific me-
chanical behaviour of interest. First, thermal contacts for delicate electronics devices 
have two requirements. They must be highly thermally conductive and make con-
formal contact (to increase heat transfer) while avoiding damage to the components 
they are transferring heat to and from. CNT foams are ideal for this application due 
to the high compliance that comes from the reduced load capacity of the CNT struts 
as they buckle. Dry adhesive applications of VACNTs take advantage of the hier-
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archical structure which can, as desired in MEMS switches, make conformal contact 
to surfaces at a variety of roughness length scales, thereby increasing the attractive 
interactions between the tubes and the surface. Third, energy dissipating and ab-
sorbing applications require more in-depth knowledge of the deformation 
mechanism. As mentioned in the previous section, energy dissipation is currently 
thought to be due to tube zipping/unzipping or tube-to-tube sliding and rearrange-
ment (Mesarovic et al. 2007, Suhr et al. 2007, Pathak et al. 2009, Gogotsi 2010, Xu 
et al. 2010), while energy absorption is certainly maximized during buckle for-
mation.  Future applications may be able to take advantage of yet undiscovered traits 
of the incompletely characterized VACNTs. 

8.11. Summary and Outlook  

Although the mechanisms governing VACNTs collective mechanical behaviour 
are still largely uncharacterized, the special properties of multiwall carbon nano-
tubes combined with the complex interactions that arise between them in the 
hierarchical VACNT microstructure have generated significant research interest. 
Their wide range of properties, mechanical, electrical, and thermal, make them ideal 
candidates as multi-functional materials, particularly for applications in which soft 
materials (such as polymers) have traditionally dominated. Notably, VACNTs 
occupy a unique niche among engineering materials as shown in the Ashby property 
chart in Fig. 8.11 with the ability to span a wide range of properties given a tunable 
microstructure. There remains two major hurdles to rationally designing VACNTs 
for any application: control of the CNT growth process and understanding of the 
relationship between the microstructure and mechanical response. These hurdles are 
interrelated through the fact that the design space cannot be systematically probed 
until the microstructure can be systematically controlled. Mastery of these un-
knowns will not only further VACNTs place as novel materials in the current 
applications under study, but may reveal previously undiscovered behaviours in 
microstructures yet to be created or characterized. 
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