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Preface

I became involved in the research of polymer viscoelasticity shortly after I
began to work in the Exxon Chemical Company in 1980, two years after
the landmark papers of Doi and Edwards were published. Even though
there was a great deal of hope and excitement among polymer researchers
regarding the Doi–Edwards theory, at the time I did not foresee that I
would come to accept the theory so completely, as eventually the support-
ing evidence, a great deal of my own research over the years, convinced
me. This book is an account of how the universal viscoelastic phenomena
of nearly monodisperse polymers are explained quantitatively by the Doi–
Edwards (reptation) theory and the extended reptation theory, developed
on the framework of the Doi–Edwards theory. These include the trans-
formation of the characteristic viscoelastic spectrum with molecular-weight
change and/or dilution; the molecular-weight dependence of the zero-shear
viscosity and of the steady-state compliance, and their respective transi-
tion points, Mc and M ′

c; the relation between viscoelasticity and diffusion;
the damping function; and the slip-stick melt fracture phenomenon. The
consistently quantitative agreements between theory and experiment led to
the proposition that the number of entanglement strands per cubed tube
diameter (or cubed entanglement distance) be a universal constant, which
is now well supported by a large collection of data (Chapter 13). The ulti-
mate significance of these results is that the basic mean-field assumption
in the Doi–Edwards theory: aL = 〈R2〉 (a, the tube diameter; L, the prim-
itive chain length; 〈R2〉, mean square end-to-end distance of the polymer
chain) is valid for a (nearly) monodisperse system. Here the mean field is
assumed rather than derived. The proposition of the characteristic length
“a” for an entanglement system is as important as the conceiving of the
Rouse segment twenty five years earlier. From the study of blend-solution

xiii
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xiv Preface

systems, it is shown in Chapter 11 that the extended reptation theory has
bridged the gap between the Doi–Edwards theory and the Rouse theory.
As shown in the same chapter, the tube dilation effect, which is found
occurring in the long-time region of a binary-blend’s relaxation, indicates
that the mean-field length a = 〈R2〉/L has a dynamic aspect. It is hoped
that the readers will recognize the far-reaching insight of Doi and Edwards’
assumption aL = 〈R2〉 in this book.

The first part of this book explains the basics of polymer conforma-
tion, rubber elasticity, viscoelasticity, and chain dynamics (Chapters 1–5).
Knowledge of these basics is not only generally useful but is quite essen-
tial in understanding the molecular theories studied after Chapter 6. This
book starts from a very fundamental level. Each chapter is built upon the
contents of the previous chapters. The elastic-dumbbell model is intro-
duced in Chapter 6 as a prerequisite for the Rouse model, studied in
Chapter 7. Although the final theme of this book is about entanglement
(Chapters 8–13), there are several essential reasons to include the Rouse
model: Firstly, the Rouse theory is the foundation for modern theories of
polymer dynamics and viscoelasticity. Without it this book would be quite
incomplete. Secondly, in spite of its original intention for a dilute poly-
mer solution, the Rouse theory has been generally accepted as valid for
describing the viscoelastic behavior of an entanglement-free polymer melt
system. A further in-depth experimental study supporting the validity of
the Rouse theory is presented in Chapter 11. It is desirable to compare the
Rouse theory with the Doi–Edwards theory and the extended reptation
theory so that both the entanglement-free and entanglement regions can be
studied in perspective. It is shown in Chapter 11 that the onset molecular
weight of entanglement is equivalent to the entanglement molecular weight
Me determined from the plateau modulus (GN = 4ρRT/5Me). Thirdly,
the extended reptation theory is developed by incorporating the Rouse
motions in the Doi–Edwards theory. Thus, for discussing this topic, it is
quite essential to know the basic elements of the Rouse model.

This book includes a broad range of studies of polymer viscoelastic
properties: basics, molecular theories, and experiments. It also covers
both the entanglement and entanglement-free regions. Moving from one
region to the other is made by either molecular-weight change or concen-
tration change. The linear viscoelastic behavior is studied in Chapters 8–11;
the nonlinear behavior is studied in Chapter 12. And a newly discovered
law is discussed in Chapter 13. On the other hand, this book is limited
mainly to the studies of polystyrene; viscoelastic-spectrum results of nearly
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monodisperse polystyrene samples and their blends predominantly used in
part of this book (Chapters 10–12) have been obtained and published by
myself. Polystyrene is the most accessible system for study. In view of the
universality existing among the flexible polymers as evidenced in several
important cases, the ideas and theories presented in this book, which have
been consistently and quantitatively tested by the experimental results of
polystyrene, should be applicable to other kinds of polymers. To my knowl-
edge, besides those studies of viscoelastic spectra reported by myself, there
are few other studies of such a quantitative nature. It may strike the reader
that the new theories and experimental spectrum results come mainly from
my own work; this is due to the pioneering aspect of this field, to which I
have devoted years of research, as well as the relative scarcity of parallel
in-depth studies. Nevertheless, the agreement between theory and experi-
ment has been further supported by experimental data obtained by Plazek
and O’Rourke, Kramer et al., Lodge et al., Watanabe et al. and others at
various key points.

In terms of the theories based on the tube assumption (aL = 〈R2〉),
quantitative study is only possible for nearly monodisperse systems, due
to the complexity caused by the tube dilation effect, which occurs in the
system of broad molecular-weight distribution. As a result, the theories
presented in the book may be limited from being directly applied to com-
mercial polymers, whose molecular-weight distribution is broad in general.
However, the theories and analyses presented in this book should be useful
and valuable in many aspects of polymer research and development work.
A unique problem in industry is the slip-stick melt fracture phenomenon
that occurs in extrusion. The basic dynamic processes related to the phe-
nomenon are discussed in Chapter 12. Because of the limited space of
this book, the reader is referred to the original work for an explanation of
the phenomenon in terms of the molecular dynamic processes. Since the
viscoelastic properties of nearly monodisperse polymers can be analyzed
quantitatively in terms of the molecular theories, dynamic mechanical mea-
surement can be used very effectively to study the chain motions that cor-
respond to various length-scales above the Rouse-segment size. Thus, very
rich dynamic information can be obtained from the viscoelastic spectra for
comparing studies with other spectroscopies, such as NMR, dielectric relax-
ation, dynamic light scattering, and neutron spin-echo spectroscopy, etc.
Such interplay among different probing techniques should greatly enhance
the studies and applications of chain dynamics.
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Last but not least, I should mention that important concepts from early
studies of polymer viscoelasticity have not been used and described accord-
ing to their historical developments. Here, I should like to refer to the
review by J. D. Ferry,a which covers the key research works in the period
from 1930 to 1970.

Y.-H. Lin
July 2002

aFerry, J. D., Macromolecules 24, 5237 (1991).
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Preface to the Second Edition

The second edition has five additional chapters (Chapters 14–18), which
further explore and extend the scope of the subjects that are covered in
the first edition. These additional chapters incorporate new concepts and
effects that have been developed or discovered in recent years, thanks to a
large extent to the theories and experiments studied in the first edition. To
more closely integrate the new and existing materials, modifications, inser-
tions and additions have been made to the first 13 chapters at appropriate
places.

There are two main themes in the newly added portion, which are com-
plementary to each other: The first (Chapters 14 and 15) are the studies
of viscoelastic response functions over the full dynamic range. The quan-
titative line-shape analyses of viscoelastic responses of polystyrene melts
over the entropic region (modulus values below ∼ 4 × 107 dynes/cm2) cov-
ered in the first edition are extended to the energetic region (modulus
values between ∼ 4 × 107 and ∼ 1010 dynes/cm2). The full-range anal-
yses are carried out using the consistently successful description of the
entropic region by the extended reptation theory (ERT; for entangled sys-
tems) or the Rouse theory (for entanglement-free systems) — extensively
illustrated in Chapters 10 and 11 — as the frame of reference. The scheme
allows the temperature dependence of dynamics in the energetic region
being stronger than that in the entropic region of polystyrene samples to
be analyzed consistently and systematically revealing universal aspects of
the glass transition-related thermorheological complexity. The time and
length scales of the glassy-relaxation process and the basic mechanism
for the thermorheological complexity are evaluated or analyzed in terms
of the molecular pictures as embodied in the ERT (Chapter 9) and the
Rouse theory (Chapter 7). The second theme is the use of the Langevin

xvii
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equation-based Monte Carlo simulations to study fundamental issues at
the “Rouse”-segmental level. Firstly the simulation method is introduced
and illustrated by applying it to the Rouse chain case (Chapter 16), where
quantitative comparisons with the theoretical results (Chapters 3 and 7)
can be made. The simulations of Fraenkel chains reveal previously unknown
mechanisms — unlike the traditional explanations based on the Gaussian
chain — for the occurrence of the entropic Rouse process and the holding of
the (rubbery) stress-optical rule (Chapters 17 and 18). Concurrently, the
Fraenkel chain model provides a theoretical basis for resolving the paradox
that the experimentally determined sizes of the Rouse and Kuhn segments
are nearly the same (Appendix 13.A) and gives a natural explanation for
the coexistence of the energy-driven and entropy-driven modes.

I am grateful to Professors M. D. Ediger and T. Inoue for providing their
data in digital form. The data from Professor Ediger are used in Fig. 15.1.
The data from Professor Inoue allow the analyses of viscoelastic spectra to
be a smooth process, as presented in Chapter 14.

I am thankful to my wife Ling-Hwa for her patience and support through
my research career as well as writing of this book.

Y.-H. Lin
November 2009
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Chapter 1

Conformation of Polymer Chains

1.1 Introduction

A polymer is formed by connecting many small molecules. For example,
with the help of the catalyst, ethylene CH2=CH2 molecules can form long
strings of polyethylene molecules –CH2–CH2–CH2 · · ·CH2–. We refer to
CH2=CH2 as the monomer, a structural unit CH2– in the polymer chain as
the chemical segment, and CH2–CH2– as the monomeric segment. A large
number of different kinds of flexible polymers can be formed from different
monomers. The chemical structure of the monomeric segment is generally
referred to as the microstructure of the polymer. If all the monomers are
the same, the formed polymer is called a homopolymer, such as polystyrene,
poly(α-methyl styrene), etc. If more than two kinds of monomers are used,
the formed polymer can be a random copolymer or a block copolymer. If a
linking agent with multiple arms is added to the monomer in polymeriza-
tion, a polymer with a “star shape” can be formed. The kind of polymer
materials whose viscoelastic properties will be the main subject of study
in this book are the linear flexible polymers, including homopolymers and
random copolymers. As required for making quantitative comparisons with
theories, the samples chosen for study are exclusively well-characterized
nearly monodisperse polymers (Mw/Mn < 1.1), obtained mainly from
anionic polymerization. When the word “polymer” is used in this book,
it means this kind of polymer if no further specification is made. Although
some of the derived conclusions and concepts from the study can be applied
to star polymers and block copolymers, no discussion of them will be made
in this book.

In a melt or solution, a polymer chain can take up an enormous number
of configurations, as each chemical segment has the probability of pointing

1
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in many different directions. In addition, because of the thermal fluctuation
effect, the chain configuration is changing continuously. Thus, to describe
the physical properties of the polymer chain, we can only consider the
probability distribution function for the configuration and calculate the
average value. The static properties of the polymer are studied if it is
in the equilibrium state. The changing behavior of chain configuration
with time is generally referred to as polymer chain dynamics. A large por-
tion of this book is devoted to the study of chain dynamics and how the
polymer viscoelastic properties are affected by them. In the first chapter,
we shall study the polymer chain conformation in the equilibrium state.
The basic theoretical assumptions used to treat the problem also play a
fundamental role in the theories developed for describing various static
and dynamic properties of the polymers. In this chapter, we will study
two chain models: the freely jointed chain model and the Gaussian chain
model. The importance of the latter model will become particularly appar-
ent in the later chapters. In these models, the microstructural details are
ignored. It is also understood that when a model chain of these two types
is compared with a real chain, the length of each segment of the model
is much longer than the microstructural length scale. These chain models
are applicable mainly when the polymer chain is long, i.e. the molecu-
lar weight of the polymer is large. The physical properties that can be
described by the models (such as low-frequency viscoelasticity of a polymer
and the scattering structure factor in the small scattering vector region)
exhibit universal behavior. That is, different kinds of polymers have the
same kind of physical properties regardless of their different microstruc-
ture. Theoretically, this is a consequence of the central limit theorem.1,2

The freely jointed chain model and the Gaussian chain model have sim-
plified the problem greatly and have allowed us to grasp the essential and
universal aspects of the physical properties. Before studying these models
in this chapter, we shall review several basic theories in statistics, which
are not only needed here but also in studying the chain dynamic behavior
in the later chapters.

1.2 Probability Distribution Functions, Moments and
Characteristic Functions

Consider a stochastic variable X . If X has a countable set of realiza-
tions, {xi}, where i = 1, 2, . . . , n (n is either a finite integer or n = ∞),
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a probability distribution function PX(x) can be defined as

PX(x) =
n∑

i=1

piδ(x− xi) (1.1)

where δ(x − xi) is the Dirac delta function (see Appendix 1.A); and pi is
the probability for finding the variable X at xi, which must satisfy the
conditions pi ≥ 0 and Σn

i=1pi = 1. If X can take on a continuous set of
values, such as an interval on the real axis, we assume that there exists a
piecewise continuous function, PX(x), such that the probability that X has
a value in the interval {a ≤ x ≤ b} is given by

Prob(a ≤ x ≤ b) =
∫ b

a

dxPX (x). (1.2)

Then PX(x) is the probability distribution for the stochastic variable, and
PX(x) dx is the probability of finding the stochastic variable in the inter-
val x → x + dx. The probability distribution must satisfy the condition
PX(x) ≥ 0 and

∫∞
−∞ PX(x) dx = 1.

Often we wish to find the probability distribution for another stochastic
variable, Y = H(X), where H(X) is a known function of X . The proba-
bility distribution, PY (y), for the stochastic variable Y , is given by

PY (y) =
∫ ∞

−∞
dx δ(y −H(x))PX (x). (1.3)

If we can determine the probability distribution function PX (x) for the
stochastic variableX , then we have all the information needed to character-
ize it. This sometimes cannot be obtained. However, in that case, we can
often obtain the moments of X . The nth moment of X is defined by

〈xn〉 =
∫ ∞

−∞
dxxnPX(x). (1.4)

The moment, 〈x〉, is also called the mean value of X ; the combination,
〈x2〉 − 〈x〉2, is referred to as the variance of X ; and the standard deviation
of X , σX , is defined by

σX ≡ (〈x2〉 − 〈x〉2)1/2. (1.5)

The moments give us information about the spread and shape of the prob-
ability distribution PX(x). The most important moments are the lower-
order ones since they contain the information about the overall shape of
the probability distribution.
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The characteristic function fX(k), corresponding to the stochastic vari-
able X , is defined by

fX(k) = 〈exp(ikx)〉 =
∫ ∞

−∞
dx exp(ikx)PX (x)

=
∞∑

n=0

(ik)n 〈xn〉
n!

. (1.6)

The series expansion in the equation above is meaningful only if the higher
moments, 〈xn〉, are small so that the series converges. From the series
expansion, we see that it requires all the moments to completely determine
the probability distribution, PX(x). The characteristic function is a con-
tinuous function of k and has the properties that fX(0) = 1, |fX(k)| ≤ 1,
and fX(−k) = f∗

X(k) (∗ denote complex conjugation). The product of two
characteristic function is always a characteristic function. If the character-
istic function is known, the probability distribution, PX(x), is given by the
inverse Fourier transform

PX(x) =
1
2π

∫ ∞

−∞
dk exp(−ikx)fX(k). (1.7)

Furthermore, if we know the characteristic function, we can obtain moments
by differentiating:

〈xn〉 = lim
k→0

(−i)n

[
dn

dkn
fX(k)

]
(1.8)

The probability distribution function can be generalized for more than
one stochastic variable. For simplicity, let us consider two stochastic vari-
ables, X and Y . The joint probability of finding X and Y in the interval
x → x + dx and y → y + dy, respectively, is denoted as PX,Y (x, y) dx dy,
which must satisfy the condition PX,Y (x, y) ≥ 0 and∫ ∞

−∞
dx

∫ ∞

−∞
dy PX,Y (x, y) = 1. (1.9)

The reduced probability distribution PX(x) for the stochastic variable X
is defined by

PX (x) =
∫ ∞

−∞
dy PX,Y (x, y). (1.10)

The reduced probability distribution, PY (y), is obtained in a similar
manner.
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If Z = G(X,Y ), where G(X,Y ) is a known function of X and Y , the
probability distribution PZ(z) for the stochastic variable Z is given as

PZ(z) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy δ(z −G(x, y))PX,Y (x, y). (1.11)

Corresponding to the equation above, the characteristic function for the
stochastic variable Z is then

fZ(k) =
∫ ∞

−∞
dz

∫ ∞

−∞
dx

∫ ∞

−∞
dy exp(izk)δ(z −G(x, y))PX,Y (x, y)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy exp(ikG(x, y))PX,Y (x, y). (1.12)

If X and Y are two independent stochastic variables, then

PX,Y (x, y) = PX (x)PY (y). (1.13)

1.3 A Central Limit Theorem1,2

Let us consider a stochastic variable, YN , which is the deviation from the
average of the arithmetic mean ofN statistically independent measurements
of a stochastic variable, X . YN may be written as

YN =
(X1 +X2 + · · ·+XN )

N
− 〈x〉 = Z1 + Z2 + · · ·+ ZN (1.14)

where

Zi =
(Xi − 〈x〉)

N
. (1.15)

We want to obtain the probability distribution function of YN , PY,N (y).
First, the characteristic function, fZ(k;N), for the stochastic variable, Zi,N ,
can be written as

fZ(k;N) =
∫ ∞

−∞
dz

∫ ∞

−∞
dx exp(ikz)δ

(
z − (x− 〈x〉)

N

)
PX (x)

=
∫ ∞

−∞
dx exp

(
ik

(x− 〈x〉)
N

)
PX (x)

= 1− k2σ2
X

2N2
+ · · · (1.16)
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where σ2
X = 〈x2〉 − 〈x〉2. Then the characteristic function of YN is

fY,N(k) =
∫ ∞

−∞
dy

∫ ∞

−∞
dz1 · · ·

∫ ∞

−∞
dzN exp(iky)δ

(
y −

N∑
i=1

zi

)
N∏

i=1

PZi(zi)

= (fZ(k;N))N

=
(

1− k2σ2
X

2N2
+ · · ·

)N

→ exp
(
−k

2σ2
X

2N

)
as N →∞. (1.17)

Thus, as N →∞,

PY,N (y)→ 1
2π

∫ ∞

−∞
dk exp(−iky) exp

(
−k

2σ2
X

2N

)

=
(

N

2πσ2
X

)1/2

exp
(
−Ny

2

2σ2
X

)
. (1.18)

Regardless of the form of PX (x), if it has finite moments, the average of
a large number of statistically independent measurements of X will be
a Gaussian function centered at 〈x〉, with a standard deviation which is
smaller than the standard deviation of the probability distribution of a
single measurement X , σX , by a factor of N0.5.

If 〈x〉 = 0, and 〈x2〉 = σ2
X is finite, the stochastic variable

RN = X1 +X2 + · · ·+XN = NYN (1.19)

has the following Gaussian distribution

PR(r) =
∫ ∞

−∞
dy δ(r −Ny)PY (y)

=
(

1
2πN〈x2〉

)1/2

exp
(
− r2

2N〈x2〉
)
. (1.20)

Equation (1.20) has many applications in this book, such as the diffusion
motion of a Brownian particle (Appendix 3.D) and the probability distribu-
tion of the end-to-end vector of a long polymer chain. The latter case will be
studied in this chapter. Essentially, 〈x2〉1/2 in Eq. (1.20) can be regarded
as the mean projection of an independent segment (bond) vector in one of
the three coordinate directions (i.e. x, y or z; all three directions are equiv-
alent). As long as the considered polymer chain is very long, we can always
apply the central limit theorem, regardless of the local chemical structure.
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Because the polymer chain is assumed to have an unlimited length, we
can always divide the chain into sections of the same length which are suffi-
ciently long so that each segment (section) is independent of each other, and
at the same time, the number of segments is still very large. Then according
to the central limit theorem, we do not need to fully know the probabil-
ity distribution of a segment vector, as long as it has finite moments, to
obtain the Gaussian distribution for the end-to-end vector of the polymer
chain, with the mean square value being proportional to the number of the
segments. However, as shown below, we shall study the special cases, the
freely jointed chain model and the Gaussian chain model, where the dis-
tribution function for each independent segment is exactly known. A real
chain, which is flexible, yet not infinitely extensible, is shown by simulations
(Chapters 17 and 18) somewhere between these two models.3−6

1.4 The Freely Jointed Chain Model

In the simplest picture, the polymer molecule can be considered as a chain
consisting of N segments with length b, each of which is free of any con-
straint to orient in an arbitrary direction. In other words, the orientation
of a segment is totally independent of other segments in the chain and is
random. Such a chain is referred to as the freely jointed chain model.

In this model, we have a set of N + 1 vectors to indicate the positions
of the joints (including both ends of the chain) relative to the origin of a
chosen coordinate system (see Fig. 1.1(a)):

{Rn} ≡ (R1,R2, . . . ,RN+1).

Corresponding to the set, we have a set of segment vectors:

{bn} ≡ (b1,b2, . . . ,bN )

where

bn = Rn+1 −Rn, n = 1, 2, . . . , N. (1.21)

Because all the segments are of fixed length b and are randomly oriented,
the segmental distribution function for the xth segment is given by

ψ(bx) =
1

4πb2
δ(|bx| − b) (1.22)

which means that finding the bond vector, bx, of the xth segment in the
region bx → bx + dbx has the probability ψ(bx) dbx. The distribution
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Fig. 1.1 (a) Freely jointed chain; (b) Gaussian chain.

function ψ(bx) has been normalized, i.e.∫
ψ(bx) dbx =

1
4πb2

∫ 2π

0

dφ

∫ π

0

sin θ dθ
∫ ∞

0

δ(|bx| − b)|bx|2d|bx|
= 1. (1.23)

Since the orientations of all the segments in the chain are independent of
each other, i.e. all the segmental vectors are independent stochastic vari-
ables, the configurational distribution function Ψ({bn}) can be simply writ-
ten as the product of the random distribution functions for the individual
segments. That is

Ψ({bn}) =
N∏

n=1

ψ(bn). (1.24)

Then the average value of any physical quantity A associated with the
molecular chain can be written as

〈A〉 =
∫
A({bn})Ψ({bn}) db1, db2, . . . , dbN . (1.25)

To describe the size of a chain coil, we consider the end-to-end vector R of
the chain.

R = RN+1 −R1 =
N∑

n=1

bn. (1.26)
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Then

〈R〉 =
N∑

n=1

〈bn〉 = 0. (1.27)

But 〈R2〉 has a finite value.

〈R2〉 =
∑

n

∑
m

〈bn ·bm〉 =
∑

n

〈b2
n〉+ 2

∑
n>m

〈bn ·bm〉. (1.28)

Because bn and bm are independent of each other for n 	= m,

〈bn ·bm〉 = 〈bn〉 · 〈bm〉 = 0 (1.29)

and

〈b2
n〉 = b2. (1.30)

Thus,

〈R2〉 = Nb2. (1.31)

The square root of 〈R2〉, R = 〈R2〉1/2 = N1/2b, is often used to characterize
the size of the chain coil.

In the literature, the so-called Kuhn segment length bk is often used
to express the stiffness of a polymer chain.7−9 bk is defined in terms of the
fully stretched length of a polymer chain L and the mean square end-to-end
distance as

bk =
〈R2〉
L

. (1.32)

The number of segments can be defined by

N =
L

bk
. (1.33)

Thus,

〈R2〉 = Nb2k. (1.34)

Obviously, the freely jointed chain model satisfies Eqs. (1.32)–(1.34).
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1.5 Distribution of the End-to-End Vector

The end-to-end vector of a chain R = ΣN
n=1bn changes as its configuration

changes with time. Let Φ(R, N) dR denote the probability for finding the
end-to-end vector in the region R→ R + dR for a chain with N segments.
Using Eq. (1.11), Φ(R, N) can be calculated from the configurational dis-
tribution function (Eq. (1.24)) as

Φ(R, N) =
∫
db1

∫
db2 · · ·

∫
dbN δ

(
R−

N∑
n=1

bn

)
Ψ({bn}). (1.35)

The characteristic function fR,N (k) for the stochastic variable R is obtained
from Eq. (1.35) as

fR,N(k) =
∫
dR exp(ik ·R)Φ(R, N)

=
[∫

dbx exp(ik ·bx)ψ(bx)
]N

. (1.36)

With the substitution of Eq. (1.22) and the use of the spherical coordinates,
the term in brackets [ ] from Eq. (1.36) is rewritten as (with the direction
of k chosen as the z direction)∫

dbx exp(ik ·bx)ψ(bx)

=
1

4πb2

∫ ∞

0

dbx

∫ 2π

0

dφ

∫ π

0

dθ b2x sin θ exp(ikbx cos θ)δ(bx − b)

=
sin(kb)
kb

. (1.37)

Thus,

fR(k) =
[
sin(kb)
kb

]N

. (1.38)

From the inverse Fourier transformation of Eq. (1.38), we obtain the prob-
ability distribution function for the end-to-end vector R.

Φ(R, N) =
(

1
2π

)3 ∫
dk exp(−ik ·R)

[
sin(kb)
kb

]N

. (1.39)

When N is very large, the contribution of the integrand with kb 
 1
to Φ(R, N) is negligible; the main contribution comes from the integrand
with kb� 1. The reciprocal of k represents a length λ. Physically, we are
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interested in the size of the chain coil, as characterized by the end-to-end
distance R. The magnitude of λ we need to consider is comparable to R

and is much larger than b; in other words, k � 1/b is the range of k of
interest. Thus, under the condition that N is very large, [sin(kb)/kb]N can
be approximated as [

sin(kb)
kb

]N

�
[
1− k2b2

6
· · ·
]N

� exp
(
−Nk

2b2

6

)
. (1.40)

Thus, Φ(R, N) can be written as

Φ(R, N) =
(

1
2π

)3 ∫
dk exp

(
−ik ·R− Nk2b2

6

)
. (1.41)

The integral of Eq. (1.41) is a standard Gaussian integral. Denoting the
components of k and R as kα andRα (α = x, y, z), Eq. (1.41) is expressed as

Φ(R, N) =
(

1
2π

)3 ∏
α=x,y,z

[∫ ∞

−∞
dkα exp

(
−ikαRα − Nk2

αb
2

6

)]

=
(

1
2π

)3 ∏
α=x,y,z

(
6π
Nb2

)1/2

exp
(
− 3R2

α

2Nb2

)

=
(

3
2πNb2

)3/2

exp
(
− 3R2

2Nb2

)
. (1.42)

Thus, as given by Eq. (1.42), the probability distribution function for the
end-to-end vector R is Gaussian. The distribution has the unrealistic fea-
ture that |R| can be greater than the maximum extended length Nb of the
chain. Although Eq. (1.42) is derived on the freely jointed chain model, it is
actually valid for a long chain, where the central limit theorem is applicable,
except for the highly extended states.

1.6 The Gaussian Chain

Here, we consider a chain where the length of each segment has the Gaussian
distribution, i.e.

ψ(bx) =
(

3
2πb2

)3/2

exp
(
−3b2

x

2b2

)
(1.43)
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and

〈b2
x〉 = b2. (1.44)

Then the configurational distribution function of the chain is given by

Ψ({bn}) =
N∏

n=1

(
3

2πb2

)3/2

exp
(
−3b2

n

2b2

)

=
(

3
2πb2

)3N/2

exp

[
−

N∑
n=1

3
2b2

(Rn+1 −Rn)2
]
. (1.45)

A chain with the mathematical properties of Eq. (1.45) is called a Gaussian
chain. As a freely jointed chain, the Gaussian chain does not contain
microstructural details. Compared with a real chain, the distribution
Eq. (1.45) of the Gaussian chain has unrealistic infinite extensibility. Thus,
the Gaussian chain is not expected to be valid in the large deformation
region. From comparison with experimental results, as detailed in the later
chapters, the Gaussian chain model has been shown to accurately describe
the physical properties associated with a sufficiently long chain section or
whole chain in the small deformation region (not much higher than the lin-
ear region). Furthermore, one great advantage of using the Gaussian chain
model is its mathematical simplicity. All the theories studied in this book
are either based on or consistent with the Gaussian chain model. In a few
cases, deviation from the theory will be discussed as related to the finite
extensibility of the actual polymer chain. In particular, the Monte Carlo
simulation studies on the Fraenkel chains4,5 detailed in Chapters 17 and 18
shed light on the merits and deficiencies of the Gaussian chain model. As
shown in Fig. 1.1(b), the Gaussian chain with N segments is considered
equivalent to a chain consisting of N + 1 beads connected by N Hookean
springs. The potential energy of the nth Hookean spring is given by

Vo(Rn+1 −Rn) =
3kT
2b2

(Rn+1 −Rn)2. (1.46)

Here, except for the spring potential, there is no interactional potential
among the beads. The total potential of all the springs in the chain is
expressed as

V ({Rn}) =
3kT
2b2

N∑
n=1

(Rn+1 −Rn)2. (1.47)
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In equilibrium, the Boltzmann distribution of such a bead-spring model is
exactly Eq. (1.45).

The Gaussian chain has an important property: the probability distri-
bution of the vector Rn−Rm between any two beads n and m is a Gaussian
function, i.e.

Φ(Rn −Rm, n−m) =
(

3
2πb2|n−m|

)3/2

exp
[
−3(Rn −Rm)2

2|n−m|b2
]
. (1.48)

Equation (1.48) can be obtained from substituting Eq. (1.45) into an equa-
tion similar to Eq. (1.35) for the vector between any two beads. This
result is simply a special case of the theorem that the sum of any num-
ber of Gaussian stochastic variables is also a Gaussian stochastic variable.
As shown in the later chapters, this theorem finds applications in the study
of chain dynamics as well.10

Equation (1.42), derived on the freely jointed chain model for a long
chain (large N), is the same as Eq. (1.48) of the Gaussian chain model.
In other words, the freely jointed chain model and the Gaussian chain model
are basically the same in describing the physical properties associated with
a long section of a polymer chain. While the distribution (Eq. (1.42))
based on the freely jointed chain model is Gaussian only when N is large,
the Gaussian distribution of the Gaussian chain model (Eq. (1.48)) can
be used between any two beads in the chain. Various calculations can be
greatly simplified by the use of the Gaussian chain model, as will be shown
in later chapters.

Appendix 1.A — The Dirac Delta Function11,12

Consider a particle moving in one-dimensional space, x. A physical event
associated with the particle can often be described in terms of the probabil-
ity distribution of the particle in the real axis x. The probability of finding
the particle in the region, x→ x+ dx, is denoted by p(x) dx. Since a point
does not have a width, it takes a special consideration to describe the state
that the particle is surely at a certain point x′. From such a consideration,
the Dirac delta function δ(x− x′) is obtained. A simple way is to consider
the probability function p(x) given by

p(x− x′) =
1
ε

for |x− x′| ≤ ε

2
= 0 otherwise. (1.A.1)
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It is clear that Eq. (1.A.1) is normalized, i.e.

∫ ∞

−∞
p(x− x′) dx = 1. (1.A.2)

The Dirac delta function is defined by

δ(x− x′) = lim
ε→0

p(x− x′). (1.A.3)

Then

∫ ∞

−∞
δ(x− x′) dx = lim

ε→0

∫ ∞

−∞
p(x− x′) dx = 1 (1.A.4)

and

δ(x− x′) = ∞ for x = x′

= 0 for x 	= x′. (1.A.5)

For any function f(x)

∫ ∞

−∞
f(x)δ(x − x′) dx = lim

ε→0

∫ ∞

−∞
f(x)p(x− x′) dx

= lim
ε→0

∫ x′+ε/2

x′−ε/2

f(x)
ε

dx

= lim
ε→0

[f(x′) +O(ε2)] = f(x′). (1.A.6)

Equation (1.A.3) is not a well-defined mathematical function, which must
have a definite value at every point x where it is defined. Dirac called it an
“improper function,” which has the characteristic that “when it occurs as
a factor in an integrand the integral has a well-defined value.”

Another useful representation of the Dirac delta function is given by

δ(x− x′) =
1
2π

∫ ∞

−∞
exp[ik(x− x′)] dk. (1.A.7)

The properties of the Dirac delta function, namely, Eqs. (1.A.4)–(1.A.6),
can be obtained by substituting the function g(y) into the expression for
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f(x) of the following Fourier transform pair:

f(x) =
∫ ∞

−∞
g(k) exp(ixk) dk (1.A.8)

g(k) =
1
2π

∫ ∞

−∞
f(x) exp(−ikx) dx. (1.A.9)

For a vector r in the three-dimensional space with components x, y, and z,
the Dirac delta function δ(r− r′) is represented as

δ(r− r′) = δ(x − x′)δ(y − y′)δ(z − z′)

=
(

1
2π

)3 ∫
exp[i(r− r′) ·k] dk (1.A.10)

where
∫ · · · dk is understood to mean

∫∞
−∞

∫∞
−∞

∫∞
−∞ · · · dkx dky dkz . It fol-

lows that ∫
f(r)δ(r − r′) dr = f(r′). (1.A.11)
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Chapter 2

Rubber Elasticity

2.1 Introduction

The only difference between a polymer melt and a rubber material is that
the chains in the latter are cross-linked by chemical means. A rubber mate-
rial can be regarded as a huge or macroscopic three-dimensional network
formed of strands of polymer chain with both ends as cross-links. Such a
material, maintaining the softness of a polymer above its melting temper-
ature or glass transition temperature, will recover its original shape after
being released from a deformation. Materials of this nature, such as tire,
rubber, etc. are readily visible in our daily life. Because cross-links in a
rubber keep the chain strands from moving away from their relative posi-
tions over a distance larger than the strand size itself, the chains do not
flow with the deformation and are able to recover their conformations once
the deformation is released. Thus, we only need to consider its elastic prop-
erty. In contrast to this behavior, an un-cross-linked polymer exhibits the
elastic response only under momentary deformations; however, under a pro-
longed deformation, it cannot recover its original shape because the chain
molecules have flowed. For an un-cross-linked polymeric liquid, we need to
consider both the elasticity and viscosity of the material — the main subject
of interest in this book. In Chapter 4, we shall study the viscoelastic behav-
ior of the polymer in linear region phenomenologically. In Chapters 6–12,
we shall study the molecular theories that describe the viscoelastic proper-
ties of the polymers in the entangled and unentangled regions. The basic
physical mechanism that gives rise to rubber elasticity is also responsible
for the rubbery elastic aspect of the viscoelastic behavior of the polymer.1

For our purpose of studying the viscoelastic behavior of a polymer fluid,
we discuss the basic physics responsible for rubber elasticity here.

16
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In Chapter 1, we have shown that the probability distribution of the
end-to-end vector of a freely jointed chain with a sufficiently large num-
ber of segments is Gaussian. Here, we apply the Gaussian distribution to
the vector between two cross-link ends of a strand of polymer chain. The
conformation of such a chain strand in a piece of rubber changes as a defor-
mation is applied to the rubber. To express an entropy change associated
with the conformation change in terms of the Gaussian distribution func-
tion was the pioneering work of James and Guth.2,3 This entropy change is
the origin of the restoring force of a rubber. Before discussing the molecular
statistical model for describing such an effect, we show, by purely thermo-
dynamic analysis of the experimental observations, that rubber elasticity
arises from the entropy change caused by the applied deformation.

2.2 Entropy and Rubber Elasticity

The free energy of a strip of rubber can be written as

A = U − TS (2.1)

where U is the internal energy and S the entropy.
If under a stretching force f , the rubber strip is elongated by a length

dl, the change of the free energy is

dA = f dl − S dT. (2.2)

Then the force can be expressed as

f =
(
∂A

∂l

)
T

=
(
∂U

∂l

)
T

− T
(
∂S

∂l

)
T

=
(
∂U

∂l

)
T

+ T

(
∂f

∂T

)
l

(2.3)

where the Maxwell relation (∂S/∂l)T = −(∂f/∂T )l has been used. It is
observed that in maintaining a constant length l the tensile force f increases
with increasing temperature. (It is more correct experimentally to main-
tain a constant extension ratio l/lo instead of simply constant length l,
where lo, denoting the length of the rubber piece in a strain-free state,
changes with temperature. The constant extension ratio is used to correct
for the so-called thermo-elastic inversion effect4–6 due to the change in vol-
ume of the rubber with temperature. To simplify our discussions here and
below, we use constant length with the understanding that the correction
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has been made.) That is, (∂f/∂T )l > 0, which leads to (∂S/∂l)T < 0.
Thus, the entropy under constant temperature decreases with increasing
elongation. According to Eq. (2.3), the (∂U/∂l)T value can be obtained
from extrapolating the f values measured at different temperatures (above
the glass transition temperature) to the absolute zero temperature. Exper-
imental results indicate that this value is in general much smaller than
−T (∂S/∂l)T .4–6 In other words, the main contribution to the tensile force
arises from the change in entropy with deformation. An ideal rubber is
defined as having (∂U/∂l)T = 0.

Rubber elasticity and gas pressure arise from the same thermodynamic
principle. Corresponding to Eqs. (2.2) and (2.3), we have

dA = −P dV − S dT (2.4)

and

P = −
(
∂A

∂V

)
T

= −
(
∂U

∂V

)
T

+ T

(
∂S

∂V

)
T

(2.5)

for a gas. For an ideal gas (∂U/∂V )T = 0. Thus, the pressure of a gas
arises from the entropy change caused by a change in volume.

2.3 Molecular Theory for Rubber Elasticity

Consider a strand of polymer chain between two cross-links. The vector R
between the positions of the two cross-links changes with deformation. Any
molecular theory on rubber elasticity is based on the probability distribu-
tion function for R. As seen in Chapter 1, if the number of segments N on
the strand is large, the probability distribution Φ(R, N) of the end-to-end
vector R is a Gaussian function

Φ(R, N) =
(

3
2πNb2

)3/2

exp
(
− 3R2

2Nb2

)

=
(

3
2πNb2

)3/2

exp
[
− 3

2Nb2
(X2 + Y 2 + Z2)

]
= W (X,Y, Z) (2.6)

where X , Y and Z are the three components of R, and b is the length of
the segment in the freely jointed chain model.

There are a large number of configurations, Ω, for the chain strand with
a large N , which can all lead to the same end-to-end vector R. For a freely



June 29, 2010 12:9 WSPC/Book Trim Size for 9in x 6in b959-ch02 FA

Rubber Elasticity 19

jointed chain, all these individual configurations have the same energy and
the same probability of occurring. Thus, the number of configurations Ω at
a certain R is proportional to the probability distribution function Φ(R, N).
According to the Boltzmann equation, the entropy for the chain strand can
be written as

s = k ln(Ω). (2.7)

As

Ω ∝W (X,Y, Z) (2.8)

using Eq. (2.6), the entropy can be expressed as

s = − 3k
2Nb2

(X2 + Y 2 + Z2) + C (2.9)

where C is a constant. Since we are only interested in the change of entropy
with deformation, the constant C plays no role, as it will be cancelled out
when the difference is taken.

Consider the application of a uniaxial extension to a rectangular block
of rubber, as shown in Fig. 2.1. The lengths of the three sides of the block
are denoted by Lo

x, Lo
y and Lo

z before deformation, and by Lx, Ly and
Lz after deformation. We may choose any chain strand in the piece of
rubber and let its one cross-link end be fixed at the origin of the coordinate
system and denote the position of the other end at Ro = (Xo, Yo, Zo) before
deformation and at R = (X,Y, Z) after deformation (Fig. 2.2). If the

y

x

y

z

x

Lx
o

Ly
o

Lz
o

Ly

Lz

z

Lx

Fig. 2.1 Uniaxial extension of a rectangular block of rubber.
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y

z

x

(X,Y,Z)

(Xo,Yo,Zo)

O

Fig. 2.2 Spatial configurations of a polymer strand in a piece of rubber before and after

the application of a deformation as shown in Fig. 2.1.

displacement from Ro to R is linearly proportional to the deformation of
the whole piece of rubber (such a deformation is referred to as the affine
deformation),

X

Xo
=
Lx

Lo
x

= λ1 (2.10)

Y

Yo
=
Ly

Lo
y

= λ2 (2.11)

Z

Zo
=
Lz

Lo
z

= λ3. (2.12)

Furthermore, we assume that the density of the rubber does not change
with the deformation. Then we have the relation

λ1λ2λ3 = 1. (2.13)

Because of the symmetry of the deformation (λ2 = λ3), from Eq. (2.13),
we obtain

λ2 = λ3 =
1√
λ1

. (2.14)

According to Eq. (2.9), the entropies before and after deformation, denoted
by so and s respectively, are given by

so = − 3k
2Nb2

(X2
o + Y 2

o + Z2
o ) + C (2.15)

s = − 3k
2Nb2

(X2 + Y 2 + Z2) + C. (2.16)
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Using Eqs. (2.10)–(2.12) and (2.14), the entropy change associated with the
single chain strand due to the deformation can be written as

∆s = s− so = − 3k
2Nb2

[
(λ2

1 − 1)X2
o +

(
1
λ1
− 1
)
Y 2

o +
(

1
λ1
− 1
)
Z2

o

]
.

(2.17)

If there are n chain strands in the total volume of the rubber piece V =
Lo

xL
o
yL

o
z = LxLyLz, and the rubber is isotropic in its equilibrium state

before the deformation is applied, the total change in entropy ∆S can be
obtained by multiplying Eq. (2.17) by n and replacing X2

o , Y 2
o , and Z2

o by
their equilibrium average value, namely,

〈X2
o 〉 = 〈Y 2

o 〉 = 〈Z2
o 〉 =

〈R2〉
3

=
Nb2

3
. (2.18)

Thus, with the energetic contribution neglected, the total change in free
energy due to the deformation is given by

∆A = −T∆S =
nkT

2

(
λ2

1 +
2
λ1
− 3
)

(2.19)

which, using the definition of λ1 (Eq. (2.10)), can be rewritten as

∆A =
nkT

2

(
L2

x

Lo2
x

+ 2
Lo

x

Lx
− 3
)
. (2.20)

Then the force f applied to the piece of rubber in the x direction is given
by (Eq. (2.3))

f =
[
∂(∆A)
∂Lx

]
T,V

= nkT

(
Lx

Lo2
x

− Lo
x

L2
x

)
. (2.21)

The corresponding stress is defined by

σ = − f

LyLz
= −nkT

V

(
λ2

1 −
1
λ1

)
. (2.22)

In the literature, for practical purposes, the initial area of the cross section is
sometimes used to express the “stress” (often referred to as the engineering
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stress or the nominal stress)

σ′ = − f

Lo
yL

o
z

= −nkT
V

(
λ1 − 1

λ2
1

)
. (2.23)

If the molecular weight of a chain strand between two cross-links is Mx,

n

V
=
ρNA

Mx
(2.24)

where ρ is the density of the rubber material and NA the Avogadro number.
Using Eq. (2.24), Eq. (2.22) can be expressed as

σ = −G
(
λ2

1 −
1
λ1

)
(2.25)

where the modulus G is given by

G =
ρRT

Mx
(2.26)

with R being the gas constant.
From the measurement of the stress at a certain deformation λ1, the

modulus G can be determined. Then, using Eq. (2.26), we can calculate
the Mx value from the obtained G value. This is a useful way to estimate
the degree of cross-linking in a rubber material.

Shown in Fig. 2.3 is the comparison between Eq. (2.23) and the exper-
imental result.2 Except at the high extension ratio, the agreement of
Eq. (2.23) with experiment is good; the experimental “knee” is well repro-
duced by the theory. Deviation of the experimental result of the “stress”-
strain relation from that given by Eq. (2.23) begins to occur at around
λ1 = 3.5. The main cause for the deviation can be attributed to two main
effects:5,6

(1) The use of the Gaussian function to describe the conformation of a
chain strand allows it to be stretched infinitely. In reality, the maximum
length of a polymer chain is limited by the rigid chemical bond lengths and
angles of its microstructure. At a highly stretched state of the chain, the
force, derived from the potential-energy changes which occur as the lengths
and angles of the chemical bonds are affected by the applied deformation,
will start to contribute to the total tensile stress.

(2) As (∂S/∂l)T < 0, the entropy of a rubber material decreases with
elongation. If the microstructure of the rubber has enough symmetry to
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0 1.0 2.0 3.0 4.0

Fig. 2.3 Comparison of experimental and theoretical (Eq. (2.23)) length-force rela-
tions for rubber in a typical case. The vertical scale has been adjusted for the best fit.
Reproduced, by permission, from Ref. 2.

allow crystallization to occur, the melting point Tm of a formed crystallite
is determined by the enthalpy ∆Hf and entropy ∆Sf of fusion as

Tm =
∆Hf

∆Sf
. (2.27)

Now, in a deformed state the entropy of the rubber is reduced; the entropy
change ∆Sf involved in the first-order transition from the deformed rub-
ber to the crystalline state is also reduced. With ∆Hf being basically
unchanged, the reduction of ∆Sf leads to significant increase in the melt-
ing point Tm, when a large deformation is applied. In other words, cry-
tallization in a rubber occurs much more easily when a large deformation
is applied. The crystallites in the rubber, formed at large deformations,
will act as additional “cross-links” and will greatly enhance the observed
stress when additional deformation is applied. It is well known that natural
rubber has such an effect.5,6

Finally, it is interesting and helpful to make a comparison between rub-
ber elasticity and gas pressure from the view point of statistical thermody-
namics. A gas particle (atom or molecule) has more space to move about
in a large container than in a small one. In other words, the total num-
ber of the states available for the gas particle to occupy, all having the
same potential energy, is proportional to the volume V of the container.
Thus, corresponding to Eq. (2.9), the entropy of the gas particle can be
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expressed as

s = k ln(V ) + C (2.28)

where C is just a constant. If there are n particles in the container and
the interactions among the particles can be ignored because the gas is very
dilute, the total entropy is

S = k ln(V n) + nC = nk ln(V ) + nC. (2.29)

Then the pressure P is given by

P = −
(
∂A

∂V

)
T

= T

(
∂S

∂V

)
T

=
nkT

V
(2.30)

which is the ideal gas law and is equivalent to Eq. (2.22) for the ideal rubber.
The basic physical effect responsible for rubber elasticity can be applied

to any length of polymer chain which is sufficiently long. In a poly-
meric liquid, whose concentration is high and whose polymer chains are
long, entanglements between polymer chains can occur. As we shall see
in Chapters 8–12, an entanglement can be treated as an impermanent
crosslink. Chain slippage through entanglement links will occur to equili-
brate the uneven segmental distribution caused by the applied deformation.
Before the chain slippage mechanism has a chance to take place after a step
deformation is applied, the entanglement links can be regarded as fixed; the
measured modulus (in the linear region) can be used to calculate the entan-
glement molecular weight Me by using Eq. (2.26) (Mx is regarded as Me).
In a rubber, a chain strand can have an entanglement with another strand,
which cannot become freed because of the cross-links; in other words, the
measured modulus receives contributions from both cross-links and entan-
glements. Various models have been proposed to describe the additional
effect from entanglement in a rubber.7,8 The application of Eq. (2.26) to a
polymeric liquid to calculate Me from the measured modulus as mentioned
above is more exactly defined experimentally, as there is only the imperma-
nent type of cross-link, namely, entanglement in the system.a As it turns
out, the obtained Me value plays a pivotal role in the universal behavior of
polymer viscoelasticity in the entanglement region; it is the basic structural
size in terms of which the molecular weight of a polymer can be expressed

aThe so-called plateau modulus is often used to calculate Me. In doing so, the equation
used is that of Eq. (2.26) multiplied by a factor of 4/5, which accounts for the effect of
chain slippage through entanglement links. See Chapters 8–11 for the details.
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or normalized. The important role of Me will be extensively covered in
Chapters 8–14.
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Chapter 3

Polymer Chain Dynamics

3.1 Introduction

Consisting of a large number of atoms, a polymer chain molecule has a
very large number of degrees of freedom. Corresponding to the large num-
ber of degrees of freedom, the polymer chain dynamics cover a very broad
range of motional rates. The vibrational motions of the chemical bonds
excluded, polymer chain dynamics range from the local segmental motions
in the high-frequency region (∼ 109 s−1) to the slow movement of the whole
chain over a distance of the whole-chain size scale (for instance, the char-
acteristic rate can be easily as slow as 10−5 s−1 for a polymer of common
molecular weight, say 5× 105). A general rule is that the slower the mode
of motion, the larger the involved domain of the chain. Almost all the
physical properties of the polymer, such as viscoelasticity, diffusion, and
the glass-rubber transition phenomenon, are in various degrees related to
the chain dynamics in different frequency ranges.

To probe various modes of chain motions often requires using differ-
ent kinds of measurement techniques. As shown in Fig. 3.1, starting from
the high-frequency region, the commonly used measurement techniques
are Rayleigh–Brillouin Scattering;1–3 NMR spin-lattice relaxation times in
the laboratory frame and in the rotating frame;4,5 dielectric relaxation;6

dynamic depolarized Rayleigh scattering;7–11 quasi-elastic (spin-echo) neu-
tron scattering;12−14 dynamic mechanical spectrum (or dynamic vis-
coelastic spectrum);15–21 and diffusion (including radiolabeling,22 forward
recoil spectrometry,23 marker displacement,24 forced Rayleigh scattering,25

pulsed field gradient spin echo NMR26 etc.). It is of great research interest
and importance to relate the different modes of chain motions as probed
by these different techniques. In certain aspects, theoretical advances have

26
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Fig. 3.1 Chain dynamics at different length scales: microstructure, Rouse segment,

entanglement strand, and whole chain; and some of the usual techniques for probing
them.

made the linkages. In particular, the quantitative relation between the
polymer viscoelastic properties and the diffusion constant27 will be dis-
cussed in detail in the later chapters of this book.

As shown in Chapter 1 for the static properties, universality occurs if
the conformation and motions associated with a large chain section can be
described in terms of the Gaussian chain model. Chain dynamics described
in terms of the Gaussian chain picture in the free-draining limit are the well-
known Rouse motions.28 And each bead-spring segment is often referred to
as a Rouse segment. In this chapter, we shall discuss the basic features
in the Rouse model. Another structural size scale — the entanglement
strand — is implied in Fig. 3.1. Each entanglement point is pictured as a
slip-link. The constraint effect of the slip-links on the motions of a polymer
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chain will be studied in detail in Chapters 8–12. The major part of this
book deals with chain motions related to size scales equal to or greater than
that of a single Rouse segment.

Rouse motions arise from subjecting each bead of the Gaussian chain
to thermal fluctuation forces — Brownian motion. Thus, we first study
the basic theory of Brownian motion. We treat the Brownian motion
as a stochastic process and, on the basis of known macroscopic laws,
to develop a phenomenological equation to describe the Brownian motion.
This approach, originated by Einstein,29,30 is limited by several conditions,
such as that a linear relation holds between fluxes and forces, and that the
time-scale of the motion under consideration and its associated size scale
(typically the Rouse segment size for a polymer) must be much greater
than those characteristic of the small molecules in the fluid (including the
microstructural segments in the case of the polymer). In terms of the
motions illustrated in Fig. 3.1 for the polymer, the microstructural motions,
as can be probed by Rayleigh–Brillouin scattering and NMR relaxations,
are much faster than the motions associated with a Rouse segment or a
larger chain section and, in the absence of solvent molecules, are the main
source of the fluctuation forces experienced constantly by the Rouse bead.

There are two forms of phenomenological equations for describing
Brownian motion: the Smoluchowski equation and the Langevin equation.
These two equations, essentially the same, look very different in form.
The Smoluchowski equation is derived from the generalization of the diffu-
sion equation and has a clear relation to the thermodynamics of irreversible
processes. In Chapters 6 and 7, its application to the elastic dumbbell model
and the Rouse model to obtain the rheological constitutive equations will
be discussed. In contrast, the Langevin equation, while having no direct
relation to thermodynamics, can be applied to wider classes of stochastic
processes.31 In this chapter, it will be used to obtain the time-correlation
function of the end-to-end vector of a Rouse chain.

3.2 The Smoluchowski Equation

Consider the Brownian particles dissolved in a solution. The Brownian
particles will diffuse from the higher concentration region to the lower con-
centration region. For simplicity, we consider one-dimensional diffusion.
Let C(x, t) be the concentration at position x and time t. The diffusion
process is phenomenologically described by Fick’s law, which says that the
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flux, j(x, t), is proportional to the spatial gradient of the concentration, i.e.

j(x, t) = −D∂C
∂x

(3.1)

where the constant D is called the diffusion constant.32

Let us assume D is a constant; then Eq. (3.1), together with the conti-
nuity equation

∂C

∂t
= − ∂j

∂x
(3.2)

gives the diffusion equation,

∂C

∂t
= D

∂2C

∂x2
. (3.3)

If an external potential field V (x) is applied to the particle, Fick’s law needs
to be modified. As the potential V (x) exerts a force

F = −∂V
∂x

(3.4)

on the particle, the average velocity of the particle v becomes non-zero.
If F is not large, v is proportional to F , i.e.

ζv = F = −∂V
∂x

(3.5)

where ζ is called the friction constant. Then the total flux becomes

j = −D∂C
∂x

+ Cv = −D∂C
∂x
− C

ζ

∂V

∂x
. (3.6)

From Eq. (3.6), an important relation can be obtained as in the following:
In the equilibrium state, the concentration C(x, t) follows the Boltzmann
distribution

Ceq(x) ∝ exp
(
−V (x)

kT

)
(3.7)

and the total flux must vanish:

−D ∂

∂x
Ceq − Ceq

ζ

∂V

∂x
= 0. (3.8)

From Eqs. (3.7) and (3.8), it follows that in equilibrium

D =
kT

ζ
. (3.9)

This equation is the well-known Einstein relation.
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The Einstein relation states that, for particles (or a particle) undergoing
thermal motion, the quantity D which characterizes the diffusion process is
related to the quantity ζ which specifies the response to an external force.
Substituting Eq. (3.9) into Eq. (3.6), one obtains

j = −1
ζ

(
kT

∂C

∂x
+ C

∂V

∂x

)
. (3.10)

From Eqs. (3.2) and (3.10), it follows that

∂C

∂t
=

∂

∂x

1
ζ

(
kT

∂C

∂x
+ C

∂V

∂x

)
. (3.11)

This equation is called the Smoluchowski equation.
The Smoluchowski equation can be obtained more formally from the

concept of chemical potential. Equation (3.10) can be rewritten as

j = −C
ζ

∂

∂x
(kT lnC + V ) (3.12)

which has a thermodynamic significance. The quantity kT lnC + V is the
chemical potential of noninteracting particles of concentration C. Thus
Eq. (3.12) indicates that the flux is proportional to the spatial gradient of
the chemical potential and that when the external field is nonzero, what
must be balanced in the equilibrium is not concentration but the chemical
potential.

Defining the flux velocity by vf ≡ j/C, we obtain from Eq. (3.12)

vf = −1
ζ

∂

∂x
(kT lnC + V ). (3.13)

Then the Smoluchowski equation (Eq. (3.11)) is derived from the continuity
equation

∂C

∂t
= − ∂

∂x
(Cvf ). (3.14)

Consider a particle undergoing thermal motion. If we denote the prob-
ability for finding the particle at x and t as Ψ(x, t), the above equations are
equally valid with C(x, t) replaced by Ψ(x, t). For non-interacting particles,
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the only difference between C(x, t) and Ψ(x, t) is that the latter is normal-
ized while the former is not. Thus, the evolution equation for Ψ(x, t) is

∂Ψ
∂t

=
∂

∂x

1
ζ

(
kT

∂Ψ
∂x

+ Ψ
∂V

∂x

)
(3.15)

which is also called the Smoluchowski equation.
It is easy to generalize Eq. (3.15) for a system which has many degrees

of freedom. Let {xs} ≡ (x1, x2, . . . , xN ) be the set of dynamical variables
describing the state of Brownian particles. We need to know first the rela-
tion between the average velocity vn and the force Fm = −∂V/∂xm. Such
a relation is generally expressed as

vn =
∑
m

Lnm({xs})Fm (3.16)

where the coefficients Lmn are called the mobility matrix and can be
obtained using hydrodynamics. It can be proved that Lmn is a symmetric
positive definite matrix,30,33 i.e.

Lmn = Lnm;
∑

n

∑
m

FnFmLnm ≥ 0 for all Fn. (3.17)

Corresponding to Eq. (3.13), we can write the flux velocity as

vfn = −
∑
m

Lnm
∂

∂xm
(kT ln Ψ + V ). (3.18)

Using the continuity equation

∂Ψ
∂t

= −
∑

n

∂

∂xn
(vfnΨ) (3.19)

the Smoluchowski equation is obtained as

∂Ψ
∂t

=
∑

n

∑
m

∂

∂xn
Lnm

[
∂

∂xm
(kT ln Ψ + V )

]
Ψ. (3.20)

We will discuss Eq. (3.20) further in Chapters 6 and 7, where it will be
used to obtain the rheological constitutive equations of the elastic dumbbell
model and the Rouse chain model.



August 18, 2010 18:23 WSPC/Book Trim Size for 9in x 6in b959-ch03 FA

32 Polymer Viscoelasticity

3.3 The Langevin Equation

An alternative way for describing Brownian motion is to study the equation
of motion for the Brownian particle with the random force f(t) written
explicitly. This equation — the Langevin equation with the inertial term
neglected (i.e. zero acceleration) — expresses the balance of the external,
friction, and fluctuation forces:

ζ
dx

dt
= −∂V

∂x
+ f(t) (3.21)

or

dx

dt
= −1

ζ

∂V

∂x
+ g(t).

Physically, the random force f(t) = ζg(t) represents the sum of the forces
arising from the ceaseless collisions with the fast moving small molecules
(including microstructural segments) in the fluid. As we cannot know the
precise time dependence of the random force, we regard it as a stochastic
variable with an assumed plausible distribution Ψ[f(t)]. It can be shown
that if the distribution of f(t) is Gaussian characterized by the moments

〈f(t)〉 = 0 (3.22)

or

〈g(t)〉 = 0

and

〈f(t)f(t′)〉 = 2ζkT δ(t− t′) (3.23)

or

〈g(t)g(t′)〉 = 2Dδ(t− t′)
the distribution of x(t) determined by Eq. (3.21) satisfies the Smoluchowski
equation (Eq. (3.11)).

The Langevin equation corresponding to the Smoluchowski equation
of multiple stochastic variables — Eq. (3.20) — with the condition
∂Lnm/∂xm = 0, which is often true, is given by31,33

dxn

dt
=
∑
m

Lnm

(
− ∂V

∂xm

)
+ gn(t) (3.24)
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where the mean and variance–covariance of gn are given, respectively, by

〈gn(t)〉 = 0 (3.25)

and

〈gn(t)gm(t′)〉 = 2LnmkT δ(t− t′). (3.26)

The Langevin equation and the Smoluchowski equation represent the same
motion. Each of the equations has its advantages and disadvantages in
solving the dynamic problems of interest. One would choose one over the
other for its convenience in treating the problem of interest.

3.4 The Rouse Model

As discussed in Chapter 1, a Gaussian chain is physically equivalent to
a string of beads connected by harmonic springs with the elastic constant
3kT/b2 (Eq. (1.47) with b2 given by Eq. (1.44)). Here each bead is regarded
as a Brownian particle in modeling the chain dynamics. Such a model was
first proposed by Rouse and has been the basis of molecular theories for
the dynamics of polymeric liquids.15,16,34

Let {Rn} ≡ (R1,R2, . . . ,RN ) be the position vectors of the beads in a
Gaussian chain (see Fig. 3.2). Then the motions of the beads are described

Fig. 3.2 Gaussian chain formed from N − 1 “springs” and N “beads” at positions:
R1, R2, . . . ,RN relative to an arbitrary point in space. bn = Rn+1 − Rn is the bond
vector, and Rc is the position of the center of mass (cm) for dn = Rn − Rc and
ΣN

n=1dn = 0.
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by the following Smoluchowski equation

∂Ψ
∂t

=
N∑

n=1

N∑
m=1

∂

∂Rn
·Lnm ·

[
∂

∂Rm
(kT ln Ψ) +

∂V

∂Rm

]
Ψ. (3.28)

When Eq. (3.28) is expressed in the form of Eq. (3.20), the mobility matrix
L for a chain of N beads will have the dimension 3N × 3N .

In the Rouse model, the hydrodynamic interaction35,36 and the excluded
volume interaction37–39 among beads are disregarded and the mobility ten-
sor and the interaction potential are given by

Lnm =
δ

ζ
δnm (3.29)

V =
3kT
2b2

N∑
n=2

(Rn −Rn−1)2 (3.30); (1.47)

where δ is the unit tensor (see Eq. (5.A.10)).
The Langevin equation corresponding to Eq. (3.28) is

dRn

dt
= −3kT

ζb2
(2Rn −Rn+1 −Rn−1) + gn(t) (3.31)

for the internal beads (n = 2, 3, . . . , N − 1), and

dR1

dt
= −3kT

ζb2
(R1 −R2) + g1(t) (3.32)

dRN

dt
= −3kT

ζb2
(RN −RN−1) + gN (t) (3.33)

for the end beads (n = 1 and N). The random fluctuation gn is Gaussian,
characterized by the moments which are given by substituting Eq. (3.29)
into Eqs. (3.25) and (3.26),

〈gn(t)〉 = 0 (3.34)

〈gnα(t)gmβ(t′)〉 =
2kT
ζ
δnmδαβδ(t− t′) (3.35)

where α and β represent the x, y and z coordinates.
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3.5 Diffusion Motion of the Rouse Chain

The diffusion motion of a polymer chain is the translational behavior of its
center of mass Rc(t) defined by

Rc(t) =
1
N

N∑
n=1

Rn(t). (3.36)

By summing the N equations as given by Eqs. (3.31)–(3.33), we obtain

dRc

dt
=

1
N

N∑
n=1

gn(t). (3.37)

Thus

〈(Rc(t)−Rc(0))2〉 =
1
N2

N∑
n=1

N∑
m=1

∫ t

0

∫ t

0

〈gn(t′) ·gm(t′′)〉 dt′dt′′. (3.38)

Using Eq. (3.35), one obtains from Eq. (3.38)

〈(Rc(t)−Rc(0))2〉 = 6kT t
ζN

. (3.39)

The diffusion constant of the center of mass is defined by

DG = lim
t→∞

〈(Rc(t)−Rc(0))2〉
6t

. (3.40)

From Eqs. (3.39) and (3.40)

DG =
kT

ζN
. (3.41)

This result means that the diffusion constant for the whole Rouse chain is
simply 1/N of the diffusion constant for the individual bead (kT/ζ).

3.6 The Rouse Normal Modes of Motion

Besides the diffusion motion, the dynamics of a polymer chain are also
characterized by its internal motions, which can be expressed in terms of
the normal modes.

With the bond vector bn defined by

bn = Rn+1 −Rn. (3.42)
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Equations (3.31)–(3.33) can be rewritten as

d

dt




b0

b1

b2

·
·

bN−2

bN−1




= −3kT
ζb2




2 −1 0 0 · · 0
−1 2 −1 0 0 · 0

0 −1 2 −1 0 · 0
· · · · · · ·
· · · · · · ·

0 0 · 0 −1 2 −1
0 0 · · 0 −1 2







b0

b1

b2

·
·

bN−2

bN−1




+




g2(t)− g1(t)
g3(t)− g2(t)
g4(t)− g3(t)

·
·

gN−1(t)− gN−2(t)
gN (t)− gN−1(t)




(3.43)

which can also be expressed as

dbs

dt
= −3kT

ζb2

N−1∑
t=1

Astbt + (gs+1(t)− gs(t))

for s = 1, 2, . . . , N − 1 (3.44)

where (Ast) is often called the Rouse matrix given by

Ast = 2δst − δs+1,t − δs−1,t. (3.45)

Here the normal procedure is to do the transformation from the bond vec-
tors {bs} to the normal coordinates {qt} which will diagonalize the Rouse
matrix (Ast). As shown in Appendix 3.A, the Rouse matrix has the eigen-
values:

ap = 4 sin2

(
pπ

2N

)
for p = 1, 2, . . . , N − 1. (3.46)

We can express the transformation as

bs =
N−1∑
t=1

Ustqt. (3.47)
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As shown in Appendix 3.A,

Ust =

√
2
N

sin
(
sπt

N

)
(3.48)

(Ust) is an orthogonal matrix, whose transpose is the inverse matrix, i.e.

U−1
st = UT

st

or
N−1∑
t=1

UtsUtu = δsu. (3.49)

Using Eqs. (3.47) and (3.49), we can obtain from Eq. (3.44)

dqp

dt
= −3kT

ζb2

N−1∑
s=1

N−1∑
t=1

N−1∑
u=1

UspAstUtuqu + hp(t)

= −3kT
ζb2

apqp + hp(t) (3.50)

where

hp(t) =
N−1∑
s=1

Usp(gs+1(t)− gs(t)). (3.51)

Obviously from Eq. (3.34)

〈hp(t)〉 = 0. (3.52)

By using Eq. (3.35), the substitution of Eq. (3.48) into Eq. (3.51) gives

〈hpα(t)hqβ(t′)〉 =
8kT
ζ

sin2(pπ/2N)δαβδpqδ(t− t′). (3.53)

Following the procedure shown in Appendix 3.B for solving the Langevin
equation of a particle in a simple harmonic potential, we obtain from
Eq. (3.50) in combination with Eqs. (3.52) and (3.53)

〈qp(t) ·qq(0)〉 = δpqb
2 exp

(
− t

τp

)
(3.54)

with

τp =
ζb2

3kTap
=

ζb2

12kT sin2(pπ/2N)
. (3.55)
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The normal coordinate qp with p being a positive integer represents the pth
internal or intramolecular mode of motion of the polymer chain. Equation
(3.54) indicates that if p �= q, the pth mode of motion is not correlated with
the qth mode. Equation (3.55) can be expressed as

τp = K
π2M2

12N2 sin2(pπ/2N)
(3.56)

where K, which we refer to as the frictional factor, is independent of the
molecular weight and is given by

K =
ζb2

kTπ2m2
(3.57)

with m = M/N denoting the mass per Rouse segment.
The above results of the normal modes {qp(t)} allow the numerous

internal motions of the polymer chain to be classified into independent
modes. Consider for example the end-to-end vector

R(t) ≡ RN (t)−R1(t) =
N−1∑
s=1

bs(t). (3.58)

Substituting Eqs. (3.47) and (3.48) into Eq. (3.58), the time correlation
function of the end-to-end vector, after some algebraic derivation, can be
expressed in terms of the normal modes as40

〈R(t) ·R(0)〉 =
N−1∑

p=1,3,...

2b2

N
cot2

(
pπ

2N

)
exp

(
− t

τp

)
(3.59)

where p’s are odd integers, the largest of which is N−1 for N being an even
number and N − 2 for N being an odd number. When N →∞, Eq. (3.59)
can be reduced as

〈R(t) ·R(0)〉 =
∑

p=odd

2b2

N

4N2

π2p2
exp

(
− t

τp

)

= Nb2
∑

p=odd

8
π2p2

exp
(
− t

τp

)
(3.60)

with

τp =
ζN2b2

3kTπ2p2
=
τ1
p2

(3.61)
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where

τ1 =
ζN2b2

3kTπ2
= K

M2

3
(3.62)

which is in agreement with the result obtained from the continuous Rouse
mode33 (Appendix 3.C). Physically 〈R(t) ·R(0)〉 mainly represents the
reorientation motion of the polymer molecule with the rotational relax-
ation time τr. Because of the strong 1/p2 dependence of the relaxation
strengths of the odd modes in Eq. (3.60), τr is basically equivalent to τ1.

In summary, we have used the Rouse chain model to obtain the diffusion
constant of the center of mass and the time-correlation function of the end-
to-end vector, which reflects the rotational motion of the whole polymer
molecule. Since N is proportional to the molecular weight M , and K is
independent of molecular weight, Eqs. (3.41) and (3.62) indicate that DG

and τr depend on the molecular weight, respectively, as

DG ∝ 1
M

(3.63)

and

τr ≈ τ1 ∝M2. (3.64)

These predictions do not agree with the experimental results of polymer
chains in dilute θ solutions,41–45 which are summarized as

DG ∝ 1√
M

(3.65)

and

τr ∝M 3/2. (3.66)

The disagreement arises from neglecting the hydrodynamic interaction in
the dilute solution. Thus, in spite of its original intention, the Rouse model
is now considered an inappropriate model for the polymer in a dilute solu-
tion. However, the model is very important conceptually in the theoretical
developments of polymer chain dynamics. And the Rouse model has been
found to describe very well the viscoelastic behavior of a melt18 or a blend
solution46 where polymer chains are sufficiently long for the Gaussian chain
model to be applicable but not long enough to form entanglements (see
Chapter 11).

As shown in Eq. (3.62), the relaxation time τ1 is the product of the fric-
tional factor K which is independent of molecular weight and a structural
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factor, which is a certain function of molecular weight. All the tempera-
ture dependence of the relaxation time is contained in the frictional factor,
which in a polymer melt or concentrated solution system is often described
by the Vogel–Tammann–Fulcher (VTF) equation47−49 or equivalently the
Williams–Landel–Ferry (WLF) equation.50,51 In Chapters 6–9, 12 and 14,
we shall see more relaxation times expressed as a product of the frictional
factor K and a structural factor for different modes of motion. We will also
see that the relaxation modulus or viscoelastic spectrum of a polymer is
expressed in terms of the normal modes.

As indicated by Eqs. (3.41) and (3.55), the molecular translational
motion and the internal modes of motion of a Rouse chain ultimately
depend on the diffusion constant of each individual Rouse bead, D = kT/ζ.
The diffusion of a Brownian particle (Eq. (3.3)) can be simulated by the
random walk model as shown in Appendix 3.D, which in turn can be used to
introduce the diffusion process into different discrete-time models of poly-
mer dynamics (Chapters 8 and 16–18).

Appendix 3.A — Eigenvalues and Eigenvectors of the
Rouse Matrix

Consider the Rouse matrix (Ast) of the dimension z× z. The z eigenvalues
a1, a2, a3, . . . , az of the matrix are the roots of the equation obtained by
setting the determinant Dz = |Ast − aδst| equal to zero, i.e.

Dz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 · · 0
−1 x −1 0 · · 0
0 −1 x −1 0 · 0
· · · · · · ·
· · · · · · ·

0 0 · 0 −1 x −1
0 0 0 · 0 −1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (3.A.1)

where

x = 2− a. (3.A.2)

From Eq. (3.A.1), the recursion rule is found as follows:

Dz = xDz−1 −Dz−2 (3.A.3)
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with

D1 = x (3.A.4)

and

D2 = x2 − 1. (3.A.5)

We may express x as

x = 2 cos θ = exp(iθ) + exp(−iθ). (3.A.6)

Then as a solution to Eq. (3.A.3), Dz can be expressed as

Dz = A1 exp(izθ) +A2 exp(−izθ) (3.A.7)

where A1 and A2 are constants.
Using the expressions for D1 and D2 (Eqs. (3.A.4) and (3.A.5)), A1 and

A2 are determined to be

A1 =
exp(iθ)

exp(iθ)− exp(−iθ) (3.A.8)

A2 =
− exp(−iθ)

exp(iθ)− exp(−iθ) . (3.A.9)

Using the result from substituting Eqs. (3.A.8) and (3.A.9) into Eq. (3.A.7),
we have from Eq. (3.A.1)

Dz =
sin[(z + 1)θ]

sin θ
= 0. (3.A.10)

Then the z eigenvalues of the Rouse matrix Ast are produced when
Eq. (3.A.10) is satisfied, i.e. when

θ =
pπ

z + 1
for p = 1, 2, . . . , z. (3.A.11)

With x obtained from substituting Eq. (3.A.11) into Eq. (3.A.6), we obtain
from Eq. (3.A.2) the eigenvalues

ap = 2− 2 cos
(

pπ

z + 1

)
= 4 sin2

(
pπ

2(z + 1)

)
(3.A.12)

for p = 1, 2, . . . , z.

which is used in Eq. (3.46) for z = N − 1.
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Let c1, c2, . . . , cN−1 be the components of the eigenvector of the Rouse
matrix (for z = N − 1) which give rise to the pth eigenvalue, ap. Then,
using Eq. (3.45), we obtain the recursion relation,

ck+1 + ck−1 = (2− ap)ck (3.A.13)

with the boundary condition

c2 = (2− ap)c1; cN−2 = (2 − ap)cN−1. (3.A.14)

Substituting Eq. (3.46) or Eq. (3.A.12) with z = N − 1 into Eq. (3.A.13),
we obtain

ck+1 + ck−1 =
[
exp

(
ipπ

N

)
+ exp

(
− ipπ
N

)]
ck. (3.A.15)

The solution to Eq. (3.A.15) is given by

ck = B1 exp
(
ikpπ

N

)
+B2 exp

(
− ikpπ

N

)
(3.A.16)

where B1 and B2 are constants. The boundary condition, Eq. (3.A.14),
requires

B1 = −B2. (3.A.17)

By applying Eq. (3.A.17) and the normalization condition

N−1∑
k=1

c∗kck = 1 (3.A.18)

to Eq. (3.A.16), we obtain

ck =

√
2
N

sin
(
kπp

N

)
. (3.A.19)

Thus the transformation to the normal coordinates is given by Eqs. (3.47)
and (3.48).

Appendix 3.B — The Langevin Equation of a Particle in a
Harmonic Potential

The Langevin equation of a normal mode has the general form:

dx

dt
= −h

ζ
x+ g(t) (3.B.1)
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with

〈g(t)〉 = 0 (3.B.2)

〈g(t)g(t′)〉 =
2kT
ζ
δ(t− t′). (3.B.3)

Physically, Eqs. (3.B.1)–(3.B.3) describe the one-dimensional Brownian
motion of a particle in a harmonic potential:

V =
h

2
x2. (3.B.4)

To calculate the time correlation function 〈x(t)x(0)〉, x(t) is first expressed
in terms of g(t) as

x(t) =
∫ t

−∞
dt′ exp

(
− t− t

′

τ

)
g(t′) (3.B.5)

where

τ =
ζ

h
. (3.B.6)

Then

〈x(t)x(0)〉 =
∫ t

−∞
dt′
∫ 0

−∞
dt′′ exp

(
− (t− t′ − t′′)

τ

)
〈g(t′)g(t′′)〉. (3.B.7)

Using Eq. (3.B.3), from Eq. (3.B.7) we obtain

〈x(t)x(0)〉 =
kT

h
exp

(
− t
τ

)
. (3.B.8)

Appendix 3.C — The Continuous Rouse Model

If we are mainly interested in the motions involving a large section or the
whole of a long chain, we can treat the suffix n labeling the bead as a
continuous variable, and the Langevin equation can be written in the con-
tinuous form. In the transformation, we replace Rn −Rn−1 by ∂Rn/∂n;
Rn+1 + Rn−1 − 2Rn by ∂2Rn/∂n

2; δnm by δ(n − m); and Σn by
∫
dn.

Then Eq. (3.31) is rewritten as

∂Rn

∂t
=

3kT
ζb2

∂2Rn

∂n2
+ gn(t). (3.C.1)
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In rewriting Eqs. (3.32) and (3.33) in the continuous form, we note that
they are included in Eq. (3.C.1) if we define two hypothetical beads R0 and
RN+1 as

R0 = R1; RN+1 = RN (3.C.2)

which mean, in the continuous limit:

∂Rn

∂n

∣∣∣∣
n=0

= 0;
∂Rn

∂n

∣∣∣∣
n=N

= 0. (3.C.3)

Equation (3.C.2) or (3.C.3) serves as the boundary condition for the dif-
ferential Eq. (3.C.1), while the moments of the random forces are given in
the continuous limit by

〈gn(t)〉 = 0 (3.C.4)

and

〈gnα(t)gmβ(t′)〉 = 2kT
ζ
δ(n−m)δαβδ(t− t′). (3.C.5)

In summary, Eqs. (3.C.1) and (3.C.3)–(3.C.5) define the continuous Rouse
model.

Equation (3.C.1) represents the Brownian motions of coupled oscillators.
Similar to the discrete case (Eqs. (3.31)–(3.33)), the standard method to
solve the differential equation of the continuous Rouse model is to find the
normal coordinates, each with its own independent motion. Considering
the boundary conditions given by Eq. (3.C.3), we may write the Fourier
expansion for Rn(t) in terms of the normal coordinates {Xq} as

Rn(t) = X0(t) +
(

2
N

)1/2 ∞∑
q=1

Xq(t) cos
(qπn
N

)
(3.C.6)

with q = 1, 2, . . . .

Using the orthonormal property of the basis functions {(2/N)1/2

cos(qπn/N)}, we can express the normal coordinates Xp(t) as

Xp(t) =
(

2
N

)1/2 ∫ N

0

Rn(t) cos
(
pπn

N

)
dn (3.C.7)

and the coordinate X0(t) represents the position of the center of mass Rc(t),

Rc(t) =
1
N

∫ N

0

Rn(t) dn = X0(t). (3.C.8)
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Substituting Eq. (3.C.6) into Eq. (3.C.1), we obtain

∂Rc(t)
∂t

+
(

2
N

)1/2 ∞∑
q=1

∂Xq(t)
∂t

cos
(
qπn

N

)

= −3kT
ζb2

(
2
N

)1/2 ∞∑
q=1

(
qπ

N

)2

Xq(t) cos
(
qπn

N

)
+ gn(t). (3.C.9)

Performing the integration
∫ N

0 dn on the both sides of Eq. (3.C.9) and
following a procedure similar to the discrete case, the same diffusion con-
stant (Eq. (3.41)) can be obtained.

Multiplying both sides of Eq. (3.C.9) by (2/N)1/2 cos(pπn/N) and then
performing the integration

∫N

0
dn, we obtain

∂

∂t
Xp(t) = −3kT

ζb2

(
pπ

N

)2

Xp(t) + hp(t) (3.C.10)

where

hp(t) =
(

2
N

)1/2 ∫ N

0

gn(t) cos
(
pπn

N

)
dn. (3.C.11)

Using Eqs. (3.C.4) and (3.C.5), we obtain from Eq. (3.C.11)

〈hp(t)〉 = 0 (3.C.12)

〈hpα(t)hqβ(t′)〉 = 2kT
ζ
δpqδαβδ(t− t′). (3.C.13)

Equation (3.C.10) in combination with Eqs. (3.C.12) and (3.C.13), which
describes the motion of the normal coordinate Xp(t), can be represented
by the general form of the Langevin equation given by Eq. (3.B.1) in com-
bination with Eqs. (3.B.2) and (3.B.3). Thus, the solution of Eq. (3.B.1)
given in Appendix 3.B can be readily used here. Since the random forces of
different modes are independent of each other (Eq. (3.C.13)), the motions
of the Xp’s are also independent of each other. Thus,

〈Xpα(t)Xqβ(0)〉 = δαβδpq
N2b2

3π2p2
exp

(
− t

τp

)
(3.C.14)

where

τp =
ζN2b2

3kTπ2p2
=
τ1
p2

for p = 1, 2, . . . . (3.C.15)
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Using Eq. (3.C.6), the end-to-end vector

R(t) ≡ RN (t)−R0(t) (3.C.16)

can be expressed in terms of the normal coordinates {Xp} as

R(t) = −2
(

2
N

)1/2 ∑
p=odd

Xp(t). (3.C.17)

Using Eqs. (3.C.14) and (3.C.17), the time-correlation function 〈R(t) ·
R(0)〉 is then derived as

〈R(t) ·R(0)〉 =
8
N

∑
p=odd

〈Xp(t) ·Xp(0)〉

= Nb2
∑

p=odd

8
π2p2

exp
(
− tp

2

τ1

)
(3.C.18)

which is identical to Eq. (3.60). In general, Xp represents the motion of a
domain which contains N/p segments of the chain and corresponds to the
motion with the length scale of the order (Nb2/p)1/2.33

Appendix 3.D — Binomial Random Walk

Here we consider a particle constrained to move along the x-axis by random
step of length s and study its probability of being at a certain point after
a large number of steps. This is a special case of the central limit theorem
as studied in Chapter 1. At any step, being independent of any previous
steps, the probability of the particle taking a step to the right is the same
as that to the left. For the nth step, define the stochastic variable Xn

as having the realization xn = s for a step to the right and xn = −s
for a step to the left. Then the probability density for the nth step is
expressed by

PXn(xn) =
1
2
δ(xn − s) +

1
2
δ(xn + s). (3.D.1)

After N steps, the net displacement of the particle (along the x-axis) is
given by

YN = X1 +X2 + · · ·XN . (3.D.2)
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The probability function of the stochastic variable YN is then expressed by

PN (y) =
∫
· · ·
∫
δ(y − x1 − x2 · · · − xN )

×PX1(x1)PX2 (x2) · · ·PXN (xN )dx1dx2 · · ·dxN . (3.D.3)

And the characteristic function (Sec. 1.2) for the stochastic variable YN is
given by

fY,N(k) =
∫ ∞

−∞
exp(iky)PN (y)dy

=
∫
· · ·
∫ ∫ ∞

−∞
exp(iky)δ(y − x1 − x2 · · · − xN )

×PX1(x1)PX2(x2) · · ·PXN (xN )dx1dx2 · · ·dxNdy

=
N∏

n=1

∫ ∞

−∞
exp(ikxn)PXn(xn)dxi =

N∏
n=1

fXn(k) (3.D.4)

where

fXn(k) =
∫

exp(ikxn)
[
1
2
δ(xn − s) +

1
2
δ(xn + s)

]
dxn

=
1
2

exp(iks) +
1
2

exp(−iks) = cos(ks). (3.D.5)

Substituting Eq. (3.D.5) into Eq. (3.D.4), we obtain

fY,N(k) = [cos(ks)]N =
[
1− (ks)2

2
+ · · ·

]N

≈ 1− N(ks)2

2
. (3.D.6)

We can find a differential equation for the characteristic function in the
limit of both the step size s and the time between steps, ∆t, becoming
infinitely small. Let

fY,N(k) = fY (k,N∆t), (3.D.7)

in which N∆t may be denoted by t representing the time at which the Nth
step of movement has just taken place. As initially (at t = 0 or N = 0)
y = 0, we may write

P0(y) = δ(y) (3.D.8)
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and

fY (k, 0) = 1. (3.D.9)

From Eq. (3.D.6), we obtain

fY (k, (N + 1)∆t)− fY (k,N∆t)

= [cos(ks)− 1]fY (k,N∆t) =
(
−k

2s2

2
+ · · ·

)
fY (k,N∆t) (3.D.10)

which in turn leads to the limiting form:

lim
N→∞

lim
∆t→0

fY (k, (N + 1)∆t)− fY (k,N∆t)
∆t

= lim
N→∞

lim
∆t→0

lim
s→0

(
−k

2s2

2∆t

)
fY (k,N∆t) (3.D.11)

or

∂fY (k, t)
∂t

= −k2DfY (k, t) (3.D.12)

with

D = lim
N→∞

lim
∆t→0

lim
s→0

s2

2∆t
. (3.D.13)

The solution of Eq. (3.D.12) with Eq. (3.D.9) as the initial condition is
given by

fY (k, t) = exp(−k2Dt). (3.D.14)

Application of the inverse Fourier transformation to Eq. (3.D.14) gives the
probability distribution function for the particle to accumulate a net dis-
placement y:

P (y, t)
(

= lim
N→∞

PN (y)
)

=
1
2π

∫ ∞

−∞
exp(−iky) exp(−k2Dt)dk

=

√
1

4πDt
exp

(
− y2

4Dt

)
(3.D.15)

which being a Gaussian illustrates the central limit theorem studied in
Chapter 1. Note that P (y, t) is the solution of the diffusion equation (with
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y replaced by x):

∂P (x, t)
∂t

= D
∂2P (x, t)
∂x2

(3.D.16)

with P (x, t = 0) = δ(x) as the initial condition. Thus, Eq. (3.D.13) may
be used to define the diffusion constant of a Brownian particle when both
s and ∆t are sufficiently small and N is large. In three-dimensional space,
the diffusion constant may also be defined by Eq. (3.D.13) as the one-
dimensional random movement discussed above takes place in the same
way along each of the three axes of the Cartesian coordinate system.
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Chapter 4

Linear Viscoelasticity

4.1 Introduction

In Chapter 2 we studied the theory of rubber elasticity, which explains the
snap-back phenomenon of a rubber piece after being released from stretch-
ing. A polymeric liquid, which has not been cross-linked to form a macro-
scopic network, will eventually flow under a slow deformation. The slow
flow property of the polymer is characterized by its viscosity. If a deforma-
tion is applied to a polymeric liquid for a time period that is too short for
the molecular chain to reach a new equilibrium state, the polymer material
will regain at least part of its shape or conformation upon the release of the
deformation. Thus, the polymeric liquid possesses both the properties of
viscosity and elasticity; in other words, the polymeric liquid is viscoelastic.
Polymer viscoelastic behavior can be studied in terms of chain dynamics, of
which the Rouse theory1 discussed in Chapter 3 is a very important model.
We shall study the molecular relaxation mechanisms in Chapters 6–9 and 12
under the title: Molecular Theory of Polymer Viscoelasticity. In Chapters
17 and 18, the viscoelastic behavior of the Fraenkel-chain model which does
not have an analytical solution will be studied by means of Monte Carlo
simulations. Here, we shall limit the study of polymer viscoelastic proper-
ties to the linear region and to the phenomenological description, namely,
the generalized Maxwell equation2 or Boltzmann’s superposition principle.3

The term “linear region” means that the applied strain (or instead the
applied rate-of-strain) is in the small magnitude region where the linear
relation between the stress and the strain (or rate-of-strain) holds.4 This
chapter also shows that the generalized Maxwell equation and Boltzmann’s
superposition principle are equivalent. In the linear region, the phenomeno-
logical theory is a well-tested basic principle for the kind of polymeric liquid
considered in this book. In this chapter, the viscoelastic responses to several

51
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often-used types of strain or rate-of-strain will be derived from the basic
principle.

Stress and strain expressed in the tensorial forms, which are essential
to the molecular rheological theories and simulations as studied in the later
chapters, will be discussed in Chapter 5. For the phenomenological descrip-
tion in the linear region, it is sufficient to discuss the stress–strain relation
in terms of scalar quantities.

4.2 Maxwell Equation

We begin by giving a simple explanation for the physical meaning of vis-
cosity and elasticity. In Fig. 4.1, it is shown that a layer of simple liquid is
sandwiched between two parallel plates of area A, and of distance d apart.
If the upper plate under the application of a constant force f is moving at
a constant speed v relative to the lower plate in the direction parallel to
the plate surface, we can define the shear deformation rate by

λ̇ =
v

d
(4.1)

and the stress by

σ = − f
A
. (4.2)

Then the viscosity of the liquid is defined by

η = −σ
λ̇
. (4.3)

Here, the sign is chosen by defining σ as the stress exerted by the system
to the external. If the viscosity value is independent of the shear rate, the
liquid is called a Newtonian fluid. Liquids of small molecules in general
belong to this category.

x

y d

v

Fig. 4.1 Shear of a simple fluid sandwiched between two parallel plates, with a distance
d apart; and the upper plate moving at a velocity v relative to the lower plate.
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h

s

Fig. 4.2 Shear of a rectangular material block, with a height h; and a displacement s
of the upper surface relative to the lower one.

For elasticity, we consider a piece of solid material with top and bottom
areas A and height h as shown in Fig. 4.2. If a constant shear force, f ,
is applied to the top and bottom surfaces, the relative position of the two
surfaces can be displaced by a certain distance, s. Then the shear strain is
defined by

λ =
s

h
(4.4)

and the stress by

σ = − f
A
. (4.5)

According to the definition for a Hookean solid, the stress is linearly pro-
portional to the strain

G = −σ
λ

(4.6)

where the proportional constant G is the modulus of the solid. Most metals
and ceramics behave as Hookean solids under small deformations.

Mechanically, we may use a dashpot to represent the viscous property
and a harmonic spring to represent the elastic property. In the Maxwell
model, the dashpot and the spring are connected in series as shown in
Fig. 4.3 to represent the viscoelastic nature of the system. When such a
combination is shortened or elongated under a pushing or pulling force, the
dashpot dissipates the energy while the spring stores the energy. We divide
the total length of the system D into two parts: D1 for the spring portion
and D2 for the dashport portion. Corresponding to Eq. (4.6), we write

G = − F

(D1 −Do)
(4.7)
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D1 D2

-F

Fig. 4.3 Maxwell model as represented by a dashpot and a spring in series.

and corresponding to Eq. (4.3)

η = − F

dD2/dt
(4.8)

where F is the tensile force on the system to counteract the force applied
to elongate or to shorten the total length D of the system, and Do is the
length of D1 at which the spring potential is at its minimum. Then from
Eqs. (4.7) and (4.8), it follows that

dD

dt
=

d

dt
(D1 +D2) = −

[
1
G

dF

dt
+
F

η

]
(4.9)

which can be rewritten as

F +
η

G

dF

dt
= −η dD

dt
. (4.10)

For describing the viscoelastic behavior of a polymer material, we replace
F by the stress σ and dD/dt by the rate-of-strain λ̇; and corresponding to
Eq. (4.10), we write

dσ

dt
+
σ

τ
= −η

τ
λ̇ (4.11)

with

τ =
η

G
. (4.12)

Equation (4.11) is called the Maxwell equation; and τ , as given by
Eq. (4.12), is the relaxation time of the viscoelastic system. The relaxation
time plays an important role in determining whether the system behaves
more as a Newtonian fluid or as a Hookean solid. If τ is very large and
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τ(dσ/dt)� σ, Eq. (4.11) can be approximated by

τ
dσ

dt
= −ηλ̇ (4.13)

which, using Eq. (4.12), becomes the Hookean Eq. (4.6). On the other
hand, if τ is small, and τ(dσ/dt) � σ, Eq. (4.11) is approximated by the
Newtonian fluid Eq. (4.3). Thus, the Maxwell Eq. (4.11) is expected to be
capable of describing the viscoelastic behavior of a system which is between
the two limits: the Newtonian fluid and the Hookean solid.

Equation (4.11) is an inhomogeneous first-order linear differential equa-
tion of σ(t). By multiplying both sides of Eq. (4.11) by an integration
factor exp(t/τ), the Maxwell equation can be easily transformed into the
integration form

σ(t) = −
∫ t

−∞
G exp

(
− (t− t′)

τ

)
λ̇(t′)dt′ (4.14)

which, using integration by parts, can be further transformed to

σ(t) =
∫ t

−∞

G

τ
exp

(
− (t− t′)

τ

)
λ(t, t′)dt′ (4.15)

where

λ(t, t′) =
∫ t′

t

λ̇(t′′)dt′′ = λ(t′)− λ(t) . (4.16)

In the above equation, the strain λ(t, t′) uses the time t′ = t as the reference
point, i.e. λ(t, t) = 0; and λ(t) may be defined with respect to any reference
time.

Because of the large number of intramolecular degrees of freedom in a
long-chain molecule, the polymer often contains many modes of motions
with different relaxation times. We have seen the expression in terms of
the normal modes for the time correlation function of the end-to-end vec-
tor, 〈R(t) ·R(0)〉, in Chapter 3. As a result, it is often necessary to take
many relaxation times to adequately describe the viscoelastic behavior of
a polymer system phenomenologically. The Maxwell equation may be gen-
eralized to contain a distribution of relaxation times. Mechanically, the
generalization is equivalent to arranging many of the dashpot-spring com-
binations with different values of η and G together in parallel, as shown
in Fig. 4.4. Corresponding to the arrangement of dashpots and springs in
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-F

Fig. 4.4 Generalized Maxwell model as represented by multiple dashpot-spring combi-
nations (Fig. 4.3) in parallel.

Fig. 4.4, the generalized Maxwell equation is given as

σ(t) =
∑

i

σi(t) (4.17)

with

d

dt
σi(t) +

1
τi
σi(t) = −ηi

τi
λ̇ (4.18)

and

τi =
ηi

Gi
. (4.19)

Just as Eqs. (4.14) and (4.15) were obtained, Eqs. (4.17)–(4.19) can be
written in the integration forms:

σ(t) = −
∫ t

−∞

∑
i

Gi exp
[
− (t− t′)

τi

]
λ̇(t′)dt′ (4.20)

and

σ(t) =
∫ t

−∞

∑
i

Gi

τi
exp

[
− (t− t′)

τi

]
λ(t, t′)dt′ . (4.21)

The arrangement of dashpots-springs shown in Fig. 4.4 represents a phe-
nomenological model. We may write Eqs. (4.20) and (4.21) in the
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general forms:

σ(t) = −
∫ t

−∞
G(t− t′)λ̇(t′)dt′ (4.22)

and

σ(t) =
∫ t

−∞
M(t− t′)λ(t, t′)dt′ . (4.23)

G(t) is often referred to as the relaxation modulus and M(t) as the memory
function; they are related as

M(t) = − d

dt
G(t) . (4.24)

To build molecular models for obtaining the functional form of G(t) and
its relaxation times as a function of chain structure: molecular weight and
chain branching is a very challenging research field, and has been actively
pursued since the mid-1900s. Nevertheless, successful models for the linear
polymer have been developed. In the later chapters, the Rouse theory for
the entanglement-free region, the Doi–Edwards theory5 for the entangle-
ment region and the extended reptation theory6 developed on the frame-
work of the Doi–Edwards theory will be studied.

4.3 Boltzmann’s Superposition Principle

Instead of using the generalized Maxwell picture, Eq. (4.22) can be obtained
from a more formal argument, namely Boltzmann’s superposition principle.
It assumes that if the stress at the present time t is caused by a step
strain at an earlier time t′, the stress is linearly proportional to the strain,
and the proportionality (the modulus) decreases with the separation of
the time, t − t′. The modulus, a decaying function of t − t′, is denoted
by G(t − t′). Consider a system which has been inflicted by small step
strains at different times, t1, t2, . . . before the present time t. According to
Boltzmann’s superposition principle, all the stresses as individually caused
by these small step strains are independent of each other. As a result,
the total stress at t is simply the sum of these stresses.

σ(t) = −
∑

i

G(t− ti)∆λ(ti) (4.25)
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where ∆λ(ti) represents the small step strain applied at ti < t. We can
regard any strain history before t as a sum of small strain changes, each
of which has occurred within very short intervals. Thus, Eq. (4.25) can be
rewritten as

σ(t) = −
∑
t′
G(t− t′)∆λ(t′)

∆t′
∆t′ . (4.26)

In the limit of ∆t′ → 0, Eq. (4.26) can be written in the integration form
identical to Eq. (4.22).

We have used the generalized phenomenological Maxwell model or
Boltzmann’s superposition principle to obtain the basic equation (Eq. (4.22)
or (4.23)) for describing linear viscoelastic behavior. For the kind of poly-
meric liquid studied in this book, this basic equation has been well tested
by experimental measurements of viscoelastic responses to different rate-of-
strain histories in the linear region. There are several types of rate-of-strain
functions λ̇(t) which have often been used to evaluate the viscoelastic prop-
erties of the polymer. These different viscoelastic quantities, obtained from
different kinds of measurements, are related through the relaxation mod-
ulus G(t). In the following sections, we shall show how these different
viscoelastic quantities are expressed in terms of G(t) by using Eq. (4.22).

4.4 Relaxation Modulus

The simplest viscoelastic response is the direct measurement of G(t) itself.
This measurement is done by monitoring the relaxation of the stress induced
by the application of a step strain at some initial time, t = 0. As shown in
Fig. 4.5, we let the applied strain reach a constant value λ0 in a very short
period of time ε. A perfect step strain is made when ε → 0. We further
assume that the strain being applied within the period ε changes with time
linearly. That is, the rate-of-strain is the constant, λ̇ = λ0/ε, from t = −ε
to t = 0, and is zero before t = −ε and after t = 0. Then Eq. (4.22) can be
written as

σ(t) = lim
ε→0

[
−λ0

ε

∫ 0

−ε

G(t− t′)dt′
]
. (4.27)

By applying the L’hospital rule or the property of the Dirac delta function
(see Appendix 1.A) to Eq. (4.27)

σ(t) = −λ0G(t) . (4.28)
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0
time

0

(t)

0

time

a

b

Fig. 4.5 Step-strain stress relaxation experiment: (a) a constant strain λ0 is applied
at time t = 0 (ε → 0) and maintained for all times t > 0; (b) the stress relaxation σ(t)
responding to the applied step strain.

Thus, G(t) = −σ(t)/λ0. This result is expected from the definition of
G(t) as used in Boltzmann’s superposition principle. The way in which
G(t) is obtained from Eq. (4.27) also illustrates an experimental problem
encountered in the measurement of G(t). Experimentally the application
of a strain involves the movement of a mechanical device, often a motor,
which has a rate limit. Thus, ε cannot be infinitely small experimentally.
At λ0 ∼ 0.1, the order of 0.05 s for ε is basically the state of the art. How
an experiment is affected by a finite ε is a relative matter. If the relaxation
times of G(t), which are the interest of study, are sufficiently larger than ε,
errors caused by the finite ε are negligible.

Shown in Fig. 4.6 are the curves of relaxation modulus, G(t), of a
series of nearly monodisperse polystyrene samples of different molecular
weights. The higher the molecular weight, the slower the relaxation rate.
In these measurements, the step deformation rise time is 0.04 s, which is
much shorter than the relaxation times of interest in these curves. The
most noteworthy is the appearance of a modulus plateau when the molec-
ular weight is sufficiently large. As will be discussed in the later chapters,
the entanglement molecular weight Me can be calculated from the plateau
modulus GN . The analyses of these relaxation modulus curves in terms
of the extended reptation theory developed in Chapter 9 will be detailed
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Fig. 4.6 Relaxation modulus for nearly monodisperse polystyrene melts. Molecular
weight ranges from Mw = 1.67× 104 (F2) to Mw = 4.22× 105 (F40). Reproduced from
Ref. 6(b).

in Chapter 10. With ε ≈ 0.04 sec, the G(t) curves shown in Fig. 4.6 are
quantitatively accurate in the region t > 0.2s, as indicated by compar-
ing results obtained using transducers with different stiffness (see Fig. 1 of
Ref. 6(b)); and confirmed by comparisons with the measured viscoelastic
spectra of the same samples (see Chapter 10 for details).

4.5 Steady-State Shear Flow

The stress as defined by Eq. (4.3) corresponds to the stress arising from
a shear rate which has been maintained at a constant value λ̇0 for a long
time. Thus, from Eq. (4.22) we obtain the steady-state shear stress as

σ(t) = −λ̇0

∫ t

−∞
G(t− t′)dt′

= −λ̇0

∫ ∞

0

G(s)ds . (4.29)
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From the comparison of Eqs. (4.3) and (4.29), the viscosity is related to
G(t) as

η = η0 =
∫ ∞

0

G(t)dt . (4.30)

In the linear region, the viscosity is independent of the rate-of-strain and
has a constant value, and is often referred to as the zero-shear-rate viscosity
or zero-shear viscosity and denoted by η0.

Shown in Fig. 4.7 are the zero-shear viscosities of various nearly
monodisperse polymers as a function of molecular weight.7 They all show
two regions with distinct molecular-weight dependences, separated by a
rather sharp point, the critical molecular weight Mc. Above Mc the
molecular-weight dependence follows the well-known 3.4 power law; below
Mc the relation of log(η0) to log(Mw) (corrected for the molecular-weight
dependence of the glass transition temperature) has a slope of one. The
explanation of this universal phenomenon by the extended reptation theory
will be given in Chapter 10.

Since the viscosity is the integration of G(t) (Eq. (4.30)), the relaxation
modulus G(t) should contain more detailed information than the single
viscosity value η0. A wrong conclusion can be made if the conclusion is
simply based on the viscosity result. On the basis of the viscosity data
(Fig. 4.7), the onset of entanglement was traditionally believed to occur
at Mc ≈ 2.4Me.7–9 Shown in Chapters 10 and 11, detailed studies of the
viscoelastic spectra in terms of the extended reptation theory as well as the
Rouse theory have indicated that the onset occurs at Me.

4.6 Dynamic-Mechanical Spectroscopy

Rich and reliable viscoelastic data can be obtained from measuring the
dynamic mechanical response of the polymeric liquid to a rate-of-strain
λ̇(t) which is harmonically oscillatory:

λ̇(t) = λ̇0 cos(ωt). (4.31)

The result expressed as a function of the oscillatory frequency ω is often
referred to as the viscoelastic spectrum. Because the polymeric liquid has
both the viscous and elastic properties, the time dependence of the induced
stress will not be totally either in phase or out of phase with the oscillatory
rate-of-strain. Substituting Eq. (4.31) into Eq. (4.22), we obtain the stress
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Fig. 4.7 Steady-state viscosity of various polymers in melt, where Xw is a parameter
proportional to Mw. The curves are shifted vertically so as not to overlap each other.
Reproduced, with permission, from Ref. 7.
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response as

σ(t) = −λ̇0

∫ t

−∞
G(t− t′) cos(ωt′)dt′. (4.32)

With the substitution of s = t− t′, Eq. (4.32) is rewritten as

σ(t) = −λ̇0

∫ ∞

0

G(s) cos[ω(t− s)]ds

= −η′(ω)λ̇0 cos(ωt)− η′′(ω)λ̇0 sin(ωt) (4.33)

where

η′(ω) =
∫ ∞

0

G(s) cos(ωs)ds (4.34)

and

η′′(ω) =
∫ ∞

0

G(s) sin(ωs)ds . (4.35)

When ω approaches zero, Eq. (4.34) reduces to Eq. (4.30), i.e.

η′(ω → 0) =
∫ ∞

0

G(s)ds = η0 . (4.36)

Using Eqs. (4.34) and (4.35), we define the complex viscosity η∗(ω) as

η∗(ω) = η′(ω)− iη′′(ω) =
∫ ∞

0

G(s) exp(−iωs)ds . (4.37)

As shown in Fig. 4.8, λ̇(t) (Eq. (4.31)) and σ(t) (Eq. (4.33)), both being
sinusoidal, have a phase-angle difference. We can express these two quan-
tities, respectively, as

λ̇(t) = Re[λ̇0 exp(iωt)] (4.38)

σ(t) = Re[σ0 exp(iωt)] (4.39)

where Re indicates taking the real part of the complex variable in [. . .].
With Eq. (4.31) as the form for λ̇(t), λ̇0 in Eq. (4.38) is a real number.
In contrast to λ̇0 being real, σ0 in Eq. (4.39) is a complex number for a
viscoelastic material. The relation between σ0 and λ̇0 can be obtained by
the following:

Given the definition of Eq. (4.37) for η∗(ω), Eq. (4.33) is equivalent to

σ(t) = −Re[η∗(ω)λ̇0 exp(iωt)] . (4.40)
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Fig. 4.8 The oscillatory rate-of-strain λ̇(t) and stress σ(t) with a phase difference Φ for
a viscoelastic fluid.

Comparison of Eqs. (4.39) and (4.40) gives

σ0 = −η∗(ω)λ̇0 . (4.41)

In terms of the complex viscosity η∗, the phase difference between the
stress and the rate-of-strain can be expressed. Generally the stress induced
by the rate-of-strain given by Eq. (4.31) can be written as

σ(t) = −A cos(ωt− Φ) (4.42)

where A is the amplitude of the stress and Φ is the phase angle.
Equation (4.42) may be rewritten as

σ(t) = −A cosΦ cos(ωt)−A sin Φ sin(ωt) . (4.43)

From the comparison of Eqs. (4.33) and (4.43),

A cosΦ = η′λ̇0 (4.44)

A sin Φ = η′′λ̇0 . (4.45)

Thus, η′ represents the viscous contribution to the stress, i.e. the com-
ponent in phase (Φ = 0) with the rate-of-strain, and is related to the
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dissipation of energy. And, η′′ represents the elastic contribution to the
stress, i.e. the component out of phase (Φ = π/2) with the rate-of-strain,
and is related to the storage of energy. The combination of Eqs. (4.44) and
(4.45) can be expressed as

A =
√
η′2 + η′′2λ̇0 (4.46)

Φ = tan−1

[
η′′

η′

]
. (4.47)

Thus, it is clear that η′(ω) and η′′(ω) contain the same information as
the oscillation amplitude A of the stress and the phase shift Φ at the fre-
quency ω.

Another often-used viscoelastic response function, the complex modu-
lus, is defined by

G∗(ω) = iωη∗(ω) = G′(ω) + iG′′(ω) (4.48)

where G′(ω) is called the storage modulus

G′(ω) = ωη′′(ω) = ω

∫ ∞

0

G(s) sin(ωs)ds (4.49)

and G′′(ω) the loss modulus

G′′(ω) = ωη′(ω) = ω

∫ ∞

0

G(s) cos(ωs)ds . (4.50)

The ratio of G′′ to G′ is often referred to as the loss tangent

tan δ =
G′′

G′ =
η′

η′′
. (4.51)

The measured G′ and G′′ (or equivalently η′ and η′′) values, as a function
of the frequency ω, can be displayed as a spectrum — the viscoelastic spec-
trum. Figures 4.9 and 4.10 show the storage modulus spectra G′(ω) and the
loss modulus spectra G′′(ω), respectively, of a series of nearly monodisperse
polystyrene samples.10

4.7 Steady-State Compliance

The scheme for carrying out the measurement of the steady-state compli-
ance is shown in Fig. 4.11. Before t = 0, the polymeric liquid is in the
equilibrium state. At t = 0, a constant shear stress σ0 is abruptly applied
to the fluid (Fig. 4.11(a)). In response, a strain change λ(t) on the fluid
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Fig. 4.9 Storage modulus vs. frequency for nearly monodisperse polystyrene melts. Mole-
cular weight ranges from Mw = 8.9×103 (L9) to Mw = 5.8×105 (L18). Reproduced, with
permission, from Ref. 10.

(Fig. 4.11(b)) is produced, which is in general measured with respect to
t = 0− as the reference time — i.e. λ(0−) = 0. After a sufficiently long
time, the deformation of the fluid reaches a steady state; namely, the defor-
mation proceeds with a constant rate-of-strain, λ̇∞. The strain value λ0,
obtained by extrapolating the strain in the steady-state region to the time
t = 0, is a viscoelastic quantity of special meaning. We define the steady-
state compliance J0

e as the ratio of λ0 to the applied constant stress σ0:

J0
e = −λ0

σ0
. (4.52)

Such an experiment to obtain J0
e is often called the creep measurement.

The relation of the steady-state compliance to the relaxation modulus G(t)
will be obtained as follows.

In the steady-state region, the total strain at time t can be written as

λ(t) = λ0 + λ̇∞t (4.53)
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Fig. 4.10 Same as Fig. 4.9 for loss modulus.

Thus

λ0 =
∫ ∞

0

(λ̇(t′)− λ̇∞)dt′ (4.54)

where λ̇(t′) is the actual rate-of-strain at any moment in time after t = 0.
We can relate the stress in the steady-state region to the rate-of-strain by
using Eq. (4.22) in two different ways. One is based on the viewpoint of a
creep measurement:

σ0 = −
∫ t

0

G(t− t′)λ̇(t′)dt′. (4.55)

The other is based on the viewpoint of the steady-shear flow:

σ0 = −
∫ t

−∞
G(t− t′)λ̇∞ dt′ (4.56)

where the lower limit of the integration is −∞, because reaching the steady-
state region requires time that lasts longer than the longest relaxation time
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Fig. 4.11 Creep experiment: (a) a constant stress σ0 is applied at time t = 0 and
maintained for all times t > 0; (b) the strain measured relative to t = 0 increases with
time. The dashed line is extrapolated from the strain in the steady-state region, whose
intersection with the vertical axis at t = 0 gives λ0.

of the polymeric liquid, and waiting for such a long time is, in effect, equiv-
alent to regarding the shear history as infinitely long.

Combining Eqs. (4.55) and (4.56), we have

λ̇∞
∫ t

−∞
G(t− t′)dt′ =

∫ t

0

G(t− t′)λ̇(t′)dt′ . (4.57)

With the substitution of s = t− t′, Eq. (4.57) becomes

λ̇∞
∫ ∞

0

G(s)ds =
∫ t

0

G(s)λ̇(t− s)ds (4.58)

which can be further rewritten as

λ̇∞
∫ ∞

t

G(s)ds =
∫ t

0

G(s)[λ̇(t− s)− λ̇∞]ds . (4.59)
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By applying the integration over t,
∫∞
0
· · ·dt, to both sides of Eq. (4.59)

and exchanging the order of the double integrations, we obtain

λ̇∞
∫ ∞

0

(∫ s

0

dt

)
G(s)ds =

∫ ∞

0

G(s)
(∫ ∞

s

[λ̇(t− s)− λ̇∞]dt
)
ds .

(4.60)

By substituting z = t − s and Eq. (4.54) into the right side of Eq. (4.60),
we obtain

λ̇∞
∫ ∞

0

sG(s)ds =
∫ ∞

0

G(s)
∫ ∞

0

[λ̇(z)− λ̇∞] dz ds

= λ0

∫ ∞

0

G(s)ds

= λ0η0 . (4.61)

In the steady-state region

σ0 = −η0λ̇∞ . (4.62)

Using Eqs. (4.61) and (4.62), the steady-state recoverable compliance
(Eq. (4.52)) becomes

J0
e =

∫∞
0
tG(t)dt
η2
0

=

∫∞
0
tG(t)dt(∫∞

0
G(t)dt

)2 . (4.63)

The factor t in the integrand of the numerator in Eq. (4.63) makes
the steady-state compliance value very sensitive to the long-time region
of the relaxation modulus, G(t). As a result, the steady-state recoverable
compliance of a polymeric liquid can be increased greatly by modifying its
molecular-weight distribution with the addition of small amounts of high-
molecular-weight polymers.

Shown in Fig. 4.12 are the data of steady-state compliance J0
e of nearly

monodisperse polystyrene samples obtained by different laboratories.11

Similar to the case with zero-shear viscosity, J0
e shows two regions with

drastically different molecular-weight dependences, separated by a transi-
tion point M ′

c. Above M ′
c, J

0
e is basically independent of molecular weight,

and the data points fluctuate mainly because J0
e is very sensitive to the

small variations among the molecular-weight distributions, even though all
nearly monodisperse, of the studied samples. Below M ′

c, the relation of
log(J0

e ) to log(Mw) has an apparent slope of one. The explanation for the
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Fig. 4.12 Steady-state compliance J0
e of nearly monodisperse polystyrene melts at

160◦C. The dashed line represents the result of the Rouse model. Reproduced, with
permission, from Ref. 11.

molecular dependence of J0
e by the extended reptation theory will be given

in Chapter 10; the apparent agreement with the Rouse model shown in
Fig. 4.12 is a coincidence.

If we assume that the relaxation modulus has a certain distribution {Ai}
of relaxation times {τi}, i.e.

G(t)
G(0)

=
∑

i

Ai exp
(
− t

τi

)
(4.64)

it is easy to show from Eqs. (4.30) and (4.63) that

η0 = G(0)
∑

i

Aiτi = G(0)〈τ〉 (4.65)
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and

J0
e =

G(0)
∑

i Aiτ
2
i

(G(0)
∑

iAiτi)
2 =

1
G(0)

〈τ2〉
〈τ〉2 . (4.66)

Because zero-shear viscosity is related to the first moment of the relaxation-
time distribution 〈τ〉, while steady-state compliance is related to the
second moment of the distribution 〈τ2〉, the latter is much more sensi-
tive to the molecular-weight distribution of the polymer sample than the
former.

4.8 Creep Compliance

Following the application of a step stress σ0 at t = 0 as shown in Fig. 4.11,
the total strain λ(t) can be measured to yield the creep compliance J(t)
defined as

J(t) = −
∫ t

0 λ̇(t′)dt′

σ0
= −λ(t)

σ0
. (4.67)

The two viscoelastic response functions J(t) and G(t) are related to each
other as shown in the following:

Using integration by parts, from Eq. (4.55) we obtain

σ0 = −G(0)λ(t) +
∫ t

0

[
∂

∂t′
G(t− t′)

]
λ(t′)dt′. (4.68)

Setting t = 0 in the equation obtained by substituting Eq. (4.67) into
Eq. (4.68), we obtained the relation between the initial relaxation modulus
and creep compliance:

G(0)J(0) = 1. (4.69)

Applying the integration
∫ tf

0 dt on both sides of Eq. (4.68), we obtain

σ0tf = −G(0)
∫ tf

0

λ(t)dt +A (4.70)

with

A =
∫ tf

0

∫ t

0

[
∂

∂t′
G(t− t′)

]
λ(t′)dt′ dt

=
∫ tf

0

∫ tf

t′

[
∂

∂t′
G(t− t′)

]
λ(t′)dt dt′ (4.71)
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as the order of integration is reversed. With τ = t− t′, Eq. (4.71) is further
expressed as

A = −
∫ tf

0

∫ tf−t′

0

[
∂

∂τ
G(τ)

]
λ(t′)dτ dt′

= −
∫ tf

0

G(tf − t′)λ(t′)dt′ +G(0)
∫ tf

0

λ(t′)dt′. (4.72)

Substituting Eq. (4.72) into Eq. (4.70) and using Eq. (4.67), we obtain∫ t

0

G(t− t′)J(t′)dt′ = t. (4.73)

It can be shown by applying the Laplace transformation that Eq. (4.73) is
equivalent to: ∫ t

0

J(t− t′)G(t′)dt′ = t. (4.74)

The convolution integral Eq. (4.73) may be solved numerically by
the method of Hopkins and Hamming.12–15 The method is discussed in
Appendix 4.A. Shown in Fig. 4.13 is the comparison of the G(t) and J(t)−1

curves of a nearly monodisperse polystyrene melt with Mw = 4.69 × 104

obtained at 114.5◦C (detailed in Chapter 14). The G(t) line shape
has more features — meaning different processes are better separated
or resolved — than the J(t)−1 curve, which are smeared by the con-
version of G(t) into J(t) through Eq. (4.73) (see Sec. 14.3.c for details).
The corresponding G′(ω) and G′′(ω) spectra are shown in Fig. 4.14 (see
Appendix 14.A for details).16 Also shown in Fig. 4.13 is the storage mod-
ulus spectrum G′(ω) plotted as a function of inverted frequency multi-
plied by 0.7 — namely (0.7/ω) → t. Because of the shown agreement
between G(t) and the so-inverted G′(ω) in line shape, G′(ω) is in gen-
eral regarded as a near mirror image of G(t). Over the short-time region
(Fig. 4.13), the large-modulus values in G(t) correspond to the small-
compliance values in J(t); the initial reciprocal relation between the two
is indicated by Eq. (4.69). The dynamics in G(t) over the high-modulus
region (>∼5× 107 dynes/cm2) is often referred to as the glassy relaxation.
The glassy-relaxation region, included in the ranges of these curves (or
spectra), is absent from those shown in Figs. 4.6, 4.9 and 4.10, which
cover only the entropic region. The molecular viscoelastic theories which
are developed using the Rouse segment as the most basic structural unit
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Fig. 4.13 Comparison of G(t) (solid line), J(t)−1 (long-dash line) and G′(0.7/ω) (short-

dash line) of a nearly monodisperse polystyrene sample (Mw = 4.69× 104; at 114.5◦C).

as studied in Chapters 6–9 are only applicable to the entropic region
(<∼5×107 dynes/cm2), which is also the range covered by most experimen-
tal studies. Measurements ofG(t) over the very high-modulus region or J(t)
over the very small-compliance region impose special technical requirements
on the instrument. As shown in detail in Chapter 14, the dynamic and
structural information contained in the high-modulus or small-compliance
region is important to the understanding of the glass transition in
polymer melts.

In summary, if G(t), which is contained in Eqs. (4.30), (4.34)–(4.37),
(4.49)–(4.51), (4.63) and (4.73), is known, all the linear viscoelastic quanti-
ties can be calculated. In other words, all the various viscoelastic properties
of the polymer are related to each other through the relaxation modulus
G(t). This result is of course the consequence of the generalized Maxwell
equation or equivalently Boltzmann’s superposition principle. The experi-
mental results of linear viscoelastic properties of various polymers support
the phenomenological principle.6,8 Some viscoelastic properties play more
important roles than the others in certain rheological processes related to
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Fig. 4.14 The storage and loss modulus spectra, G′(ω) (solid line) and G′′(ω) (dashed
line), corresponding to the G(t) and J(t) curves shown in Fig. 4.13.

polymer processing. Thus, in practical applications, it is more convenient
to measure them directly. In a nonlinear rheological process, the linear
viscoelastic relations as discussed in this chapter are no longer applicable.

An important aspect of linear viscoelastic properties, particularly the
response functions G(t), G∗(ω) and J(t), is their close relations to the
molecular structure of the polymer, such as molecular weight, molecular-
weight distribution, and chain branching. For linear polymers, the molec-
ular theories developed so far have been very successful in explaining the
relations, as studied in Chapters 7–11 and 14. Linear viscoelastic behavior
is also much affected by the rigidity on the segments of which the polymer
chain consists as studied in Chapters 16 and 17 by Monte Carlo simulations.
On the other hand, linear viscoelastic behavior must gradually merge into
nonlinear behavior as the strain or rate-of-strain increases. Thus, the under-
standing of linear viscoelastic behavior enlightens the study of the more
complicated nonlinear viscoelastic behavior. The major chain dynamic pro-
cesses that affect nonlinear viscoelastic behavior, and their relations with
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the dynamic processes responsible for linear viscoelastic behavior, will be
studied in Chapters 12 and 18.

Appendix 4.A — The Hopkins–Hamming Method for the
Conversion of G(t) into J(t)

J(t) can be calculated numerically from G(t) through Eq. (4.73). In doing
so, the integration interval is divided into many subintervals which are small
enough so that the J(t) function can be replaced by a mean value over the
subinterval and taken outside of the integral. Then, a recursion relation can
be set up from which J(t) as a function of time is obtained as a discrete
set of values. Usually, the subintervals chosen are equally spaced along the
t-axis or the log t-axis. That is, Eq. (4.73) is expressed as

tn =
i=n∑
i=1

J(ti−1/2)
∫ ti

ti−1

G(tn − s)ds (4.A.1)

where J(ti−1/2) is a suitably determined mean value of J(t) at t between
ti−1 and ti. Because the chosen magnitude of the spacing ti − ti−1 is very
small, one may set

ti−1/2 = (ti + ti−1)/2. (4.A.2)

Using the definition:

dη(tn − s) = −G(tn − s)ds, (4.A.3)

Eq. (4.A.1) is expressed as

tn = −
i=n∑
i=1

J(ti−1/2)[η(tn − ti)− η(tn − ti−1)]. (4.A.4)

Separating the last (i = n) term from the sum and using the condition
η(0) = 0, Eq. (4.A.4) is rewritten as

tn = J(tn−1/2)η(tn − tn−1)−
i=n−1∑

i=1

J(ti−1/2)[η(tn − ti)− η(tn − ti−1)].

(4.A.5)
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From the above equation, the recursion relation is obtained:

J(tn−1/2) =

tn +
i=n−1∑

i=1

J(ti−1/2)[η(tn − ti)− η(tn − ti−1)]

η(tn − tn−1)
for n > 1

(4.A.6)
with

J(t1/2) =
t1
η(t1)

=
2

G(t1) +G(0)
(4.A.7)

as the starting value at n = 1.
Applying the trapezoidal rule, η(tk) is expressed as

η(tk) =
i=k∑
i=1

∫ ti

ti−1

G(s)ds =
1
2

i=k∑
i=1

[G(ti) +G(ti−1)](ti − ti−1). (4.A.8)

If the subintervals are equally spaced along the t-axis, it is straight-
forward to calculate the {J(ti−1/2)} values from Eqs. (4.A.6) and (4.A.8)
using the starting value J(t1/2) given by Eq. (4.A.7). However, the relax-
ation G(t) usually spans many decades of time-scale; as a result, its values
are measured or calculated equally spaced along the log t-axis. In this case,
the η(tn − tx) quantities (x = i, i− 1 or n− 1) as contained in Eq. (4.A.6)
need first to be determined by interpolation using the set of η(tk) values
calculated beforehand using Eq. (4.A.8).
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Chapter 5

Stress and Strain

In the last chapter we discussed the relation between stress and strain
(or instead rate-of-strain) in one dimension by treating the viscoelastic
quantities as scalars. When the applied strain or rate-of-strain is large, the
nonlinear response of the polymeric liquid involves more than one dimen-
sion. In addition, a rheological process always involves a three-dimensional
deformation. In this chapter, we discuss how to express stress and strain in
three-dimensional space. This is not only important in the study of poly-
mer rheological properties in terms of continuum mechanics1–3 but is also
essential in the polymer viscoelastic theories and simulations studied in the
later chapters, into which the chain dynamic models are incorporated.

5.1 Stress

Consider a fluid material body enclosing an infinitesimal volume element
dV at the point p, as shown in Fig. 5.1. Choose any plane cutting through
the volume element and let the cross section be denoted by dS. The direc-
tion perpendicular to the plane is regarded as the direction of the plane,
indicated by the unit vector n. If there are forces applied to the body,
a surface force fn will be exerted on the plane of the volume element at the
point p. In general, the directions of fn and n are different. By dividing
fn by dS, we obtain the stress tn(= fn/dS) exerted on the plane at the
point p. The stress can be separated into the component perpendicular
to the plane (the normal stress) and those parallel to the plane (the shear
stresses). At the point p, we choose a Cartesian coordinate system with n
as one direction and m and l in the plane as the other two. Then tn may
be expressed as

tn = nTnn + mTnm + lTnl (5.1)

78
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Fig. 5.1 A plane cutting through a volume element dV at the point p. The direction

of the plane is represented by the unit vector n; and a surface force fn is exerted on the
plane.

where the stress components are expressed in terms of the symbol T with
two subscripts. The first subscript represents the direction of the plane
onto which the stress is applied and the second subscript represents the
direction of the stress component. If another plane with the direction c
cutting through the point p is chosen, a stress tc with the components
Tcc, Tcb and Tca exerting on the new chosen plane can in the same way be
defined.

To any chosen plane, we can express the normal and shear stress com-
ponents in terms of the symbol system given above. For any two chosen
planes at the point p, the stresses exerted on them are related. The stress
on any chosen plane at the point p can be obtained from a physical quan-
tity called the stress tensor. The stress tensor is also a special device for
mathematical derivation which allows the stress state at any point in the
fluid body to be described.4

The meaning and use of the stress tensor are discussed in the following:
In the close vicinity of the point p, three planes perpendicular to each other
can be erected as shown in Fig. 5.2. Let the directions of the three planes
be x, y, and z. The stresses on these three planes are denoted by tx, ty

and tz , respectively. Each of these three stresses has three components.
For instance, tx has Txx, Txy and Txz. Now we consider a plane which
cuts across the three planes and forms a tetrahedron with the three planes
enclosing the point p, as shown in Fig. 5.2. We denote the direction of the
plane as n. The total force experienced by the tetrahedron has to be zero;
otherwise, the body will accelerate.
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Fig. 5.2 Tetrahedron at the point p with three surfaces of directions x, y, z perpendic-

ular to one another. The stresses on the four surfaces are denoted by tx, ty, tz and tn,
respectively.

Let the areas of the four surfaces of the tetrahedron be Sn, Sx, Sy and
Sz respectively. From the balance of the forces from the four surfaces,

tnSn = txSx + tySy + tzSz . (5.2)

As Sx is the projection of Sn on the x plane,

Sx = n ·xSn . (5.3a)

Similarly,

Sy = n ·ySn (5.3b)

Sz = n · zSn . (5.3c)

Substituting Eq. (5.3) into Eq. (5.2), we obtain

tnSn = txn ·xSn + tyn ·ySn + tzn · zSn . (5.4)

By shrinking the size of the tetrahedron to zero at the point p, the stresses
contained in Eq. (5.4) become the fixed values at p. When both sides are
divided by Sn, Eq. (5.4) becomes

tn = n · (xtx + yty + ztz) (5.5)



June 29, 2010 11:19 WSPC/Book Trim Size for 9in x 6in b959-ch05 FA

Stress and Strain 81

With tx, ty, and tz expressed in terms of their components (Eq. (5.1)),
Eq. (5.5) is rewritten as

tn = n · (xxTxx + xyTxy + xzTxz + yxTyx + yyTyy + yzTyz

+zxTzx + zyTzy + zzTzz) . (5.6)

In general, Eq. (5.6) is expressed in the abbreviated form

tn = n ·T (5.7)

where T is called the stress tensor. As shown in Eq. (5.6), a tensor is
composed of terms with unit dyads, which contain two unit vectors, such
as xx,xy, . . . , etc. In contrast to the tensor, a vector is composed of terms
containing a single unit vector. The operations involving the tensor are
illustrated in Appendix 5.A.

A fluid body cannot support a shear stress without flowing. Thus, a
stationary fluid body has only normal stresses that balance each other.
This means Txx = Tyy = Tzz (or T11 = T22 = T33. We may use 1, 2, and 3
to replace x, y, and z; and the symbols δ1, δ2, and δ3 to replace the three
orthogonal unit vectors x, y, and z below). These normal stresses are the
hydrostatic pressure P . And the stress tensor for a stationary fluid body
may be written as

T = P δ =


P 0 0

0 P 0
0 0 P


 (5.8)

where δ is the unit tensor (see Eq. (5.A.10)) defined by

δ =
∑

i

∑
j

δiδjδij =


1 0 0

0 1 0
0 0 1


 . (5.9)

Thus, the total stress tensor of a fluid body is written as

T = P δ + τ (5.10)

where τ is the extra stress tensor.
Because the deviation from the simple Hookean or Newtonian behavior

in response to a large deformation is often much greater than the com-
pressibility effect of the fluid material, the material is often assumed to
be incompressible in a rheological study. For an incompressible material,
we may eliminate the hydrostatic pressure term and only consider the extra
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stress tensor τ. Because Tij = τij (i �= j), such a practice has no effect on
the shear stresses. With the hydrostatic pressure eliminated, only the dif-
ferences between the normal stresses:

T11 − T22 = τ11 − τ22 (5.11)

and

T22 − T33 = τ22 − τ33 (5.12)

need be considered. As the third difference value (T11−T33 or τ11−τ33) can
be obtained from Eqs. (5.11) and (5.12), there are only two independent
difference values.

The stress tensor is expected to be symmetrical; i.e. Tij = Tji for i �= j.
This can be shown by considering the two shear-stress components, T13 and
T31, applied on a cube, as shown in Fig. 5.3. The two shear-stress com-
ponents must balance out, i.e. T13 = T31; otherwise the cube will start
accelerating around the δ2 direction. Similarly, T12 = T21; and T23 = T32.
Thus, the stress tensor is symmetrical and has only six independent com-
ponents. For expressing the symmetricity of the stress tensor, we write

T = TT (5.13)

where TT is called the transpose of T (see Appendix 5.A).

Fig. 5.3 If the two shear-stress components T13 and T31 are not equal, the cube will
rotate about the δ2 direction.
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5.2 Finite Strain

In rheology, we study the mathematical expression for the relation between
stress and deformation. Such an equation is usually referred to as the
constitutive equation or the rheological equation of state. For expressing
the constitutive equation in three dimensions, we need to find the proper
way to express the deformation in the tensorial form as well.

Consider a piece of material, as shown in Fig. 5.4. p is a certain point in
the material body, and q is a point in the neighborhood of p. The separation
between the two points is expressed by the vector dX′. Then the length of
the vector is given by its absolute value |dX′| defined by

|dX′| = (dX′ · dX′)1/2 (5.14)

and its direction is indicated by the unit vector:

u′ =
dX′

|dX′| . (5.15)

Here, we use the apostrophe mark “ ′ ” to indicate the state of the material
body at a certain time t′ in the past. Let the material body be changed to
the shape shown in the right of Fig. 5.4. Both the p and q points change
their positions as a result of rotation and/or deformation of the material
body. The vector dX′ between p and q is deformed to become dX. The
change in dX with respect to dX′ is called the deformation gradient which is
expressed by the dyad (∇′X)T (see Appendix 5.A), and is often represented

Fig. 5.4 The deformation between two neighboring points, p and q, in a piece of material
under deformation.
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by a tensor symbol E:

E = (∇′X)T =


∑

i

∑
j

δiδj
∂Xj

∂X ′
i




T

=
∑

i

∑
j

δiδj
∂Xi

∂X ′
j

(5.16)

or

Eij =
∂Xi

∂X ′
j

.

In defining E this way, we have assumed that X is a continuous function
of X′, i.e.

X = X(X′, t) . (5.17)

Then

dX = E · dX′

or

dX = dX′ ·ET . (5.18)

Three examples are given below to illustrate the operations of the defor-
mation gradient tensor. Consider a rectangular block of material with
dimensions ∆x′1, ∆x′2, and ∆x′3, as shown in Fig. 5.5(a). A Cartesian
coordinate system can be chosen with one of the corners as the origin and
three unit vectors δ1, δ2, and δ3 pointing in the three orthogonal directions
of the block. In this coordinate system, the position vector of a point p
inside the material body is denoted by X′ = δ1X

′
1 + δ2X

′
2 + δ3X

′
3.

(a) Uniaxial extension

In the uniaxial extension as shown in Fig. 5.5(b), the block (Fig. 5.5(a)) is
elongated λ1 times in the δ1 direction. The block is transformed to have the
dimensions ∆x1, ∆x2, and ∆x3, and the position of the point p is changed
to X with three components given by

X1 =
∆x1

∆x′1
X ′

1 = λ1X
′
1

X2 =
∆x2

∆x′2
X ′

2 = λ2X
′
2 (5.19)

X3 =
∆x3

∆x′3
X ′

3 = λ3X
′
3 .
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Fig. 5.5 (a) A rectangular block of material at rest. (b) The block under uniaxial

extension. (c) The block under simple shear deformation. (d) The block rotated.

Because the elongational deformation is symmetric with respect to the δ1

direction, λ2 = λ3. Substituting Eq. (5.19) into Eq. (5.16), we obtain

E =


λ1 0 0

0 λ2 0
0 0 λ2


 . (5.20)

As the material is assumed to be incompressible,

λ1λ
2
2 = 1 . (5.21)
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Using Eq. (5.21), Eq. (5.20) can be rewritten as

E =



λ1 0 0

0
1√
λ1

0

0 0
1√
λ1


 (5.22)

for uniaxial extension.

(b) Simple shear

For a simple shear as shown in Fig. 5.5(c), the top plane of the block sliding
along the δ1 direction over a distance, a, with reference to the bottom plane

X1 = X ′
1 +

a

∆x′2
X ′

2 = X ′
1 + λX ′

2 (5.23a)

X2 = X ′
2 (5.23b)

X3 = X ′
3 (5.23c)

where λ = a/∆x′2 is the simple shear strain. Substituting Eq. (5.23) into
Eq. (5.16), we obtain

E =


1 λ 0

0 1 0
0 0 1


 (5.24)

for simple shear.

(c) Solid-body rotation

Consider the rectangular block shown in Fig. 5.5(a) as a rigid (solid) body.
A rotation of the solid body around the δ3 direction is shown in Fig. 5.5(d).
For a rotational angle θ,

X1 = X ′
1 cos θ −X ′

2 sin θ (5.25a)

X2 = X ′
1 sin θ +X ′

2 cos θ (5.25b)

X3 = X ′
3 . (5.25c)

Substituting Eq. (5.25) into Eq. (5.16), we obtain

E =


cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 . (5.26)
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For a solid-body rotation, the material body is not deformed; the distance
from the origin of the coordinate system to the p point does not change.
Yet for a solid-body rotation, E �= δ, according to Eq. (5.26). The tensor
E describes a situation involving deformation [cases (a) and (b)], rotation
[case (c)], or both. A way to eliminate the rotational element needs to be
found.

Related to the deformation of the material body is the change in length
of dX′. We define the length ratio of the change from dX′ to dX as

µ =
|dX|
|dX′| (5.27)

or from Eq. (5.14)

µ2 =
dX · dX
dX′ · dX′ . (5.28)

The substitution of Eq. (5.18) into Eq. (5.28) gives

µ2 =
(E · dX′) · (E · dX′)

dX′ · dX′

=
dX′ ·ET ·E · dX′

|dX′|2
= u′ ·C ·u′ (5.29)

where Eq. (5.15) has been used for the last equality and C, called the
Cauchy tensor, is given by

C = ET ·E . (5.30)

The Cauchy tensor is a device for describing the change in length at any
point of the material body. Equation (5.29) indicates that in performing
such a function the Cauchy tensor operates on the unit vector u′ at some
time t′ in the past. However, the stress tensor is always measured with
respect to the present form of the material body or the deformed state.
Thus, there is the need to find a deformation tensor that operates on the
unit vector at the present time. This can be done by using the inverse of
E, E−1, to express dX′ in terms of dX, namely,

dX′ = E−1 · dX (5.31)

where

E−1 = (∇X′)T . (5.32)
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Substituting Eq. (5.31) into Eq. (5.28), we obtain

µ2 =
dX · dX

dX · (E−1)T ·E−1 · dX =
1

u ·B−1 ·u (5.33)

where

u =
dX
|dX| (5.34)

and B, called the Finger tensor, is given by

B−1 = (E−1)T ·E−1 (5.35a)

or

B = E ·ET . (5.35b)

A direct way for obtaining the Finger tensor, which also describes the
deformation, is to consider the change in a local area. In Fig. 5.4, we can
follow the change of either the area dA′ or the length dX′ to achieve the
same purpose. dA′ and dX′ are related by the volume dV ′

dV ′ = dA′ · dX′ . (5.36)

Just as Eq. (5.27) defines the length ratio of the change from dX′ to dX,
we can define the area ratio of the change from dA′ to dA as

ν =
|dA|
|dA′| (5.37)

or

ν2 =
dA · dA
dA′ · dA′ . (5.38)

Similar to Eq. (5.36), we have

dV = dA · dX . (5.39)

Using the assumption of incompressibility, namely dV ′ = dV , we have

dA′ · dX′ = dA · dX . (5.40)

Substituting Eq. (5.18) into Eq. (5.40), we obtain

dA′ = dA ·E . (5.41)
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The substitution of Eq. (5.41) into Eq. (5.38) gives

ν2 =
|dA|2

dA ·E ·ET · dA . (5.42)

Using the Finger tensor as defined by Eq. (5.35), Eq. (5.42) is rewritten as

1
ν2

= n ·B ·n (5.43)

where

n =
dA
|dA| . (5.44)

Physically, the Finger tensor B describes the change in area at a certain
point in the material body and operates on the unit vector n in the deformed
state or at the present time. This is what we hope to have for relating to
the stress tensor, which is measured with respect to the present form of the
material body.

For the three kinds of material body motions shown in Fig. 5.5, we
calculate the Cauchy and Finger tensors below:

(a) Uniaxial extension

Substituting Eq. (5.22) into Eqs. (5.30) and (5.35), we obtain

C = B =



λ1 0 0

0
1√
λ1

0

0 0
1√
λ1






λ1 0 0

0
1√
λ1

0

0 0
1√
λ1




=



λ2

1 0 0

0
1
λ1

0

0 0
1
λ1


 . (5.45)

It is clear that for uniaxial extension C = B because E = ET.
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(b) Simple shear

With E given by Eq. (5.24), Eqs. (5.30) and (5.35) become, respectively:

C =


1 0 0
λ 1 0
0 0 1




1 λ 0

0 1 0
0 0 1




=


1 λ 0
λ 1 + λ2 0
0 0 1


 (5.46)

B =


1 λ 0

0 1 0
0 0 1




1 0 0
λ 1 0
0 0 1




=


1 + λ2 λ 0

λ 1 0
0 0 1


 . (5.47)

(c) Solid-body rotation

The substitution of Eq. (5.26) into Eqs. (5.30) and (5.35) gives

C = B =


1 0 0

0 1 0
0 0 1


 = δ . (5.48)

Both the Cauchy and Finger tensors are unit tensors. This means that, as
expected, the solid-body rotation does not deform the material.

5.3 A neo-Hookean Material

In Chapter 4, we discussed Hooke’s law (Eq. (4.6)) for a small strain in one
dimension. As long as the applied strain is very small, Eq. (4.6) is valid
for a solid material. Here, we generalize it in three dimensions. It appears
logical that the stress tensor is linearly proportional to the deformation
tensor,5 that is,

τ = −GB . (5.49)
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Here the sign is chosen by taking compression to be positive. For an incom-
pressible material, the total stress tensor is given by

T = P δ−GB . (5.50)

The mechanical property represented by Eq. (5.50) is often called neo-
Hookean.

We apply Eq. (5.50) to the uniaxial-extension case with δ1 being the
direction of extension. From Eqs. (5.45) and (5.50), we have

T =



P −Gλ2

1 0 0

0 P − G

λ1
0

0 0 P − G

λ1


 (5.51)

and the normal-stress difference

σ = T11 − T22 = T11 − T33

= −G
(
λ2

1 −
1
λ1

)
(5.52)

which is identical to Eq. (2.22) with G = nkT/V (see Appendix 8.B).
Thus, Eq. (5.50) is a suitable equation for the stress–strain behavior of a
rubber. Extensive investigations6,7 have also shown that the equation is
in good agreement with experimental results of the rubber for moderate
deformations.

For a small uniaxial deformation, λ1 is very close to 1, i.e.

λ1 = 1 + ε ; ε� 1 . (5.53)

Substituting Eq. (5.53) into Eq. (5.52), we obtain

σ = − lim
ε→0

3Gε (5.54)

Young’s modulus E is defined by

E = − lim
ε→0

σ

ε
. (5.55)

Thus, for an incompressible isotropic material,

E = 3G . (5.56)
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Applying the neo-Hookean Eq. (5.50) to the simple shear deformation case,
we obtain from Eq. (5.47)

T12 = T21 = −Gλ (5.57)

T11 − T22 = −Gλ2 (5.58)

and

T22 − T33 = 0 . (5.59)

The above results indicate that the stress–strain relation is linear for
the shear component (Eq. (5.57)) while the first normal-stress difference
becomes very large when the applied shear strain λ is greater than 1
(Eq. (5.58)). The occurrence of the first normal-stress difference is unex-
pected from the viewpoint of linear viscoelasticity (Eq. (4.6)). It is related
to the so-called rod-climbing phenomenon,1 namely, the observation that a
polymeric liquid climbs a rotating shaft.

Comparing Eqs. (5.56) and (5.57), one sees that Young’s modulus is
three times the shear modulus for an incompressible isotropic solid.

5.4 A Newtonian Fluid

For a fluid that does not possess any elastic property, what needs to be
measured is the deformation rate, instead of the total strain. Such a fluid
has no memory of past deformations. Thus, we need to express the present
changing rate of the Finger tensor B, while moving the past point position
X′ in B infinitely close to its present position X. Mathematically, these
two ideas can be expressed as

γ̇ij = lim
X′→X

∂Bij

∂t

= lim
X′→X

∂

∂t

∑
k

∂Xi

∂X ′
k

∂Xj

∂X ′
k

= lim
X′→X

∑
k

[(
∂

∂t

∂Xi

∂X ′
k

)
∂Xj

∂X ′
k

+
∂Xi

∂X ′
k

(
∂

∂t

∂Xj

∂X ′
k

)]

=
∑

k

[
∂Vi

∂Xk
δjk + δik

∂Vj

∂Xk

]

=
∂Vi

∂Xj
+
∂Vj

∂Xi
. (5.60)
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The equation for a Newtonian fluid can be written in three-dimensional
space as

τ = −ηγ̇ (5.61)

or

T = P δ− ηγ̇ (5.62)

where the components of the rate-of-strain tensor γ̇ are given by Eq. (5.60).
The application of the constitutive equation — Eq. (5.62) — to the simple-
shear case gives

T =


 P −ηγ̇ 0
−ηγ̇ P 0

0 0 P


 (5.63)

where

γ̇ =
∂V1

∂X2
+
∂V2

∂X1
. (5.64)

From Eq. (5.63), the simple-shear result in one dimension (Eq. (4.3)) is
obtained, i.e.

T12 = −ηγ̇ . (5.65)

We also see from Eq. (5.63) that the Newtonian fluid does not give rise to
a normal-stress difference for simple shear.

In the case of uniaxial extension,

Vi = λ̇iXi ; for i = 1, 2, 3 . (5.66)

The substitution of Eq. (5.66) into Eq. (5.60) gives

γ̇ = 2


λ̇1 0 0

0 λ̇2 0
0 0 λ̇3


 . (5.67)

For an incompressible fluid with density ρ,

dρ

dt
= −ρ∇·V = −ρ

∑
i

∂Vi

∂Xi
= 0 . (5.68)

Thus,

λ̇1 + λ̇2 + λ̇3 = 0 . (5.69)
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Because of the symmetry of the deformation,

λ̇2 = λ̇3 . (5.70)

Using Eqs. (5.69) and (5.70), Eq. (5.67) is rewritten as

γ̇ = 2



λ̇1 0 0

0 − λ̇1

2
0

0 0 − λ̇1

2


 . (5.71)

The substitution of Eq. (5.71) into Eq. (5.62) gives

T =


P − 2ηλ̇1 0 0

0 P + ηλ̇1 0
0 0 P + ηλ̇1


 (5.72)

from which

T11 − T22 = T11 − T33 = −3ηλ̇1 . (5.73)

From the comparison of Eqs. (5.65) and (5.73), we see that the tensile
viscosity is three times the shear viscosity. This is Trouton’s well-known
rule, which is analogous to the relation of Young’s modulus being three
times the shear modulus for an isotropic incompressible material.

Appendix 5.A — Tensor Operations

Here, we use Eq. (5.7) as an example for discussing the operations related
to a tensor. The dot in Eq. (5.7) represents the multiplication of a tensor
by a vector, and the product is a vector. In Eq. (5.7), the unit vector n
forms a dot product with only the left unit vector in each dyad term of
the tensor T. With n ·x = nx, n ·y = ny, and n · z = nz, Eq. (5.7) is
rewritten as

tn = x(nxTxx + nyTyx + nzTzx) + y(nxTxy + nyTyy + nzTzy)

+ z(nxTxz + nyTyz + nzTzz) . (5.A.1)

Sometimes for convenience, the tensor is expressed in terms of a matrix as

T =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 . (5.A.2)
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The matrix representation is convenient because dot-product multiplication
is equivalent to standard matrix multiplication. In terms of the matrix
representation, Eq. (5.7) is expressed as

tn = n · T

= (nx ny nz)

0
B@

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

1
CA

= (nxTxx + nyTyx + nzTzx nxTxy + nyTyy + nzTzy nxTxz + nyTyz + nzTzz)

(5.A.3)

In Eq. (5.A.3) the vector n at the left of the dot is represented by a row.
The multiplication of the row with the matrix forms another row, which
represents a vector. In the matrix representation, the dot product between
two vectors is represented by the multiplication of a row on the left and a
column on the right.

The tensor T may also be concisely written as

T =
∑

i

∑
j

δiδjTij (5.A.4)

where 1, 2, and 3 represent x, y, and z, respectively and δ1, δ2, and δ3

represent the unit vectors x, y, and z, respectively. And the unit vector n
is expressed as

n =
∑

i

δini . (5.A.5)

Then, Eq. (5.7) may be written as

tn = n ·T
=
∑

i

δini ·
∑

k

∑
l

δkδlTkl

=
∑

i

∑
l

niTilδl

= δ1(n1T11 + n2T21 + n3T31) + δ2(n1T12 + n2T22 + n3T32)

+ δ3(n1T13 + n2T23 + n3T33) . (5.A.6)

The result of Eq. (5.A.6) is the same as those of Eqs. (5.A.1) and (5.A.3).
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There are a few special second-order tensors, which are noteworthy:
(1) If

Tij = Tji

T is a symmetric tensor.
(2) If

T =
∑

i

∑
j

δiδjTij (5.A.7a)

the transpose of T is defined by

TT =
∑

i

∑
j

δiδjTji . (5.A.7b)

If T is a symmetric tensor, T = TT .
(3) The components of a tensor can be formed from the components of

two vectors, two as a pair for one component. Take two vectors v and w.
The tensor formed from v and w is called the dyadic product of v and w.
The symbol to represent it is simply vw:

vw =
∑

i

∑
j

δiδjviwj . (5.A.8)

Note that vw �= wv. But

(vw)T = wv (5.A.9)

(4) If the components of the tensor are given by the Kronecker delta δij
(δij = 1 if i = j; δij = 0 if i �= j), the tensor is called the unit or identity
tensor, often denoted by

δ =
∑

i

∑
j

δiδjδij . (5.A.10)

The single dot product of two tensors S and T is a tensor and is
expressed as

S ·T =
∑

i

∑
j

∑
k

∑
l

δiδj · δkδlSijTkl

=
∑

i

∑
j

∑
k

∑
l

δjkδiδlSijTkl

=
∑

i

∑
l

δiδlRil (5.A.11)
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where

Ril =
∑

j

SijTjl . (5.A.12)

The product of two tensors with two dots between them (the double dot
product) is a scalar and is defined by the following:

S : T =
∑

i

∑
j

∑
k

∑
l

δiδj : δkδlSijTkl

=
∑

i

∑
j

∑
k

∑
l

(δj · δk)(δi · δl)SijTkl

=
∑

i

∑
j

∑
k

∑
l

δjkδilSijTkl

=
∑

i

∑
j

SijTji

=
∑

i

Rii . (5.A.13)
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Chapter 6

Molecular Theory of Polymer
Viscoelasticity — Elastic Dumbbell
Model

6.1 Introduction

In Chapter 3, we used the Rouse model for a polymer chain to study
the diffusion motion and the time-correlation function of the end-to-end
vector. The Rouse model was first developed to describe polymer viscoelas-
tic behavior in a dilute solution.1 In spite of its original intention, the the-
ory successfully interprets the viscoelastic behavior of the entanglement-free
polymer melt or blend-solution system.2,3 The Rouse theory, developed on
the Gaussian chain model, effectively simplifies the complexity associated
with the large number of intra-molecular degrees of freedom and describes
the slow dynamic viscoelastic behavior — slower than the motion of a single
Rouse segment.

As discussed in Chapter 3, there are two equivalent ways to describe
the Brownian motions of the polymer chain: the Langevin equation and
the Smoluchowski equation. For describing the viscoelastic properties, the
Smoluchowski equation is more convenient.4,5 As a Rouse chain can have
many bead-spring segments, it still contains much complexity. Here, we first
treat the special simple case of modeling the polymer chain as a dumbbell
with two beads connected by a harmonic spring (see Fig. 6.1). The model
is often referred to as the elastic dumbbell. The structural simplicity of
the elastic dumbbell facilitates demonstration of the theoretical derivations
and explanation of the corresponding physical meanings. In Chapter 7,
the theoretical result obtained here will be expanded for the Rouse chain,
which can have a finite large number of bead-spring segments. The validity
of the Rouse theory, as demonstrated by close agreement with experimental
results, will be shown in Chapter 11.

98
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Fig. 6.1 An elastic dumbbell.

6.2 The Smoluchowski Equation for an Elastic Dumbbell

For the dumbbell, as shown in Fig. 6.1, we assume that the two beads have
an identical mass m and radius a. Their position vectors are indicated by
R1 and R2, respectively. Then the “configuration vector” between the two
beads is given by

R = R2 −R1 . (6.1)

We assume that the fluid system under consideration has n such dumbbells
per unit volume. Each moving bead experiences a friction force which is pro-
portional, with an opposite sign, to the velocity difference between the bead
and the fluid flow. The proportionality constant is referred to as the friction
constant ζ. In Chapter 3, we studied the special case where there is no fluid
flow. Here, a non-zero fluid flow velocity needs to be included for the rheo-
logical study. If the polymer chain is surrounded by the solvent, Stoke’s law
gives ζ = 6πηsa where ηs is the solvent viscosity.6 In a concentrated-solution
or melt system, ζ is a parameter that has absorbed all the intermolecular
and intersegmental interactions, and depends strongly on temperature, as
noted in Chapter 3. In the usual theoretical study of a dynamic problem
in the concentrated-solution or melt system, where both the hydrodynamic
interaction and excluded volume effect are absent,4,7–9 the diameter of the
bead is ignored; the bead is treated as a point, and the friction constant
just as a parameter. For describing the viscoelastic properties, the elastic
dumbbell model and the Rouse model are mean-field theories. The bulk
viscoelastic quantity is simply the sum of the statistically-averaged values
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from individual model molecules. The friction constant is a basic element
of such a mean field.

The fluid velocity field is assumed to be homogeneous and can be
expressed as

V = V0 + K ·X (6.2)

where V0 is a constant, X is the position vector, and

K = (∇V)T (6.3)

which does not change with position, but can change with time. We can
make the homogeneous-field assumption because the size of the fluid parti-
cle is much smaller than the macroscopic length scale. In the homogeneous
flow, the stress tensor is also independent of position. The velocity gradient
tensor K is traceless for an incompressible fluid (Eq. (5.68)).

As seen in Chapter 3, the force constant on the harmonic spring is of
entropic origin. The spring forces on bead 1 and bead 2, denoted by F1

and F2, respectively, are given by

F1 = − ∂V

∂R1
=

3kT
R2

R = S (6.4)

F2 = − ∂V

∂R2
= −S (6.5)

where S, referred to as the connector force, has the same direction as R,
and V is the potential of the harmonic spring given by

V =
3kT
2R2

(R2 −R1)2 (6.6)

with R2 denoting the mean square distance between the two beads 〈R2〉.
The center-of-mass position of the elastic dumbbell is defined by

Rc =
R1 + R2

2
. (6.7)

Let Ψ(R1,R2)dR1dR2 represent statistically the number of dumbbells that
will be found within the configuration range from R1 to R1 +dR1 for bead
1 and from R2 to R2 + dR2 for bead 2. For a homogeneous flow with no
concentration gradient, the configurational distribution of the dumbbells is
expected to be independent of the locations of the dumbbells; and we can
write

Ψ(R1,R2, t)dR1dR2 = φ(Rc)ψ(R, t)dRcdR (6.8)
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where φ(Rc) is the concentration distribution of elastic dumbbells and can
be equated with n; and ψ(R, t) is the distribution function for the internal
configuration at time t. As the Jacobian between dR1dR2 and dRcdR is
one, we can write10

Ψ(R1,R2, t) = nψ(R, t) . (6.9)

As defined above, ψ(R, t)dR is the probability that a randomly selected
dumbbell from the fluid system will be in the configuration range R to
R + dR, and ψ(R, t) is normalized as∫

ψ(R, t)dR = 1 . (6.10)

Then the average value of any dynamic quantity M(R) can be defined by

〈M(t)〉 =
∫
M(R)ψ(R, t)dR . (6.11)

Let the fluid flow velocities at the positions R1 and R2 be V1 and V2,
respectively (Eq. (6.2)). Based on Eq. (3.18), we can write the equations
of motion for the two beads as

ζ(Ṙ1 −V1) = − ∂

∂R1
(kT lnΨ + V )

= −kT ∂

∂R1
lnΨ + F1 (6.12)

ζ(Ṙ2 −V2) = −kT ∂

∂R2
lnΨ + F2 . (6.13)

Substituting Eqs. (6.2), (6.4), and (6.5) into Eqs. (6.12) and (6.13); and
using Eqs. (6.1), (6.7), and (6.9), we can rewrite Eqs. (6.12) and (6.13) in
terms of Rc and R as

Ṙ = K ·R− 2kT
ζ

∂

∂R
lnψ − 2S

ζ
(6.14)

and

Ṙc = V0 + K ·Rc . (6.15)

Equation (6.15) indicates that the center of mass follows the fluid flow. This
result is expected from the assumption made in Eq. (6.9). The continuity
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equation for Ψ(R1,R2, t) is

∂Ψ
∂t

= − ∂

∂R1
· Ṙ1Ψ− ∂

∂R2
· Ṙ2Ψ

= − ∂

∂Rc
· ṘcΨ− ∂

∂R
· ṘΨ (6.16)

where the second equality results from direct substitution of using Eqs. (6.1)
and (6.7). With the substitution of Eqs. (6.9) and (6.15), the first term on
the right-hand side of Eq. (6.16) becomes

−n ∂

∂Rc
· Ṙcψ(R) = −n ∂

∂Rc
· (V0 + K ·Rc)ψ(R)

= −n(TrK)ψ(R) = 0 (6.17)

where we have used Eq. (5.68) for the last equality. Thus, Eq. (6.16)
becomes

∂ψ(R)
∂t

= − ∂

∂R
· Ṙψ(R) . (6.18)

Substituting Eq. (6.14) into Eq. (6.18), we obtain the diffusion equation —
the Smoluchowsky equation — for ψ(R)

∂ψ(R)
∂t

= − ∂

∂R
·
(

[K ·R]ψ − 2kT
ζ

∂ψ

∂R
− 2Sψ

ζ

)
. (6.19)

This equation describes how the distribution function ψ(R) changes with
time under the velocity field K. When K = 0, the form of Eq. (6.19)
becomes similar to that of Eq. (3.15).

To obtain the average value of a physical quantity 〈M〉, it is not neces-
sary to first calculate the distribution function ψ(R) from Eq. (6.19) and
then substitute it into Eq. (6.11). From Eq. (6.11)

d〈M〉
dt

=
∫
M
∂ψ

∂t
dR . (6.20)

Substituting Eq. (6.18) into Eq. (6.20), and by means of integration by
parts, we obtain

d〈M〉
dt

= −
∫

∂

∂R
· (ṘψM)dR +

∫
Ṙψ · ∂M

∂R
dR

=
〈
Ṙ · ∂M

∂R

〉
. (6.21)
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In Eq. (6.21), we have used the Gauss divergence theorem and the condition
that ψ(R) = 0 on the surface at R =∞.

Substituting Eq. (6.14) into Eq. (6.21) and by using integration by parts
and the Gauss divergence theorem, we obtain

d〈M〉
dt

=
〈
K ·R · ∂M

∂R

〉
+

2kT
ζ

〈
∂

∂R
· ∂M
∂R

〉
− 2
ζ

〈
S · ∂M

∂R

〉
. (6.22)

We shall be particularly interested in the case where

M = RR . (6.23)

Substituting Eq. (6.23) into Eq. (6.22), we obtain

d〈RR〉
dt

= K · 〈RR〉+ 〈RR〉 ·KT +
4kT
ζ

δ− 4
ζ
〈RS〉 . (6.24)

To get the last term of Eq. (6.24), we use the fact that R and S are in the
same direction (Eq. (6.4)).

Defining

〈RR〉(1) =
d〈RR〉
dt

−K · 〈RR〉 − 〈RR〉 ·KT . (6.25)

Equation (6.24) is rewritten as

〈RR〉(1) =
4kT
ζ

δ− 4
ζ
〈RS〉 . (6.26)

With the homogeneous flow assumption, whereby ∇〈RR〉 = 0, the defini-
tion of 〈RR〉(1) as given by Eq. (6.25) is the same as the codeformational
time derivative or convected time derivative shown in Appendix 6.A.

When K = 0 and the fluid system is in the equilibrium state,
d/dt〈RR〉 = 0, and Eq. (6.24) gives

〈RS〉eq = kT δ . (6.27)

If S = HR, the force constant H is obtained from Eq. (6.27) to be 3kT/R2,
which is identical to the entropic force constant used in Eqs. (3.31) and
(6.4).
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6.3 Rheological Constitutive Equation of the Elastic
Dumbbell Model

Below, we shall consider the contribution of the dumbbell molecule to the
stress tensor of the fluid. If the fluid system is a polymer solution, the total
stress tensor of the system can be separated into two parts: Ts from the
solvent and Tp from the polymer.

T = Ts + Tp

= (Psδ + τs) + (Ppδ + τp)

= P δ + τ (6.28)

where the definition given by Eq. (5.10) is used, giving

P = Ps + Pp (6.29)

and

τ = τs + τp = −ηsγ̇ + τp . (6.30)

In Eq. (6.30), ηs is the solvent viscosity (see Eq. (5.61)), and

γ̇ = ∇V + (∇V)T . (6.31)

For K = 0, T = P δ. In a polymer melt or concentrated solution, τs is
either zero or negligible in comparison with τp. In Eq. (6.28), Tp from the
dumbbell contains two parts: (a) Any plane in the fluid has the probability
of being crossed by a dumbbell at any moment, and in general, a tensile
force will be transmitted across the plane by the spring connector; (b) A
particular bead of the dumbbell can move across the plane, carrying a
certain momentum. The contributions of the connectors and the beads to
Tp are denoted by Tc

p and Tb
p, respectively.

(a) Contribution from tension in the connector 11

Consider a plane which moves with the local velocity V in the fluid. Let
the direction of the selected plane be denoted by the unit vector n. Set up
a cube which contains an average of only one dumbbell and has a volume
of 1/n. The plane cuts across the middle of the cube as shown in Fig. 6.2.
If a dumbbell with the configuration vector R is randomly thrown into the
cube (in other words, its center of mass may, with equal probability, reach
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Fig. 6.2 A dumbbell with bond vector R intersecting an arbitrary plane (shaded) of
area (1/n)2/3 in a suspension of dumbbells. The plane is moving with the local velocity
and has the direction represented by the unit vector n. The (−) side of the plane exerts
a force −S = F2 (Eq. (6.5)) to the (+) side through the bond. The dashed lines indicate
a cube of volume 1/n.

at any point inside the cube), the probability that the dumbbell will cross
the plane is

Projection of R along the direction of n
side length of the cube

=
|n ·R|
n−1/3

. (6.32)

At the same time, the probability that the configuration of the dumbbell is
in the range R to R+dR is ψ(R, t)dR. Thus, the probability that a dumb-
bell in the range R to R+dR will cross the plane is |n ·R|(n1/3)ψ(R, t) dR.
If bead 2 is on the (+) side of the plane, |n ·R| = n ·R and the force
exerted on the (+) side from the (−) side is −S; if bead 1 is on the (+)
side, |n ·R| = −n ·R and the force exerted on the (+) side from the (−)
side is S. Thus, the expectation value of the force exerted from the (−) side
to the (+) side of the cube (see Fig. 6.2) through the dumbbell is

−n1/3

∫
(n ·R)Sψ(R, t)dR . (6.33)

Dividing this value by the area of the plane (1/n)2/3 gives the force per
unit area

−n
∫

(n ·R)Sψ(R, t)dR = −n
[
n ·
∫

RSψ(R, t)dR
]
. (6.34)

The expectation value given by Eq. (6.34) needs to be equal to n ·Tc
p (see

Eq. (5.7)). Thus the contribution of the connector of the dumbbell to the
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stress tensor is

Tc
p = −n

∫
RSψ(R, t)dR

= −n〈RS〉 . (6.35)

(b) Contribution due to bead motion

Because of the momentum it carries, any bead moving across a plane will
contribute to the stress tensor. To obtain the value contributed by this
mechanism, we first ask how many “1” beads with velocity Ṙ1 will, in a
unit time, pass through any chosen plane of area S and direction n. This
value is the product of the number of dumbbells per unit volume n and the
volume of the parallelepiped, as shown in Fig. 6.3, namely,

n[(Ṙ1 −V1) ·Sn] . (6.36)

Then the momentum carried across the shaded plane (Fig. 6.3) is

n[(Ṙ1 −V1) ·Sn]m(Ṙ1 −V1) . (6.37)

Thus, the expectation value of the momentum flux is

nm

∫∫
[n · (Ṙ1 −V1)(Ṙ1 −V1)]Ξ(Ṙ1, Ṙ2) dṘ1dṘ2 (6.38)

where Ξ(Ṙ1, Ṙ2) is the velocity distribution function, which is assumed to
be described by the Maxwellian distribution. Including the contribution

Fig. 6.3 A bead of a dumbbell carries its momentum in crossing an arbitrary surface
(shaded) moving with the local velocity, contributing to the stress tensor.
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from “2” beads, we obtain the total value

nm

∫∫
n ·
[

2∑
i=1

(Ṙi −Vi)(Ṙi −Vi)

]
Ξ(Ṙ1, Ṙ2)dṘ1dṘ2 . (6.39)

This expectation value must be equal to n ·Tb
p. Thus,

Tb
p = n

∫∫ [ 2∑
i=1

m(Ṙi −Vi)(Ṙi −Vi)

]
Ξ(Ṙ1, Ṙ2) d(Ṙ1 −V1)d(Ṙ2 −V2) .

(6.40)

Substituting the Maxwellian distribution and Ṙi−Vi = vi into Eq. (6.40),
we obtain

Tb
p =

n
∫∫ (∑2

i=1mvivi

)
exp

(
−∑2

i=1mv2
i /2kT

)
dv1dv2∫ ∫

exp
(
−∑2

i=1mv2
i /2kT

)
dv1dv2

= 2nkT δ . (6.41)

Thus the motions of the beads only contribute to the normal stress.
Combining the contributions of Tc

p and Tb
p, as given by Eqs. (6.35) and

(6.41), we have

Tp = −n〈RS〉+ 2nkT δ . (6.42)

And Eq. (6.28) may be written as

T = Ts + Tp = Ts − n〈RS〉+ 2nkT δ . (6.43)

At equilibrium, Ts = Psδ, and 〈RS〉eq = kT δ (Eq. (6.27)), so

T = Psδ− nkT δ + 2nkT δ = P δ . (6.44)

Thus P = Ps + nkT or

Pp = nkT . (6.45)

Therefore, from Eqs. (6.28), (6.42), and (6.45), we obtain

τp = −n〈RS〉+ nkT δ (6.46)

and

τ = τs + τp = −ηsγ̇− n〈RS〉+ nkT δ . (6.47)

Equation (6.47) was first derived by Kramers.12
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By eliminating the 〈RS〉 term between Eqs. (6.26) and (6.47), we obtain

τ = −ηsγ̇ +
nζ

4
〈RR〉(1) (6.48)

which is referred to as the Giesekus expression for the stress tensor.13 As we
are mainly interested in the concentrated-solution or melt system, we shall
neglect the solvent viscosity term in Eq. (6.48).

τ = τp =
nζ

4
〈RR〉(1) . (6.49)

So far, in deriving Eqs. (6.26) and (6.47), we have only used the relation
that R and S are in the same direction. By substituting the Hooke relation,
Eq. (6.4), into Eq. (6.46), we obtain

τ = τp =
−3nkT
R2

〈RR〉+ nkT δ . (6.50)

By performing the convected differentiation operation (see Appendix 6.A),
Eq. (6.50) is transformed to

τ(1) =
−3nkT
R2

〈RR〉(1) + nkT δ(1)

=
−3nkT
R2

〈RR〉(1) − nkT γ̇ (6.51)

where δ(1) = −γ(1) = −γ̇ is given by Eq. (6.A.26). By eliminating 〈RR〉(1)
between Eqs. (6.49) and (6.51), we obtain the constitutive equation for the
elastic dumbbell model:

τ + sτ(1) = −ηγ̇ = −ηγ(1) (6.52)

where

η = nkTs (6.53)

and s is the relaxation-time constant for the elastic dumbbell:

s =
ζR2

12kT
. (6.54)

Equation (6.52) has the exact form of a “convected Maxwell model.” There-
fore, many results from continuum mechanics can be applied to Eq. (6.52)
directly. The relevant aspects of continuum mechanics are discussed in
Appendix 6.A. The rheological tensors in Eq. (6.52) are all evaluated by
following a particular fluid particle at any “current” moment t. Since a
particular fluid point is followed, t may be replaced by a past time t′.
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For a certain fluid particle (X, t), we multiply each term in Eq. (6.52) by
E(X, t, t′), which is placed on the left side, and by E(X, t, t′)T , which is
placed on the right:

E(t, t′) · τ(t′) ·E(t, t′)T + sE(t, t′) · τ(1)(t′) ·E(t, t′)T

= −ηE(t, t′) · γ(1)(t′) ·E(t, t′)T . (6.55)

Equation (6.55) may be rewritten as (see Eqs. (6.A.14), (6.A.19), and
(6.A.21))

τ[0](t, t′) + sτ[1](t, t′) = −ηγ[1](t, t′) (6.56)

which is

τ[0](t, t′) + s
∂

∂t′
τ[0](t, t′) = −ηγ[1](t, t′) . (6.57)

Equation (6.57) is an inhomogeneous first-order linear differential equation
of the tensor τ[0] in the range −∞ < t′ < t. With the condition that
τ[0] is finite at t′ = −∞, we may obtain the solution for τ[0]. τ[0](t, t) =
τ(t), as the convected coordinates coincide with the fixed coordinates when
t′ = t. Thus,

τ(t) = −
∫ t

−∞

η

s
exp[−(t− t′)/s]γ[1](t, t′)dt′

= −
∫ t

−∞
nkT exp[−(t− t′)/s]γ[1](t, t′)dt′ . (6.58)

Using integration by parts, Eq. (6.58) may be transformed to

τ(t) =
∫ t

−∞

nkT

s
exp[−(t− t′)/s]γ[0](t, t′)dt′ (6.59)

where γ[0](t, t′) is given by Eq. (6.A.6). Equations (6.58) and (6.59) are
different from Eqs. (4.14) and (4.15) in that the former equations, involving
three dimensions, can be used for large deformations; the latter, with stress
and strain expressed as scalar quantities, are limited to small deformations.

6.4 Applications of the Constitutive Equation

We shall illustrate the applications of the constitutive Eq. (6.59) in two
cases: stress relaxation following a step shear deformation and steady-state
shear flow.
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(a) Stress relaxation

For a step shear deformation applied at t′ = 0, the displacement func-
tions are

X ′
1 = X1 for t′ > 0

X ′
1 = X1 − λX ′

2 for t′ < 0 (6.60)

X ′
2 = X2 for all t′

X ′
3 = X3 for all t′ .

Applying Eq. (5.16) to Eq. (6.60), we obtain

E =


1 0 0

0 1 0
0 0 1


 for t′ > 0 (6.61a)

and

E =


1 λ 0

0 1 0
0 0 1


 for t′ < 0 . (6.61b)

Substituting Eq. (6.61) into Eq. (6.A.6), we obtain

γ[0] = 0 for t′ > 0 (6.62a)

and

γ[0] =


−λ2 −λ 0
−λ 0 0
0 0 0


 for t′ < 0 . (6.62b)

Substituting Eq. (6.62) into Eq. (6.59), we obtain

τ(t) =


 τ11(t) τ12(t) 0
τ21(t) 0 0

0 0 0


 (6.63)

where the shear stress is

τ12(t) = τ21(t) = −λnkT exp
(
− t
s

)
(6.64a)

or the shear relaxation modulus

G(t) = −τ12(t)
λ

= nkT exp
(
− t
s

)
(6.64b)
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and the first normal-stress difference is

τ11(t)− τ22(t) = τ11(t) = −λ2nkT exp
(
− t
s

)
(6.65)

while the second normal-stress difference τ22(t) − τ33(t) is zero. The shear
relaxation modulus of the elastic dumbbel model (Eq. (6.64b)) does not
show a strain dependence and is equivalent to the linear viscoelastic result,
Eq. (4.28). However, Eq. (6.65) is a nonlinear result.

(b) Steady-state shear flow

In maintaining a steady-state shear flow, the displacement functions are
given by

X ′
1 = X1 − λ̇0(t− t′)X2 (6.66a)

X ′
2 = X2 (6.66b)

X ′
3 = X3 . (6.66c)

Applying Eq. (5.16) to Eq. (6.66), we obtain

E =


1 λ̇0(t− t′) 0

0 1 0
0 0 1


 . (6.67)

The substitution of Eq. (6.67) into Eq. (6.A.6) gives

γ[0] = −

 λ̇2

0(t− t′)2 λ̇0(t− t′) 0
λ̇0(t− t′) 0 0

0 0 0


 . (6.68)

Substituting Eq. (6.68) into Eq. (6.59), we obtain

τ =


 τ11 τ12 0
τ21 0 0
0 0 0


 (6.69)

where the shear stress is

τ12 = τ21 = −nkTsλ̇0 (6.70a)

or the viscosity

η0 = −τ12
λ̇0

= nkTs (6.70b)
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and the first normal-stress coefficient is given by

Ψ1 = − (τ11 − τ22)
λ̇2

0

= 2nkTs2 (6.71)

while the second normal-stress coefficient Ψ2 = −(τ22 − τ33)/λ̇2
0 is zero.

The viscosity result (Eq. (6.70b)) is the same as what will be obtained
from substituting the relaxation modulus (Eq. (6.64b)) into the linear vis-
coelastic relation (Eq. (4.30)). Similar to Eq. (6.65), Eq. (6.71) is a non-
linear result.

Equation (6.70) indicates that the viscosity is independent of the shear
rate λ̇0. However, it is well known that the polymeric liquid exhibits
non-Newtonian behavior, namely, that the viscosity value decreases with
increasing shear rate after the rate reaches a certain value. This discrep-
ancy is a weak point of the elastic dumbbell model and arises from an
inherent weakness in the Gaussian distribution assumed for the connector
vector. We can see the cause of this deficiency from the following analysis
of how the dumbbell configuration changes with shear rate.

Under steady shear at a certain rate, the mean square end-to-end dis-
tance of an elastic dumbbell is given by

〈R2〉 = Tr〈RR〉 . (6.72)

Taking the trace of Eq. (6.50) and substituting the result into Eq. (6.72),
we obtain

〈R2〉
〈R2〉eq

= 1− Tr(τ)
3nkT

= 1 +
2(sλ̇0)2

3
(6.73)

where, for the second equality, Eq. (6.69) has been used. Equation (6.73)
indicates that the elastic dumbbell can be stretched to become infinitely
long by increasing the shear rate. Such a situation, of course, cannot occur
in reality as the end-to-end distance of a polymer chain can at most be
stretched to its backbone-contour length, which is limited by very rigid
chemical bonds. The infinite extensibility of the elastic-dumbbell connector
is related to the predicted constant viscosity value at all shear rates.

Theoretically, Eq. (6.58) is applicable in both the linear and nonlinear
regions, as Eqs. (5.49) and (5.61) are for the elastic and viscous lim-
its, respectively. One can note that as the relaxation time s becomes
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infinitely long or infinitely short, Eq. (6.58) reduces to Eqs. (5.49) or (5.61),
respectively.

In the linear region, the viscoelastic properties, G′(ω), G′′(ω), J0
e etc.,

can be obtained from the relaxation modulus using Eq. (6.58) or (6.59)
just as they can from the linear viscoelastic relations given in Chapter 4.
The relaxation modulus of the elastic dumbbell model contains only a sin-
gle relaxation time (Eq. (6.64)). This result is clearly too simple and is
inconsistent with the observed viscoelastic spectrum whose relaxation-time
distribution usually has a considerable width. However, the study of the
elastic dumbbell model in this chapter shows the basic theoretical steps
required to treat the Rouse chain, which consists of a finite large number
of bead-spring segments. As the elastic dumbbell model gives a theoretical
form which is equivalent to the convected Maxwell model, the Rouse model
yields a form which is equivalent to the convected generalized Maxwell
model. In addition, all the relaxation times are expressed in terms of the
molecular parameters in the Rouse model.

Appendix 6.A — Codeformational (Convected)
Time Derivative

We can label a particle or a point in a material system by giving its position
X (with the Cartesian components X1, X2, X3) at the present time t and
denoting it as (X, t). The position of the particle (X, t) at a past time t′

is called X′. The motion of the material is then given by the displacement
function:

X′ = X′(X, t, t′) (6.A.1)

which tells the position X′ of each particle (X, t) for all past times t′. The
displacement function is continuous and can be inverted to give

X = X(X′, t, t′) . (6.A.2)

In Chapter 5, we defined the deformation gradient tensor E, Cauchy tensor
C, and Finger tensor B, respectively, as

E(X, t, t′) = (∇′X)T (6.A.3)

C(X, t, t′) = ET ·E (6.A.4)

B(X, t, t′) = E ·ET (6.A.5)
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where (X, t, t′) denotes a material point or particle (X, t) at a past time t′.
Corresponding to the role of the Finger strain tensor B described in
Chapter 5, we define the relative strain tensor γ[0](X, t, t′) as

γ[0](X, t, t′) = δ−B = δ−E ·ET (6.A.6)

which is zero for a rigid-body rotation or when t′ = t.
We consider the convected coordinate system embedded in a flowing

fluid and deforming with it. The convected coordinates denoted by X̂1,
X̂2, X̂3 remain the same for all the times and exactly coincide with the
Cartesian coordinates X1, X2, X3 at time t. Thus, we can label the fluid
particle either by the variables X̂1, X̂2, X̂3 or with the variables X1, X2,
X3, and t.

Let dX′ be the vector between two neighboring fluid particles at time
t′ and ĝi be the base vector tangent to the X̂i-coordinate curve (ĝi is a
function of (X, t, t′) or (X̂1, X̂2, X̂3, t′) and referred to as the convected
base vector). Then dX′ can be either expressed as

dX′ =
3∑

j=1

δjdX
′
j (6.A.7)

or as

dX′ =
3∑

i=1

ĝidX̂
i (6.A.8)

where

ĝi =
∂X′

∂X̂ i

=
∂

∂X̂ i


∑

j

δjX
′
j




=
∂

∂Xi


∑

j

δjX
′
j




=
∑

j

δj

∂X ′
j

∂Xi

=
∑

j

δjDji

= D · δi (6.A.9)
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with D defined by

D(X, t, t′) = (∇X′)T (6.A.10)

which is the inverse of E, i.e.

D ·E = δ . (6.A.11)

The stress tensor of the fluid particle (X, t) at time t′, τ(X, t, t′), can be
expanded either in terms of unit vectors at the present time t and Cartesian
components τij or in terms of the convected base vectors at position X′ and
time t′ and contravariant components τ̂ ij as shown in the following:

τ(X, t, t′) =
∑

i

∑
j

δiδjτij

=
∑

i

∑
j

ĝiĝj τ̂
ij

=
∑

i

∑
j

(D · δi)(D · δj)τ̂ ij

= D · τ[0] ·DT (6.A.12)

where Eq. (6.A.9) has been used, and

τ[0] =
∑

i

∑
j

δiδj τ̂
ij (6.A.13)

whose components associated with the unit vectors at the present time t
are equivalent to the contravariant components of τ(X, t, t′). We need to
express the contravariant components τ̂ ij in terms of the Cartesian com-
ponents τij . Using Eq. (6.A.11), this transformation can be obtained from
Eq. (6.A.12) as

τ[0](X, t, t′) = E(X, t, t′) · τ(X, t, t′) ·ET (X, t, t′) . (6.A.14)

When t = t′, τ[0] is equal to τ(X, t, t).
Both γ[0] and τ[0] are codeformational rheological tensors. They can

describe the deformation and the stress response to a deformation without
interference from the rigid-body rotation (see Chapter 5). In other words,
these tensors and their time derivatives, integrations, and combinations
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allow us to establish an objective constitutive equation. The expressions
for the time derivatives of γ[0] and τ[0] are derived in the following:

We shall first consider the changing rate of D and E with time, following
the fluid particle (X, t). From Eq. (6.A.10),

∂

∂t′
D(X, t, t′) =

∑
i

∑
j

δiδj
∂

∂t′
∂X ′

i

∂Xj

=
∑

i

∑
j

δiδj
∂

∂Xj

∂X ′
i

∂t′

=
∑

i

∑
j

δiδj
∂

∂Xj
V ′

i (X, t, t′)

=
∑

i

∑
j

δiδj

∑
s

(
∂V ′

i

∂X ′
s

)(
∂X ′

s

∂Xj

)

=
∑

i

∑
j

δiδj

∑
s

(∇V)siDsj

= (∇V)T ·D . (6.A.15)

Here, it is understood that D and ∇V are evaluated at t′ for the fluid
particle (X, t).

From Eq. (6.A.11),

∂

∂t′
(E ·D) =

∂E
∂t′

·D + E · ∂D
∂t′

= 0 . (6.A.16)

Using Eqs. (6.A.11) and (6.A.15), we obtain from Eq. (6.A.16)

∂E
∂t′

= −E ·
(
∂D
∂t′

)
·E

= −E · (∇V)T ·D ·E
= −E · (∇V)T . (6.A.17)

The partial time derivative of Eq. (6.A.6) is defined as

γ[1](X, t, t′) =
∂γ[0]

∂t′

= −
(
∂E
∂t′

)
·ET −E ·

(
∂ET

∂t′

)
. (6.A.18)
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Substituting Eq. (6.A.17) into Eq. (6.A.18), we obtain

γ[1](X, t, t′) = E · [(∇V)T + ∇V
] ·ET

= E · γ(1) ·ET

= E · γ̇ ·ET (6.A.19)

where

γ(1)(X, t, t′) = (∇V)T + ∇V = γ̇. (6.A.20)

Similarly, using Eq. (6.A.17), the partial time derivative of Eq. (6.A.14) is
written as

τ[1] =
∂τ[0]

∂t′
= E · τ(1) ·ET (6.A.21)

where τ(1) is called the contravariant convected derivative of τ and is
defined by

τ(1)(X, t, t′) =
∂τ

∂t′
− τ · (∇V) − (∇V)T · τ . (6.A.22)

As t′ → t, τ(1)(X, t) = Dτ/Dt − τ ·∇V − (∇V)T · τ, where D/Dt is the
“material time derivative,” which gives the time rate of change following a
fluid particle. It is understood that in the equations above, D, E, ∇V, τ(1)

are all functions of t′ and the particle (X, t). We can summarize the results
of Eqs. (6.A.19) and (6.A.21) by using an arbitrary symmetric second-order
tensor A(X, t, t′), as shown below:

A[0](X, t, t′) = E ·A ·ET (6.A.23)

A[1](X, t, t′) =
∂A[0]

∂t′
= E ·A(1) ·ET (6.A.24)

where A(1) is called the contravariant convected derivative of A and is
defined by

A(1)(X, t, t′) =
∂A
∂t′
−A · ∇V − (∇V)T ·A . (6.A.25)

When Eq. (6.A.6) is substituted into Eq. (6.A.24) (γ[0] as A[0]), the δ

term becomes zero. In this case, Eq. (6.A.6) is equivalent to −E ·ET =
−E · δ ·ET when compared with Eq. (6.A.23); in other words, A = −δ is
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to be substituted into Eq. (6.A.25) to obtain γ(1), i.e.

δ(1) = −γ(1)

= −[∇V + (∇V)T ]

= −γ̇ . (6.A.26)

An important concept in continuum mechanics is the objectivity, or
admissibility, of the constitutive equation.6 There are the covariant and
contravariant ways of achieving objectivity. The molecular theories: the
elastic dumbbell model of this chapter, the Rouse model to be studied in
the next chapter, and the Zimm model5,14 which includes the preaveraged
hydrodynamic interaction, all give the result equivalent to the contravariant
way. In this appendix, we limit our discussion of continuum mechanics to
what is needed for the molecular theories studied in Chapters 6 and 7.
More detailed discussions of the subject, particularly about the convected
coordinates, can be found in Refs. 5 and 6.
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Chapter 7

Molecular Theory of Polymer
Viscoelasticity — The Rouse Model

7.1 The Smoluchowski Equation of the Rouse Model

The elastic dumbbell model studied in Chapter 6 is both structurally and
dynamically too simple for a polymer. However, the derivation of its
constitutive equation illustrates the main theoretical steps involved. In
this chapter we shall apply these theoretical results to a Gaussian chain
(or Rouse chain) containing many bead-spring segments (Rouse segments).1

First we obtain the Smoluchowski equation for the bond vectors.2 After
transforming to the normal coordinates, the Smoluchowski equation for
each normal mode is equivalent in form to the equation for the elastic
dumbbell.

Consider the Rouse chain containing N identical beads as shown in
Fig. 3.2. Each bead in the Rouse chain plays the same role as the bead in
the elastic dumbbell. Denote the Hooke constant of the spring by 3kT/b2

where b2 represents the mean square length of the spring or bond 〈b2〉.
Relative to a certain point O in space, the position vectors of the beads are
denoted by {Rn} = (R1,R2, . . . ,RN ). Then the center-of-mass position
of the chain is given by

Rc =
1
N

N∑
n=1

Rn. (7.1)

Relative to the center of mass, the positions of the beads are given by

{dn} = {Rn −Rc}. (7.2)

And the bond vectors are defined by

bs = Rs+1 −Rs = ds+1 − ds; s = 1, 2, . . . , N − 1 (7.3)

119
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We shall need to go back and forth between the beads and the bonds
through Eq. (7.3). To avoid the confusion, we shall use the following index
convention:

n,m for numbering the beads from 1 to N

s, t, u . . . for numbering the bonds from 1 to N − 1.

With this convention, the upper limit of a summation is understood to be
either N or N − 1, if not indicated.

Using Eqs. (7.1) and (7.3), one easily obtains

dN =
1
N

N−1∑
s=1

sbs. (7.4)

Thus

dn = dN −
N−1∑
s=n

bs =
N−1∑
s=1

s

N
bs −

N−1∑
s=n

bs. (7.5)

From Eqs. (7.1), (7.3) and (7.5), the relations between {Rn} and ({bs},Rc)
can be expressed as

bs =
N∑

n=1

Csndn =
N∑

n=1

CsnRn (7.6)

Rc =
1
N

N∑
n=1

Rn (7.1)

and

Rn =
N−1∑
s=1

Bnsbs + Rc (7.7)

or

dn =
N−1∑
s=1

Bnsbs

where

Csn = δs+1,n − δs,n (7.8)
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Bns =
s

N
for s < n

=
s

N
− 1 for s ≥ n. (7.9)

From Eqs. (7.8) and (7.9), we obtain the following relations for any s:

N∑
n=1

Csn =
N∑

n=1

(δs+1,n − δs,n) = 0 (7.10)

N∑
n=1

Bns = 0. (7.11)

By using Eq. (7.10), the substitution of Eq. (7.7) into Eq. (7.6) gives

bs =
N∑

n=1

CsnRn =
N∑

n=1

Csn

(
Rc +

N−1∑
t=1

Bntbt

)

=
N∑

n=1

N−1∑
t=1

CsnBntbt. (7.12)

Since {bs} is an independent set of vectors,

N∑
n=1

CsnBnt = δst. (7.13)

Equation (7.13) can also be shown by carrying out the matrix multiplica-
tion with Csn and Bnt substituted by Eqs. (7.8) and (7.9), respectively.
Substituting Eqs. (7.1) and (7.6) into Eq. (7.7), we obtain

Rn =
N∑

m=1

(
1
N

+
N−1∑
s=1

BnsCsm

)
Rm . (7.14)

Thus
N−1∑
s=1

BnsCsm = δnm − 1
N
. (7.15)

Using Eq. (7.8), one shows

N∑
n=1

CsnCtn =
N∑

n=1

CsnC
T
nt = Ast

= 2δst − δs+1,t − δs−1,t (7.16)
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where (Ast) is the (N − 1)× (N − 1) Rouse matrix, which we have seen in
Chapter 3 (Eq. (3.45)). The eigenvalues of the Rouse matrix are given by
(Appendix 3.A)

ap = 4 sin2
( pπ

2N

)
; p = 1, 2, . . . , N − 1. (7.17); (3.46)

As discussed in Chapter 3, each bead of the Rouse chain, under cease-
less collisions with fast moving small molecules and/or microstructural seg-
ments, is undergoing Brownian motion. At the same time the bead at
Rn is affected by both the tensile forces on the nth and (n − 1)th bonds.
According to the same definition used in Eqs. (6.4) and (6.5), the total force
asserted on the nth bead by the springs is expressed as

Fn = Sn − Sn−1 = −
N−1∑
s=1

(δs+1,n − δs,n)Ss

= −
N−1∑
s=1

CsnSs (7.18)

where Eq. (7.8) is used for the last equality, and the tensile force on the
sth bond is given by

Ss =
3kT
b2

bs. (7.19)

Similar to the elastic dumbbell case, the equation of motion for any bead
in the Rouse chain is written as

ζ(Ṙn −V0 −K ·Rn) = −kT ∂

∂Rn
ln Ψ + Fn (7.20)

where Ψ({Rn}, t) is the configurational distribution function. For a homo-
geneous flow with no concentration gradient, similar to Eq. (6.9) in the
elastic dumbbell case, the configurational distribution function of the Rouse
chain Ψ may be written as

Ψ({Rn}, t) = nψ({bs}, t) (7.21)

where n is the number of Rouse chains per unit volume of the polymeric
liquid.

Summing Eq. (7.20) over n and then dividing the result by N , we obtain

ζ

N

N∑
n=1

Ṙn =
ζ

N

N∑
n=1

(V0 +K ·Rn)− kT
N

N∑
n=1

∂

∂Rn
ln Ψ+

1
N

N∑
n=1

Fn. (7.22)
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Substituting Eqs. (7.1), (7.18) and (7.21) into Eq. (7.22), we obtain

ζṘc = ζ(V0 +K ·Rc)− kT
N

N∑
n=1

[(
∂ lnψ
∂Rc

)(
∂Rc

∂Rn

)
+

N−1∑
s=1

(
∂ lnψ
∂bs

)(
∂bs

∂Rn

)]

− 1
N

N∑
n=1

N−1∑
s=1

CsnSs. (7.23)

Using Eq. (7.10) from Eq. (7.6), we obtain

N∑
n=1

∂bs

∂Rn
=

N∑
n=1

Csn = 0. (7.24)

Using the result of Eq. (7.24) and the assumption that ψ({bs}, t) is not a
function of Rc, Eq. (7.23) becomes

Ṙc = V0 + K ·Rc (7.25)

which is equivalent to Eq. (6.15) in the elastic dumbbell case. This result
is expected from assuming Eq. (7.21). Substituting Eqs. (7.7), (7.18) and
(7.21) into Eq. (7.20), we obtain

ζ

[
Ṙc +

N−1∑
s=1

Bnsḃs

]
= ζ

[
V0 + K ·

(
Rc +

N−1∑
s=1

Bnsbs

)]

−kT
N−1∑
s=1

(
∂ lnψ
∂bs

)(
∂bs

∂Rn

)
−

N−1∑
s=1

CsnSs. (7.26)

Using Eqs. (7.6) and (7.25), Eq. (7.26) is rewritten as

ζ

N−1∑
s=1

Bnsḃs = ζK ·
N−1∑
s=1

Bnsbs − kT
N−1∑
s=1

(
∂ lnψ
∂bs

)
Csn −

N−1∑
s=1

CsnSs.

(7.27)
Multiplying Eq. (7.27) by Ctn which is placed on the left side and summing
the result over n, we obtain

ζ

N∑
n=1

N−1∑
s=1

CtnBnsḃs = ζK ·
N∑

n=1

N−1∑
s=1

CtnBnsbs

− kT
N−1∑
s=1

(
∂ lnψ
∂bs

) N∑
n=1

CtnCsn −
N∑

n=1

N−1∑
s=1

CtnCsnSs.

(7.28)
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Using Eqs. (7.13) and (7.16), Eq. (7.28) is rewritten as

ḃt = K ·bt − 1
ζ

N−1∑
s=1

Ast

(
kT

∂ lnψ
∂bs

+ Ss

)
. (7.29)

Equation (7.29) for the Rouse chain is equivalent to Eq. (6.14) for the elastic
dumbbell. However, Eq. (7.29) indicates that the motions of N − 1 bond
vectors are coupled with each other through the Rouse matrix (Ast).

After the equation of motion for the bonds (Eq. (7.29)) is obtained,
we need to express the continuity equation for Ψ in terms of {bs} to obtain
the Smoluchowski equation. Similar to Eq. (6.16), we have

∂Ψ
∂t

= −
N∑

n=1

∂

∂Rn
· ṘnΨ. (7.30)

Using Eqs. (7.1), (7.6), and (7.7), which relate {Rn} and ({bs},Rc), and
Eqs. (7.10) and (7.11), Eq. (7.30) is rewritten as

∂Ψ
∂t

= − ∂

∂Rc
· ṘcΨ−

N−1∑
s=1

∂

∂bs
· ḃsΨ. (7.31)

Similar to the first term of Eq. (6.16) being zero, the first term of Eq. (7.31)
disappears with the substitution of Eq. (7.21). Thus, Eq. (7.31) becomes

∂ψ

∂t
= −

N−1∑
s=1

∂

∂bs
· ḃsψ. (7.32)

By using Eq. (7.19), the substitution of Eq. (7.29) into Eq. (7.32) gives

∂ψ

∂t
= −

N−1∑
s=1

∂

∂bs
·
[
(K ·bs)ψ − 1

ζ

N−1∑
t=1

Ast

(
kT

∂ψ

∂bt
+

3kT
b2

btψ

)]
.

(7.33)

This equation is equivalent to Eq. (6.19) for the elastic dumbbell and is
the Smoluchowski equation for the Rouse chain under the flow field K.
In this equation, the Rouse matrix (Ast) couples the motions of the bond
vectors {bs}. Transforming to normal coordinates is the normal procedure
used to decouple the motions. As shown in Chapter 3, the transformation
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to normal coordinates {qt} is given by

bs =
N−1∑
t=1

Ustqt (7.34); (3.47)

where (Ust) is the orthogonal matrix (Eq. (3.48)) that diagonizes the Rouse
matrix, i.e.

N−1∑
t=1

UtsUtu =
N−1∑
t=1

UT
stUtu = δsu (7.35); (3.49)

and

N−1∑
s=1

N−1∑
t=1

UT
psAstUtu = apδpu (7.36)

where the eigenvalues {ap} are given by Eq. (7.17).
Using Eq. (7.35), the inverse of Eq. (7.34) is given by

qu =
N−1∑
s=1

UT
usbs. (7.37)

Then, using Eq. (7.37),

∂

∂bs
=

N−1∑
u=1

(
∂

∂qu

)(
∂qu

∂bs

)
=

N−1∑
u=1

UT
us

∂

∂qu
. (7.38)

Using Eqs. (7.34) and (7.38), Eq. (7.33) is expressed as

∂ψ

∂t
= −

∑
s

∑
u

Usu
∂

∂qu
·
{(

K ·
∑

v

Usvqv

)
ψ

− 1
ζ

∑
t

Ast

(
kT
∑
w

Utw
∂ψ

∂qw
+

3kT
b2

∑
w

Utwqwψ

)}

= −
∑

v

∑
u

(∑
s

UT
vsUsu

)
∂

∂qu
· (K ·qv)ψ

+
∑

u

∑
w

(∑
t

∑
s

UT
usAstUtw

)(
kT

ζ

∂

∂qu
· ∂ψ
∂qw

+
3kT
ζb2

∂

∂qu
·qwψ

)
.

(7.39)
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Using Eqs. (7.35) and (7.36), Eq. (7.39) is rewritten as

∂ψ

∂t
= −

∑
u

∂

∂qu
·
[
(K ·qu)ψ − au

ζ

(
kT

∂ψ

∂qu
+

3kT
b2

quψ

)]
. (7.40)

We assume that Eq. (7.40) has a solution of the form

ψ({qs}, t) =
N−1∏
s=1

ψs(qs, t) (7.41)

where ψs(qs, t) is normalized by∫
ψs(qs, t) dqs = 1. (7.42)

The substitution of Eq. (7.41) into Eq. (7.40) gives

N−1∑
u=1


∏

t�=u

ψt


 ∂ψu

∂t

= −
N−1∑
u=1


∏

t�=u

ψt


 ∂

∂qu
·
[
(K ·qu)ψu − au

ζ

(
kT

∂ψu

∂qu
+

3kT
b2

quψu

)]
.

(7.43)

Dividing both sides of Eq. (7.43) by ψ1ψ2 . . . ψN−1, we obtain an equation
which is expressed as a collection of groups, each of which contains only
one of the coordinates {qs}. The only way this equation can be satisfied is
to let each of these groups be a simple function of time Eu(t). That is,

∂ψu

∂t
= − ∂

∂qu
·
[
(K ·qu)ψu − au

ζ

(
kT

∂ψu

∂qu
+

3kT
b2

quψu

)]
+ Eu(t)ψu

u = 1, 2, . . . , N − 1. (7.44)

If Eq. (7.44) is integrated over the whole qu space, the left side becomes
zero because of the normalization condition (Eq. (7.42)), and the first term
on the right side becomes zero because ψu vanishes as qu → ∞. Hence
Eu(t) must be zero. Then Eq. (7.44) becomes the same as Eq. (6.19) if ψu

is replaced by ψ, qu by R, au by 2, and (3kT/b2)qu by S.
Then, following the derivation steps from Eq. (6.19) to Eq. (6.26),

we obtain from Eq. (7.44) the following results, which are equivalent to
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Eqs. (6.24) and (6.26) for an elastic dumbbell:

d〈ququ〉
dt

= K · 〈ququ〉+ 〈ququ〉 ·KT +
2aukT

ζ
δ− 6aukT

ζb2
〈ququ〉 (7.45)

or

〈ququ〉(1) =
2aukT

ζ
δ− 6aukT

ζb2
〈ququ〉. (7.46)

7.2 Rheological Constitutive Equation of the Rouse Model

In Chapter 6, we derived the stress tensor for the elastic dumbbell model.
By following the derivation steps given there, one obtains the following
result for the Rouse chain model withN beads per chain, which is equivalent
to Eq. (6.50) for the elastic dumbbell model:

τ = −3nkT
b2

N−1∑
s=1

〈bsbs〉+ n(N − 1)kT δ. (7.47)

In Eq. (7.47), we have neglected the solvent contribution as we are mainly
interested in the concentrated-solution or melt system. The first term
of Eq. (7.47) arises from the tensile force on the bonds, and the second
term from the momenta associated with the moving beads. Substituting
Eqs. (7.34) and (7.35) into Eq. (7.47), we obtain

τ = −3nkT
b2

∑
s

∑
t

∑
u

UstUsu〈qtqu〉+ n(N − 1)kT δ

= −3nkT
b2

N−1∑
u=1

〈ququ〉+ n(N − 1)kT δ. (7.48)

We rewrite Eq. (7.48) as

τ =
N−1∑
u=1

τu (7.49)

with

τu = −3nkT
b2
〈ququ〉+ nkT δ. (7.50)
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Following the procedure for obtaining Eq. (6.52) from Eqs. (6.26) and
(6.50), one obtains the following result from Eqs. (7.46) and (7.50):

τu + suτu
(1) = −nkTsuγ(1) = −nkTsuγ̇ (7.51)

where su is the relaxation time for the uth Rouse mode of motion and is
given by

su =
ζb2

6aukT
. (7.52)

Following the steps for obtaining Eq. (6.57), we rewrite Eq. (7.51) as

τu
[0](t, t

′) + su
∂

∂t′
τu
[0](t, t

′) = −nkTsuγ[1](t, t′). (7.53)

Just as Eqs. (6.58) and (6.59) were obtained in Chapter 6, the integral
forms of Eq. (7.53) can be obtained. Then, with Eq. (7.49), the integral
form of the constitutive equation for the Rouse chain model is given by
(with u replaced by p)

τ(t) = −nkT
∫ t

−∞

N−1∑
p=1

exp
[
− (t− t′)

sp

]
γ[1](t, t′) dt′ (7.54)

or

τ(t) = nkT

∫ t

−∞

N−1∑
p=1

1
sp

exp
[
− (t− t′)

sp

]
γ[0](t, t′) dt′. (7.55)

Substituting Eq. (7.17) into Eq. (7.52), sp is rewritten as

sp =
ζb2

24kT sin2(pπ/2N)
; p = 1, 2, . . . , N − 1 (7.56)

which can also be expressed as

sp =
Kπ2M2

24N2 sin2(pπ/2N)
(7.57)

where K is the frictional factor given by Eq. (3.57). The molecular-weight
independence and temperature dependence of K have been discussed in
Chapter 3.

Similar to the elastic dumbbell case, we can obtain the various vis-
coelastic properties from the constitutive equation of the Rouse model.
The main difference between the two models is that the elastic dumbbell
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model contains only one relaxation time, while the Rouse model has multi-
ple relaxation times, the number of which is equal to the number of bonds
(springs) in a single chain.

For the shear relaxation modulus, the Rouse model gives

G(t) = nkT

N−1∑
p=1

exp
(
− t

sp

)
. (7.58)

The shear viscosity of the Rouse model can be obtained by substituting
Eq. (7.58) into Eq. (4.30) or, as Eq. (6.70) was obtained, it can be calculated
by substituting the steady-state shear deformation into Eq. (7.55). These
two different calculations give the same result:

η0 = nkT

N−1∑
p=1

sp

= nkT

N−1∑
p=1

ζb2

6kTap

=
nζb2(N2 − 1)

36
(7.59)

where for the last equality Eq. (7.A.5) is used. As in the elastic dumbbell
case, the Rouse model does not predict the non-Newtonian behavior of
viscosity.

Similarly, the steady-state compliance J0
e is obtained as

J0
e = nkT

N−1∑
p=1

s2p
η2
0

=
n(ζb2)2

36kT

∑N−1
p=1 1/a2

p

η2
0

=
2N2 + 7

5nkT (N2 − 1)
(7.60)

where for the last equality Eqs. (7.A.6) and (7.59) are used.
For a polymer melt, n = ρNA/M , where ρ is the density and NA the

Avogadro number. When the condition N � 1 holds, for easy comparison
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with experimental results of polymer melts, Eq. (7.59) may be written as

η0 =
ρNAζb

2N2

36M

= K

(
ρRTπ2

36

)
M (7.61)

and Eq. (7.60) be written as

J0
e =

2M
5ρRT

. (7.62)

The Rouse model has the same defects in the nonlinear region as the
elastic dumbbell model because they share the same basic assumptions.
However, in the linear region the Rouse model accurately describes the
viscoelastic properties of the concentrated or melt system whose molecu-
lar weight is not high enough for entanglements to form. The successful
predictions of the theory include the most basic aspects: the molecular-
weight dependence of the relaxation times and the line shape of viscoelastic
responses (relaxation modulus, viscoelastic spectrum and creep compliance)
over the entropic region as detailed in the Chapters 11 and 14.

Appendix 7.A — Eigenvalues and the Inverse of the
Rouse Matrix

While Eq. (7.16) gives the (N−1)×(N−1) Rouse matrix with the eigenval-
ues {ap} given by Eq. (7.17) (see Appendix 3.A), another (N −1)× (N−1)
symmetric matrix (Kst) can be formed from (Bns):

Kst =
N∑

n=1

BnsBnt =
N∑

n=1

BT
snBnt (7.A.1)

which sometimes is referred to as the Kramers matrix.3 Using Eq. (7.9),
(Kst) is obtained as

Kst =
s(N − t)

N
if s ≤ t

=
t(N − s)

N
if t ≤ s. (7.A.2)
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Using Eqs. (7.10), (7.11), (7.13), and (7.15), the matrix (Kst) is shown
to be the inverse of the Rouse matrix (Ast) as follows:

N−1∑
t=1

KstAtu =
n−1∑
t=1

(
N∑

n=1

BT
snBnt

)(
N∑

m=1

CtmC
T
mu

)

=
N∑

n=1

N∑
m=1

BT
snC

T
mu

(
N−1∑
t=1

BntCtm

)

=
∑

n

∑
m

CumBns

(
δnm − 1

N

)

=
∑

n

CunBns − 1
N

(∑
m

Cum

)(∑
n

Bns

)

= δsu. (7.A.3)

Denote the matrices obtained from diagonizing (Ast) and (Kst) by (A′
st)

and (K ′
st), respectively. Then, using the trace-invariance property of a

matrix, the following relations are obtained:

N−1∑
s=1

A′
ss =

∑
s

as =
∑

s

4 sin2
( sπ

2N

)

=
∑

s

Ass = 2(N − 1) (7.A.4)

N−1∑
s=1

K ′
ss =

∑
s

1
as

=
∑

s

1
4 sin2(sπ/2N)

=
∑

s

Kss =
N2 − 1

6
(7.A.5)

N−1∑
s=1

K ′2
ss =

∑
s

1
a2

s

=
∑

s

∑
t

KstKts

=
(N2 − 1)(2N2 + 7)

180
(7.A.6)

where, for the last equality of Eq. (7.A.4), Eq. (7.16) is used, and for the
last equalities of Eqs. (7.A.5) and (7.A.6), Eq. (7.A.2) is used. Equations
(7.A.5) and (7.A.6) are used, respectively, in obtaining the expressions for
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the zero-rate shear viscosity η0 (Eq. (7.59)) and the steady-state compliance
J0

e (Eq. (7.60)) of the Rouse model.
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Chapter 8

Molecular Theory of Polymer
Viscoelasticity — Entanglement and
the Doi–Edwards (Reptation) Model

8.1 Introduction

The so-called chain entanglement which occurs in a concentrated long-chain
polymeric liquid is a kind of intermolecular interaction. Unlike other types
of intermolecular interactions, it does not involve an energetic change and
is purely an entropic, topological phenomenon. Because of this reason,
chain entanglement does not give rise to a change in the electron density
distribution. As a result, polymer chain entanglement cannot be observed
by microscopes or static scattering or absorption spectroscopies. Chain
entanglement mainly affects polymer chain motions. Thus, its presence can
be detected by the slow-down of polymer dynamics and is clearly visible in
several viscoelastic properties.

An example is the molecular-weight dependence of zero-shear viscos-
ity as shown in Fig. 4.7 for various nearly monodisperse polymers. As the
molecular weight increases above a critical value Mc, the viscosity increases
much more rapidly than in the low-molecular-weight region below Mc,
exhibiting the well-known 3.4 power law.1,2

Another strong indication of the entanglement effect is the observation
of a clear plateau in the linear relaxation modulus G(t)3,4 and storage mod-
ulus spectrum G′(ω)5 when the polymer has a sufficiently high molecular
weight and is nearly monodisperse (Figs. 4.6 and 4.9). As the molecu-
lar weight decreases, the modulus plateau disappears gradually. In the
region of molecular weight where the polymer chains are long enough to be
described by the Gaussian chain model and yet not long enough to form
entanglements, the Rouse model (Chapter 7) accurately describes the line
shapes of linear viscoelastic responses (over the entropic region; Chapters 11
and 14). In this low-molecular-weight region, there is no detectable modulus

133
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plateau; and the Rouse theory does not involve any structural interactions
(entanglements) among chains. This correlation strongly suggests that the
appearance of the modulus plateau at high molecular weight should be
due to the occurrence of entanglements among the chains. The larger the
molecular weight, the longer the time needed to relax any deviation from
the equilibrium state of entanglement, such as that caused by a step strain
in the stress relaxation measurement. Thus, the plateau region stretches
further toward the longer time (for G(t)) or toward the lower frequency (for
G′(ω)) with increasing molecular weight, as shown in Figs. 4.6 and 4.9.

Entanglement has long been considered equivalent to temporary or non-
chemical “cross-link”.6 If we assume that each entanglement is permanent
and use the theory of rubber elasticity (Chapter 2), the molecular weight of
an entanglement strand (the chain section between two adjacent entangle-
ment points), often referred to as the entanglement molecular weight Me,
can be calculated from the plateau modulus GN as3,7,8

Me =
ρRT

GN
. (8.1)

As discussed below in this chapter, the Doi–Edwards theory9 models entan-
glements as slip-links. Having taken the effects of chain slippage through
the links into account, the theory gives:

Me =
4
5

(
ρRT

GN

)
. (8.2)

Experimental results of various polymers show that the critical molecu-
lar weight Mc is about 2.4 times the value of Me (determined according
to Eq. (8.2)). This observation indicates the close relation between Mc

and Me.
On the basis of the experimental results of polymer viscoelasticity as

explained above, it has long been believed that chain entanglements occur
in a concentrated long-chain system.

The close relation between the viscoelastic properties and the chain
dynamics of a polymeric liquid has long been recognized. The Rouse the-
ory describes the viscoelastic properties of an entanglement-free polymer in
terms of the Rouse normal modes of motion (Chapter 7). A promising way
to describe the entanglement effect for a high-molecular-weight polymer had
not appeared until 1971 when de Gennes suggested the idea of reptation.10

He suggested that a linear flexible chain moved in a network as if a “snake”
crawled in a “thin tube” and that the only motions allowed for the chain
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were associated with the displacement of certain “defects” (stored length)
along the chain. Since entanglements, even though different from perma-
nent cross-links, can last very long, de Gennes suggested that the idea of
chain reptation might be applicable to a polymer melt system to describe
the constraint effect of entanglement on the chain motions. In 1978–1979,
Doi and Edwards combined the idea of chain reptation with the mechanical
properties of a concentrated polymer system and developed a very success-
ful molecular rheological constitutive equation. A linear viscoelastic theory
(referred to as the extended Doi–Edwards theory or as the extended rep-
tation theorya) has further been developed (Chapter 9)11 by incorporating
additional intramolecular relaxation processes in the theoretical framework
of the Doi–Edwards theory. The extended reptation theory quantitatively
and consistently explains different aspects of the linear viscoelastic proper-
ties of linear flexible polymers, including the 3.4 power law and the close
relation between Mc and Me as mentioned above.4,12–14 Such successes
were quite unexpected, considering that the extended reptation theory as
well as the Doi–Edwards theory is a mean-field theory. Quantitative anal-
yses of experimental results in terms of the extended reptation theory will
be discussed in Chapter 10. As shown in Chapter 11, the concentration
dependence of entanglement is quantitatively determined by analyzing the
viscoelastic spectra of the blend solution systems in terms of the theory.15

A further development of the Doi–Edwards theory for the nonlinear region
will be studied in Chapter 12.13,16 The successes of the linear and nonlinear
extended theories should be attributed to the foundation layed down by the
Doi–Edwards theory. In this chapter, we shall study the basic elements in
the Doi–Edwards theory.

8.2 The Primitive Chain

Entanglement represents a nonpermanent structural interaction among dif-
ferent chains in a polymer. In general, at the most fundamental level,
a problem that involves many molecules is extremely difficult. Doi and

aAs the theory is based on the theoretical framework of the Doi–Edwards theory, it is
referred to as the extended Doi–Edwards theory from the theoretical consideration; at the
same time, since the theory includes the intramolecular motions on top of the reptation
process, physically it is referred to as the extended reptation theory. Considering that
the Doi–Edwards theory covers the nonlinear region, while the extended reptation theory
is limited to the linear region, the term “extended reptation theory” is used throughout
this book instead of the extended Doi–Edwards theory.
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Edwards adopted a mean-field assumption and simplified a multi-chain
problem to a single-chain problem. In doing so, they introduced the concept
of the so-called primitive chain. In a concentrated system, each chain is
pictured as moving independently in a “tube,” representing the constraint
effect due to entanglements with the surrounding chains. As a person’s
shadow follows his movement, the tube associated with a chain moves with
the chain. The central line of the tube associated with a polymer chain is
defined as the primitive chain (or primitive path). The segments of the real
chain wriggle around its primitive chain. The wriggling motions determine
the fundamental statistical and dynamical properties of the primitive chain.
The wriggling motions progress rapidly; however, their movement ampli-
tudes are limited by the tube diameter a. The tube, like entanglements,
is invisible and is conceived to describe how chain entanglements constrain
the movement of a chain.

There are other equivalent ways to represent the effect of the tube.
As shown in Fig. 8.1, a polymer chain constrained inside a tube of diam-
eter a is equivalent to a chain passing through a sequence of slip-links
separated apart by a statistically equal space, a. Each slip-link represents
an entanglement with another chain nearby. The links only allow the chain
to slide along itself forward or backward. The straight line connecting two
adjacent links is regarded as equivalent to the central line of the tube; and

Fig. 8.1 Equivalence of (a) the tube picture and (b) the slip-link picture with the
hypothetical tensile force Feq = 3kT/a pulling at both chain ends in describing the
constraint effect of entanglement on the movement of a polymer chain.
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Fig. 8.2 In the slip-link model, a hypothetical tensile force Feq = 3kT/a pulling at
both chain ends is necessary to keep the polymer chain constrained by the slip-links;
otherwise, the polymer chain will soon shrink along the primitive path and “leak” out
from the space between the slip-links or, so to speak, leak out of the tube.

its length, a, is regarded as a step length (also referred to as the entangle-
ment distance) of the primitive chain. The segments of the real polymer
chain between two adjacent links wriggle in the direction perpendicular to
the primitive path. To use the slip-link picture, it is necessary to assume
that tensile forces of the magnitude Feq = 3kT/a (see Appendix 8.A) are
applied to both ends of the chain so that the amplitude of the segmental
wriggling motions will be basically kept within the tube diameter. Other-
wise, the chain could “leak” out through the spaces between the links or,
so to speak, leak out of the tube, as shown in Fig. 8.2; and the slip-links
would lose the effect of constraining the motions of the chain. The slip-link
picture with the tensile forces applied at both chain ends is equivalent to
the tube picture.9 The primitive chain as defined above has the following
two characteristics:

(a) In the equilibrium state, the configuration of the primitive chain is
a sequence of random walks. Namely, the primitive chain can be regarded
as a freely jointed chain consisting of segments (steps) with length equal to
the distance, a, between two adjacent links (the links being equivalent to
the joints). Then the mean square end-to-end distance of the polymer chain
denoted by R2 is equal to aL where L is the total contour length of the
primitive chain. As the polymer is a Gaussian chain by itself, R2 = Nob

2

where No is the number of Rouse segments per chain and b denotes the
root mean square length of a Rouse segment. Then the number of steps on
the primitive chain is

N

(
=

M

Me

)
=
L

a
=
R2

a2
=
Nob

2

a2
. (8.3)
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This equation also implies that each entanglement strand is sufficiently long
to be described by a Gaussian chain model, i.e.

a2 = Neb
2 (8.4)

where Ne is the number of Rouse segments per entanglement strand. Equa-
tion (8.3) is the most fundamental assumption in the Doi–Edwards theory.
(Note: In the Doi–Edwards papers, b was defined as the effective bond
length of the real chain.9 b can be, as done here, regarded as the root mean
square length of the Rouse segment, with the corresponding changes in
meaning for No and Ne. The use of the Rouse segment, also later adopted
by Doi and Edwards,16,17 is more convenient for further development of the
theory and analyses of the experimental results in terms of the extended
theories in the later chapters.)

(b) The Brownian motion of the primitive chain is reptational. The
primitive chain moves along itself forward or backward randomly. In other
words, each point on the primitive chain follows its immediate neighbor
in movement. The important exception is the two chain ends. As the
primitive chain moves forward, the “head” can choose its direction ran-
domly; in reverse, as the primitive chain moves backward, the “end” can
also choose its direction randomly. This random process of moving for-
ward and backward can be described in terms of the curvilinear diffusion
constant defined by

Dcv =
〈∆S2〉
2∆t

(8.5)

where ∆S is the curvilinear length the primitive chain moves in a short
time interval ∆t (see Appendix 3.D). At the same time, according to the
Einstein relation (Eq. (3.9)),

Dcv =
kT

Noζ
(8.6)

where ζ is the friction constant of the Rouse segment or bead (also see
Appendix 9.A).

8.3 Diffusion Motion

Here, we shall relate the translational diffusion motion of the center of mass
of a polymer chain to the curvilinear diffusion constant. Experimentally,
the translational diffusion constant can readily be measured.18–21



June 29, 2010 12:9 WSPC/Book Trim Size for 9in x 6in b959-ch08 FA

Entanglement and the Doi–Edwards (Reptation) Model 139

Doi and Edwards considered the primitive chain as a freely jointed chain
with step length a. The positions of the joints (or links) can be labeled as

{Rn} = (R1,R2, . . . ,RN ). (8.7)

Then |Rn − Rn−1| = a. Assume that in a time interval ∆t, the primi-
tive chain jumps forward or backward with equal probability one step of
length a. Then the curvilinear diffusion constant can be defined by

Dcv =
a2

2∆t
. (8.8)

And the equations of motion can be written as:

Rn(t+ ∆t) = Rn+1(t)
(1 + ξ(t))

2
+ Rn−1(t)

(1− ξ(t))
2

(8.9)

for n = 2, 3, . . . , N − 1

R1(t+ ∆t) = R2(t)
(1 + ξ(t))

2
+ [R1(t) + r(t)]

(1 − ξ(t))
2

(8.10)

RN (t+ ∆t) = [RN(t) + r(t)]
(1 + ξ(t))

2
+ RN−1(t)

(1− ξ(t))
2

(8.11)

where ξ(t) = −1 when the primitive chain jumps forward and ξ(t) = 1
when it jumps backward, and r(t) is a vector of random orientation of
length |r(t)| = a.

The center of mass of the polymer chain at time t and t + ∆t can be
defined, respectively, by

Rc(t) =
1
N

N∑
n=1

Rn(t) (8.12)

Rc(t+ ∆t) =
1
N

N∑
n=1

Rn(t+ ∆t) . (8.13)

By subtracting Eq. (8.12) from Eq. (8.13), into both of which Eqs. (8.9)–
(8.11) have been substituted, we obtain

Rc(t+ ∆t)−Rc(t) =
1
N
{[RN (t)−R1(t)]ξ(t) + r(t)}

=
1
N

[R(t)ξ(t) + r(t)] (8.14)

where R(t) = RN (t)−R1(t) is the end-to-end vector of the polymer chain.
Then the time-correlation function of the center-of-mass velocity can be
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written as

〈Vc(t) ·Vc(t′)〉 =
1

∆t2
〈[Rc(t+ ∆t)−Rc(t)] · [Rc(t′ + ∆t)−Rc(t′)]〉

=
1

∆t2N2
[〈ξ(t)ξ(t′)R(t) ·R(t′)〉+ 〈r(t) · r(t′)〉

+〈ξ(t)R(t) · r(t′)〉+ 〈ξ(t′)R(t′) · r(t)〉]
=

1
∆t2

[
a2

N
δtt′ +

a2

N2
δtt′

]
. (8.15)

For obtaining the above result, we have used the following relations:

〈ξ(t)ξ(t′)R(t) ·R(t′)〉 = 〈ξ(t)ξ(t′)〉〈R(t) ·R(t′)〉 = Na2δtt′ (8.16)

〈r(t) · r(t′)〉 = a2δtt′ (8.17)

and the condition that R(t) and r(t) are totally uncorrelated.
The second term of Eq. (8.15) is much smaller than the first term and

can be neglected. We can obtain the mean square displacement of the
center of mass from time 0 to t by integrating Eq. (8.15) over t and t′.
Then, by substituting the result of the double integration into Eq. (3.40),
we obtain

6DGt =
∑
t′

∑
t′′

a2

N
δt′t′′

=
(
a2

∆t

)
t

N
=

2Dcvt

N
. (8.18)

For the last equality, Eq. (8.8) has been used.
From Eq. (8.18)

DG =
Dcv

3N
. (8.19)

Using Eqs. (8.3), (8.4) and (8.6), Eq. (8.19) can be written as

DG =
kTNe

3ζN2
o

. (8.20)

This result shows that the diffusion constant of a long polymer chain
in a concentrated system, because of the constraint effect of entangle-
ment, is inversely proportional to the square of the molecular weight.
This molecular-weight dependence is distinctively different from the result,
DG ∝ M−1, given by the Rouse model (Chapter 3) and its observation is
often regarded as the indication of the reptational motion.18 As shown in
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Chapter 10, the scaling relation DG ∝M−2 for entangled nearly monodis-
perse polymers has been widely observed.

8.4 Relaxation Modulus

In Chapter 4, we studied the fundamental importance of the relaxation
modulus G(t) in linear viscoelasticity. Here, we shall show how the the-
oretical form of G(t) in the Doi–Edwards model is derived in terms of
molecular structural and dynamic parameters. In the Doi–Edwards theory
the study of G(t) includes the nonlinear region. However, we shall postpone
full discussion of G(t) in the nonlinear region until Chapter 12.

In describing the entanglement effect in terms of the slip-link picture,
we have mentioned that, at both ends of the chain in the equilibrium
state, a tensile force Feq (Fig. 8.1b) needs to be applied to keep the chain
“extended” so that the chain will not leak out of the tube (Fig. 8.2). Under
such a condition, the primitive chain can maintain its contour length L. The
magnitude of Feq can be calculated according to the elementary theory of
chain statistical mechanics. As shown in Appendix 8.A, the tensile force
that keeps a Gaussian chain section with n segments at a length of l is
(3kT/nb2)l. Now the primitive-chain contour length is L; thus,

Feq =
(

3kT
Nob2

)
L =

3kT
a

. (8.21)

This force should be equal to the tensile force on each entanglement strand
which, following the same arguments, is given by (3kT/Neb

2)a = 3kT/a.
Thus, the two are consistent.

In Chapters 6 and 7, we showed that the average contribution to the
stress tensor from a segment with length vector R and tensile force F
is −〈RF〉. For a particular entanglement strand with the length vector
denoted by ri and with ni segments, the tensile force is Fi = (3kT/nib

2)ri.
Thus, for a polymer system where there are c identical chains per unit
volume and each chain has N entanglement strands, the stress tensor at a
certain time, t, is expressed as

T(t) = −3ckT
N∑

i=1

〈
ri(t)ri(t)
ni(t)b2

〉
+ P δ . (8.22)

In Eq. (8.22), we have neglected the contribution from the momentum
transfer, which being isotropic, even if not negligible, can be absorbed in p.
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Assume that, at time t ≤ 0, the polymeric liquid system is in the equilibrium
state, and a particular chain constrained by the slip-links in the system has
a configuration as shown in Fig. 8.3(a). At t = 0, a step deformation E
is applied to the system, and the configuration of the chain together with
the slip-links is immediately changed to that shown in Fig. 8.3(b). At this
stage, the stress tensor is given by:

T = −3ckT
N∑

i=1

〈
r′ir

′
i

n′
ib

2

〉
+ pδ (8.23)

where

r′i = E · ri (8.24)

and n′
i is the number of segments in the ith entanglement strand. (Note:

Following the notation of Doi and Edwards, the apostrophe mark “ ′ ” is
used to indicate the state after the application of the deformation E, which
is opposite to the way it is used in Chapter 5, where the apostrophe mark
indicates the state before deformation (Eq. (5.18))). Because the chain has
not had a chance to slide through the slip-links, n′i is equal to its equilibrium
value, ni (i.e. the value before the deformation is applied). Thus, the tensile
force on the ith entanglement strand becomes:

F′
i =

(
3kT
nib2

)
r′i . (8.25)

Because r′i is affected by the applied deformation, and ni has not changed,
the tensile forces on the different entanglement strands are no longer bal-
anced by one another along the primitive chain. In such a situation, the
chain must slide through the slip-links to readjust the segmental distri-
bution {ni} along the chain. In this readjustment process, entanglement
strands with higher tensile forces will pull segments from those with lower
tensile forces. This dynamic process will end in a time t = Teq when the
tensile forces along the whole primitive chain become balanced and equal
to its equilibrium value 3kT/a (Eq. (8.21)), reaching a state as shown in
Fig. 8.3(c). Denote the number of segments in the ith entanglement strand
at the end of the readjustment process by n′′i . Then from the equilibrium
equation

|Fi| = 3kT
n′′

i b
2
|r′i| =

3kT
a

(8.26)
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Fig. 8.3 Schematic illustration of the entanglement configuration on a polymer chain

and its relaxation following a step deformation. (a) The equilibrium state before a
deformation is applied. (b) Immediately after the application of a step deformation
at time t = 0, entanglement strands of the chain are either stretched or compressed.
(c) At t ∼ Teq , the readjustment of the segmental distribution balances the tensile force
along the primitive chain and recovers its equilibrium contour length. At this stage,
the conformation of the primitive chain is in a non-equilibrium state; the positions of
the slip-links are not in a random configuration (the non-random slip-links at this stage
are referred to as the original slip-links). On the right, an equivalent deformed tube is
shown (shown as a straight tube to symbolize its anisotropy; the deformed tube at this
stage is referred to as the original tube). (d) By reptation, the chain disengages from
the original slip-links. Illustrated in terms of the tube picture on the right, (d1) and
(d2): As the chain reptates right and left, those parts of the original tube which have
been reached by the chain ends disappears (indicated by the dashed lines). (e) Finally
the chain disengages from all the original slip-links and forms a new set of slip-links with
other chains, returning to the equilibrium state, which is statistically equivalent to (a).
On the right, the original tube vanishes or the chain is totally out of the original tube.
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we obtain

n′′
i =

a|r′i|
b2

=
a|E · ri|
b2

. (8.27)

At the same time, the contour length of the primitive chain, L′′, recovers
its equilibrium value, L. Thus,

L′′ =
l∑

i=f

|r′i| = L =
Nob

2

a
(8.28)

where the limits of summation, f and l, represent the first and the last
entanglement strands of the polymer chain at t = Teq . Using Eq. (8.27),
the number of entanglement strands is obtained as

N ′′ = l − f =
No

〈n′′
i 〉

=
Nob

2

〈|E · ri|〉a . (8.29)

If the unit vector along ri is denoted by ui;

ri = aui . (8.30)

Equation (8.29) can be rewritten as

N ′′ =
Nob

2

〈|E ·u|〉a2
. (8.31)

Through the equilibration process of segmental redistribution among the
different entanglement strands, the stress tensor given by Eq. (8.23) is
changed to a new form at t = Teq . Using Eqs. (8.3), (8.24), (8.27), (8.30)
and (8.31), the stress tensor at t = Teq is obtained as

T = −3cN ′′kT
〈

r′ir
′
i

n′′
i b

2

〉
+ P δ

= −3cNkT
〈

(E ·u)(E ·u)
|E ·u|

〉
〈|E ·u|〉−1 + P δ . (8.32)

From Eq. (8.32), the modulus value at t = Teq , as a function of defor-
mations E, can be calculated. The chain-slippage mechanism involved in
the above modeling leads to two effects: one is the process of equilibrat-
ing the segmental distribution along the primitive chain; the other is the
reduction of the number of entanglement strands. In Eq. (8.32), the equi-
libration process of the segmental redistribution is related to |E ·u| inside
the first 〈. . .〉, which is from Eq. (8.27); and the reduction of the number
of entanglement strands is related to 〈|E ·u|〉−1, which is from Eq. (8.31).
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For a simple shear step deformation,

E =


1 λ 0

0 1 0
0 0 1


 (8.33)

the xy component of the stress tensor can be obtained from Eq. (8.32) as

Txy = τxy = −3cNkT

〈
((ux + λuy)uy)

/√
(ux + λuy)2 + u2

y + u2
z

〉
〈√

(ux + λuy)2 + u2
y + u2

z

〉 (8.34)

where ux, uy, and uz are the components of the unit vector u in the x,
y, and z directions. To calculate the shear stress Txy from Eq. (8.34)
at different values of the applied strain λ, we make the transformation to
spherical coordinates (r, θ, φ):

ux → sin θ cosφ

uy → sin θ sinφ

uz → cos θ

and perform averaging over all orientations for 〈. . .〉, i.e.

〈. . .〉 → 1
4π

∫ 2π

0

∫ π

0

. . . sin θ dθ dφ .

In the nonlinear region, Txy can only be calculated numerically (by a com-
puter program). In the linear region, where all the second order terms and
beyond in Eq. (8.34) can be neglected, we obtain

τxy = −4
5
cNkTλ. (8.35)

We define the modulus GN by

GN = −τxy

λ
=

4
5
cNkT. (8.36)

Equation (8.36) becomes Eq. (8.2) for a polymer melt; and as mentioned
above, GN is smaller by a factor of 4/5 than the result based on the theory
of rubber elasticity (Eq. (8.1)), where each entanglement is treated as a
permanent cross-link. The reduction factor 4/5 is entirely due to the the
segmental redistribution along the primitive chain. From Eq. (8.31), it can
be shown that N ′′ = N in the linear region; in other words, the reduction
of the number of entanglement strands occurs only in the nonlinear region.
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The chain-slippage effects are responsible for the theoretical form given
by Eq. (8.32). For a comparison, we consider the situation where each slip-
link is replaced by a permanent cross-link. In this situation, the equilibrium
time constant Teq is irrelevant, and n′i remains equal to ni. Using Eqs. (8.4)
and (8.30), we obtain from Eqs. (8.23) and (8.24)

T = −3cNkT 〈(E ·u)(E ·u)〉+ P δ. (8.37)

As shown in Appendix 8.B, Eq. (8.37) is equivalent to Eq. (5.50) with
G = cNkT and to the result of rubber elasticity obtained in Chapter 2.
In the linear region, Eq. (8.1) is obtained from Eq. (8.37).

8.5 Relaxation of Stress by Reptation

Equation (8.32) gives the stress, and thus modulus, of a well entangled
polymeric liquid at t = Teq , following a step deformation at t = 0. At this
stage, as shown in Fig. 8.3(c), the configuration of slip-link positions or the
distribution of entanglement-strand orientations is not random like that of
the equilibrium state before the application of the step deformation. Only
when the configuration has recovered from the non-random situation to the
equilibrium random state (statistically equivalent to that of Fig. 8.3(a)),
can the extra stress at t = Teq relax back to zero. To reach this stress-free
state, each chain in the polymeric liquid system needs to be totally out
of the non-random configuration of slip-links, through which it has been
entangled with neighboring chains (or, equivalently, out of the deformed
or statistically anisotropic tube), and re-forms a new random configuration
of entanglements with other chains (or, equivalently, re-forms a new sta-
tistically isotropic tube). As described by the reptation mechanism in the
section on diffusion motion and as represented in Fig. 8.3(d) (Figs. 8.3(d1),
and 8.3(d2)), the polymer chain will move back and forth along itself and
eventually get out of the deformed tube totally and reach the equilibrium
state in which the orientations of the newly formed entanglement strands
are totally random (Fig. 8.3(e)). By considering the reptation mechanism,
the stress relaxation functional form is derived as follows: First, for the
physical quantity of interest, the equation of motion will be formulated.

The segmental distribution along the primitive chain has reached the
equilibrium state at t = Teq . In this state, by using Eq. (8.27), Eq. (8.32)
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can be rewritten as

T = −3ckT
l∑

i=f

〈
u′

ir
′
i

a

〉
+ P δ (8.38)

where u′
i = r′i/|r′i| is the orientation of the ith entanglement strand.

We shall replace the discrete representation of the primitive chain (namely,
the one consisting of entanglement-strand steps) by the continuous one
(namely, the central line of the tube). In doing so, the summation over
the entanglement strands will be replaced by integration along the primi-
tive path, s; and the unit vector of the entanglement strand, u′

i(t), will be
replaced by the unit vector u(s, t) = ∂R(s, t)/∂s which represents the tan-
gential direction along the contour-length coordinate s (i.e. Σu′

i(t)r
′
i(t) →∫ L

0
u(s, t)u(s, t) ds). Then, Eq. (8.38) can be rewritten as

T = −3ckT
a

∫ L

0

〈u(s, t)u(s, t)〉ds + P δ . (8.39)

By absorbing the isotropic part of the integrand into the pressure term, Eq.
(8.39) can be expressed as

T = −3ckT
a

∫ L

0

S(s, t) ds+ P δ (8.40)

where

S(s, t) =
〈
u(s, t)u(s, t)− δ

3

〉
. (8.41)

Assume in a short time step ∆t the primitive chain moves a curvilinear
distance ∆s. Then

u(s, t+ ∆t) = u(s+ ∆s, t) . (8.42)

As ∆s can be positive or negative and is random, its distribution is char-
acterized by the moments

〈∆s〉 = 0 ; 〈∆s2〉 = 2Dcv∆t. (8.43)

As S(s, t) is a function of u(s, t) (Eq. (8.41)), and because of Eq. (8.42)
with ∆s being random

S(s, t+ ∆t) = 〈S(s+ ∆s, t)〉 . (8.44)
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Using Eq. (8.43), the right hand side of Eq. (8.44) is expanded as

S(s, t+ ∆t) =
〈
S(s, t) + ∆s

∂S(s, t)
∂s

+
1
2
∆s2

∂2S(s, t)
∂s2

+ · · ·
〉

= S(s, t) + 〈∆s〉∂S(s, t)
∂s

+
1
2
〈∆s2〉∂

2S(s, t)
∂s2

= S(s, t) +Dcv∆t
∂2S(s, t)
∂s2

. (8.45)

That is

∂S(s, t)
∂t

= Dcv
∂2S(s, t)
∂s2

. (8.46)

At both ends of the chain, the distribution of u is random so that

S(s, t) =
〈
uu− δ

3

〉
= 0 at s = 0 ;L . (8.47)

Equation (8.46), with the above boundary condition, describes the relax-
ation process from the state of Fig. 8.3(c) to the state of Fig. 8.3(d) and
then to that of Fig. 8.3(e). The relaxation from Fig. 8.3(b) to Fig. 8.3(c) is
finished in time Teq . Because Teq is in general much shorter than the char-
acteristic time of the relaxation process described by Eq. (8.46), the state
of Fig. 8.3(c) is assumed as the initial state (t = 0); namely, S(s, t = 0)
(compare Eq. (8.32) with Eqs. (8.40) and (8.41)) is assumed as

S(s, t = 0) =
〈

(E ·u)(E ·u)
|E ·u|

〉
〈|E ·u|〉−1 − δ

3
≡ Q(E) . (8.48)

With this initial condition and the boundary condition given by Eq. (8.47),
the solution of the differential equation, Eq. (8.46), is derived in terms of
normal modes as:

S(s, t) = Q(E)
∑

p=odd

4
pπ

sin
(pπs
L

)
exp

(−tp2

Td

)
(8.49)

where

Td =
L2

Dcvπ2
(8.50)

is the characteristic time for the disentanglement process.
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Substituting Eq. (8.49) into Eq. (8.40), one obtains

T(t) = −3cLkT
a

Q(E)
∑

p=odd

8
p2π2

exp
(−p2t

Td

)
+ P δ (8.51)

which can be rewritten as

T(t) = −15
4
GNQ(E)µ(t) + P δ (8.52)

with

GN =
4
5
cLkT

a
=

4
5
cNkT (8.53)

as given by Eq. (8.36), and

µ(t) =
∑

p=odd

8
p2π2

exp
(−p2t

Td

)
. (8.54)

The relaxation modulus G(t) that follows a step shear strain in the linear
region can be obtained from Eqs. (8.52)–(8.54) as

G(t) = GNµ(t) . (8.55)

It will be shown from analyzing the experimental results (Chapter 10) that
GN is the so-called plateau modulus.

Substituting Eqs. (8.3), (8.4), and (8.6) into Eq. (8.50), Td can be
rewritten as

Td =
ζN3

o b
2

π2kTNe
= K

M3

Me
(8.56)

where K is the frictional factor that has been defined by Eq. (3.57). As
with the Rouse theory, the Doi–Edwards theory has been developed on
the same frictional-factor basis. The Doi–Edwards theory, however, having
taken the constraint effect of entanglement into account, gives a structural
factor for the longest relaxation time quite different from that of the Rouse
theory. The former is proportional to M3 and inversely proportional to
Me; the latter is proportional to M2. As the relaxation-time distributions
are also quite different, the line shapes of the relaxation modulus G(t)
predicted by the two theories are characteristically different. As we shall
see in Chapter 9, the Doi–Edwards theory has provided the basic structural
element for the plateau in G(t) to appear.
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Substituting Eqs. (8.53)–(8.56) into Eqs. (4.30) and (4.63), one obtains
the zero-shear viscosity η0 and the steady-state compliance J0

e , respec-
tively, as

η0 =
π2

15
K

(
ρRTM3

M2
e

)
(8.57)

J0
e =

3
2

(
Me

ρRT

)
. (8.58)

The η0 ∝M3 relation of Eq. (8.57) is still different from the experimental
observation η0 ∝ M3.4 (Fig. 4.7), while Eq. (8.58) agrees with the basic
molecular-weight independence of J0

e in the high-molecular-weight region
(Fig. 4.12). A detailed comparison of Eqs. (8.57) and (8.58) with the
Rouse theory and the extended reptation theory as well as experimental
results will be discussed in Chapter 10.

Appendix 8.A — Tension in a Gaussian Chain Between
Two Fixed Points

From Chapter 1, we know that the probability for the end-to-end vector to
be R in a Gaussian chain with N Gaussian (or Rouse) segments is given by

Φ(R, N) ∝ exp
(−3R2

2Nb2

)
. (8.A.1)

Then the free energy of the Gaussian chain can be written as

A = −kT ln(Φ) + C

= kT

(
3R ·R
2Nb2

)
+ C (8.A.2)

where C is a constant. Define the tensile force on the Gaussian chain with
both ends fixed at positions 1 and 2 as

F = F1 = −F2 (8.A.3)

with F pointing in the same direction as R. In order to know the tensile
force F, we calculate, using Eq. (8.A.2), the change in free energy dA

caused by an infinitesimal increment in R.

dA =
(

3kT
Nb2

)
R ·dR . (8.A.4)



June 29, 2010 12:9 WSPC/Book Trim Size for 9in x 6in b959-ch08 FA

Entanglement and the Doi–Edwards (Reptation) Model 151

The free energy change is related to the tensile force F by

dA = F · dR . (8.A.5)

Thus, from the last two equations,[
F−

(
3kT
Nb2

)
R
]

· dR = 0 (8.A.6)

This scalar product must be equal to zero for any infinitesimal increment
dR. Thus,

F =
(

3kT
Nb2

)
R . (8.A.7)

Appendix 8.B — Equivalent Expressions for Rubber Elasticity

Equation (5.50) with G = cNkT and Eq. (8.37) are equivalent, if we prove

〈(E ·u)(E ·u)〉 =
B
3
. (8.B.1)

In a chosen Cartesian coordinate system where the components of the
unit vector u are denoted by {ui} (i = 1, 2, and 3), the ij component of
〈(E ·u)(E ·u)〉 is written as

〈(E ·u)i(E ·u)j〉 =

〈(∑
k

Eikuk

)(∑
l

Ejlul

)〉

=
∑

k

∑
l

EikEjl〈ukul〉

=
∑

k

∑
l

EikEjl
δkl

3

=
1
3

∑
k

EikEjk =
1
3

∑
k

EikE
T
kj . (8.B.2)

Using the definition of the Finger tensor (Eq. (5.35)), Eq. (8.B.1) is proven.
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Chapter 9

Molecular Theory of Polymer
Viscoelasticity — The Extended
Reptation Model

9.1 Intramolecular Processes

As discussed in the last chapter, the Doi–Edwards theory describes how
the stress initiated by a step deformation relaxes by the reptational process
after the equilibration time Teq of the segmental redistribution along the
primitive chain. As will be shown below, the reptational process plays the
most important role in the terminal region of the relaxation modulus.

Without theoretical analysis, we can clearly identify at least three relax-
ation processes by simply looking at the experimental results of the stress
relaxation curves. Shown in Fig. 9.1 are two relaxation modulus curves of a
nearly monodisperse polystyrene sample (Mw = 422,000; Mw/Mn = 1.05)
whose molecular weight is much greater than the entanglement molecular
weight Me: One of the curves, G(t) or G(λ→ 0, t), is in the linear region;
the other at the shear strain λ = 5, G(λ = 5, t), is in the nonlinear region
(also see Fig. 12.3). The two curves are superposed in the terminal region
by shifting the G(λ = 5, t) curve upwards along the modulus axis by a factor
that is the inverse of the so-called damping factor. This will be discussed
below. The kind of nonlinear result shown in Fig. 9.1 was first reported
and extensively studied by Osaki et al.1–5

The G(t) curve in Fig. 9.1 shows two distinct relaxation processes sep-
arated by a plateau.6,7 The first one has been called the transition process
(denoted by µA(t) below)a while the second is called the terminal pro-
cess (denoted by µC(t) below). As shown in Figs. 4.6 and 4.9, the plateau
widens, and the two relaxation processes separate further apart as the
molecular weight increases. For a nonlinear relaxation modulus G(λ, t) as

aSee the note at the end of this chapter for a clarification of the term “transition
region”.

153
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Fig. 9.1 Relaxation modulus G(λ, t) in the linear (λ → 0; ◦◦◦) and nonlinear (λ = 5;

���) regions of a nearly monodisperse polystyrene melt (Mw = 4.22 × 105). The
G(λ = 5, t) curve was measured at a temperature different from the reference tem-
perature (127.5◦C) of the shown G(λ → 0, t) master curve; as shown the G(λ = 5, t)
curve has been shifted along both the time axis and the modulus axis to superpose on the
G(λ → 0, t) curve in the terminal region. (See Fig. 12.3 for the results of G(λ = 0.2, t)
and G(λ = 5, t), both measured at the same temperature.)

shown in Fig. 9.1, there appears a distinctive relaxation process (denoted
by µ∗B(t, λ) below, which is also the notation used in its theoretical study
in Chapter 12) in the time region corresponding to the G(t) plateau.
At the same time, the relaxation curves G(λ, t) at different λ values are
superposable onto the G(t) curve in the terminal region by a vertical
shift. From the superposition, the λ dependence of the shifting factor,
h(λ) = G(λ, t)/G(λ → 0, t), can be obtained, which is often referred to as
the damping function (also see Chapter 12). As shown in Fig. 9.2,8,9 and
as reported by Osaki et al.,4,5 Vrentas et al.,10 and Pearson,11 the mea-
sured damping factors are in close agreement with the Doi–Edwards curve
calculated using Eq. (8.34). It is important to point out that the theo-
retical h(λ) curve does not involve a single fitting parameter and, as con-
firmed by experimental results, is independent of molecular weight and the
type of polymer. In other words, h(λ) is universal for nearly monodisperse
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Fig. 9.2 Comparison of the damping functions: the measured values (•) and the curve

calculated from Eq. (8.34) (the lower line) and that calculated from Eq. (12.17) with
the independent alignment approximation (the upper line).

polymers in the entanglement region. This result, a very successful aspect
of the Doi–Edwards theory, supports that the reptational process discussed
in the last chapter applies to the terminal region of G(t). In Fig. 9.1, the
G(t) and G(λ = 5, t) curves are superposed in the terminal region by taking
the damping factor into account.

As described above, we can clearly observe three distinct relaxation pro-
cesses. It is obvious that to fully describe the relaxation modulus, G(t) or
G(t, λ), we need to consider other processes in addition to the reptational
process. These additional processes may suggest the answer for the devi-
ation of the observed scaling, η ∝ M3.4, from the prediction of the pure
reptational chain model, η ∝M3.

Doi12 has proposed a theory, which will be discussed in detail in
Chapter 12, describing µ∗

B(t, λ) as the relaxation of tension on the primitive
chain. The theory predicts that the µ∗B(t, λ) process is not observable in the
linear region, which has been found to be in agreement with experiment.8

However, corresponding to the dynamics of µ∗B(t, λ), there is a process
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(denoted by µB(t) below) affecting G(t) in the linear region. This pro-
cess was first theoretically studied by Doi13,14 and then by Lin.15 Although
the the µB(t) and µ∗B(t, λ) processes have the same dynamic origin, their
mechanisms for affecting the relaxation modulus are different. Because the
molecular dynamics for µB(t) is the same as that of µ∗B(t, λ), either µB(t)
or µ∗B(t, λ) occurs in the time region of the plateau in G(t).

Considering the transition of the stress level given by Eq. (8.37) to that
given by Eq. (8.32), Lin15 has proposed that a minor process µX (t) exists
between the µA(t) process region and the plateau region, namely, the µB(t)
process region.

In summary, four processes in order of increasing relaxation time, µA(t),
µX(t), µB(t), and µC(t), have been identified. Below, we shall follow Lin’s
steps15 in showing the molecular dynamics these four processes represent
and how they occur in G(t).

9.2 Contour Length Fluctuations of the Primitive Chain

According to the Doi–Edwards theory, after time t = Teq following a step
deformation at t = 0, the stress relaxation is described by Eqs. (8.52)–
(8.56). In obtaining these equations, it is assumed that the primitive-chain
contour length is fixed at its equilibrium value at all times. And the curvi-
linear diffusion of the primitive chain relaxes momentarily the orientational
anisotropy (as expressed in terms of the unit vector u(s, t) = ∂R(s, t)/∂s),
or the stress anisotropy, on the portion of the tube that is reached by either
of the two chain ends. The theory based on these assumptions, namely, the
Doi–Edwards theory, is called the pure reptational chain model. In reality,
the primitive-chain contour length should not be fixed, but rather fluctu-
ates (stretches and shrinks) because of thermal (Brownian) motions of the
segments.

Doi and Edwards treated the polymer chain as a Gaussian chain in
the time region t < Teq . They assumed that the equilibration process of
segmental redistribution took place before Teq . Even though they did not
deal with the dynamic behavior of the equilibration process, they used the
Gaussian chain model to obtain the stress at the end of the equilibration
process (Eq. (8.32)). To be consistent, the dynamic aspect of the Gaussian
chain picture needs to be included for t > Teq .

While considering the thermal motions of the segments, the stretch-and-
shrink motion of the primitive-chain contour length will help relax the tube
stress at both ends of the tube. This effect occurs because when a chain
moves out of the tube due to a stretching of the contour length following a
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shrink, it can pick a random direction. Thus, the size of the tube-end region
that can be affected by this relaxation process is determined by the fluctu-
ation amplitude of the contour length. To include both the contour length
fluctuation process and the reptational process as causes for the stress relax-
ation, we need to consider two important aspects: (1) The contour length
fluctuation is a Rouse-like motion with a characteristic relaxation time τB
which is much shorter than the characteristic time Td of the reptational
process because τB is proportional to M2 (Chapters 3 and 7) while Td is
proportional to M3 (Td will be denoted by τo

C below, standing for the pure
reptation). (2) Both the contour length fluctuation and the reptational
motion occur simultaneously. To obtain a theoretical expression for G(t)
which is simple in form, one hopes to separate the contributions of the two
kinds of motions. In other words, we hope to express the stress relaxation
as a sum of two decoupled processes. The decoupling of the two contribu-
tions can be achieved by following a scheme of “thought experiment” as
described below:

We first regard the fixed primitive-chain contour length L in Eqs. (8.3)
and (8.51) as the time average of the fluctuating length L(t). In other words,

L(t) = 〈L(t)〉+ δL(t) = L+ δL(t) (9.1)

where δL(t) represents the fluctuation; 〈δL(t)〉 = 0. Thus, the length L(t)
plays two roles here. On the one hand, its average as defined in Eq. (9.1)
represents the original tube length (at t = Teq) whose tube stress is to be
relaxed (in other words, the relaxation strength at t = Teq is proportional
to the average length L). On the other hand (see Eq. (9.2)), its length fluc-
tuation motion relaxes the tube stress in the tube end regions. As the chain
ends migrate because of the reptational motion, the contour length fluctua-
tion causes additional relaxation of the tube stress whenever the fluctuation
amplitude allows the chain ends to encounter the original tube (Fig. 9.3).

To sort out such a complicated dynamic situation, we first assume that
the primitive chain is “nailed down” at some central point of the chain,
i.e. the reptational motion is “frozen”; only the contour length fluctuation
is allowed. This is equivalent to setting τo

C → ∞ while allowing the con-
tour length fluctuation δL(t) to occur with a finite characteristic relaxation
time τB. In this hypothetical situation, the portion of the tube that still
possesses tube stress at t ≈ τB is reduced to a shorter length Lo, because of
the fluctuation δL(t). Then, at t < τB , the tube length that still possesses
tube stress can be defined by

L(t) = Lo + δL(t) . (9.2)
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Fig. 9.3 The Brownian motion of a primitive chain: (a) with fixed contour length, and

(b) with fluctuating contour length. The oblique lines denote the region that has not
been reached by either end of the primitive chain. The length of the region σ(t) decreases
faster in (b) than in (a). ∆L ∼ δL = N0.5

o b (see Eqs. (9.4) and (9.8)). Reproduced,
by permission, from Ref. 13.

In other words, δL(t) relaxes to zero at t ≈ τB. Because δL(t) remains in
the original tube at t < τB, we can regard it as the length of δL(t) that is
still correlated to its original δL(0). In other words, we regard δL(t) as the
projection of δL(t) to δL(0), i.e.

δL(t) =
〈δL(0)δL(t)〉
〈|δL(0)|2〉1/2

. (9.3)

As shown in Appendix 9.A, from considering the polymer chain as a
Gaussian chain consisting of No segments with the root mean square length
b, the functional form for δL(t) is derived as

δL(t) =
√
NobµB(t) (9.4)

where

µB(t) =
∑

p=odd

8
π2p2

exp
(−p2t

τB

)
(9.5)

with

τB =
ζb2N2

o

3π2kT
=
K

3
M2 (9.6)

where the frictional factor K is given by Eq. (3.57).
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The tube stress on δL(t) relaxes according to Eqs. (9.4)–(9.6) under
the condition τo

C → ∞. In reality, τo
C cannot be infinitely long. We still

need to look for the relaxation functional form for the tube stress on Lo

(Eq. (9.2)). Although the contour length fluctuation and the reptational
motion occur simultaneously, we can keep using the theoretical form given
by Eqs. (9-4)–(9.6) for the δL(t) relaxation if we regard τB to be infinitely
short compared to a finite τo

C when we look for the theoretical form for
the relaxation of the tube stress on Lo. This statement is valid because
regarding τB to be finite and τo

C to be infinitely long (the assumption in
obtaining Eqs. (9.4)–(9.6)) is equivalent to regarding τB to be infinitely
short and τo

C to be finite, both being equivalent to setting τB/τ
o
C → 0.

τB/(τo
C → ∞) is fundamentally related to (τB → 0)/τo

C by a time shift.
As the time-temperature superposition principle16,17 can be applied in com-
posing a master curve (As detailed in Chapter 14, the thermorheological
simplicity or time–temperature superposition principle holds if only the so-
called entropic region — defined in Sec. 9.3 — of a viscoelastic response is
involved; by definition, all the Rouse-segment-based dynamic processes as
considered here occur in the entropic region.), such a time shift has no effect
on the line shape of the whole G(t) curve, which is of our present concern.
Because the condition τB/τo

C → 0 separates the two processes so far apart,
it serves our objective to express the stress relaxation in two decoupled
terms. In the reptational mechanism that allows Eqs. (8.52)–(8.56) to be
derived, it is assumed that as soon as any point on the original tube is
reached by the chain end, the tube stress between that point and the orig-
inal tube end is totally relaxed. Because τB here is regarded as infinitely
short compared to τo

C , the primitive-chain contour length instantly reaches
its “minimum” length Lo at any moment. Thus, by the reptational process
— the curvilinear diffusion — the primitive chain only need to get out of
a tube of length Lo in effect to complete the relaxation of the whole tube
stress. To account for this effect, we just change the pure reptational time
τo
C(= Td) given by Eq. (8.50) to τC given by

τC =
L2

o

π2Dcv
(9.7)

where the curvilinear diffusion constant Dcv, unaffected by the contour
length fluctuation, remains inversely proportional to the number of Rouse
beads of the polymer chain.

In summary, under the assumed condition τB/τo
C → 0, which allows us

to keep Eqs. (9.4)–(9.6) as the functional form for the relaxation of the
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tube stress on δL(t), we have to change the pure reptational time τo
C to

τC given by Eq. (9.7) for the relaxation of the tube stress on the tube
length Lo.

At t = Teq, the tube stress resides over the whole tube length — the
average contour length of the primitive chain L (Eqs. (8.3) and (8.51)).
From Eq. (9.2) we have

L = L(t ≈ Teq ≈ 0) = Lo + δL(0) = Lo + δL (9.8)

where, according to Eq. (9.4),

δL = δL(0) =
√
Nob . (9.9)

Thus, L in the expression (Eqs. (8.53)) for the GN used in Eq. (8.55)
is separated into two parts: δL and Lo. The tube stress on δL is to be
relaxed according to Eqs. (9.4)–(9.6) while that on Lo is to be relaxed
by the reptational process with the time constant τC given by Eq. (9.7).
Instead of Eqs. (8.53)–(8.56), the linear relaxation modulus G(t) for t ≥ Teq

is now given by

G(t) =
4cLkT

5a

[
δL

L
µB(t) +

Lo

L
µC(t)

]
(9.10)

where µB(t) is given by Eqs. (9.5) and (9.6); and µC(t), equivalent to
Eq. (8.54) with Td or τo

C replaced by τC (Eq. (9.7)), is given by

µC(t) =
∑

p=odd

8
π2p2

exp
(−p2t

τC

)
. (9.11)

Using Eqs. (8.3), (8.6) (8.56), (9.8) and (9.9), τC can be obtained from
Eq. (9.7) as

τC =
ζNo

π2kT

(
Nob

2

a
−
√
Nob

)2

=
ζb2N3

o

π2kTNe

(
1−

√
Ne

No

)2

= K
M3

Me

(
1−

√
Me

M

)2

. (9.12)

Using Eqs. (8.3), (9.8) and (9.9), Eq. (9.10) is rewritten as

G(t) = GN (BµB(t) + CµC(t)) (9.13)
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where GN is given by Eq. (8.53) or (8.2), B is the relative fluctuation
amplitude given by

B =
δL

L
=

√
Me

M
(9.14)

and C is given by

C =
Lo

L
= 1−B . (9.15)

Hence, G(t) as given by Eq. (9.13) is a sum of two relaxation processes,
i.e. two separate or decoupled relaxation terms and is applicable to the
stress relaxation for t ≥ Teq .

Note that Eq. (9.13) contains two features related to the molecular-
weight dependence of the line shape of the relaxation modulus: (1) Both
B and C are functions of the normalized molecular weight M/Me. With
decreasing molecular weight, the relaxation strength B for the contour-
length-fluctuation process increases, while the relaxation strength C for
the reptational process which has been corrected for the contour-length-
fluctuation effect decreases. (2) The relaxation time ratio, τC/τB , obtained
from Eqs. (9.6) and (9.12):

τC
τB

= 3
M

Me

(
1−

√
Me

M

)2

(9.16)

is a function of the normalized molecular weight M/Me and decreases with
decreasing molecular weight. These two features indicate that the line shape
ofG(t) for t ≥ Teq is a universal function of the normalized molecular weight
and that the plateau region in G(t) will diminish with decreasing molecular
weight. We shall further discuss the molecular-weight dependence of G(t)’s
line shape below and in Chapter 10, where an extensive comparison between
theory and experiment is made.

9.3 Relaxation Processes before t ≈ Teq

In general, the slower the mode of motion, the larger the length scale
involved. So far in this chapter, we have studied the µB(t) and µC(t)
processes in G(t). µB(t) represents an intramolecular motion that involves
the whole chain, and µC(t) is related to the diffusion motion of the whole
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chain. In G(t), besides these two processes, there are two readily identi-
fiable faster processes, µX(t) and µA(t), as mentioned in the beginning of
this chapter. Either of these two fast processes involves only a section or a
part of the chain.

(a) The µX(t) process

At t ≈ Teq following the application of a step shear strain at t = 0, the
modulus GN is given by Eq. (8.53) (also see Eq. (9.13)), which is derived
from Eq. (8.32). As shown in Chapter 8, the equilibration process of the
segmental redistribution along the primitive chain relaxes the stress given
by Eq. (8.23) or (8.37) to that given by Eq. (8.32). In the linear region of
the step shear strain, from Eq. (8.37) one obtains the modulus

G∗
N = cNkT =

ρRT

Me
(9.17)

G∗
N is greater than GN by a factor of 5/4. Thus, in the linear region,

the decline of the modulus from G∗
N to GN is due to the chain slippage

through the entanglement links, which is driven by the equilibration of
the segmental distribution. The chain-slippage mechanism was described
in the derivation from Eq. (8.23) to Eq. (8.32). It was pointed out in
Chapter 8 that in the linear region, the number of entanglement strands
is not reduced as a result of chain slippage. We refer to the transition
G∗

N → GN as the µX(t) process with a characteristic time τX which can
be regarded as equivalent to Teq in the linear region. Consistent with
τB (> Teq) being longer than τX (≈ Teq), the µX(t) process equilibrates
segmental distribution among neighboring entanglement strands while the
µB(t) process involves the whole polymer chain. Since G∗

N is greater than
GN by GN/4, the proper way to add the µX(t) process to Eq. (9.13) is as
follows:

G(t) = GN

[
1 + 1

4µX(t)
]
[BµB(t) + CµC(t)] . (9.18)

The theoretical functional form for µX(t) is not known. It has been assumed
that the decay of µX(t) is a single exponential. Because µX(t) affects the
G(t) line shape only in a minor way, such a simple assumption basically
does not affect the quantitative nature of the comparison of experimental
results with the whole G(t) equation, as will be discussed in Chapter 10.



September 14, 2010 9:46 WSPC/Book Trim Size for 9in x 6in b959-ch09 FA

The Extended Reptation Model 163

(b) The µA(t) process

In the whole process of obtaining Eq. (9.18), we have considered only the
deformation or orientation of entanglement strands along the primitive path
and the associated relaxation processes. In a time shorter than required for
the chain slippage through any entanglement link to have a chance to occur,
the deformation of the chain segments towards all directions, including the
directions perpendicular to the primitive path, adds values to the initial
modulus 5GN/4 given in Eq. (9.18). Here, the relaxation process of the
additional modulus is the Rouse motion of an entanglement strand with
both ends fixed — the Rouse–Mooney normal modes of motion, which is
treated in Appendix 9.B. The functional form of the relaxation process is
given by Eqs. (9.B.24)–(9.B.26).

One sees that the end of relaxation in Eq. (9.B.24) occurs when µA(t)
diminishes to zero, and that the modulus value of Eq. (9.B.24) at the end
of relaxation matches the initial value of Eq. (9.18). Thus, we can combine
Eqs. (9.18) and (9.B.24) as

G(t) = GN [1 + µA(t)]
[
1 + 1

4µX(t)
]
[BµB(t) + CµC(t)] (9.19)

where µA(t) is given by Eqs. (9.B.25) and (9.B.26). Equation (9.19) cov-
ers the whole range of relaxation times from the transition region (the
µA(t)-process region) to the terminal region (the µC(t)-process region).
The smallest structural unit involved in the theoretical development that
leads to Eq. (9.19) is the Rouse segment. Because of the close relationship
between the entropic-force constant of the Rouse segment and the mod-
ulus, the region where a Rouse-segment-based molecular theory, such as
Eq. (9.19), is applicable may be referred to as the entropic region. It is
expected that Eq. (9.19) ceases to be applicable in the time region shorter
than the characteristic reorientation time of a single Rouse segment or
equivalently the relaxation time of the highest Rouse–Mooney normal mode
∼ζb2/24kT = Kπ2m2/24. At such short time scales, the stress-relaxation
process (often referred to as the α-, glassy- or structural-relaxation process)
is much influenced by the energetic interactions between segments (both
intra-molecular and inter-molecular) at the microstructural level, whose
size scales are considerably smaller than that of a Rouse segment. This
short-time region is studied in detail in Chapter 14 and is referred to as
the energetic region. Before Chapter 14, comparisons between theories and
experiments will be limited to the entropic region. Theoretically a bound-
ary between the two separate regions can be defined as occurring at the
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modulus ρRT/m with m being the molecular weight of a Rouse segment.
For polystyrene, the boundary occurs at 4× 107 dynes/cm2 corresponding
to m ≈ 850 as detailed in Appendix 13.A.

9.4 Universality of the G(t) Line Shape in Terms of the
Extended Reptation Theory (ERT)

As noted previously in this chapter, Eqs. (9.13)–(9.16) indicate that the line
shape of the G(t) curve is a universal function of the normalized molecular
weight M/Me in the region covered by the µB(t) and µC(t) processes. The
relaxation times τB and τC can also be normalized with respect to the
relaxation time of the lowest mode of the µA(t) process, τ1

A(= KM2
e /6,

from Eq. (9.B.20) for a sufficiently large Ne). The relaxation-time ratios
are expressed as:

τC
τ1
A

= 6
(
M

Me

)3
(

1−
√
Me

M

)2

(9.20)

τB
τ1
A

= 2
(
M

Me

)2

. (9.21)

The fact that these two relaxation-time ratios are a universal function of
M/Me indicates that the universality of the G(t) line shape extends to the
µA(t) process region. µX(t) is situated between µA(t) and the processes
µB(t) and µC(t). Thus, although we do not have the theoretical form for
µX(t), its characteristic time τX normalized with respect to τ1

A should also
be a function of the normalized molecular weight M/Me. From the G(t)
line shape analysis in terms of Eq. (9.19) as discussed in detail in Chapter
10, it has been found that τX is best described by

τX = 0.55KMeM (9.22)

or

τX
τ1
A

≈ 3
M

Me
. (9.23)

The structural factors of the relaxation times τ1
A, τX , τB and τC ; and

the hierarchy and universality among them as discussed above are viewed
from a different angle in Appendix 9.D. Through dimensional analysis, it
is shown that all of these are characteristics inherently contained in the
extended slip-link model.
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Fig. 9.4 Relaxation modulus G(t) curves calculated by convoluting Eq. (9.19) with the

Schulz molecular-weight distribution for Mw/Mn = 1.05 (i.e. Z = 20; see Eqs. (10.3) and
(10.4))) at molecular weights: Mw/Me = 10, 20, and 40 as they would be for polystyrene
(GN = 2 × 106 dyne/sq cm; Me = 13,500). The frictional factor K for the µX (t), µB(t)
and µC(t) processes is set at 5 × 10−9 and the frictional factor (denoted by K ′) for the
µA(t) process is set at K ′ = 3.3K (see Chapter 10 for details of the ratio K ′/K).

Equation (9.19) accurately describes the observed characteristics associ-
ated with the transformation of the G(t) line shape with changing molecular
weight. To illustrate the capability of the theory in describing these char-
acteristics, the relaxation modulus curves calculated from Eq. (9.19) at
Mw/Me = 10, 20 and 40, all with the polydispersity of Mw/Mn = 1.05, are
shown in Fig. 9.4 for comparison with the experimental results, as shown in
Fig. 4.6. In Chapter 10, in terms of the theory, quantitative analyses of the
relaxation modulus curves of a series of nearly monodisperse polystyrene
samples will be described in detail.

9.5 Zero-Shear Viscosity and Steady-State Compliance

Using the equations of linear viscoelasticity (Eqs. (4.30) and (4.63)), the
zero-shear viscosity, η0, and the steady-state compliance, J0

e , can be numer-
ically calculated from Eq. (9.19) by a computer program. If the molecular
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weight is greater than ∼ 5Me, the contributions of the µA(t) and µX(t) pro-
cesses to η0 and J0

e are negligible because of their relatively short relaxation
times. From Eq. (9.19) with the µA(t) and µB(t) processes neglected or
Eq. (9.13), η0 and J0

e are derived as

η0 = K
π2ρRT

15
M3

M2
e



(

1−
√
Me

M

)3

+
1
3

(√
Me

M

)3

 (9.24)

J0
e =

3Me

2ρRT
(1−√Me/M)5 + 1

9(
√
Me/M)5

[(1 −√Me/M)3 + 1
3
(
√
Me/M)3]2

. (9.25)

Equation (9.24) closely approximates the observed η0 ∝M3.4 relation over
a wide region of molecular weight above 5Me. J0

e is highly sensitive to the
molecular-weight distribution. As a result, the measured values of nearly
monodisperse polymers in the high-molecular-weight region (> 7Me) are
about 1.7 times greater than the values calculated from Eq. (9.25) which
is for ideal monodispersity. In Chapter 10, we shall further compare the
experimental results of η0 and J0

e with the theoretical results calculated
with and without both the µA(t) and µX(t) processes.

The effect of the primitive-chain contour length fluctuation was first con-
sidered by Doi.13 In an approach which was meant to be an approximation,
Doi obtained the zero-shear viscosity and the steady-state compliance as

η0 = K
ρRT

3
M3

M2
e


(1−

√
Me

M

)3

+
1
5

(√
Me

M

)3

 (9.26)

J0
e =

9Me

5ρRT
(1−√Me/M)5 + 1

9
(
√
Me/M)5

[(1−√Me/M)3 + 1
5(
√
Me/M)3]2

. (9.27)

Equations (9.26) and (9.27) are similar to Eqs. (9.24) and (9.25), respec-
tively. Doi’s calculation was mainly for the molecular-weight dependence
of the zero-shear viscosity and the steady-state compliance. Because of the
approximations involved in his approach, Doi’s results do not converge to
the Doi–Edwards theory (Eqs. (8.57) and (8.58)) at infinitely high molec-
ular weight as Eqs. (9.24) and (9.25) do.

Taking the contour-length-fluctuation effect into account, Doi14

obtained another expression for the viscosity

η0 = K
π2ρRT

15
M3

M2
e

(
1− 1.47

√
Me

M

)3

. (9.28)
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Although Eq. (9.28) converges to the Doi–Edwards theory at infinitely high
molecular weight, it predicts a slope of log(η0) vs log(M) which is much
steeper than the 3.4 observed over a wide molecular-weight region.15

9.6 Note: A Clarification of the Term “Transition Region”

In general, the transition region refers to the time or frequency region,
where the magnitude of the measured modulus changes from glasslike to
rubberlike. Ferry has explained why the term “transition” should not be
confused with the glass transition by pointing out that no change in the
thermodynamic state of the material such as occurs when the glass tran-
sition temperature is traversed. Still, its use in the literature is some-
times confusing. Basically it appears that the term “transition region” has
been used to indicate different zones depending on whether mainly theory
or experiment is under discussion. The Rouse–Mooney process µA(t) as
detailed in Appendix 9.B has been used to describe the viscoelastic behav-
ior in the transition region (see p. 247 of Ref. 17).18 The point where the
modulus starts to rise from the plateau has been used to indicate the onset
of the transition region (see also Figs. 12–9 of Ref. 17).18 For these reasons,
the first-process region in the G(t) shown in Fig. 9.1 has been denoted as
the transition region and the dynamics that occurs in this region as the
transition process — referring to the µA(t) process. As indicated by the
theoretical derivation given in Appendix 9.B, µA(t) is a purely entropy-
driven process. The entropic nature of µA(t) appears inconsistent with
its being associated with the transition from glasslike to rubberlike, as
the transition state should possess a certain degree of glassiness and can-
not be entirely of entropic nature. The term “transition region” used by
Inoue et al.19−21 refers to the frequency region where a simple stress optical
rule (the rubbery one) does not hold due to significant contribution from
the glassy component, which follows another stress optical rule (the glassy
one). The transition region as referred to by Inoue et al. typically occurs
around ∼108 dynes/cm2. Consistent with the analysis of Inoue et al., the
frequency where G′(ω) = 108 dynes/cm2 has often been used as a gauge
of the location of the transition region, because it is a value intermedi-
ate between those characteristic of the glasslike and rubberlike states (see
p. 323 of Ref. 17). In the case of polystyrene, this modulus level is higher
than those where the first three modes of motion in µA(t) occur by about
ten to 40 times. This large discrepancy and the entropic nature of µA(t)
suggest that referring the first-process region in the G(t) shown in Fig. 9.1
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(where µA(t) occurs) as the transition region may not be entirely proper.
On the one hand for making links with some reports in the literature and on
the other hand for distinguishing the difference, the transition region may
be divided into two zones: the transition region (I) for the region around
G′(ω) = 108 dynes/cm2, where both the glassy and rubbery components
coexist; and the transition region (II), where the purely entropic process
µA(t) is applicable. Thus, more precisely, the transition region indicated in
Fig. 9.1 stands for the transition region (II).

Appendix 9.A — Contour Length Fluctuations
of the Primitive Chain

The time-correlation function 〈δL(0)δL(t)〉 of Eq. (9.3) will be derived by
considering the polymer chain as a Gaussian chain consisting of No seg-
ments each with the root mean square length b. Let Sn(t) be the contour
“position” of the nth bead relative to a certain reference point on the prim-
itive path. Then the contour length of the primitive chain at time t is
given by

L(t) = SNo(t)− S0(t). (9.A.1)

The equilibrium average of L(t), L = 〈L(t)〉, is defined by Eq. (8.3).
The motion of Sn(t) is described by the following Langevin equation:

ζ
∂

∂t
Sn(t) =

3kT
b2

∂2

∂n2
Sn(t) + fn(t) (9.A.2)

where fn(t) is the random fluctuation force that is Gaussian characterized
by the moments (see Chapter 3):

〈fn(t)〉 = 0; 〈fn(t)fm(t′)〉 = 6ζkT δ(t− t′)δ(n−m) (9.A.3)

when the contour length fluctuation is considered; or

〈fn(t)〉 = 0; 〈fn(t)fm(t′)〉 = 2ζkT δ(t− t′)δ(n−m) (9.A.3′)

when the curvilinear diffusion is considered.22 The difference in physical
meaning between Eqs. (9.A.3) and (9.A.3′) is explained as follows:

The force constant, 3kT/b2, used in Eq. (9.A.2) originates from the
entropy related to the number of microstructural configurations in a Rouse
segment. The microstructural configurations have to be considered in three-
dimensional space. Involving three-dimensional space is related to the idea
that the size of the Rouse segment, ∼ b, is much smaller than the tube



September 14, 2010 9:46 WSPC/Book Trim Size for 9in x 6in b959-ch09 FA

The Extended Reptation Model 169

diameter, a. In accordance with this picture, each segment on the chain
receives thermal agitations or fluctuation forces from all directions in the
volume ∼ La2 pervaded by the chain. Fluctuation forces perpendicular to
as well as parallel to the primitive path contribute to the fluctuation of
L(t). It is easy to imagine that the movements towards the wall of the
tube or even somewhat leaking out of the tube by some local segments
will shorten the length L(t). Thus, we need to include fluctuation forces
from all directions in three-dimensional space even though we are consid-
ering the length fluctuation only along the primitive path. Because of
the Gaussian chain statistics, the effects of fluctuation forces in any three
mutually-perpendicular directions are the same. As a result, there is the
factor 6 in Eq. (9.A.3). In summary, the use of Eq. (9.A.3) is consistent
with the entropic force constant 3kT/b2 in Eq. (9.A.2).

The fluctuation forces also cause the curvilinear diffusion along the prim-
itive path. However, because of the constraint effect of the tube, the “posi-
tive” and “negative” fluctuation forces perpendicular to the primitive path
cancel each other out when averaged over a time period longer than required
for a segment to travel over an entanglement distance, and thus make no
net contribution to the curvilinear diffusion and the translational diffusion
of the center of mass. Thus, in the study of the curvilinear diffusion, Eq.
(9.A.3′) should be used, instead of Eq. (9.A.3).

As discussed in the Doi–Edwards theory (Chapter 8), a fictitious tensile
force Feq given by Eq. (8.21) must be assumed to apply at both chain ends.
Hence the boundary condition for Eq. (9.A.2) is

3kT
b2

∂

∂n
Sn(t) = Feq at n = 0;No (9.A.4)

or
∂

∂n
Sn(t) = l at n = 0;No (9.A.5)

with

l =
b2

a
. (9.A.6)

Equation (9.A.2) has the following type of solution which satisfies the
boundary condition.

Sn(t) = Xo(t) +
(
n− No

2

)
l +
(

2
No

)1/2∑
p

Xp(t) cos
(
pπn

No

)

for p = 1, 2, . . . (9.A.7)
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where

Xo(t) =
1
No

∫ No

0

Sn(t)dn (9.A.8)

represents the position of the “curvilinear center of the chain” along the
primitive path. To study the motion of Xo(t) (the curvilinear diffusion
motion of the chain), Eq. (9.A.3′) is to be used for the fluctuation force
in Eq. (9.A.2), as explained above. Using Eq. (9.A.8), we obtain from
substituting Eq. (9.A.7) into Eq. (9.A.2) the equation of the Xo(t) motion

ζ
∂

∂t
Xo(t) =

1
No

∫ No

0

fn(t)dn . (9.A.9)

The solution of Eq. (9.A.9) gives rise to Eq. (8.6).
For decoupling the µB(t) and µC(t) processes as in Eq. (9.13), we first

“freeze” the curvilinear diffusion motion by setting τo
C → ∞. For such a

consideration, Xo(t) can be eliminated from Eq. (9.A.7). As explained
above, in studying the intramolecular modes of motion that cause the con-
tour length fluctuation of the primitive chain, Eq. (9.A.3) is to be used for
the fluctuation force. Substituting Eq. (9.A.7) into Eq. (9.A.2) and then
following the procedure as given in Appendix 3.C, we obtain

〈Xp(0)Xp(t)〉 =
N2

o b
2

π2p2
exp(−λpt) (9.A.10)

where

λp =
p2

τB
(9.A.11)

with

τB =
ζb2N2

o

3π2kT
. (9.A.12)

From Eqs. (9.1), (9.A.1) and (9.A.7), we obtain

δL(t) = L(t)−Nol = −2
(

2
No

)1/2 ∑
p=odd

Xp(t) (9.A.13)

and

〈δL(0)δL(t)〉 = 8
No

∑
p=odd

〈Xp(0)Xp(t)〉 . (9.A.14)
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Using Eq. (9.A.10), Eq. (9.A.14) is written as

〈δL(0)δL(t)〉 = Nob
2
∑

p=1,3...

8
π2p2

exp(−λpt) . (9.A.15)

Using this equation, Eq. (9.4) is obtained from Eq. (9.3).

Appendix 9.B — Rouse Motions in an Entanglement Strand:
The Rouse–Mooney Normal Modes of Motion23

Consider a Rouse chain (an entanglement strand) consisting of Ne Rouse
beads at positions: r1, r2, . . . , rNe . Let the first bead r1 be connected by a
bond vector b0 to a fixed point, which is chosen as the origin r0 = 0 of the
coordinate system, and the Neth bead be fixed at Re(= rNe). With the
bond vector bs defined by

bs = rs+1 − rs, (9.B.1)

the contribution to the stress from the single strand is expressed as

σ(t) = −3kT
b2

Ne−1∑
s=0

〈bs(t)bs(t)〉. (9.B.2)

Initially right after the application of the step deformation E,

bs(t = 0) = E · bo
s (9.B.3)

Re = E ·Ro
e (9.B.4)

where {bo
s} and Ro

e are the bond vectors {bs} and end-to-end vector Re,
respectively, before the deformation E is applied. The motions of {bs(t)}
are described by the Langevin equation:

d

dt




b0

b1

b2

·
·

bNe−2

bNe−1




= −3kT
ζb2


 Mst







b0

b1

b2

·
·

bNe−2

bNe−1




+




g1(t)
g2(t)− g1(t)
g3(t)− g2(t)

·
·

gNe−1(t)− gNe−2(t)
−gNe−1(t)



.

(9.B.5)
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The random fluctuation gn(t) is the same as defined by Eqs. (3.34) and
(3.35); and


 Mst


 =




1 −1 0 0 · · 0
−1 2 −1 0 0 · 0

0 −1 2 −1 0 · 0
· · · · · · ·
· · · · · · ·

0 · · 0 −1 2 −1
0 0 · · 0 −1 1




(9.B.6)

is referred to as the Rouse–Mooney matrix, which as shown in Appendix
9.C, has the eigenvalues:

ap = 4 sin2

(
pπ

2Ne

)
; p = 0, 1, 2, . . . , Ne − 1. (9.B.7)

The transformation from the bond vectors {bs} to the normal coordinates
{qp} which diagonalizes the Rouse–Mooney matrix is expressed by

bs =
Ne−1∑
p=0

Uspqp. (9.B.8)

As shown in Appendix 9.C,

Us0 =
1√
Ne

for all s

Usp =
√

2
Ne

cos
(

(s+ 1/2)pπ
Ne

)
for p = 1, 2, 3, . . . , Ne − 1.

(9.B.9)

In terms of the normal coordinates, the Langevin equation is rewritten as:

dqp

dt
= − 1

τe
p

qp + hp(t) for p = 1, 2, 3, . . . , Ne − 1 (9.B.10)

where

τe
p =

ζb2

3kTap
(9.B.11)
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and the random fluctuation hp(t) are characterized by the following
moments:

〈hp(t)〉 = 0 (9.B.12)

〈hp(t′)hq(t′′)〉 = δ
8kT
ζ

sin2

(
pπ

2Ne

)
δpqδ(t′ − t′′), (9.B.13)

which turn out to have the same forms as those for the free Rouse chain
(Eqs. (3.52) and (3.53) with N replaced by Ne).

(Usp) being an orthogonal matrix, the substitution of Eq. (9.B.8) into
Eq. (9.B.2) gives

σ(t) = −3kT
b2

Ne−1∑
p=0

〈qp(t)qp(t)〉. (9.B.14)

From the inverse of the transformation expressed by Eq. (9.B.8), we obtain

q0 =
1√
Ne

Ne−1∑
s=0

bs(t) =
1√
Ne

Re (9.B.15)

which is independent of time as Re is assumed fixed. The time indepen-
dence of q0 is consistent with τ0 =∞ (corresponding to a0 = 0 as given by
Eq. (9.B.7)). Using Eq. (9.B.15), Eq. (9.B.14) is rewritten as

σ(t) = − 3kT
Neb2

〈ReRe〉 − 3kT
b2

Ne−1∑
p=1

〈qp(t)qp(t)〉. (9.B.16)

Equation (9.B.10) has the solution

qp(t) = qp(0) exp
(
− t

τe
p

)
+
∫ t

0

hp(t′) exp
[
− (t− t′)

τe
p

]
dt′. (9.B.17)

Using Eqs. (9.B.12) and (9.B.13), we obtain from Eq. (9.B.17)

〈qp(t)qp(t)〉 = 〈qp(0)qp(0)〉 exp
(
− 2t
τ e
p

)
+ δ

(
b2

3

)[
1− exp

(
− 2t
τe
p

)]
.

(9.B.18)
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Before the step deformation E is applied, the system is in an equilibrium
state. Following the same procedure as used in deriving Eq. (3.54), an
equivalent result can be obtained, which in turn allows us to define

〈∣∣qo
p

∣∣2〉 =
〈
qo

p(0) · qo
p(0)

〉
= b2. (9.B.19)

Using Eq. (9.B.19), the following expression may be obtained

〈qp(0)qp(0)〉 =
〈(

E · qo
p

)(
E · qo

p

)〉
=
〈∣∣qo

p

∣∣2〉〈(E · u)(E · u)
〉
u

= b2〈(E · u)(E · u)〉u (9.B.20)

where 〈· · · 〉u denotes averaging over all orientation of u. Using Eq. (9.B.20),
from substituting Eq. (9.B.18) into Eq. (9.B.16), we obtain

σ(t) = − 3kT
Neb2

〈ReRe〉

− 3kT
Ne−1∑
p=1

[〈
(E · u)(E · u)− δ

3

〉
u

exp
(
− 2t
τe
p

)
+

δ

3

]
. (9.B.21)

Using the equation

〈ReRe〉 =
〈
(E ·Ro

e

)(
E ·Ro

e

)〉
u

= Neb
2
〈(

E · u)(E · u)〉
u
, (9.B.22)

we obtain from Eq. (9.B.21) the stress relaxation of a system with C entan-
glement strands per unit volume in the time region t < τX following a step
shear deformation at t = 0:

Tαβ(t) = −3CkT

[
1 +

Ne−1∑
p=1

exp
(
− 2t
τe
p

)]〈(
E · u)

α

(
E · u)

β

〉
u

= −3cNkT

[
1 +

Ne−1∑
p=1

exp
(
− 2t
τe
p

)]〈(
E · u)

α

(
E · u)

β

〉
u

(9.B.23)

where c is the number of polymer chains per unit volume, with N entan-
glement strands per chain.
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The relaxation modulus G(t) in the linear region is obtained from
Eq. (9.B.23) as

G(t) = cNkT [1 + µA(t)] (9.B.24)

where

µA(t) =
Ne−1∑
p=1

exp
(
− t

τp
A

)
(9.B.25)

with

τp
A =

τe
p

2
=

ζb2

24kT sin2(πp/2Ne)

=
Kπ2M2

e

24N2
e sin2(πp/2Ne)

. (9.B.26)

The frictional factor K is given by Eq. (3.57).
When Ne →∞, Eq. (9.B.26) can be reduced as

τp
A =

ζN2
e b

2

6π2kTp2

=
KM2

e

6p2
. (9.B.27)

The combination of Eqs. (9.B.24), (9.B.25) (with Ne →∞) and (9.B.27) is
in agreement with the result obtained from the continuous model in which
Eq. (9.B.2) is replaced by

σ(t) = −3kT
b2

∫ Ne

0

〈(
∂rn(t)
∂n

)(
∂rn(t)
∂n

)〉
dn. (9.B.28)

And the Langevin equation has the same expression as given by Eq. (3.C.1)
(with Rn replaced by rn) except under different boundary conditions —
changing from free to fixed boundary conditions. In the continuous model
with r0 = 0 and rNe = Re, the transformation to the normal coordinates
Xp(t) (p = 1, 2, . . . ,∞) is performed according to

rn(t) =
n

Ne
Re +

(
2
Ne

)1/2∑
p

Xp(t) sin
(
pnπ

Ne

)
. (9.B.29)
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Appendix 9.C — Eigenvalues and Eigenvectors of the
Rouse–Mooney Matrix

We consider the Rouse–Mooney matrix (Mst) of the dimension z × z. The
z eigenvalues {as} of the matrix are the roots of the equation obtained by
setting the determinant Dz = |Mst − aδst| equal to zero, i.e.

Dz =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1 −1 0 0 · · 0
−1 x −1 0 · · 0
0 −1 x −1 0 · 0
· · · · · · ·
· · · · · · ·

0 0 · 0 −1 x −1
0 0 · · 0 −1 x− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (9.C.1)

where

x = 2− a. (9.C.2)

From Eq. (19.C.1), the recursion relation is found as follows

Dz = xDz−1 −Dz−2 (9.C.3)

with

D2 = x2 − 2x (9.C.4)

and

D3 =

∣∣∣∣∣∣
x− 1 −1 0
−1 x −1
0 −1 x− 1

∣∣∣∣∣∣ = (x2 − 1)(x− 2). (9.C.5)

Eq. (9.C.3) is identical in form to the recursion relation (Eq. (3.A.3)) for
the Rouse matrix. Setting x = 2 cos θ = exp(iθ) + exp(−iθ) and following
a procedure similar to that used in Appendix 3.A, the z(= Ne) eigenvalues
are obtained as

a0 = 0 (9.C.6a)

and

ap = 4 sin2

(
pπ

2Ne

)
; for p = 1, 2, . . . , Ne − 1. (9.C.6b)

Eqs. (9.C.6a) and (9.C.6b) together may be expressed by Eq. (9.B.7).
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Following a procedure similar to that used in the Rouse matrix case,
the normalized eigenvectors {Cp

k} (k = 0, 1, 2, . . . , Ne−1) corresponding to
the respective eigenvalues given above are obtained as

C0
k =

1√
Ne

at all k if p = 0 (9.C.7a)

and

Cp
k =

√
2
Ne

cos
(

(k + 1/2)pπ
Ne

)
for p = 1, 2, . . . , Ne − 1. (9.C.7b)

Equation (9.C.7) leads to the transformation expressed by Eq. (9.B.9).

Appendix 9.D — Hierarchy and Universality among
the Inherent Characteristic Times in the (Extended)
Slip-Link Model

It is generally true that in a physical system a slower process is associated
with a larger length scale. For Brownian motion, this is particularly clear
and can be expressed by the following scaling relation:

τk ≈ L2
k

Dk
(9.D.1)

based on dimensional analysis with τk, Lk and Dk denoting a character-
istic time, length and diffusion constant, respectively. To make use of
Eq. (9.D.1), a relevant length scale needs to be identified first. The diffusion
constant conjugate to the length scale can be selected from the few obvious
choices: D = kT/ζ, D/No and D/Ne according to whether a physical jus-
tification can be made. For instance in the Rouse model, two characteristic
lengths can be identified: the Rouse-segment length b and the end-to-end
distance of the chain R = (Nob

2)1/2. These two length scales indicate two
characteristic times:

τ0 ≈ b2

D
=
ζb2

kT
= Kπ2m2 (9.D.2)

τr ≈ R2

(D/No)
=
ζN 2

0 b
2

kT
= Kπ2M 2 (9.D.3)

where the diffusion constants of a single Rouse bead and of the Rouse
chain as a whole are given by D = kT/ζ and D/No, respectively (N in
Eq. (3.41) is replaced by No here). τ0 is of the order of the correlation time
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for reorientation of a single Rouse segment; and except for a proportional
constant τr is equivalent to the relaxation time of the first Rouse normal
mode (Eq. (3.55) or (7.56)).

Additional characteristic times are expected to arise from the introduc-
tion of the length scales a and L into the slip-link model as defined by
Eq. (8.3). In addition to τ0, the characteristic times in the slip-link model
can be identified as

τ1 ≈ a2

(D/Ne)
=
ζN 2

e b
2

kT
= Kπ2M 2

e (9.D.4)

τ2 ≈ a2

(D/No)
=
ζNeNob

2

kT
= Kπ2MeM (9.D.5)

τ3 ≈ R2

(D/No)
=
ζN2

o b
2

kT
= Kπ2M2 ≈ τr (9.D.6)

τo
4 ≈

L2

(D/No)
=
ζN3

o b
2

kTNe
= Kπ2M

3

Me
. (9.D.7)

Theoretically, the length scale a can be defined in either the three-
dimensional space or along the primitive chain (curvilinear contour); how-
ever, R is defined in the three-dimensional space and L defined along the
curvilinear contour. In the Doi–Edwards theory, D/No is the curvilin-
ear diffusion constant Dcv (Eq. (8.6)); in other words, it is defined along
the curvilinear contour. Thus from the viewpoint of the Doi–Edwards
theory, τ3 as defined by Eq. (9.D.6) involving R and Dcv “mixes” the two
different sorts of space (the three-dimensional space versus the curvilinear
contour), which should be forbidden. Indeed, a τ3-characterized dynamic
process is not expected to occur as a result of introducing only Eq. (8.3)
as τ3 is independent of L and a. A τ3-characterized dynamic process
cannot occur in the Doi–Edwards theory (pure-reptation model) with the
imposed restriction that the length of L remains fixed. The solution of the
Langevin equation for the primitive chain — allowing the length of L to
fluctuate — gives the characteristic time of the contour-length fluctuations
(a Rouse-like motion), τB, which differs from τ3 by a proportional constant
(Appendix 9.A).

Using Eqs. (9.D.4)–(9.D.7), the ratios of the four characteristic times
can be expressed as

τo
4

τ3
∝ τ3
τ2
∝ τ2
τ1
∝ No

Ne
=

M

Me
, (9.D.8)
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all being proportional to the normalized molecular weightM/Me or No/Ne.
Except for a proportional constant, τo

4 is equivalent to the pure reptation
time of the Doi–Edwards theory. The contour length fluctuation affects the
relaxation mechanism for the stress on the primitive chain in the way as
illustrated in Fig. 9.3. Because of this effect, the length L is shortened by
the amplitude of the contour length fluctuation, δL, in the same sense as
Eq. (9.7). In other words, the Eq. (9.D.7) for τo

4 is modified to become

τ4 ≈ (L− δL)2

(D/No)
=
ζN3

o b
2

kTNe

(
1−

√
Ne

No

)2

= Kπ2M
3

Me

(
1−

√
Me

M

)2

.

(9.D.9)

All the functional forms of the relaxation processes and relaxation strengths
have been derived except that µX(t/τX) is assumed to be a single expo-
nential decay with the characteristic time τX . As pointed out in Sec. 9.3.a,
the existence of the µX(t) process is theoretically clear; it is responsible for
the decline in modulus from G∗

N to GN — corresponding to the relaxation
strength 1/4 incorporated into in Eq. (9.18). It is also clearly supported by
comparing theory with experiment (compare Figs. 2 and 3 with Figs. 8 and 9
of Ref. 15). It has been shown theoretically (Sec. 9.3) that the µX(t) process
arises from the chain slipping through entanglement links to release uneven
local chain tension — i.e. to equilibrate the segmental distribution between
neighboring entanglement strands. Unlike the µB(t) process involving the
fluctuations of the whole chain molecule, the µX (t) process involves local
dynamics in separate sections of the chain, whose length scale should be of
the same order of magnitude as the entanglement distance a. Correspond-
ing to this process, Lk ≈ a should be used in Eq. (9.D.1). At the same
time, the curvilinear diffusion constant D/No instead of D/Ne should be
chosen as the conjugate diffusion constant for the reason that dynamically
chain slippage has occurred. Therefore, except for a proportional constant,
τX is expected to be equivalent to τ2 as given by Eq. (9.D.5). Note that
after the chain slippage through entanglement links has occurred, the only
diffusion constant that can be chosen for Dk in Eq. (9.D.1) is D/No — as
used in Eqs. (9.D.5)–(9.D.7) and (9.D.9) for obtaining τ2, τ3, τo

4 and τ4,
respectively.

As explained in Sec. 9.4, the application of the universality covering the
µB(t) − µC(t) region and the µA(t) region to the µX(t) process requires
that the scaling relation τX ∝ KM2−m

e Mm be satisfied. Then from the
G(t) line-shape analyses of nearly monodisperse polystyrene samples with
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different molecular weights, m = 1 and the coefficient 0.55 in Eq. (9.22)
were obtained. The above analysis showing τX ≈ τ2 with τ2 given by
Eq. (9.D.5) supports the structural factor obtained for τX .

Thus, τ1, τ2, τ3 and τ4 are equivalent to τ1
A, τX , τB and τC , respectively,

except for a proportional constant. With τo
4 replaced by τ4, Eq. (9.D.8) may

be rewritten as

τ4
τ1
≈
(
M

Me

)3
(

1−
√
Me

M

)2

, (9.D.10)

τ3
τ1
≈
(
M

Me

)2

, (9.D.11)

and

τ2
τ1
≈ M

Me
(9.D.12)

which are equivalent to Eqs. (9.20), (9.21) and (9.23), respectively, except
for a proportional constant. Thus, the above analyses based on the scaling
relation Eq. (9.D.1) show that the hierarchy and universality among and
the structural factors of the characteristic times of the ERT processes are
naturally inherent in the extended slip-link model — extended as τ3 given
by Eq. (9.D.6) is allowed and Eq. (9.D.9) is used to replace Eq. (9.D.7).
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Chapter 10

Comparison of the Extended
Reptation Theory (ERT) with
Experiments

Much information about the viscoelastic properties of flexible linear
polymers as related to entanglement has been obtained from the experi-
mental studies of well characterized nearly monodisperse samples prepared
by anionic polymerization or fractionation. Most of the earlier results can
be found in the book by Ferry1 and in its references. A review article by
Ferry covered the key research works from 1930 to 1970.2 We may summa-
rize the main advancements made in this earlier period as follows: (1) the
observation of the general line-shape pattern of the linear relaxation mod-
ulus G(t) (or viscoelastic spectrum G′(ω) & G′′(ω); as the linear relaxation
modulus and viscoelastic spectrum are equivalent, we shall mention either
one of the two in this and the next chapters, with the understanding that the
same is also applied to the other; we shall also omit the word “linear” if it is
well understood from the context that the linear region is being considered)
from the transition region (II) to the terminal region and its transforma-
tion with changing molecular weight (see Figs. 4.6, 4.9 and 4.10); (2) the
determination of the entanglement molecular weight Me from the plateau
modulus observed in G(t) (before the publication of the Doi–Edwards the-
ory, Eq. (8.1) was used instead of Eq. (8.2)); (3) the observation of the 3.4
power law of the zero-shear viscosity η0 and the basic molecular-weight inde-
pendence of the steady-state compliance J0

e in the high-molecular-weight
region (Figs. 4.7 and 4.12); and (4) the determinations of the critical molec-
ular weights Mc and M ′

c from the molecular-weight dependence of η0 and
J0

e , respectively, and their close relations with the Me value.
These results pointed out several aspects of universality in polymer vis-

coelasticity and led to some theoretical modelings.3 However, a promising
way to describe the entanglement effect in a concentrated long-chain sys-
tem had not appeared until de Gennes suggested the idea of reptation

182
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in 1971. Only during and after the advent of the Doi–Edwards theory,
did meaningful quantitative comparison between theory and experiment
become possible as for the damping function h(λ). The extended reptation
theory (ERT), whose development on the theoretical framework of the Doi–
Edwards theory was described in Chapter 9, provides a G(t) function which
can be expressed as a universal form in terms of the normalized molecu-
lar weight M/Me, covering the whole range from the transition region (II)
to the terminal region. It was pointed out in Chapter 9 that the ERT
accurately describes the characteristics of transformation of the G(t) line
shape with changing molecular weight and that it explains the molecular-
weight dependence of η0 and J0

e . In this chapter we shall describe and
discuss detailed aspects of the quantitative comparison between the ERT
and experimental results.

10.1 Effects of the Molecular-Weight Distribution
of the Sample

The functional form of the relaxation modulus G(t) as given by Eq. (9.19)
together with Eqs. (9.5), (9.6), (9.11), (9.12), (9.14), (9.15), (9.B.18),
(9.B.20) and (9.22) is for an “ideally monodisperse sample” in the entan-
glement region. Equation (9.12) indicates that the relaxation time of the
main process in G(t) — the terminal process µC(t) — is strongly depen-
dent on the molecular weight. Thus, to compare the measured G(t) line
shapes with the theory, we need to take the molecular-weight distribution
into account, even though the studied samples are nearly monodisperse
(typically with Mw/Mn < 1.1). This consideration involves the so-called
blending law. The simplest kind of blending law is the linear additivity
of the contributions from the different molecular-weight components in the
distribution. Assuming such a blending law is equivalent to the mean-
field assumption (in the sense that the bulk viscoelastic properties can be
expressed in terms of the behavior associated with a single chain) which
the ERT as well as the Doi–Edwards theory has been developed on. The
mean field assumed from the very beginning of the Doi–Edwards theory is
represented by the clear definition of the primitive chain (Eq. (8.3)). Thus,
the mean field has much to do with the tube diameter a and its associ-
ated entanglement molecular weight Me (Eq. (8.4)) which is determined
from the plateau modulus (Eq. (8.2)). In addition, Eq. (8.3) plays a cru-
cial role in the derivations of the expressions for τo

C and τC as studied in
Chapters 8 and 9. In a nearly monodisperse system of sufficiently high
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molecular weight, a molecular weight-independent plateau modulus can be
determined to give a well-defined value for Me and thus for the tube diam-
eter a as well. This observation indicates that in such a system all poly-
mer chains, in spite of their small differences in molecular weight, “feel”
the same tube-diameter size. This deduction also implies that the linear-
additivity rule can be applied in the case of a nearly monodisperse sample
if the mean-field assumption itself is valid in an ideally monodisperse sys-
tem. Thus, it is logical to linearly convolute Eq. (9.19) with the nearly
monodisperse distribution of the sample to calculate G(t) for comparison
with the experimental result. In the case of a broadly polydisperse sample,
no clear plateau in G(t) can be observed. This phenomenon suggests that
Eq. (9.19) probably may not be used to analyze the G(t) line shape of a
broadly polydisperse sample by using the linear-additivity rule. In Chapter
11, blend systems consisting of two nearly monodisperse components with
quite different molecular weights will be studied, revealing the complexity
of an additional effect — the tube-dilation effect — involved in their G(t)’s.

In this chapter, all the results of nearly monodisperse systems presented
show that the linear-additivity rule is well followed, except mainly for one
sample, whose molecular weight is the highest among the studied. The
deviation from the linear-additivity rule for this particular sample is small
yet clearly detectable. The deviation was found to be due to the presence
of a low-molecular-weight tail in the otherwise “perfectly” nearly monodis-
perse distribution of the sample. Because this effect has some bearing on
the actual approach taken to analyze the G(t) line shapes of the less perfect
samples, we briefly discuss it below.

The G(t) line shape of a nearly monodisperse high-molecular-weight
sample will change somewhat when the sample is blended with a small
amount of polymer with a considerably smaller molecular weight, yet still
greater than Me. The plateau region in G(t) is still clearly observable in
such a blend system. However, the small change in the G(t) line shape will
not follow the linear-additivity rule. In our discussion below, we shall refer
to the added low-molecular-weight polymer as component one and the host
or major component as component two. If the amount of component one
is very small, such a blend can be functionally approximated as equivalent
to a nearly monodisperse system with a low-molecular-weight tail or vice
versa. Because component-one’s molecular weight is much smaller than
component-two’s, the still clearly observable plateau is to be associated
with component two. As the amount of component one is very small, the
tube diameter felt by component-two’s chains remains (virtually) the same.



August 26, 2010 17:33 WSPC/Book Trim Size for 9in x 6in b959-ch10 FA

Comparison of the Extended Reptation Theory (ERT) with Experiments 185

The unchanged tube diameter means that the terminal relaxation time asso-
ciated with component two remains the same. But a small amount of tube
stress on component-two’s chains will relax in a time much shorter than the
terminal relaxation time as the fast-moving component-one’s chains rep-
tate away from component-two’s chains. This additional relaxation — not
caused by the reptational motions of component-two’s chains themselves —
slightly enhances the declining rate in the plateau region. The relaxation
of the tube stress on the component-one chains also basically occurs in the
plateau region. Because there is only residual amount of component one,
the apparent effect of this relaxation would basically amount to enhancing
slightly the decline rate in the plateau region.

In the plateau region, since the absolute value of the reciprocal slope
|∆t/∆G| is large, a small “wrong” additional decline of the modulus ∆G
in the plateau region can lead to a large error in time ∆t. Thus, as the
relaxation-time scale is transformed to the molecular-weight scale in the
analysis of the G(t) line shape, the presence of a small amount of compo-
nent one can artificially broaden the molecular-weight distribution if the
sample system is regarded as a nearly monodisperse system rather than a
binary blend. This effect somewhat contaminates the line-shape analysis
in one case discussed below, where the studied nearly monodisperse sample
contains a low-molecular-weight tail. This effect will be further discussed
when the comparison of theory with experiment is made for zero-shear
viscosity.

A stronger effect of different nature will occur if the amount of compo-
nent one is not small. In this case the tube diameter felt by component-two’s
chains becomes larger (this is referred to as the tube dilation effect) while
that felt by component-one’s chains remains the same as in a monodis-
perse situation. This effect is based on the observation that the terminal
relaxation time associated with component two is shortened by the pres-
ence of a significant amount of component one (as discussed in detail in
Chapter 11, corresponding to the tube dilation, an apparent larger entan-
glement molecular weight denoted by M ′′

e can be defined which leads to a
smaller τC value when Me in Eq. (9.12) is substituted by M ′′

e ). As also
pointed out by Doi and Edwards,4 the tube is a dynamic concept rather
than static. In a system of broad molecular-weight distribution, chains
of different molecular weights feel different effective tube diameter sizes.
A longer chain feels a larger tube diameter because of relatively higher rep-
tational mobility of the shorter chains in its surroundings, while the shortest
chain in the system feels the same tube-diameter size as in a monodisperse



August 26, 2010 17:33 WSPC/Book Trim Size for 9in x 6in b959-ch10 FA

186 Polymer Viscoelasticity

system. The distribution of tube-diameter sizes felt by components of dif-
ferent molecular weights contributes greatly to the disappearance of a clear
modulus plateau in a commercial polymer, whose molecular weight distribu-
tion is generally very broad. To apply Eq. (9.19) to a broadly polydisperse
polymer by using the linear-additivity rule is bound to fail. Because the
tube-dilation effect is truly a many-body problem even from the view-point
of the tube model, the blending law for a broadly polydisperse polymer is
very complicated. However, the tube-dilation effect, as it occurs in blend
systems consisting of two nearly monodisperse components with very dif-
ferent molecular weights, can be studied profitably in a systematic way as
described in Chapter 11.

10.2 Analysis of the G(t) Line Shape

In practice, two approaches have been found to take the molecular-weight
distribution into account in comparing Eq. (9.19) with the measured G(t)
line shapes of nearly monodisperse polymers:

One is to convolute Eq. (9.19) with a distribution consisting of mul-
tiple discrete components whose molecular weights and weight fractions
are adjustable parameters under the constraint that the weight-average
molecular weight is kept equal to the value determined from the sample
characterization. That is

W (M) =
∑

i

Wiδ(M −Mi) (10.1)

with

Mw =
∑

i

WiMi (10.2)

where Wi is the weight fraction of the component with molecular weight
Mi, and Mw is the weight-average molecular weight of the sample. These
parameters are adjusted in fitting the measured G(t) to the calculated with
a nonlinear, least-squares fitting computer program.

The other approach is to assume that the molecular-weight distribution
is described by the Schulz distribution5,6 given by

W (M) =
ZZ+1

Γ(Z + 1)
MZ

MZ+1
n

exp
[
−ZM
Mn

]
(10.3)
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where Γ is the gamma function and

Z + 1
Z

=
Mw

Mn
. (10.4)

Equation (10.4) indicates that the polydispersity of the Schulz distribution
is characterized by the single parameter, Z. In this approach for a certain
polymer sample, a series of G(t) curves are first calculated by convoluting
Eq. (9.19) with Eq. (10.3) at different Z values. Then, the optimum Z value
is determined by the best superposition of the measured on the calculated
G(t) curve. In calculating the G(t) curve at a certain Z value, the Mn value
used in Eq. (10.3) is first calculated from Eq. (10.4) with the known Mw

value of the sample.
Most anionically-polymerized high-molecular-weight samples (>∼ 10Me

for polystyrene) usually contain a low-molecular-weight tail. This is a char-
acteristic of high-molecular-weight samples synthesized anionically, which
is likely caused by the presence of just a trace amount of impurity dur-
ing polymerization. The plateau region in G(t) of a sample is wide if its
molecular weight is high. Thus, it takes only a very small amount of the
low-molecular-weight tail to cause a noticeable additional decline of the
modulus in the plateau region, which can lead to an artificial broadening
of the molecular-weight distribution extracted from the nonlinear, least-
squares fitting to the G(t) curve — an effect which was explained above.
In this case, the first approach has been found more appropriate.

For polystyrene polymers with a molecular weight smaller than ∼ 10Me,
the modulus plateau region is not that flat and declines more quickly with
decreasing molecular weight. As explained in Chapter 9 and will further be
seen from the analysis of the G(t) line shapes shown below, the main reason
for this observed phenomenon is that the four relaxation processes, µA(t),
µX(t), µB(t) and µC(t), are getting closer to one another in time. In the
low-molecular-weight region, because of the closeness and even overlapping
of the four processes, it is difficult to do the nonlinear, least-squares fitting
of the first approach; instead, the approach of using the Schulz distribution
has been found to be very efficient and satisfactory. It became very apparent
in the actual doing that the adjustment of the single parameter Z in the
Schulz distribution could unequivocally lead to a very close matching of
the calculated and measured G(t) curves from the terminal region to the
transition region (II).

For a series of studied polystyrene samples with a molecular weight
less than 10Me,7 the best Schulz distributions obtained from the closest
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matching of the calculated and measured G(t) line shapes have the Z values
corresponding to a polydispersity ofMw/Mn < 1.04 in good agreement with
the values obtained from the characterization of the samples.

For two nearly monodisperse polystyrene samples of Mw = 1.79 ×
105 and 4.22 × 105 (these two samples are denoted by NBS and F40,
respectively),7 the G(t) line-shape analyses were made by doing the non-
linear, least-squares fitting in terms of a distribution consisting of three
discrete molecular-weight components (Eq. (10.1)). The polydispersity
obtained from the line-shape analysis for the NBS sample was Mw/Mn =
1.08, in good agreement with the value 1.07 measured with the gel perme-
ation chromatograph (GPC); while that for F40 was Mw/Mn = 1.16, which
is somewhat greater than an apparent GPC value of 1.05. As explained
above, the discrepancy in the case of F40 is due to the low-molecular-weight
tail in the distribution as revealed by an independent GPC measurement.7

This discrepancy also has much to do with the “pitfalls” likely to occur in
any nonlinear, least-squares fitting which would cause the uniqueness or
exact correctness of the obtained “best” set of the adjustable parameters
to be questioned. Here, the assumed distribution of three discrete com-
ponents cannot represent completely the true distribution which should be
continuous. At the same time, the number of involved fitting parameters
is not small. This combination makes the obtained distribution easily dis-
torted by errors in the measured curve. Here the main error source, as
explained above, is the additional declining rate in the plateau region due
to the low-molecular-weight tail in the studied sample. These factors lead
to the artificially larger polydispersity in the molecular-weight distribution
obtained from the nonlinear, least-squares G(t) fitting of F40. In support
of this explanation, the frictional factor K for F40 obtained from this G(t)
fitting is about 30% smaller than the average value obtained for the sam-
ples with molecular weight < 10Me. The smaller K value and the broader
molecular-weight distribution in the case of F40 are both artificial out-
comes of the nonlinear, least-squares fitting of G(t). As explained further
in the comparison of theory and experiment for the zero-shear viscosity
below, these two artificial effects cancel each other out in the integration
of G(t) (Eq. (4.30)), giving a viscosity value which agrees closely with the
predicted value. The 30% reduction of the K value in the case of F40
is unlikely due to the molecular-weight error in the sample characteriza-
tion. Based on Eq. (9.12), an error of 10% in the weight-average molec-
ular weight can cause an uncertainty of ∼ 30% in the K value obtained
from the G(t) curve analysis. The expected accuracy (a few percent at
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most) of the sample’s molecular-weight value makes it an unlikely factor.
Furthermore, if the molecular-weight error were the cause, a corresponding
30% reduction should have been observed in the viscosity value. A similar
explanation as given above for the F40 sample can account partially for
the 30% reduction in K obtained from the G(t) curve analysis for the NBS
sample. As NBS’s molecular weight is less than half of F40’s, the flatness
of the plateau in G(t) of the former is greatly reduced. Thus, the arti-
ficial broadening of the molecular-weight distribution obtained from the
G(t) line-shape analysis for NBS is not as noticeable as that occurring to
F40. Some inherent broader molecular-weight distribution of the NBS sam-
ple also contribute to the polydispersity obtained from its G(t) line-shape
analysis.

The results of the G(t) curve analyses for the samples: F40, F10, F4 and
F2 are shown in Figs. (10.1)–(10.4). These results show the typical close
agreement between theory and experiment (see Ref. 7 for more compar-
isons of the calculated with the measured G(t) curves). In these figures, the

Fig. 10.1 Comparison of the measured (dots) and the calculated (line) relaxation mod-
ulus for the F40 sample. Also shown are the separate contributions of the µA(t), µX (t),
µB(t) and µC(t) processes (line A is calculated with all four processes in Eq. (9.19)
included, line X is calculated without µA(t), line B is calculated without µA(t) and
µX (t), and line C is calculated without µA(t), µX (t) and µB(t); thus, the portion
between line A and line X is the contribution of the µA(t) process, and so forth).
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Fig. 10.2 Same as Fig. 10.1 for the F10 sample.

Fig. 10.3 Same as Fig. 10.1 for the F4 sample.
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Fig. 10.4 Same as Fig. 10.1 for the F2 sample.

separate contributions from the µA(t), µX(t), µB(t) and µC(t) processes to
the total G(t) are also shown. In the short time region, deviations of the
measured curves from the calculated are expected as we have not included in
the theory the sub-Rouse-segmental dynamic process (the glassy-relaxation
process), which is, as pointed out in Chapter 9, much affected by the ener-
getic interactions among microstructural segments. Furthermore as pointed
out in Chapter 4, the experimental data at times shorter than 0.1–0.2 sec are
not expected to be accurate considering the compliance of the transducer
and the step deformation rise time.

In the region of the low relaxation modes of the µA(t) process, it has
been shown that the calculated G(t) curve is very much independent of the
Ne value used in the calculation (see Eqs. (9.19), (9.B.24)–(9.B.26)) as long
as the Ne value is sufficiently large. For the shown G(t) curves, Ne = 10
was used in the calculation. As far as the region of the low µA(t) modes
is concerned, the fact that Ne = 10 is sufficiently large is demonstrated
by the close agreement between two G(t) curves calculated with the same
frictional factor, one with Ne = 10 and the other with Ne = ∞ (Ne = ∞
is equivalent to using Eq. (9.B.27); see Figs. 3 and 10 of Ref. 8). As will
be further discussed below, the frictional factor in the µA(t) process is
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determined by matching the calculated and the measured in the region of
the low µA(t) modes. (Note: The Ne value depends on the molecular weight
for the Rouse segment m, i.e. Ne = Me/m. The value of m for polystyrene
obtained by different methods is 780 ∼ 900,9–15 (see Appendix 13.A) from
which Ne should be about 16. However, using Ne = 10 here does not cause
any difference in the obtained frictional factor for the µA(t) process.)

Here, we need to point out some detailed aspects of the procedure
involved in the analysis of the G(t) curves. In analyzing the G(t) curves
measured at a certain temperature in terms of Eq. (9.19), the parametersK
and Me are involved in addition to the parameters related to the molecular-
weight distribution as discussed above. The expressions for the relaxation
times contain both K and Me while the plateau modulus GN is related
to Me only. Thus, before K is finally determined from the G(t) analysis,
Me has to be first determined from the plateau modulus. This process was
carried out in the following way: An Me value was first calculated from
the literature value of GN according to Eq. (8.2). The obtained Me value
was used for calculating all the G(t) curves required during the nonlinear,
least-squares fitting to the measured G(t) curve of a high-molecular-weight
sample (such as F40) whose modulus plateau was wide and clear. Then,
a new value of the plateau modulus GN was determined from the least-
squares fitting. The obtained plateau modulus was used to calculate a new
Me value to be used in repeating the nonlinear, least-squares fitting pro-
cess. Theoretically this procedure will be repeated until the obtained GN

value is consistent with the Me value entered in the calculation of the G(t)
curves. As the finally determined GN value was in very close agreement
with the literature value which had been used initially, the convergence
was quickly reached. The plateau modulus values in literature1,16 have
often been obtained from integrating the peak in the terminal region of the
loss-modulus spectrum. The determination from matching the measured
and calculated G(t) curves with a nonlinear least-squares fitting program
should be considered as the most direct method. The two results are in
close agreement with each other: for polystyrene Me = 13,500 is obtained
from the direct method7 while Me = 13,300 is obtained from the integration
method.16

Using the finally determined Me value for polystyrene (13,500 corre-
sponding to GN = 2 × 106 dyn/cm2 at 127.5◦C), the K value for each
polystyrene sample was then determined from the G(t) analysis under the
constraint that the weight-average molecular weight of the distribution used
in the calculation is fixed at the known value of the sample. From fitting
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Fig. 10.5 K and K ′/K values as a function of molecular weight Mw that have been
obtained from the line-shape analysis of the measured G(t) curves at 127.5◦C.

to the G(t) curves of different samples measured at the same temperature,
the K values at different molecular weights were obtained. As indicated by
the results at 127.5◦C shown in Fig. 10.5, the K value in the µC(t), µB(t)
and µX(t) processes is found independent of molecular weight as expected
from the theory; however, the K (denoted by K ′ below) value in the µA(t)
process is different as will be explained and discussed below.

The K values of the F40 and NBS samples are about 30% smaller than
the average of the K values determined for the samples in the molecular-
weight region below 10Me. As explained above, this small yet noticeable
reduction of the K value is mainly related to the molecular-weight dis-
tribution rather than caused by an error in the weight-average molecular
weights of the samples. Above 10Me (> 135,000 for polystyrene), K ′ is
independent of molecular weight and is greater than K by a factor of about
4.2. Corrected for the 30% reduction in K in the case of NBS and F40,
the K ′/K ratio becomes about 3.3 above 10Me. Below 10Me the ratio
K ′/K declines gradually with decreasing molecular weight and reaches 1
as the molecular weight approachesMe. From the close agreements between
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the calculated and measured G(t) curves as shown in Figs. 10.1–10.4, the
obtained K and K ′ values as a function of molecular weight are uniquely
determined.

That the obtained frictional factor K is, as expected, independent of
molecular weight is a vitally important result of the analysis of the G(t)
curves. The very good description of the line shapes of the G(t) curves by
the theory would be totally meaningless if the obtained K values were not
independent of molecular weight. The significance will be further demon-
strated when the comparison of theory with experiment is made for the
zero-shear viscosity.

What is surprising is the obtained molecular-weight dependence of
K ′. K ′/K being greater than one indicates that the friction constant
for motions involving a length scale smaller than the tube diameter and
restricted inside the tube is greater than that for motions along the prim-
itive path involving length scales greater than the tube diameter. Amaz-
ingly this difference disappears, i.e. K ′/K → 1, as the molecular weight
approaches the Me value. This phenomenon is very significant as it indi-
cates very reasonably that there is no difference between K and K ′ or
no motional anisotropy when the entanglement becomes absent. In other
words, the difference between the frictional factors K and K ′ has much
to do with the degree of entanglement per chain, i.e. M/Me. As shown
in Fig. 10.5, when the normalized molecular weight M/Me is sufficiently
large (> 10), the ratio K ′/K reaches a plateau value. Such an effect can be
explained in terms of the extra free volume generally associated with the
chain ends. The extra free volume at either chain end is always available
to the motions along the primitive path. On the other hand, the portion of
the extra free volume available to the µA(t) modes of motion of a particu-
lar chain depends on the concentration of chain ends belonging to polymer
chains in its surroundings. Thus, the K ′ value extracted from the µA(t)
process is molecular weight-dependent. The same dependence of K ′/K on
the normalized molecular weight is also observed in binary-blend solutions
as will be detailed in Chapter 11. The dependence of K ′/K on M/Me will
be further discussed in Chapter 14 as related to the dependence of the glass
transition temperature Tg on M/Me (Sec. 14.6) and the universal depen-
dence of K ′ on the temperature difference from the glass transition point
∆T = T − Tg in the polystyrene system (Sec. 14.9).

The G(t) curves shown in Figs. 10.1–10.4 were measured with the
System Four mechanical spectrometer manufactured by Rheometrics, Inc.
When oscillatory measurements for storage and loss moduli were made
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with this instrument, both the strain signal of the servo system and the
stress signal from the transducer were correlated with a standard sine wave
to calculate the in-phase and out-of-phase components. Because of these
correlation steps, the obtained storage- and loss-modulus spectra as a func-
tion of frequency should be more free of noise than the relaxation-modulus
curves. To confirm the measurements and analyses of the G(t) curves as
shown above, the storage- and loss-modulus spectra of the studied sample
were also measured. Consistent agreements between theory and experi-
ment were obtained. The comparisons of the measured with the calcu-
lated storage-modulus spectra G′(ω) corresponding to those comparisons
shown in Figs. 10.2–10.4 are shown in Figs. 10.6–10.8. The theoretical
G′(ω) curves have been calculated with the same values of the Z param-
eter and the K ′/K ratio as those used in calculating the corresponding
G(t) curves. Because the experimental G′(ω) spectra were obtained at
temperatures somewhat lower than 127.5◦C, the K values used in the cal-
culations are significantly different. One can notice that significant devi-
ations of the measured from the calculated G(t) curves occur at modulus

Fig. 10.6 Comparison of the measured (dots) and calculated (line) storage-modulus
spectra for the F10 sample. Also shown are the separate contributions of the µA(t),
µX (t), µB(t) and µC (t) processes (see Fig. 10.1 for the calculation of the A, X, B, and
C lines).
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Fig. 10.7 Same as Fig. 10.6 for the F4 sample.

Fig. 10.8 Same as Fig. 10.6 for the F2 sample.
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values >∼ 6× 106 dynes/cm2 — except in the case of F2 — while devia-
tions do not occur in the comparisons between calculated and measured
G′(ω) spectra until a higher modulus level (>∼ 1.2× 107 dynes/cm2). The
difference is mainly due to the effects associated with the compliance of
the transducer and the step deformation rise time in the G(t) measure-
ments, which have been accounted for or are absent in the G′(ω) mea-
surements. Disregarding the difference in the high-modulus (short-time or
high-frequency) region, quantitative consistency is observed between the
results shown in Figs. 10.2–10.4 and those shown in Figs. 10.6–10.8. The
same level of quantitative consistency has been observed for the other sam-
ples which have also been studied and whose obtained K and K ′/K val-
ues are included in Fig. 10.5. Because of its low molecular weight (only
1.24Me), F2 has a very weak µC(t) process allowing its G(t) to decline
rapidly at early times; as a result, the measured G(t) starts to deviate from
the calculated at a smaller modulus level than in the other cases. A similar
effect is observed in the comparison of the measured and calculated G′(ω)
spectra of F2. Aside from this, the same level of quantitative consistency
between G(t) and G′(ω) is also observed in the case of F2.

As explained in the Appendix 10.A, G′′(ω) spectra are intrinsically not
suitable for testing the validity of the ERT or the Rouse theory if the line-
shape analyses are to cover only the entropic region.

10.3 Zero-Shear Viscosity and Steady-State Compliance

Through Eqs. (4.30) and (4.63), the zero-shear viscosity η0 and the steady-
state compliance J0

e are related to the relaxation modulus G(t). In the high
molecular weight region (>∼ 5Me), both the µA(t) and µX (t) processes
relax much faster than the µC(t) process and contribute negligibly to η0

and J0
e . With the µA(t) and µX(t) processes neglected, the zero-shear vis-

cosity and the steady-state compliance are given by Eqs. (9.24) and (9.25),
respectively. It is clear from Eqs. (9.24) and (9.25) that the viscosity value
is affected by the frictional factor K, which is strongly dependent on tem-
perature, and a structural factor; while the steady-state compliance, being
independent of K, is only affected by a structural factor. The structural
factors of η0 and J0

e are related to the functional form of the relaxation
modulus G(t), which is in turn determined by the structural factors of the
relaxation times (Eqs. (9.6) and (9.12)) and the relaxation strengths (B
and C as given by Eqs. (9.14) and (9.15)).
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Both Eqs. (9.24) and (9.25) are for ideal monodispersity. As η0 is pro-
portional to the first moment of the relaxation-time distribution (Eq. (4.65))
while J0

e is proportional to the second moment (Eq. (4.66)), the former is
far less sensitive to the molecular-weight distribution than the latter. If the
molecular-weight distribution of a sample is nearly monodisperse, its η0

value is little affected by the distribution while its J0
e value is significantly

affected.
What has been said above about the effect of molecular-weight distri-

bution on η0 and J0
e is similarly applicable to the low-molecular-weight

region where the contributions of the µA(t) and µX(t) processes cannot be
neglected. The analytical expressions for η0 and J0

e cannot be obtained
from the full expression of the relaxation modulus (Eq. (9.19)). Yet theo-
retical values of η0 and J0

e , including the contributions of µA(t) and µX(t),
can be numerically calculated with a computer program.

(a) Zero-shear viscosity

For showing the main effect of molecular-weight distribution on the vis-
cosity value η0, especially in the high molecular-weight region, it is suf-
ficient to use the Doi–Edwards equation (Eqs. (8.54)–(8.56)) instead of
Eq. (9.19). Using the Doi–Edwards equation, it can be easily shown by lin-
early adding the contributions from the different molecular-weight compo-
nents that η0 ∝MwMzMz+1

17 instead of η0 ∝M3
w. As Mz+1 > Mz > Mw,

the width of the distribution of a nearly monodisperse polymer can lead to
a viscosity value slightly higher than that of an ideally monodisperse poly-
mer at the same weight-average molecular weight. If the studied samples
of different molecular weights are equally nearly monodisperse, the viscos-
ity values for all the samples will increase more or less equally by a small
amount due to the narrow distribution of molecular weight; the obtained
molecular-weight dependence of viscosity will be practically the same as
that obtained for “ideally monodisperse samples”.

As shown above, the G(t) line shapes of a series of polystyrene samples
at different molecular weights above Me are well described by convolut-
ing Eq. (9.19) with a nearly monodisperse distribution. Furthermore, the
frictional factor K obtained from the analysis of the G(t) curves measured
at the same temperature is independent of molecular weight. Thus, we
expect to obtain good agreement between theory and experiment for the
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Fig. 10.9 Comparison of the measured viscosity values (•; without the so-called Tg cor-
rection) of nearly monodisperse polystyrene samples and those calculated from Eq. (9.24)
(solid line 1), from the Doi–Edwards theory (solid line 2), from the Rouse theory (solid
line 3), and from integrating numerically Eq. (9.19) with K ′/K = 1 (the bottom dashed
line), K′/K = 3 (the middle dashed line), and K ′/K = 5.5 (the top dashed line).

zero shear-viscosity over the whole molecular-weight region above Me if we
numerically calculate η0 from the full expression for G(t). This expectation
is confirmed by the comparison of the measured viscosity values with the
calculated curves18 as shown in Fig. 10.9 (the experimental points are with-
out the so-called Tg or free volume correction; see below).

Six theoretical viscosity curves calculated with the same K value are
shown in Fig. 10.9: curve 1 is calculated from Eq. (9.24); curve 2 from
the Doi–Edwards theory (Eq. (8.57)); curve 3 from the Rouse theory
(Eq. (7.61)); and three dashed lines calculated numerically from integrat-
ing Eq. (9.19) with K ′/K = 1, 3.3, and 5.5, respectively. The ratio
of K ′/K = 5.5 was obtained by multiplying K ′/K = 3.3 by a factor
which was estimated from comparing the areas obtained from integrating
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G(t) in the µA(t) region with and without the apparent long-time tail
of the glassy-relaxation process. The long-time tail means the difference
between the measured and the calculated G(t) curves as can be seen in
Figs. 10.1–10.4 in the short-time region. As pointed out earlier, the short-
time regions (< 0.1 sec) of the measured G(t) curves are not accurate, to
replace K ′/K = 3.3 with K ′/K = 5.5 in the numerical calculation of
the zero shear viscosity was intended to be an apparent, rough correc-
tion for the contribution of the glassy-relaxation process (also referred to
as the internal-viscosity contributiona). In Chapter 14, the whole glassy-
relaxation process is included in the full-range line-shape fitting analyses of
the viscoelastic responses at different temperatures to as low as the glass
transition point Tg. As indicated by the results obtained in Chapter 14,
the correction turns out to be roughly right for the temperature (127.5◦C)
at which the G(t) curves are obtained. As further discussed in Sec. 14.13,
using K′/K = 5.5 in the numerical calculation amounts to only a fraction of
the correction for the contribution of the internal viscosity at temperatures
close to Tg. The difference between the viscosity curves calculated with
K ′/K = 3.3 and 5.5 is very small and is only barely noticeable in the very
low-molecular-weight region < Me. Thus, the contribution of internal vis-
cosity to the zero shear viscosity is negligibly small for the considered range
of molecular weights (i.e. ≥Me) at temperatures sufficiently high above Tg.
In the high-molecular-weight region, curve 1 (Eq. (9.24)) merges with the
curves calculated numerically with K ′/K = 1, 3.3 and 5.5. The comparison
of experimental results with the ERT in Fig. 10.9 is made by allowing the
the experimental data points to shift along the vertical axis until the best
superposition on the theoretical curve is obtained in the high-molecular-
weight region (> 8 × 104 where no difference between curve 1 and curves
calculated with K ′/K = 1, 3.3, and 5.5 can be discerned). As expected
from the results shown in Fig. 10.5 that K is independent of molecular
weight and that K ′/K declines gradually from a plateau value of 3.3 in the

aHere, the “internal viscosity” is defined as the contribution of the glassy-relaxation
process to the zero-shear viscosity. This definition is different from the common under-
standing of the term used in literature,19,20 although both have similar notions as to
the existence of an effect of fast sub-Rouse-segmental motions on polymer viscoelasticity.
In the literature the term “internal viscosity” generally refers to the effect that would
lead to a plateau value of the intrinsic viscosity at high frequencies.
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high-molecular-weight region to 1 as the molecular weight approaches Me,
the experimental η0 results is in good agreement with curve 1 in the high-
molecular-weight region and gradually shifts from the curve of K ′/K = 3.3
(or K ′/K = 5.5) to the curve of K ′/K = 1.

As shown in Fig. 10.9, the viscosity data points of the F40 and NBS
samples as well as those of the other samples are closely on the theoretical
curve, without showing a reduction of 30% which occurs to the K val-
ues (Fig. 10.5) obtained from the analyses of the G(t) curves of the two
samples. Due to the modification of the zero-shear viscosity by a narrow
molecular-weight distribution as discussed above, the effect on the viscos-
ity from the 30% reduction in K is largely cancelled out by the artificial
broadening of the molecular-weight distribution extracted from the G(t)
line-shape analysis.

Because of the molecular-weight dependence of the glass transition tem-
perature Tg or free volume in the polymer melt, it has been a common prac-
tice to correct the measured isothermal viscosity data to the values corre-
sponding to temperatures of equal distance from individual Tg values of the
samples (i.e. at the same ∆T = T − Tg).1,21 This so-called Tg correction
allows the viscosity data to be compared under the condition of presumably
the same friction constant or frictional factor so that the structural factor
of η0 (i.e. a certain function of molecular weight) can be determined. As Tg

reaches a plateau value22,23 when the molecular weight is sufficiently high,
the correction is smaller with increasing molecular weight. The correc-
tion affects the η0 values noticeably mainly in the molecular-weight region
below ∼ 2Mc. After the Tg correction, the molecular-weight dependence of
viscosity has the empirical relations: η ∝ M below the critical molecular
weight Mc, in apparent agreement with the Rouse theory, and η0 ∝ M 3.4

above Mc. As K is independent of molecular weight to as low as Me, the
decline of the K ′/K ratio from 3.3 to 1, starting around M/Me = 10,
should be related to the gradual increase in free volume (or decrease of Tg)
with decreasing molecular weight. In other words, the η0 curve calculated
with K′/K = 3.3 (or 5.5) should correspond to the molecular dependence
of η0 obtained after the Tg correction. Indeed, as shown in Fig. 10.10,18

the theoretical curve of log(η0) vs. log(Mw) calculated with K ′/K = 3.3
(or 5.5) and with Me = 13,500 for polystyrene as the only input parameter
has a critical bending point very close to the Mc value (33,000) as reported
in the literature for polystyrene,1,21,22,24,25 a slope of 1 below Mc, and a
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Fig. 10.10 Comparison of the theoretical curve (solid line 1) obtained from integrating
numerically Eq. (9.19) with K′/K = 5.5 and the power law relations η0 ∝ M3.4 above

Mc and η0 ∝ M below Mc (the dashed lines). Me = 13,500 is used in the calculation
giving Mc = 33,000. Also shown are the curves of the Doi–Edwards theory (solid line 2)
and the Rouse theory (solid line 3).

form above Mc which can be closely approximated by the well-known 3.4
power law.

The experimental observation of η0 ∝ M (after the Tg correction) in
the molecular-weight region below Mc has often been used to indicate that
in this region the viscoelastic behavior is described by the Rouse theory
and the system is free of entanglement, and that Mc is the onset point of
entanglement.1,17,21 However, the theoretical curve with K ′/K = 3.3 or
5.5, while being linearly proportional to M below Mc, is higher by a factor
of about 3 than the Rouse curve calculated with the same K as shown in
Figs. 10.9 and 10.10. Even the theoretical curve with K ′/K = 1 as well
as the experimental data point at the molecular weight of 1.24Me < Mc —
without the Tg correction — is higher than the Rouse line. These results
indicate that the polymer melt is not free of entanglement between Me

and Mc as often thought on the basis of the observed molecular-weight
dependence of the corrected η0 below Mc. In other words, while the Rouse
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theory predicts η0 ∝M , the reverse is not true. This conclusion is further
confirmed by the direct observation of the onset of entanglement at Me

by monitoring the deviation of the viscoelastic spectrum from the Rouse
theory in Chapter 11 and the comparison of the viscosity data at Mc with
the results of diffusion measurements discussed later in this chapter.

(b) Steady-state compliance

As the steady-state compliance J0
e is sensitive to the molecular-weight

distribution, the experimental results of the nearly monodisperse samples
are higher than the theoretical values for ideal monodispersity. Shown in
Fig. 10.11 is the comparison of the experimental data of J0

e (the experimen-
tal results shown in Fig. 10.11 are consistent with those shown in Fig. 4.12)
with four theoretical curves: curve 1 is calculated from Eq. (9.25); curves
2 and 3 are numerically calculated from the substitution of Eq. (9.19) into

Fig. 10.11 Comparison of the steady-state compliance data, J0
e × ρRT , of nearly

monodisperse polystyrene samples (• and � from Ref. 18; � from Ref. 33) and those
calculated from Eq. (9.25) (solid line 1), from the Doi–Edwards theory (the dashed line),
from the Rouse theory (the dotted line), and calculated numerically from substituting
Eq. (9.19) into Eq. (4.63) with K ′/K = 1 (line 2), and K′/K = 3.3 (line 3).
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Eq. (4.63) with K ′/K = 1 and 3.3, respectively; the dashed line is the
Doi–Edwards theory (Eq. (8.58)); and the dotted line is the Rouse theory
(Eq. (7.62)). There is no difference among curves 1, 2, and 3 in the high-
molecular-weight region, >∼10Me. Curve 1 does not predict the observed
decline of J0

e with decreasing molecular weight in the low-molecular-weight
region. Curves 2 and 3, both of which contain the contributions of the
µA(t) and µX(t) processes, predict the bending point M ′

c (≈ 7Me) accu-
rately and a decline of J0

e with decreasing molecular weight below M ′
c.

Below M ′
c, the actual theoretical curve should transit gradually from the

curve of K ′/K = 3.3 to the curve of K ′/K = 1.
The experimental data points are above the theoretical curves because

of the finite molecular-weight distribution of the samples, even though
they are very narrow. The gradual decline of J0

e with increasing molec-
ular weight above M ′

c as predicted by the theory is not directly reflected
by the data points, whose molecular-weight dependence appears flat. As
revealed from the G(t) line-shape analysis as well as the GPC charac-
terization of the sample, the molecular-weight distribution of a higher-
molecular-weight nearly monodisperse sample is broader than that of a
lower-molecular-weight one. In fact the trend of molecular-weight distribu-
tion broadening with increasing molecular weight is generally true for sam-
ples synthesized anionically. The apparent flatness of the J0

e that results
in the molecular-weight region >M ′

c actually indicates that J0
e for ideal

monodispersity should decline slightly with increasing molecular weight,
as indicated by curves 1, 2 and 3. Below M ′

c, both curves 2 and 3 are
below the Rouse line. In the low molecular weight region, the inclusion
of the glassy-relaxation component in G(t) would also make the J0

e values
smaller. These two effects, cancelling out the broadening effect due to the
finite molecular-weight distribution of the samples, make the J0

e data points
below M ′

c very close to the Rouse line calculated for ideal monodispersity
(also see Fig. 4.12). This close agreement with the Rouse line is merely a
coincidence.

We can conclude that the ERT has accurately explained the molecular-
weight dependence of the zero-shear viscosity and the steady-state com-
pliance and their respective transition points Mc and M ′

c. This success
is indeed the logical consequence of the success of the theory in analyz-
ing the G(t) curves of the studied samples, a vitally important aspect
of which is the molecular-weight independence of the frictional factor K.
From the analysis of the G(t) curves, it is revealed that entanglements
exist between Me and Mc. This point will be further confirmed by the
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comparison of the diffusion data with the viscosity data through the ERT as
discussed below.

10.4 Viscoelasticity and Diffusion

We can rewrite Eq. (8.20) as given by the Doi–Edwards theory for the
diffusion constant DG as

DG = KdM
−2 (10.5)

with

Kd =
K∞Me

3π2K
(10.6)

where K∞ is the ratio of the mean-square end-to-end distance of the poly-
mer chain to the molecular weight

K∞ =
R2

M
(10.7)

which can be determined from the neutron scattering of the polymer melt
system with the probed chain labelled with deuterium. As the diffusion
constant of a polymer DG characterizes the translational motion of the cen-
ter of mass, it should not be affected by the intramolecular chain motions
that affect the viscoelastic behavior. Thus, in spite of the importance of the
intramolecular motions for the viscoelastic behavior as studied in Chapter 9
and above, DG should remain described by Eqs. (10.5) and (10.6). Both
the Me and K values in Eq. (10.6) can be determined from the analysis of
the G(t) curves in terms of Eq. (9.19) as shown previously in this chapter.
Thus, the Kd value can be predicted by using the values of K, Me and K∞
obtained from analyzing the experimental data of viscoelasticity and scat-
tering for comparison with the value determined from direct measurements
of the diffusion constant on the basis of Eq. (10.5). This comparison would
give a very important test to the ERT.

The DG ∝ M−2 scaling relation (Eq. (10.5)) has been extensively
observed.26,27 Kramer et al.28,29 using the forward recoil spectrometry and
the marker displacement technique have obtained very consistent diffusion
results for polystyrene. Shown in Fig. 10.12 is the tracer diffusion constant
in a polystyrene matrix of molecular weight P = 2× 107 obtained with the
two techniques at 174◦C. It has been experimentally shown by Green and
Kramer30 that if the diffusing-chain molecular weight M is sufficiently high
(> 100,000), the tracer diffusion constant is the same as the self-diffusion
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Fig. 10.12 The molecular-weight dependence of the tracer diffusion constant obtained
for the nearly monodisperse polystyrene samples in a polystyrene matrix of molecular
weight P = 2 × 107 at 174◦C. The solid line represents DG = 0.008M−2. Reproduced,
by permission, from Ref. 28.

constant (i.e. when P = M). The diffusion constant characterizes the
translational motion of the center of mass of the polymer chain, and should
not be affected by the intramolecular motions. Thus, while the stress
relaxation in the terminal region is much shortened by the primitive-chain
contour length fluctuation if the molecular weight is not large, the diffu-
sion constant, if not affected by the so-called constraint release processes,
is related only to the pure reptation time. For instance, at M = 55,000,
the pure reptation time is longer than the terminal relaxation time by a
factor of 3.9.31 Because of this difference, while, as shown previously in this
chapter, the linear viscoelasticity is not susceptible to the constraint release
effect as long as the sample is nearly monodisperse, the diffusion constant
in the low molecular weight region (< 100,000 for polystyrene) is somewhat
enhanced by the effect. Since we are interested in comparing the viscoelas-
tic data with the diffusion results, we consider the tracer diffusion data as
shown in Fig. 10.12. The diffusion constant for a high-molecular-weight
nearly monodisperse polystyrene polymer was measured by Bueche using
the radiolabeling technique.32 After Bueche’s result is corrected to 174◦C
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by using the temperature dependence of viscosity data,33 the obtained Kd

value is in close agreement with the values obtained by Kramer et al.
The average of these studies gives Kd = 8 × 10−3 cm2g/(s mol2) ±13%
at 174◦C.34

Besides from the analysis of G(t) as shown in Sec. 10.2, the frictional
factor K can be obtained from the viscosity data using Eq. (9.24) in
the high-molecular-weight region where the contributions of the µA(t) and
µX(t) processes to viscosity are negligible. From the data of Plazek and
O’Rourke33 at Mw = 0.94×, 1.89×, and 6.0× 105, one obtains K = 3.2×,
2.4×, and 2.7 × 10−12, respectively, at 174◦C. As explained in Sec. 10.3,
the polydispersity of a nearly monodisperse polymer causes its viscosity to
be slightly higher than that of an ideally monodisperse one at the same
weight-average molecular weight. Equation (9.24) being for ideal monodis-
persity, a correction should be made to the above obtained K values. The
bulk of correction can be made if the Mw/Mn values of the samples are
known. While being not given, the Mw/Mn values of the three samples
can be estimated from matching their measured steady-state compliance
J0

e values33 with those calculated from Eq. (4.63) wherein the G(t) is
first calculated from convoluting Eq. (9.19) with the Schulz distribution
(Eq. (10.3)) using the Z value as the only adjustable parameter. In this
way, Z = 23, 20 and 10 (correspondingly, Mw/Mn = 1.04, 1.05 and 1.1) are
obtained for the three samples, respectively. Then the correction factors for
K due to polydispersity can be obtained by comparing the viscosity values
calculated from Eq. (9.24) and from integrating numerically the G(t) cal-
culated from convoluting Eq. (9.19) with the Schulz distribution using the
above obtained Z values, both kinds of calculations being done with the
same (weight-average) molecular weight and K for each sample. The thus
obtained correction factors are 1.24, 1.22 and 1.34 for the three samples,
respectively. That the first sample, while having a Z value slightly larger
than the second one, has a slightly larger correction factor is due to the
fact that at its molecular weight the µA(t) and µX(t) processes can still
make a small noticeable contribution to viscosity. The K values corrected
by these factors are 2.6×, 2.0×, and 2.0× 10−12, respectively. In the same
way, the K values of the three samples at 127.5◦C are obtained to be 5.7×,
4.9×, and 5.8× 10−9, respectively. Using the ratio of the average values of
the two sets of K values, we obtain K = 1.9 × 10−12 at 174◦C from the
K value at 127.5◦C obtained from analyzing G(t) (4.7× 10−9; the average
over the samples with Mw between 3.4 × 104 and 1.1 × 105 as shown in
Fig. 10.5). The above obtained K values are in close agreement with one
another, at both 174 and 127.5◦C, further supporting K being independent
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of molecular weight as shown in Fig. 10.5. Using the average of the K
values at 174◦C in Eq. (10.6) gives Kd = 9.2 × 10−3, in close agreement
with the value 8×10−3 obtained directly from the diffusion measurements.

Shortly after the Doi–Edwards theory was published, Graessley17 pro-
posed using the viscosity value at Mc to calculate the K value on the basis
of the Rouse theory

K =
36η0(M = Mc)
π2ρRTMc

(10.8)

and then calculate through Eq. (10.6) the Kd value for comparison with
that obtained from the diffusion measurements. Since the diffusion mea-
surements were made on samples in the molecular-weight region where the
glass transition temperature Tg does not change with molecular weight, the
viscosity value at Mc to be entered into Eq. (10.8) has to be first corrected
for the Tg difference at Mc.

Graessley’s approach for checking the validity of the diffusion constant
of the Doi–Edwards theory (Eqs. 10.5 and 10.6) was based on the tradi-
tional belief that there was no entanglement at a molecular weight smaller
than Mc. However, the results as shown earlier in this chapter: (1) the
quantitative analysis of the G(t) curves in terms of Eq. (9.19) indicating
that the frictional factor K is independent of molecular weight to as low as
just above Me (Fig. 10.5) and (2) the molecular-weight dependence of the
viscosity being well described by the ERT over the whole molecular-weight
region above Me (Fig. 10.9) clearly indicate that entanglement already
occurs in the molecular-weight region between Me and Mc. As shown in
Figs. 10.9 and 10.10, the theoretical η0 curve with K ′/K = 3.3 or 5.5,
which is equivalent to having the Tg correction made, is about 3 times
greater than the Rouse value in the region of Me to Mc. Therefore, we
should see that the Kd value calculated from η0(Mc) using Eqs. (10.6) and
(10.8) will be too small by a factor of about 3 in comparison with the
value determined from the diffusion measurements. Indeed that is what
happens.34 From the viscosity results of Plazek and O’Rourke,33 one obtains
the value of η0(Mc = 33,000), after the Tg correction at 174◦C, to be in
the close neighborhood of 2,810P . Corresponding to the Tg-corrected value
of η0 = 2,930P for Mc = 35,000 at 174◦C reported by Lodge et al.27

η0 = 2,760P for Mc = 33,000. These two η0(Mc = 33,000) values are
in close agreement. Using the value of η0(Mc), Kd is calculated to be
2.3 × 10−3 through Eqs. (10.6) and (10.8), which is smaller than the Kd

values determined from the diffusion measurements by a factor of about 3.5.
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10.5 Summary

To conclude the experimental tests of the ERT as covered in this chapter,
the K values of polystyrene at 127.5 and 174◦C obtained from different
sources: (a) G(t) line-shape analyses of a series of nearly monodisperse
samples at 127.5◦C; (b) viscosity data of nearly monodisperse samples
with different molecular weights at both 127.5 and 174◦C; (c) full-range
creep-compliance J(t) analyses of a nearly monodisperse sample (Mw =
4.69× 104); and (d) calculation from the Kd value (Eqs. (10.5) and (10.6))
obtained by diffusion measurements at 174◦C, are listed in Table 10.1 for
a comprehensive comparison. While (a), (b) and (d) have been detailed
in this chapter, (c) is from the study as detailed in Chapter 14. As the
temperature dependences of viscosity — reflecting the temperature depen-
dence of K — at different molecular weights are closely superposable,33

K being independent of molecular weight at 127.5 and 174◦C as shown in
Table 10.1 is equally valid at any temperature between. The K values at
127.5◦C listed in the first row of the table represent the viscoelastic results
of totally 11 samples of different molecular weights ranging from 3.4×104 to
6×105. These values, with an average of 4.9×10−9, have a standard devia-
tion of only 10%. In contrast, the ratio between the viscosity at the highest
molecular weight (6 × 105) and that at the lowest (3.4 × 104) covered in
Table 10.1 exceeds four orders of magnitude. Furthermore, the K values are
obtained independently by different types of viscoelastic measurements —
strain-controlled and stress-controlled. Considering the extremely stringent
nature of these tests, the molecular-weight independence of K is regarded
as rigorously proven.

As shown by the above analyses of the viscoelasticity and diffusion data
in terms of the ERT, the paradox between the scaling relations η0 ∝ M 3

and DG ∝ M−2 predicted by the pure reptational model, that occurs in
their comparison with the experimental results, is resolved. Furthermore,
the relation between viscoelasticity and diffusion as given by the ERT is
quantitatively supported by the data of polystyrene. The analysis of the
viscosity data at Mc in relation to the Kd value obtained from the diffusion
measurements also supports the ERT. Considering the different nature of
the experiments of viscoelasticity and diffusion, the quantitative agreement
between these two kinds of data as analyzed in terms of the ERT is remark-
able and thus indeed significant.

The existence of entanglement in between Me and Mc will be further
supported by the study in Chapter 11 — the direct observation of the onset
of entanglement atMe by monitoring the initial deviation of the viscoelastic
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Table 10.1 Frictional factor K values obtained by analyzing the results of G(t)7, J(t)35, viscosity33 and diffusion28−30 at 127.5 and/or
174◦C.

From G(t) a series From Viscosity
of samples 3.4 × 104 From J(t) From
≤ Mw ≤ 1.1 × 105 Mw = 4.69 × 104 Mw = 9.4 × 104 Mw = 1.89 × 105 Mw = 6.0 × 105 Diffusion Average∗

K(127.5◦C) × 109 4.7 ± 8% 4.8 5.7 4.9 5.8 (5.3)† 4.9 ± 10%‡
K(174◦C) × 1012 (2.2)† (2.3)† 2.6 2.0 2.0 2.5 2.3 ± 14%

∗The average values are obtained from averaging over the values not enclosed in a bracket.
†Values in a bracket are calculated from the shown values at the other temperature using the ratio of the two average K values.
‡The average is calculated with equal weighting accorded to each of the totally 11 samples, whose K values extracted from viscoelastic
results are contained in this row.
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spectrum from the Rouse theory as the molecular weight or concentration
increases from the entanglement-free region.

Appendix 10.A — The Reason Why G′′(ω) Should
Be Excluded from the Line-Shape Analysis in Terms
of the Rouse Theory or the ERT If Only the Entropic
Region Is to Be Covered

The most basic structural unit in the Rouse theory and the ERT is the
Rouse segment, which has a length scale considerably greater than that
of the microstructure. Thus, both theories do not intend to describe the
fast dynamics associated with chain sections shorter than a Rouse seg-
ment — the glassy-relaxation process. As opposed to the dynamic pro-
cesses described by the ERT or the Rouse theory being entropic in origin,
the sub-Rouse-segmental process as observed in the relaxation modulus
G(t) is dominantly affected by the energetic interactions among microstruc-
tural segments (Chapter 14). The number of Rouse segments per unit vol-
ume determines the highest rubbery (entropic) modulus value to which
a measured stress-relaxation modulus G(t) can be attributed, which in
general is of the order of magnitude ∼ 5 × 107 dynes/cm2. The fast sub-
Rouse-segmental dynamics is responsible for the relaxation of G(t) in the
short-time region covering the range from ∼ 1010 to ∼ 5 × 107 dynes/cm2

as will be detailed in Chapter 14. With the initial modulus virtually at the
level of a glass, this fast relaxation is much related to the glass-transition
phenomenon. In summary, the full-range G(t) of a polymer encompasses
an energetic-interaction-driven (or simply as energy-driven) process occur-
ring in the short-time region and entropy-driven dynamic processes in the
long-time region. The analyses of the line shapes of the viscoelastic spectra
in terms of the ERT or/and the Rouse theory as detailed in this chapter
and the next are obviously intended to be limited to the entropic region.
We have to make sure that the long-time tail of the glassy-relaxation pro-
cess does not interfere with the analyses or contaminate the analyses, so
to speak. The following explains why the loss-modulus spectrum G′′(ω)
should not be considered in such a line-shape analysis for extracting reli-
able unambiguous information:

To simplify the explanation, we can express G(t) in the following form:

G(t) = A0 exp(−t/τ0) +
∑

i

Si exp(−t/τi) (10.A.1)
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where the first term represents the glassy-relaxation process and the second
term represent the collection of the different processes or normal modes as
contained in the ERT or the Rouse theory. Usually the glassy-relaxation
process is described not by a single exponential decaying function but rather
by a stretched exponential form (see Chapter 14). However, for our present
purpose, the assumption of a single exponential decay is sufficient to illus-
trate the main point in a simpler and clearer way. Here, it is also understood
that the relaxation strength A0 is much larger than the sum

∑
i Si and τ0 is

much smaller than the smallest, denoted by τv, in the set of relaxation times
{τi}. In this analysis we may regard τ0 as equivalent to the average glassy-
relaxation time 〈τ〉G — namely, τ0 ≈ 〈τ〉G. As can be seen in Chapter 14
for polystyrene, A0 ≈ 1010 dynes/cm2 while

∑
i Si ≈ 4 × 107 dynes/cm2;

and τv/τ0 exceeds ∼ 10 at the glass transition point Tg and increases with
increasing temperature — by ∼ 26 times as the temperature increases from
Tg to 40K above Tg. As the G(t) functional forms of the Rouse theory
and the ERT are known as given in Chapters 7 and 9, respectively, the
relaxation-time distributions: {Si} and {τi} can be calculated accurately
in both the entanglement-free and entangled cases (see Appendix 14.A for
details). In the line-shape analysis of a measured G(t), G′(ω) or G′′(ω)
curve (or spectrum) in terms of the ERT or the Rouse theory, the region
that is free of the glassy-relaxation process and safe from its contamination
must be identified first. We shall refer to this region as the safe entropic
region below. As the G(t) and G′(ω) line shapes are near mirror images
of each other (see Fig. 4.13 and Appendix 14.A; the frequency domain is
inverted to the time domain as 0.7/ω → t), the safe region in G′(ω) is
basically equivalent to that in G(t). Thus, in the analysis given below, we
only need to discuss the difference between the G′(ω) and G′′(ω) cases. For
identifying the safe entropic region, obviously we have to examine the influ-
ence of the glassy-relaxation process in the frequency region where the two
types of processes may overlap: ωτ0 < 1 (ω2τ2

0 	 1) and {ωτi} from � 1 to

 1. In this region, as ω2τ2

0 	 1, we may express G′(ω) and G′′(ω) as

G′(ω) = A0ω
2τ2

0 +
∑

i

Si
ω2τ2

i

1 + ω2τ2
i

(10.A.2)

and

G′′(ω) = A0ωτ0 +
∑

i

Si
ωτi

1 + ω2τ2
i

. (10.A.3)

Clearly, the effect of the glassy relaxation attenuates much faster in G′(ω)
(∼A0ω

2τ2
0 ) than in G′′(ω) (∼A0ωτ0) with decreasing ω. As A0 is very
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large, even though ωτ0 < 1, A0ωτ0 is still substantial. As a result, the fre-
quency region which can already be designated as the safe entropic region in
G′(ω) is still much under the influence of the glassy relaxation in G′′(ω). It
turns out that substantial contamination by the glassy relaxation in G′′(ω)
extends deeply into the region where relaxations of fast dynamic processes
in the ERT or the Rouse theory have extensively occurred. By contrast, the
influence of the glassy-relaxation process in G′(ω) is basically limited to the
close neighborhood of the reciprocal(s) of its relaxation time(s). Thus from
this analysis, we can draw a general conclusion: if only the entropic region
of a polymer viscoelastic spectrum is included in the line-shape analysis
in terms of a Rouse-segment-based molecular theory, the results of G′′(ω)
should not be considered because of its extensive contamination by the
glassy relaxation. This is the reason why only the analyses of G(t) and/or
G′(ω) in terms of the ERT or the Rouse theory are shown in Chapters 10
and 11. In the original papers,7,8,18 the measured G′′(ω) spectra have been
compared with the calculated curves — calculated using the fitting param-
eters obtained from the analyses of the corresponding G(t) curves or G′(ω)
spectra — showing the large discrepancies arising due to the contamination
effect.

In Chapter 14, two functional forms for the relaxation modulus G(t)
over its full dynamic range are given: one by incorporating a stretched
exponential form for the glassy-relaxation process into the ERT (for entan-
gled systems) and the other into the Rouse theory (for entanglement-free
systems). The full range of creep compliance J(t) curves or G∗(ω) spectra
(both G′(ω) and G′′(ω)) of nearly monodisperse polystyrene samples cover-
ing both the energetic and entropic regions have been successfully analyzed
in terms of either of the two G(t) functional forms. In this scheme of
analysis, either the ERT or the Rouse theory is deployed as the frame of
reference. Having taken both the glassy-relaxation process and the ERT
dynamic processes or the Rouse modes of motion into account, both the
G′(ω) and G′′(ω) spectra can be quantitatively analyzed over the modulus
range from ∼ 1010 to ∼ 104 dynes/cm2. In other words, in this case G′′(ω)
can be included in the analysis as safely as G′(ω).
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Chapter 11

ERT vs. Rouse Theory,
Concentration Dependence and Onset
of Entanglement, and Tube Dilation

11.1 Introduction

In general, one uses the simple solvent of small molecules to prepare a
polymer solution. In such a system, there are two effects: hydrodynamic
interaction1–3 and excluded volume effect1,4,5 which can complicate the
theoretical description or analysis of the entanglement effect on the polymer
chain dynamic and viscoelastic behavior. To avoid these two effects, we can
prepare for study a sample system which contains two components of the
same kind of polymer: one with a molecular weight M2 much greater than
the entanglement molecular weight Me (referred to as component two) and
the other with a molecular weight M1 smaller than Me (referred to as
component one). Because a component-one chain is too short to entangle
with other chains, as far as the constraint effect of entanglement on the
dynamics of component-two’s chains is concerned, we can treat such a low-
molecular-weight component as the solvent. Such a blend system is thus
referred to as a blend solution. With dilution, the entanglement molecular
weight and the associated entanglement distance increase.

In a blend solution, the interaction parameter χ of the Flory-Huggins
theory is zero (the chain end effect is negligible) and independent of tem-
perature. Otherwise, a temperature-dependent χ can lead to a thermorhe-
ologically complex behavior of the polymer solution system, which would
disallow the application of the time-temperature superposition principle.
A theoretical analysis5,6 indicates that if M2

1 � M2, the system is free
of the excluded volume effect that will cause the component-two chain to
expand; in other words, the chain coil remains Gaussian. Here, we consider
polystyrene blend solutions with M1 slightly smaller than Me (= 13,500
for polystyrene). In such a system, the condition M 2

1 � M2 can be easily
satisfied. Furthermore, the solvent, being chains of more than ten Rouse

215
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segments (the molecular weight for a Rouse segment is about 8507–9), serves
as a viscoelastic medium to component-two’s chains rather than a viscous
one. At the same time, the identical segments of both components with the
same average surroundings have the same mobility (or friction constant).
Thus, the hydrodynamic interaction is not expected to occur in the blend
solution. Without both effects, the basic short-range (shorter than the
entanglement strand) Rouse dynamic behavior of both components in the
blend solution is expected to be the same as that in the pure melt containing
a single component.

The Doi–Edwards theory was built on the primitive chain concept which
is defined by Eq. (8.3). Its relation with the key physical quantities can be
summarized in the following equations:

aL = R2 = Na2 = Nob
2 =

M

Me
a2 (11.1)

Me =
4
5
ρRT

GN
(11.2)

and

a2 = K∞Me (11.3)

where K∞ is given by Eq. (10.7). In other words, the tube diameter or the
entanglement distance, a, is related to the entanglement molecular weight
Me determined from the plateau modulusGN . The increase of the entangle-
ment molecular weight with dilution will be reflected by the concentration
dependence of the plateau modulus. By simple argument, the entanglement
molecular weight of the blend solution M ′

e is given by

M ′
e =

Me

W2
(11.4)

where W2 is the weight fraction of component two.
Equations (9.14), (9.15), (9.20), (9.21), and (9.23) indicate that the

relaxation strengths B and C, as well as the normalized relaxation times
τC/τ

1
A, τB/τ1

A, and τX/τ1
A, are functions of the normalized molecular weight

M/Me. Thus, the line shape of the relaxation modulus G(t) changes with
concentration. As shown below, the viscoelastic behavior of the entangled
component in the concentrated blend solution is well described by Eq. (9.19)
with the entanglement molecular weight Me replaced by M ′

e, which is given
by Eq. (11.4).10 This means that G(t) is universal among monodisperse melt
systems and blend solution systems, as all the G(t) curves are described by
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a general form (Eq. (9.19)) expressed in terms of the normalized molecular
weight M2/M

′
e (M2/M

′
e includes the special case of M/Me when W2 = 1;

the experimental proof of the universality in the case of W2 = 1 was shown
in Chapter 10).

In the blend solution system, the viscoelastic behavior of the solvent
component (component one) is described by the Rouse theory, regardless
of the concentration. It will be shown below that the viscoelastic behaviors
of both components are described by the Rouse theory as the whole system
is free of entanglement when component-two’s molecular weight is smaller
than the entanglement molecular weight M ′

e (i.e. M2 < M ′
e for small W2).

By monitoring the deviation of component-two’s viscoelastic response from
the Rouse theory as W2 increases, the onset point of entanglement can be
determined and is found to be in close agreement with Eq. (11.4).

When the molecular weights of both components in a blend are greater
than the entanglement molecular weight Me, a new idea, tube dilation —
a dynamic aspect of the tube associated with the high-molecular-weight
component, needs to be introduced.

11.2 Entanglement Region

(a) Theory

The entanglement molecular weight for component two in a blend solution,
M ′

e, increases as component-one’s weight fraction W1 increases. We can
imagine preparing a blend solution in the following way: Start with the
pure component-two polymer (i.e. W2 = 1) which forms entanglements
extensively becauseM2 �Me. We cut half of the chains to sections of equal
length slightly shorter than Me to serve as solvent molecules, while keeping
the other half of the chains intact. In a solution prepared this way, each
point along an uncut (long) chain now has a one-half chance of encountering
a short chain (solvent chain) and a one-half chance of encountering a long
chain. It takes a chain section of Me length on a long chain in the original
pure melt to form one entanglement with another chain; now in the blend
solution, based on probability, it will take a section of 2Me length on the
long chain to form one entanglement with another long chain. Thus the
entanglement molecular weight in the blend solution, M ′

e, should change
with weight fraction W2 according to Eq. (11.4).

Therefore, for a blend solution where the viscoelastic behavior of com-
ponent one is described by the Rouse theory (Eq. (7.58)) and that of
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component two by the ERT (Eq. (9.19)); the theoretical form of the total
relaxation modulus G(t) is given by

G(t) = W1

∫
A1(M)GR(t,M) dM

+W2
4ρRT
5M ′

e

[1 + µA(t)]

×
∫
A2(M)

[
1 +

1
4

exp(−t/τX)
] [
BµB(t/τB) + CµC(t/τC)

]
dM

(11.5)

In Eq. (11.5), A1(M) and A2(M) are the nearly monodisperse molecular
weight distributions of components one and two, respectively; GR(t) is the
relaxation modulus of the Rouse theory, given by Eqs. (7.57) and (7.58);
and µA(t), µB(t), µC(t), B, C, τp

A, τX , τB and τC have the same functional
forms as given in Chapter 9 (Eqs. (9.B.25), (9.5), (9.11), (9.14), (9.15),
(9.B.26), (9.22), (9.6) and (9.12), respectively) but with all the Me quanti-
ties appearing in the equations replaced by M ′

e (Eq. (11.4)). When W1 = 0,
the second term of Eq. (11.5) becomes identical to Eq. (9.19), which can
be regarded as a special case of Eq. (11.5).

(b) Comparison of theory and experiment

The linear relaxation moduli and viscoelastic spectra have been studied for
a series of concentrated polystyrene blend solutions consisting of two nearly
monodisperse components: F1 (Mw = 1.03×104) as component one and X
(X = P7: Mw = 6.8× 104; F10: Mw = 1.00× 105; F35: Mw = 3.55× 105;
F80: Mw = 7.75× 105) as component two.10 The blend solutions were pre-
pared at the weight-fraction ratios of P7/F1 = 50/50 and 75/25; F10/F1 =
50/50 and 75/25; F35/F1 = 50/50; and F80/F1 = 50/50. In these systems,
the component-one polymer with a molecular weight slightly below the
entanglement molecular weight Me is free of entanglement yet long enough
to be described by the Rouse theory while component-two polymers, which
all have a weight-average molecular weight Mw2 greater than M ′

e, are well
entangled. The viscoelastic-spectrum line shapes of these blend solutions
have been analyzed in terms of Eq. (11.5) as shown below.

For convenience of discussion, the friction factor in the GR(t) process
is denoted by K ′′ (Eq. (7.57)), in the µA(t) process by K ′ (Eq. (9.B.26)),
and in τX (Eq. (9.22)), τB (Eq. (9.6)), and τC (Eq. (9.12)) by K. In a
homogeneous blend, all components are in the same average environment.
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Thus, the first and second terms of Eq. (11.5) are expected to have the same
frictional factor, i.e. K ′′ = K. If the second term of Eq. (11.5) behaves
the same in the concentrated blend solution as in the pure-melt system
(i.e. when W1 = 0 in Eq. (11.5)), whose study was described in the last
chapter, the same molecular-weight dependence of K ′/K (Fig. 10.5) should
be followed with the molecular weight expressed in terms of the normalized
molecular weight: Mw/Me for the melt and Mw2/M

′
e for the blend solu-

tion. Indeed, as shown in Fig. 11.1, the molecular-weight dependences of
the melt and blend-solution systems have been observed to be the same.10

The dependence of K ′/K on M/Me (or M2/M
′
e) can be described by the

empirical equation:

K ′

K
=

2.525
exp[−0.643[(M/Me)− 4.567]] + 1

+ 0.769 . (11.6)

Fig. 11.1 K(�) for the nearly monodisperse (polystyrene) melts (from Ref. 11b; same as
shown in Fig. 10.5), K′′/K (�) for the X/F1 blend solutions (from Ref. 10), and K ′/K:
(•) for the nearly monodisperse melts (from Ref. 11b; same as shown in Fig. 10.5) and
(◦) for the X/F1 blend solutions (from Ref. 10) as a function of the normalized molecular
weight: Mw/Me for the melt and Mw/M ′

e for the blend solution.
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Fig. 11.2 Comparison of the measured (dots) and the calculated (line) relaxation mod-
ulus, G(t), for the P7/F1 = 50/50 sample. Also shown are the separate contributions
of the free-Rouse-chain process of F1 (the portion between lines R and A; line A is cal-
culated by setting W1 = 0), and the µA(t), µX(t), µB(t), and µC(t) processes of P7
(see Fig. 10.1 for the calculation of lines A, X, B and C). The calculation is made with
K = 10−8, K ′/K = 1.4, and K ′′/K = 1.

Four representative relaxation moduli or viscoelastic spectra are shown
in Figs. 11.2–11.5, indicating the typical consistent and quantitative agree-
ment between theory and experiment. As noted for the melt system in
Chapter 10, aside from the effects associated with the compliance of the
transducer and the step deformation rise time in the relaxation-modulus
case, the difference between the measured and the calculated in the short-
time or high-frequency region is due to the glassy-relaxation process. All
of the shown calculated spectra are obtained with M ′

e = 27,000 (as
given by Eq. (11.4) for W1/W2 = 50/50) and by setting the number of
Rouse segments per entanglement strand to N ′

e = 20, and the number of
Rouse segments per free Rouse chain of F1 to NR = 8 (corresponding to
Mw = 10,300). It has been shown that these spectra are identical to those
calculated by setting N ′

e = 40 and NR = 16 over the whole region where
the measured and the calculated closely agree with each other (see Figs. 1
and 2 of Ref. 10). In other words, the N ′

e and NR values used in the
calculation are sufficiently large (also see Chapter 10).
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Fig. 11.3 Same as Fig. 11.2 for the F10/F1 = 50/50 sample. The calculation is made
with K′/K = 1.8 and K ′′/K = 1.

Fig. 11.4 Same as Fig. 11.2 for the storage-modulus spectrum, G′(ω), of the F35/F1 =
50/50 sample. The calculation is made with K ′/K = 4.1 and K ′′/K = 1.2.
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Fig. 11.5 Same as Fig. 11.2 for the storage-modulus spectrum, G′(ω), of the F80/F1 =
50/50 sample. The calculation is made with K ′/K = 4.2 and K ′′/K = 1.3.

Furthermore, in the line-shape analyses of these viscoelastic spectra,
the molecular-weight distributions of P7, F10, F35, and F80 included in
the calculations are identical, respectively, to those extracted from the line-
shape analyses of the spectra of the pure melt systems,11 some of which have
been shown in Chapter 10. Thus, the close agreements between theory and
experiment in the line-shape analyses have been achieved under the consis-
tency of maintaining the same molecular-weight distributions of the samples
between the pure-melt and blend-solution systems. Thus, in a quantitative
way, the universality of viscoelastic spectrum is shown extending over the
melt and blend-solution systems in accordance with Eq. (11.5) with the
molecular weight normalized with respect to Me for the melt and M ′

e for
the blend solution.

This universality has also been illustrated by Watanabe et al. in another
way.12 They compared the line shapes of the viscoelastic spectra of a nearly
monodisperse polystyrene melt (sample L161 with Mw = 1.72 × 105 and
Mw/Mn = 1.07) and a blend solution (consisting of two nearly monodis-
perse polystyrene polymers: L407 with Mw = 4.27 × 105 and Mw/Mn =
1.05 as component two and sample L10 with Mw = 1.05 × 104 and
Mw/Mn = 1.08 as component one; the weight-fraction ratio of the blend is



August 26, 2010 16:32 WSPC/Book Trim Size for 9in x 6in b959-ch11 FA

Concentration Dependence and Onset of Entanglement, and Tube Dilation 223

L407/L10 = 40/60) whose normalized molecular weights, Mw/Me = 12.74
for the melt and Mw,L407/M

′
e = 12.65 for the blend solution, are nearly

identical. Corresponding to the same normalized molecular weight, the
viscoelastic-spectrum line shapes of the two systems agree with each other
very well as shown in Fig. 11.6 (Fig. 7 of Ref. 12). L10 with a molec-
ular weight Mw < Me serves as a solvent in the blend solution and
only contributes to the very high frequency region, which is outside the
region of line-shape comparison shown in Fig. 11.6. Although the line-
shape comparison of Fig. 11.6 is illustrative in showing the universality
of the viscoelastic spectrum, it may be affected somewhat by a possi-
ble small difference between the molecular-weight distributions of the two
systems.

The transformation of the viscoelastic spectrum with changing concen-
tration is well explained in terms of Eq. (11.5) with M ′

e given by Eq. (11.4).

Fig. 11.6 Comparison of the shapes of the storage- and loss-modulus spectra of the
polystyrene sample L161 in melt (——) and of the blend solution L407/L10 = 40/60
(◦ ◦ ◦), both having nearly the same normalized molecular weight: Mw/Me = 12.74 for
the former; and Mw,L407/M ′

e = 12.65 for the latter. For the line-shape comparison, the
spectra of the L161 sample are shifted downward along the modulus axis by a factor
of W 2

2 = (0.4)2 by Watanabe et al.12 in accordance with Eq. (11.7). Reproduced, by
permission, from Ref. 12.
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It is illuminative to point out two characteristics in the transformation.
One is the decrease in the plateau modulus (denoted by G′

N for the blend
solution) with dilution. From Eqs. (11.4) and (11.5), one obtains the con-
centration dependence of G′

N as

G′
N = GNW

2
2 . (11.7)

The agreement between the experimental results and Eq. (11.7) is within
5% for the studied blend-solution samples.10 The second point is the dimin-
ishing of the modulus-plateau zone with decreasing W2. The increase in
entanglement molecular weight M ′

e with decreasing W2 affects the line
shape of the viscoelastic spectrum through the relaxation strengths B and
C (Eqs. (9.14) and (9.15)) and the relaxation-time ratios τC/τ1

A, τB/τ1
A,

τX/τ
1
A (Eqs. (9.20), (9.21), (9.23)). As W2 decreases, the relaxation-time

ratios decrease and bring all the relaxation processes closer in time; par-
ticularly, the separation between the transition zone (II) and the terminal
zone is narrowed by the decrease in the ratio τC/τ1

A. While the decrease in
W2 reduces the width of the modulus plateau, B increases and C decreases,
both changes enhancing the importance of the µB(t) process. These changes
reduce the flatness of the modulus plateau. As shown in Fig. 11.7, the
comparison of the viscoelastic spectra of pure F10, F10/F1 = 75/25, and
F10/F1 = 50/50, all quantitatively described by Eq. (11.5) (including
Eq. (9.19) for pure F10), clearly illustrates the effects of dilution on the
spectrum line shape.

A very important result of the line-shape analysis of the viscoelastic
spectra in terms of Eq. (11.5) for the concentrated blend solutions is that
the obtained K ′′ and K values are, as expected, the same (Fig. 11.1).
The sensitivity of the determination of the K ′′/K ratio is rather high. As
shown in Fig. 3 of Ref. 10, a 50% change in the K ′′/K ratio value can
cause a clearly noticeable difference between the measured and calculated
spectra; the possible error of the shown K ′′/K ratio values in Fig. 11.1
should be no more than about 20%. The close agreement between K ′′

and K means that the ERT, developed on the framework of the Doi–
Edwards theory (Chapter 9), has bridged the gap between the Doi–Edwards
theory and the Rouse theory. One may think that the linkage is quite
miraculous because the tube (or the primitive chain defined by Eq. (8.3))
introduced in the Doi–Edwards theory is an assumed mean field which is
structurally one level larger than the mean field assumed in the Rouse the-
ory (i.e. the Rouse segment and its associated friction constant). The
linkage not only supports the validity of the primitive-chain idea, but also
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Fig. 11.7 Comparison of the storage-modulus spectra (both the calculated (lines) and
the measured) of the F10 (�), F10/F1 = 75/25 (�) and F10/F1 = 50/50 (•) samples.
The arrows indicate the frequencies ωC = 1/τC where the τC values are calculated from
Eq. (9.12) with K = 1 × 10−8 and Me replaced by M ′

e = Me × W−1
2 . The dashed lines

indicate the separations of the contributions of the free-Rouse-chain process of F1 and
the µA(t) process from those of the µX (t), µB(t) and µC(t) processes; in other words,
the high frequency limits of the dashed lines occur at (5/4)GN W 2

2 (see Eq. (11.5)).

supports that the Doi–Edwards theory has provided the right theoreti-
cal framework in which the additional dynamic processes can be properly
incorporated.

In this section, we have shown the results of the quantitative analyses
of the viscoelastic spectra in the concentrated region where chain entangle-
ments are extensive. These results, as well as those described in Chapter
10 for the melt system, give the molecular-weight dependence of K ′/K
shown in Fig. 11.1, suggesting that entanglements start at the molecu-
lar weight Me for the melt system and M ′

e for the blend solution. It is
important to observe directly whether this is indeed so. To show the
onset of entanglement, we shall first study the low-concentration region
of the blend-solution system and the low-molecular-weight region of the
one-component melt system where the whole system is expected to be free
of entanglement.
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11.3 Entanglement-Free Region and Onset of Entanglement

As discussed above, the entanglement molecular weight M ′
e in a concen-

trated blend solution is given by Eq. (11.4). If the concentration W2 is
smaller than the critical concentration Wc, defined by

Wc =
Me

Mw2
(11.8)

then Mw2 < M ′
e and the solution should be free of entanglement for both

the low- and high-molecular-weight components.13 The relaxation modulus
of such an entanglement-free blend solution may be described by a linear
combination of two Rouse relaxation processes corresponding to the two
components.

G(t) = W1

∫
A1(M)GR(t,M) dM +W2

∫
A2(M)GR(t,M) dM (11.9)

where GR(t,M) is the relaxation modulus given by Eqs. (7.57) and (7.58)
and A1(M) and A2(M) are the nearly monodisperse molecular-weight dis-
tributions of component one and component two, respectively.

A series of polymer blend solutions, denoted by samples A, B, C and D,
were prepared by blending two nearly monodisperse polystyrene polymers:
G10 (component two with Mw = 1.03 × 105 and Mw/Mn = 1.01) and G1
(component one with Mw = 9.1× 103 and Mw/Mn = 1.02) at the weight-
fraction ratios W1/W2 = 95/5, 80/20, 70/30 and 60/40, respectively.13

Shown in Fig. 11.8 are the molecular-weight distributions for the G1/G10
blend solutions calculated using the Schulz function (Eqs. (10.3) and (10.4))
with Z = 50 for G1 and Z = 90 for G10. Z = 50 and Z = 90 for
the two separate components were chosen to give the Mw/Mn values in
agreement with the values obtained from the sample characterizations of G1
and G10, respectively. The entanglement molecular weights Me (= 13,500
for polystyrene) and M ′

e (Eq. (11.4)) for all the blend-solution samples
are indicated in Fig. 11.8. Figure 11.8(a) shows that both components in
sample A are free of entanglement. Figures 11.8(b)–(d) indicate that while
the G1 component remains free of entanglement, the degree of entanglement
among G10’s chains (namely, Mw2/M

′
e) increases with the increase in W2

from sample B to sample D.
As shown in Fig. 11.9, the storage-modulus spectrum of sample A is well

described by the Rouse theory: Eq. (11.9) with the molecular weight distri-
bution (W1A1(M) and W2A2(M)) shown in Fig. 11.8(a). In the calculation
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Fig. 11.8 The molecular-weight distribution calculated using the Schulz function

(Eqs. (10.3) and (10.4) with Z = 50 for G1 and Z = 90 for G10) for the G1/G10 = 95/5
(a), 80/20 (b), 70/30 (c), and 60/40 (d) blend solution samples. Me and M ′

e for each
blend solution are indicated by • and ◦ points, respectively.

of the spectrum, the number of Rouse segments per chain N is taken as the
integer of the ratio M/m where m, set to be 850 for polystyrene,7–9,13 is the
molecular weight for a Rouse segment. Due to the weak molecular-weight
dependence of the relaxation times, and of the relaxation-time distribu-
tion in the Rouse model, the calculated spectrum is very insensitive to
the molecular-weight distribution of either of the two nearly monodisperse
components as long as it is sufficiently narrow. For instance, as long as
Z ≥ 50, virtually no change in the spectrum can be discerned as the Z
value varies. This insensitivity removes any concern that some difference
in the calculated spectrum might be caused by a small uncertainty in the
molecular-weight distribution.

No shift along the modulus axis is involved in obtaining the very close
superposition of the measured and calculated spectra as shown in Fig. 11.9.
This indicates that the force constant on the Rouse segment, which gives
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Fig. 11.9 Comparison of the measured storage-modulus spectrum (◦ and •) and that
calculated from the Rouse theory (solid line) for sample A. The dashed line indicates the
separation of the contributions from the G1 and G10 components. The arrow at 1/τ1(1)
indicates the frequency that is the reciprocal of the relaxation time of the first Rouse
mode of the G1 component calculated from Eq. (7.57) with K = 1 × 10−8, whereas the
arrow at 1/τ1(2) indicates the same for the G10 component.

rise to the modulus, is of entropic origin as it is defined statistically. In
Fig. 11.9, the dashed line (calculated by setting W1 = 0) indicates the sep-
aration of the contributions from the G10 and G1 components. It is clear
that the two “bumps” on the storage-modulus spectrum correspond to the
main viscoelastic responses of the two components in the blend solution:
the high-frequency one for the G1 component and the low-frequency one for
the G10 component. The accurate prediction by the theory of the relative
positions of the two bumps and their shapes clearly illustrates that, in the
entanglement-free region, the molecular-weight dependence (i.e. τ1 ∝ M2)
and the p dependence (i.e. τp ∝ 1/ sin2(pπ/2N)) of the viscoelastic relax-
ation times in the blend solution are well described by the Rouse theory.

Entanglements among component-two’s chains will eventually occur as
W2 increases above a certain point. As they occur, the constraint effect due
to entanglement will render the spectrum in the low-frequency region where
the main viscoelastic response of component two occurs no longer described
by the Rouse theory. Assuming that entanglements never did occur to
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component two, the hypothetical viscoelastic spectra for samples B, C, and
D can be calculated from Eq. (11.9). Since component-one’s chains remain
free of entanglement regardless of the concentration, the region around the
high-frequency bump in each of the measured spectra remain well described
by the Rouse theory. Thus, the Rouse viscoelastic response of component
one can be used as the internal reference by matching the measured and
calculated spectra over the high-frequency bump region. In doing the super-
position, only shifting along the frequency axis is allowed. Then, with the
internal reference set this way, the deviation of the measured spectra of
samples B, C and D from Eq. (11.9) in the low-frequency region will reflect
the influence of entanglement on component-two’s viscoelastic behavior. As
expected, the deviation becomes larger with increasing W2. As shown in
Fig. 11.10, in each case the measured storage-modulus spectrum and the

Fig. 11.10 Comparison of the measured storage-modulus spectra of samples A (◦ and
•), B (� and �), C (� and �), and D (♦ and �) with those calculated (solid lines) using
the Rouse theory for both the G1 and G10 components. In calculating the spectra, the
frictional factor K is set to be 10−8 for sample A (line 1); 10−7 for sample B (line 2); 10−6

for sample C (line 3); and 10−5 for sample D (line 4) to avoid overlapping of the lines
and the data points. The comparison is made for each sample by shifting the measured
spectrum along the frequency axis to match the calculated in the high-frequency bump
region.
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calculated are parallel with each other in the low-frequency region (both
the calculated and measured lines of log(G′) versus log(ω) are straight and
have the expected slope of 2; see Chapter 4). The measured line is more
remote toward the lower-frequency side from the calculated asW2 increases.
The shift factor obtained from superposing the two parallel lines by mov-
ing only along the frequency axis can be used to characterize the degree of
deviation. Because of the use of the internal reference, the frequency-shift
factor determined this way for component two is free of any change of the
frictional factor due to any outside influence, such as a change in tempera-
ture or concentration; in other words, it reflects entirely the change in the
structural factor of relaxation-time (mainly of the slowest mode) which is
caused by the occurrence of entanglements. In Fig. 11.11, the frequency-
shift factors at different concentrationsW2 are shown. By extrapolating the
shift factors towards the smaller W2 region, the point where the extrapo-
lation line crosses the no-shift line can be determined. This point, denoted
by W o

c , can be regarded as the highest concentration where a change in
the structural factor of relaxation-time due to entanglement has not yet
occurred, or as the onset point of entanglement. W o

c occurs in the close
neighborhood of Wc calculated according to Eq. (11.8). This means that,

Fig. 11.11 Frequency-shift factor as caused by the entanglement effect versus the weight
fraction of component two, W2. The arrow indicates the predicted Wc value from
Eq. (11.8).
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if Mw2 is the variable, and W2 is kept at a fixed value in the blend solution,
entanglements start to occur within the experimental error at M ′

e given by
Eq. (11.4).

Equation (11.9) includes the special case of pure melt containing only
one nearly monodisperse component (i.e. by setting either W1 or W2 = 1)
whose molecular weight Mw is smaller than Me. Shown in Fig. 11.12 is
the comparison of the storage-modulus spectrum of a nearly monodis-
perse polystyrene polymer F1 whose molecular weight is 0.76Me (Mw =
1.03 × 104; Mw/Mn = 1.01), with that calculated from Eq. (11.9) using
the Schulz molecular-weight distribution with Z = 90.14 As long as Z is
above 50, no change in the calculated spectrum can be discerned with a
change in Z. Except for the very-high-frequency region where the glassy-
relaxation process has a significant contribution to the measured spectrum,
the measured and calculated spectra are in close agreement over the whole
range of modulus (i.e. below ∼ 5 × 106 dynes/sq cm; the small molec-
ular weight of the F1 sample makes the higher-modulus (or -frequency)
region particularly susceptible to the contribution of the glassy-relaxation
process). On the other hand, it is very clear from Fig. 11.1314 that such

Fig. 11.12 Comparison of the measured (dots) storage-modulus spectrum and the
calculated (line) from the Rouse theory for sample F1.
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Fig. 11.13 Comparison of the measured (dots) storage-modulus spectrum and the

calculated (line) from the Rouse theory for sample F2.

a close agreement between the measured spectrum and the Rouse theory
(calculated with Z = 50) cannot be obtained for a nearly monodisperse
polystyrene melt F2 whose molecular weight is 1.24Me (Mw = 1.67× 104;
Mw/Mn = 1.02). Similar to the results shown in Fig. 11.10, Fig. 11.13
shows that the measured spectrum in the low-frequency region deviates
toward the lower-frequency side from the calculated while both spectra
match in the high-frequency region. This slow-down phenomenon, occur-
ring mainly to the slowest Rouse mode of motion, is a sign of entanglement.
In fact, as shown in Figs. 10.4 and 10.8, the spectrum of F2 can be well
described by Eq. (9.19), which contains the constraint effect of chain entan-
glement (the µC(t) process). From the results shown in Figs. 11.12 and
11.13, the initial deviation from the Rouse theory, signifying the onset of
entanglement, should occur at a molecular weight between those of F1 and
F2, namely, between 10,300 and 16,700. In other words, the onset of entan-
glement should occur at a point very close to the entanglement molecular
weight Me (= 13,500 for polystyrene) for the one-component melt. This
result is in agreement with the finding that the onset of entanglement occurs
in the close neighborhood of M ′

e for the blend solution.
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Denote the molecular weight at the onset of entanglement as Mo
e for

the pure-melt system and as M ′o
e for the blend-solution system. From the

close agreement between the onset molecular weight of entanglement and
the entanglement molecular weight for both the pure-melt system and the
blend-solution system, Me and Mo

e as well as M ′
e and M ′o

e can be regarded
as equivalent. Considering the independence of the Rouse theory and the
Doi–Edwards theory, the equivalence ofMe and Mo

e (M ′
e andM ′o

e ) is indeed
very significant as the determination of Me (M ′

e) is ultimately based on the
slip-link idea in the Doi–Edwards theory (Eqs. (8.2) and (11.4)) while M o

e

(M ′o
e ) is determined by monitoring the deviation of the measured spec-

trum at a molecular weight in the neighborhood of Me (or M ′
e) from the

Rouse theory. In other words, the agreement between Me and Mo
e (M ′

e

and M ′o
e ) puts the Rouse theory and the Doi–Edwards theory on the same

footing. On the basis of this agreement, one would suggest that the basic
assumptions in the Doi–Edwards theory, the primitive chain (Eq. (8.3))
and the slip-link picture, be considered as much of a “first principle” as the
Rouse theory is in polymer dynamics and viscoelasticity. This suggestion
is strongly enforced by the agreement between the frictional factors K and
K ′′ (Fig. 11.1), indicating that the ERT bridges the gap between the Rouse
theory and the Doi–Edwards theory, a conclusion discussed earlier in this
chapter.

The onset of entanglement occurring at Me rather than at Mc is con-
sistent with the viscosity value in the molecular-weight region between Me

and Mc being higher by a factor of about three (after the Tg correction)
than that predicted on the basis of the Rouse theory,15 as discussed
in detail in Chapter 10. Another linkage between the Rouse theory
and the Doi–Edwards theory was made in Chapter 10 by the agree-
ment between the diffusion-proportional constant Kd (Eqs. (10.5) and
(10.6)) obtained from the diffusion measurements and the value calculated
from the frictional factor K obtained from the viscosity value at Mc in
terms of the Rouse theory and corrected for the factor three mentioned
above.

The direct observation of the onset molecular weight of entanglement
at Me (M ′

e) breaks the traditional belief that chain entanglements start
to occur at Mc.16–18 The traditional idea was based on the observation
that the zero-shear viscosity (after the Tg correction) below the critical
point Mc has an apparent molecular-weight dependence as that given by
the Rouse theory (∝ M). This misconception was mainly caused by the
failure to notice that the integration of the relaxation modulus (Eq. (4.30))
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for obtaining the viscosity can even out vital entanglement-related details
in the relaxation modulus or equivalently in the viscoelastic spectrum.

11.4 Tube Dilation

As the molecular weight of the solvent component (component one) in the
blend solution is raised above the entanglement molecular weight Me, the
viscoelastic behavior of the blend system (the system with Mw2 > Mw1 >

Me is referred to as the binary blend) becomes much more complicated.
Because component one is affected by chain entanglement in the binary
blend, its viscoelastic behavior cannot be described by the Rouse theory,
and it can no longer be treated simply as a solvent. However, if Mw1,
while being greater than Me, is sufficiently smaller than Mw2, component
one can possess some solvent characteristics as far as the constraint effect
of entanglement on the dynamics of component two is concerned. As a
result, the effective entanglement molecular weight (denoted as M ′′

e ) for the
terminal relaxation of component two, which becomes faster than that of
the pure component-two melt, is neitherMe norM ′

e (as given by Eq. (11.4)),
but between. Such a phenomenon of M ′′

e being larger than Me is referred
to as tube dilation. This phenomenon is clearly observed by monitoring
the shift in time or frequency in superposing the viscoelastic spectra of a
binary blend and its pure component-two melt in the terminal region, both
spectra being measured at the same temperature.19

Two nearly monodisperse polystyrene polymers: F80 (Mw = 7.75×105)
and F35 (Mw = 3.55 × 105) were chosen as component two in prepar-
ing the binary-blend samples for study. The relaxation-modulus curves
of the binary blends: F80/NBS (NBS Mw = 1.79 × 105), F80/F10 (F10
Mw = 1.00 × 105), F80/F4 (F4 Mw = 4.49 × 104), F35/F10, F35/S8 (S8
Mw = 8.3 × 104), F35/S6 (S6 Mw = 6.04 × 104) and F35/F4 at two
different concentrations W2/W1 = 75/25 and 50/50 were measured and
analyzed.19 In order to determine accurately the time-shift factor in the
terminal region of G(t) between a binary blend and its pure component-
two melt, either right before or after the measurement of a binary blend,
the pure component-two sample (i.e. either pure F80 or pure F35) was mea-
sured under the same condition. As shown in Fig. 10.5, the frictional factor
K at a constant temperature remains constant at all molecular weights to as
low as just above Me. Thus, since the polymer samples used as component
one in preparing the binary blends all have a molecular weight > Me, the
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frictional factor K for the terminal relaxation remains the same; any time
shift in the terminal region between a binary blend and its pure component-
two melt should be entirely due to a change in the entanglement-related
structural factor.

If the frictional factor K in a blend solution were the same as that in
its pure component-two melt, the terminal-relaxation-time ratio of the two
systems could be obtained from Eq. (9.12) as

τ ′C
τC

=
Me

M ′
e

[
1− (M ′

e/Mw2)1/2

1− (Me/Mw2)1/2

]2
(11.10)

where τ ′C is for the blend solution and τC for the pure melt. In Fig. 11.14,
the measured and calculated relaxation curves of the pure F80 melt are
compared with the curves of the F80/Y binary-blend series (Y = NBS,
F10, F4 and W2/W1 = 0.5/0.5), measured at the same temperature, and
the theoretical curve of the blend solution with F80 as component two

Fig. 11.14 Comparison of the calculated and measured relaxation modulus G(t) curves
in the terminal region: the upper solid line is the calculated for the F80 melt, which has
been multiplied by a factor of 1/4(= W 2

2 ) for comparison with other curves; the lower
solid line is calculated for the concentrated solution of F80 at W2 = 0.5 (M ′

e = Me/0.5);
(• • •) is the measured G(t) of the F80 melt multiplied by 1/4; (– ·· –) is the measured
G(t) of the F80/NBS = 50/50 blend; (– · –) is the measured G(t) of the F80/F10 blend;
and (– – –) is the measured G(t) of the F80/F4 blend.
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(W2/W1 = 0.5/0.5) calculated with the same frictional factor as used in
the calculation for the pure F80 melt. In the figure, both the measured
and calculated curves of the pure F80 melt have been shifted down along
the modulus axis by a factor of W 2

2 = 0.25 (see Appendix 11.A) so that
all the curves are compared at the same modulus level in the terminal
region.

Figure 11.14 clearly shows that as component-one’s molecular weight
decreases, the terminal relaxation of the binary blend shifts from that of
the pure F80 melt toward that of the blend solution. All the relaxation
curves shown in Fig. 11.14 are superposable in the terminal region by shift-
ing along the time axis. The superposition is possible in practice, but not
rigorously correct in theory; thus the obtained shift factors are apparent
effective values. Denote the terminal relaxation time for a binary blend
by τ ′′C which plays an equivalent role to τC (Eq. (9.12)) for the pure F80
melt. Then the time-shift factor obtained from the superposition between
a binary-blend’s curve and pure F80’s can be expressed as τ ′′C/τC . The
relaxation-time ratio τ ′C/τC calculated from Eq. (11.10) should be the lim-
iting value of τ ′′C/τC as M1 becomes low enough (< Me) for serving as a
solvent.

Shown in Fig. 11.15 are the shift factors τ ′′C/τC , which have been
obtained in the way described above for the F80/Y = 50/50 blend series,
as a function of component-one’s molecular weight for four series of binary
blends: F80/Y atW2/W1 = 0.75/0.25 and 0.5/0.5; and F35/Y atW2/W1 =
0.75/0.25 and 0.5/0.5. Two important results can be obtained from the data
shown in Fig. 11.15: First, as expected, the shift factor τ ′′C/τC approaches
the limiting value, τ ′C/τC , calculated from Eq. (11.10) as component-one’s
molecular weight becomes smaller than Me. Second, by extrapolation
toward the higher side of component-one’s molecular weight, the shift fac-
tor τ ′′C/τC reaches 1 (i.e. no shift) far before component-two’s molecular
weight is reached. Regarding a nearly monodisperse system as equivalent
to a binary-blend system whose two components have the same molecu-
lar weight, we can easily see that the above result of τ ′′C/τC reaching 1
“early” indicates that the general idea of the so-called constraint-release
mechanism, as shared in the various versions,20–26 predicting a shortening
of the terminal relaxation time even for a monodisperse system, cannot be
valid. In fact, this result from a very different angle supports strongly the
previously-drawn conclusion (Chapter 10) that the mean-field assumption
which Eq. (9.19) as well as the Doi–Edwards theory is based on is rigorously
valid for a (nearly) monodisperse system.
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Fig. 11.15 The apparent time-shift factor, τ ′′
C/τC , as a function of the molecular weight

(MW) of the low MW component (denoted by Y) in the binary blends: F80/Y = 75/25
(•); F80/Y = 50/50 (◦); F35/Y = 75/25 (�); and F35/Y = 50/50 (�). The horizontal
lines on the vertical axis indicate the theoretical τ ′

C/τC values calculated from Eq. (11.10)
as the limiting values for the four series of blend samples.

By using an equation analogous to Eq. (11.10), which relates the shift
factor τ ′C/τC to M ′

e, an effective entanglement molecular weight M ′′
e cor-

responding to the ratio τ ′′C/τC for a binary blend can be obtained. Shown
in Fig. 11.16 are the M ′′

e /Me values for the F80/Y binary blend series
with W2/W1 = 0.5/0.5 as a function of component-one’s molecular weight.
In agreement with the results shown in Fig. 11.15,M ′′

e /Me reaches the value
2 when component-one’s molecular weight approaches zero; on the higher
side, M ′′

e /Me reaches 1 far before F80’s molecular weight is reached.
As discussed in this section, the tube-dilation effect, i.e. M ′′

e /Me > 1,
mainly occurs in the terminal-relaxation region of component two in a
binary blend. This effect means that the basic mean-field assumption of the
Doi–Edwards theory (Eq. (8.3)) has a dynamic aspect when the molecular-
weight distribution of the polymer sample is not narrow. This additional
dynamic effect causes the viscoelastic spectrum of a broadly polydisperse
sample to be much more complicated to analyze in terms of the tube
model, and is the main factor which prevents Eq. (9.19) from being applied
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Fig. 11.16 The apparent M ′′
e /Me values as a function of the molecular weight of the

low MW component (Y) in the F80/Y = 50/50 blends.

directly to commercial polymers. On the other hand, by monitoring the
tube-dilation effect as a function of component-one’s molecular weight in a
binary-blend system, the conclusion that the mean-field assumption in the
Doi–Edwards theory and Eq. (9.19) for the (nearly) monodisperse system
is valid, which has been drawn from the extensive, consistently quantitative
studies of nearly monodisperse samples (Chapter 10), is further confirmed.
One may consider this confirmation independent of Eq. (9.19) or (11.5)
because one can analyze the tube-dilation effect in the binary blend sys-
tems without really involving Eq. (11.5), as done in this section, and reach
the same conclusion.

Appendix 11.A — Basic Form of the Blending Law in a
Binary Blend10,19

For a blend system consisting of two monodisperse components whose
molecular weights are both greater than Me and far apart from each other
(i.e. M2 �M1 > Me), the blending law can be basically described by the
following relaxation-modulus function (not covering the time region of the
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µA(t) and µX(t) processes)

G(t) = GNW1

[
B1µB

(
t

τB1

)
+ C1µC

(
t

τC1

)]

+GNW2[W1T (t) +W2]
[
B2µB

(
t

τB2

)
+ C2µC

(
t

τC2

)]
(11.A.1)

where B1, C1, τB1, and τC1 are for component one and B2, C2, τB2, and
τC2 for component two; and B, C, µB(t), µC(t), τB and τC have the same
definitions as given by Eqs. (9.14), (9.15), (9.5), (9.11), (9.6) and (9.12),
respectively. In the above equation, T (t) is a decaying function for the
tube-renewal process that takes place on a component-two chain as the
component-one chains originally entangled with it disentangle and reptate
away. From the analyses of measured spectra in terms of Eq. (11.A.1), T (t),
assumed to be a single exponential, is found to have a characteristic time
τt that is about seven times larger than τC1. At the same time, while B1,
C1, τB1 and τC1 are not affected by the presence of component two and
keep their respective values in the pure melt state, B2, C2, τB2 and τC2

are affected by the tube dilation due to the much faster reptation motions
of the component-one chains. The tube-dilation effect can be accounted
for by changing the Me quantity that occurs in the expressions for B2, C2,
τB2 and τC2 to an apparent effective value M ′′

e (> Me) as discussed in the
section on tube dilation of this chapter. For two components which are
actually nearly monodisperse in an experiment, the convolution over their
respective molecular-weight distributions can be done to Eq. (11.A.1) in
the same way as done to Eq. (11.5), however, without including the effect
of component-one’s molecular-weight distribution on T (t).

When component-one’s molecular weight is below Me, the viscoelas-
tic response of component one is described by the Rouse theory, and τt
(proportional to τC1 if the component-one chain reptates) can be equated
to zero as the component-one chains lose the reptational mechanism. Then
Eq. (11.A.1) is transformed to

G(t) = W1GR(t,M1) +G′
N

[
B2µB

(
t

τB2

)
+ C2µC

(
t

τC2

)]
(11.A.2)

where GR(t,M1) is given by Eqs. (7.57) and (7.58) and

G′
N = GNW

2
2 =

4ρRT
5M ′

e

W2 (11.A.3)
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with

M ′
e =

Me

W2
. (11.A.4)

Equation (11.A.2) together with Eqs. (11.A.3) and (11.A.4) is consistent
with Eq. (11.5). Equation (11.A.4), being the same as Eq. (11.4), is in
agreement with the expectation that, as M1 becomes smaller than Me, the
binary blend becomes a blend solution with component one serving as the
solvent. With this change, the Me (or M ′′

e ) quantity in all the expressions
for B2, C2, τB2 and τC2 is replaced by M ′

e as given by Eq. (11.A.4).
While the blending law — Eq. (11.A.1) — leads to the theoretical

expression for a monodisperse blend solution (Eq. (11.5)) in a natural way
as discussed above, it is also consistent with the theory for a monodisperse
melt system (Eq. (9.19)) and the linear-additivity rule assumed in testing
the theory with the experimental results of nearly monodisperse samples
(Chapter 10). Equation (11.A.1) can be reduced to the equation for a
monodisperse melt system in three ways: (a) by setting W1 = 0; (b) by
setting W2 = 0; and (c) by taking M2 → M1 (or M1 → M2). The first
two ways are obvious. The third way requires some explanation. Equation
(11.A.1) has to become independent of W1 or W2 when M1 = M2. This
can occur only if T (t) becomes independent of time and equal to 1. Hence,
Eq. (11.A.1) and the monodisperse theory (Eq. (9.19) or Eq. (9.13)) have to
be consistent in the third way. T (t) becoming 1 as M1 →M2 suggests that
when M1 and M2 are sufficiently close to each other, the linear-additivity
rule for the contributions from the two components becomes applicable by
setting W1T (t) +W2 = 1 in Eq. (11.A.1).
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Chapter 12

Molecular Theory of Polymer
Viscoelasticity — Nonlinear
Relaxation Modulus of Entangled
Polymers

In the Doi–Edwards theory as studied in Chapter 8, the stress right after the
equilibrium time Teq following the initial application of a step deformation
(Eq. (8.32)) was derived by allowing the polymer chain to slide through the
slip-links in order to equilibrate the segmental distribution along the prim-
itive path. The Doi–Edwards theory is concerned mainly with the stress
relaxation after Teq by the reptational motion of the polymer chain. In the
time region > Teq , the strain dependence of the modulus — the damping
function h(λ) — is well predicted by the Doi–Edwards theory (Fig. 9.2).

The ERT developed on the basis of the Doi–Edwards theory shows
that the linear relaxation modulus G(t) contains four processes: µA(t),
µX(t), µB(t) and µC(t) (Eq. (9.19)). It was shown in Chapter 10 that
the ERT explains various linear viscoelastic properties consistently and
quantitatively. In the linear G(t), the process µX(t), responsible for the
change in the shear modulus from ρRT/Me (Eqs. (8.1) and (8.37)) to
GN = 4ρRT/5Me (Eq. (8.36)), equilibrates the segmental distribution
along the primitive path. In other words, in the linear region of strain, τX
is equivalent to Teq. However, in the nonlinear region, Teq is quite different.

In the linearG(t), after time τX , the modulus is further relaxed to zero by
the µB(t) and µC(t) processes. However, in the nonlinear relaxation modu-
lus, the relaxation phenomenon in the time region corresponding to the µB(t)
process is quite different. It has been shown theoretically by Doi1 that in this
time region the tensile forces along the primitive chain, arising from uneven
segmental distribution, contribute greatly to the total stress. The relaxation
of the chain tension is described by the same equation of motion as the µB(t)
process and thus involves the whole chain. In the nonlinear relaxation modu-
lus, Teq is equivalent to τB and thus much longer than τX .

242
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12.1 Chain-Tension Relaxation

For the nonlinear relaxation modulus, the relaxation phenomenon in the
time region corresponding to the µA(t) process is complicated and difficult
to study both theoretically and experimentally. Because of the finite exten-
sibility of an entanglement strand in a polymer, a theoretical treatment of
the µA(t) process based on the Gaussian chain model will not be so valid in
the nonlinear region. Experimentally in the nonlinear region of strain, the
high stress level corresponding to the high modulus in the µA(t)-process
region easily overloads the transducer. Thus, for the study of the nonlinear
relaxation modulus, we shall not consider the time region corresponding to
the µA(t) process. Experimentally, one can avoid the µA(t)-process region
by making measurements at a temperature sufficiently high so that the
relaxation of the µA(t) process is faster than the actual deformation rate
occurring in a step-strain experiment, i.e. ∼ 1/ε where ε is the rise time of
the step strain (see Chapter 4).

Consider a single chain having N entanglement strands with the slip-
link positions at R0,R1, . . . ,RN . Let the number of Rouse segments on
the ith entanglement strand be denoted by Ni. Then the total number of
Rouse segments of the chain is∑

i

Ni = No. (12.1)

The stress tensor T(t) following a step deformation E applied at t = 0 is
given by (Eq. (8.23) with r′i replaced by ri(t) and n′

i by Ni(t))

T(t) = −3ckT
∑

i

〈
ri(t)ri(t)
Ni(t)b2

〉
+ P δ (12.2)

where

ri(t) = Ri(t)−Ri−1(t) . (12.3)

Letting the index n represent the nth Rouse segment in the entanglement
strand between Ri−1 and Ri, Doi assumes for t � τ1

A (see Eq. (9.B.26))

Ri(t)−Ri−1(t) = vi
n(t)Ni(t)〈lin(t)〉 (12.4)

where vi
n(t) is unit vector in the direction of Ri(t)−Ri−1(t) andNi(t)〈lin(t)〉

is the distance between Ri and Ri−1. In the Doi–Edwards model, the length
of an entanglement strand |Ri(t)−Ri−1(t)| is assumed to remain the same
before this particular strand is reached by either of the two chain ends
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through the reptational motion. Thus, the length Ni(t)〈lin(t)〉 associated
with an entanglement strand which is not close to the chain ends does
not change with time for t < Teq . However, during t < Teq , both Ni(t)
and 〈lin(t)〉 change individually with time as the chain slippage through the
entanglement links is taking place to equilibrate the segmental distribution
along the primitive path. At the same time, while the total number of
Rouse segments in the chain ΣiNi(t) = No is a constant, the number of
entanglement strands per chain, N , changes with time because Eq. (8.29)
indicates that disentanglement occurs in the nonlinear region.

Using Eqs. (12.3) and (12.4), Eq. (12.2) can be expressed as

T(t) = −3ckT
b2

∑
i

Ni(t)〈vi
n(t)vi

n(t)〉〈lin(t)〉2 + P δ

= −3ckT
b2

∫ No

0

dn〈vn(t)vn(t)〉〈ln(t)〉2 + P δ. (12.5)

In making the assumption of Eq. (12.4), one has allowed the averaging
over orientation for vnvn to be separated from the tensile-stress magni-
tude (∝ 〈ln(t)〉2) on each Rouse segment as expressed in Eq. (12.5). Fur-
thermore, in changing the summation over the entanglement strands to
the integration over the whole chain segments

∫ No

0
dn in Eq. (12.5), Ni(t)

is replaced by its average. Applying these assumptions is equivalent to
making the so-called independent alignment approximation.2 With these
assumptions, the local differences among entanglement strands have been
ignored. These assumptions lead to some small discrepancies from the exact
situation, as can be seen in the following:

Let Sn be the point on the primitive-chain contour corresponding to the
nth Rouse segment. Denote the positions of Sn in three-dimensional space
before and after a step deformation E is applied as Ro(Sn) and R(Sn(t)),
respectively. Then, before the application of E, the length vector lonvo

n along
the primitive chain corresponding to the nth Rouse segment is given by

lonvo
n =

∂

∂n
Ro(Sn) (12.6)

with

lon =
∣∣∣∣∂Ro(Sn)

∂n

∣∣∣∣ (12.7)
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and

vo
n =

(∂Ro(Sn))/∂n
|(∂Ro(Sn))/∂n| . (12.8)

And at time t following the initial application of E, the length vector cor-
responding to the nth Rouse segment is given by

∂

∂n
R(Sn(t)) = vn(t)ln(t). (12.9)

Since R(Sn(t)) changes affinely with the deformation E, the initial value
of ln(t) and vn(t) (i.e. the values at t ≈ τ1

A and denoted by l′n and v′
n) are

l′n =
∣∣∣∣ ∂∂nE ·Ro(Sn)

∣∣∣∣ = lon|E ·vo
n| (12.10)

and

v′
n =

E ·vo
n

|E ·vo
n|
. (12.11)

Then, from Eqs. (12.10) and (12.11), one obtains

〈l′n〉 = 〈lon〉〈|E ·vo
n|〉 = l〈|E ·u|〉u ≡ α(E)l (12.12)

and

〈v′
nv′

n〉 =
〈

(E ·vo
n)(E ·vo

n)
|E ·vo

n|2
〉

=
〈

(E ·u)(E ·u)
|E ·u|2

〉
u

(12.13)

where vo
n is denoted by the unit vector u which appears in Eqs. (8.32)

and (8.37), as it represents the orientation of an entanglement strand in
the equilibrium state; and 〈lon〉 (the average value before deformation) is
replaced by the equilibrium value l, which is given by

l =
b√
Ne

(12.14)

for Nel = a. Substituting Eqs. (12.12) and (12.13) into Eq. (12.5), one then
has the stress at t ≈ τ1

A

T(t ≈ τ1
A) = −3ckT

b2
Nol

2

〈
(E ·u)(E ·u)
|E ·u|2

〉
u

α(E)2 + P δ

= −3cNkT
〈

(E ·u)(E ·u)
|E ·u|2

〉
u

α(E)2 + P δ (12.15)

where, for the last equality, Eqs. (8.3) and (12.14) have been used.
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The discrepancy between Eq. (12.15) and the exact result, Eq. (8.37),
is not large as

〈
(E ·u)(E ·u)
|E ·u|2

〉
u

〈|E ·u|〉2u ≈ 〈(E ·u)(E ·u)〉u. (12.16)

A comparison between 〈(E ·u)(E ·u)/|E ·u|2〉uα(E)2 and 〈(E ·u)(E ·u)〉u
as a function of shear strain and uniaxial extension/compression strain is
shown in Figs. 12.1 and 12.2, respectively.

Equation (12.5) contains two relaxation processes: 〈vn(t)vn(t)〉 is to be
randomized or relaxed by the chain reptational motion, and the change in
〈ln(t)〉2 with time represents the chain-tension relaxation. The former is
much slower than the latter if the molecular weight is large. At t ≈ Teq , the
chain-tension relaxation process ends and 〈ln(t)〉 returns to its equilibrium
value l; the stress tensor T(t ≈ Teq) becomes

T(t ≈ Teq) = −3cNkT
〈

(E ·u)(E ·u)
|E ·u|2

〉
u

+ pδ (12.17)

Fig. 12.1 Comparison of 〈(E ·u)(E ·u)/|E ·u|2〉α(E)2 (denoted by A; solid line) and
〈(E ·u)(E ·u)〉 (denoted by B; dashed line) as a function of strain λ for simple shear
deformation (E given by Eq. (5.24)).
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Fig. 12.2 Comparison of 〈(E ·u)(E ·u)/|E ·u|2〉α(E)2 (denoted by A; solid line) and
〈(E ·u)(E ·u)〉 (denoted by B; dashed line) as a function of strain λ1 for uniaxial exten-
sion/compression deformation (E given by Eq. (5.22)).

which is an approximation to Eq. (8.32), as〈
(E ·u)(E ·u)
|E ·u|2

〉
u

≡ Q′(E) +
δ

3

≈
〈

(E ·u)(E ·u)
|E ·u|

〉
u

〈|E ·u|〉−1
u ≡ Q(E) +

δ

3
. (12.18)

Q′(E) represents the result of the independent alignment approximation.
A comparison of Q(E) with Q′(E) as well as with experimental results
through the damping function h(λ) for step shear will be presented in the
next section.

The relaxation of 〈ln(t)〉2, which occurs mainly in the time domain from
τ1
A to Teq, has been obtained by Doi1 as in the following. From Eq. (9.A.2)

with the substitution of ln(t) = Sn(t)− Sn−1(t), we have

ζ
∂

∂t
〈ln(t)〉 =

3kT
b2

∂2

∂n2
〈ln(t)〉 (12.19)

with the boundary condition (Eq. (9.A.5))

〈ln(t)〉 = l at n = 0; No. (12.20)
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Using Eq. (12.12) as the initial condition, Eq. (12.19) is solved as

〈ln(t)〉 = l


1 + (α(E)− 1)

∑
p=odd

4
πp

sin
(
pπn

No

)
exp

(
− tp

2

τ∗B

) (12.21)

where τ∗B is identical to τB given by Eqs. (9.6) or (9.A.12)

τ∗B = τB =
ζb2N2

o

3π2kT
=
K

3
M2. (12.22)

As the relaxation time of 〈vn(t)vn(t)〉 is much longer than τB if the
molecular weight is large, during the time t ≤ τB one may temporarily
replace it by Q′(E) + δ/3 (Eqs. (12.13) and (12.18)). Letting the term δ/3
be absorbed in the pressure terms, for t ≤ τB we have from Eq. (12.5)

T(t) = −3ckT
b2

Q′(E)
∫ No

0

dn〈ln(t)〉2 + P δ. (12.23)

Substituting Eq. (12.21) into Eq. (12.23) and carrying out the integration,
one obtains

T(t) = −3cNokT

Ne
Q′(E)µ∗

B(t,E) + P δ (12.24)

where

µ∗
B(t,E) =

∑
p=odd

8
π2p2

[
1 + (α(E) − 1) exp

(
−p

2t

τ∗B

)]2
. (12.25)

Equation (12.25) indicates that µ∗
B(t,E) relaxes from a strength of (α(E))2

at t ≈ τ1
A 	 τB to the constant of 1 at t > τB . The two processes µ∗

B(t,E)
and µB(t) have the same dynamic origin; their relaxation times τ∗B and τB
are the same, both obtained from the same equation of motion (Eq. (9.A.2)).

While the µ∗
B(t,E) relaxation is going on, the relatively slow relaxation

of 〈vnvn〉 by the reptational motion also gets under way. At t ≈ τ∗B when
the primitive chain has recovered its equilibrium contour length, the effect
of the contour length fluctuation on the terminal relaxation should basically
be the same as that in the linear region. In other words, the relaxation of
〈vn(t)vn(t)〉 should be described by Eqs. (9.11) and (9.12). Thus from
Eq. (12.24), we write the stress relaxation after t ≈ τ1

A as

T(t) = −3cNkTQ′(E)µ∗
B(t,E)µC(t) + P δ. (12.26)
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As pointed out above, µB(t) and µ∗
B(t,E) have the same dynamic ori-

gin. However, µ∗
B(t,E) relaxes the extra tension residing in every part of

the primitive chain while µB(t) relaxes the tube stress only in the tube end
regions. In the linear region, α(E) = 1; thus, the µ∗B(t,E) process is not
observable (see Eq. (12.25)). In the nonlinear region, the contribution of
the chain tension to the total stress is very large; the µB(t) process (see
Eq. (9.13)) is “wiped out” or overshadowed by the µ∗

B(t,E) process. Partic-
ularly in the high-molecular-weight region, where the relaxation strength
of the µB(t) process (Eq. (9.14)) is relatively small in comparison with
that of the µC(t) process (Eq. (9.15)), the µB(t) process can be ignored.
By neglecting the contribution of the µB(t) process, the stress relaxation
in the terminal region can be obtained from Eq. (8.52) with µ(t) given by
Eq. (8.54) to be replaced by µC(t) given by Eqs. (9.11) and (9.12)

T(t) = −3cNkTQ(E)µC(t) + P δ. (12.27)

Since Q(E) ≈ Q′(E), one may combine Eqs. (12.26) and (12.27) as

T(t) = −3cNkTK(E)µ∗
B(t,E)µC(t) + P δ (12.28)

with

K(E) = Q(E) (12.29)

or

K(E) = Q′(E) (12.30)

when the independent alignment approximation is used.

12.2 Comparison of Theory and Experiment

In Fig. 12.3, the relaxation modulus of a nearly monodisperse polystyrene of
Mw = 4.22×105 (F40) at the step shear strain λ = 5 is compared with that
in the linear region (λ = 0.2), both being measured at the same tempera-
ture. In the nonlinear relaxation modulus, as expected from Eq. (12.28),
two distinctive relaxation processes are visible; in addition to the terminal
relaxation, a faster process occurs in the time region corresponding to the
plateau in the linear G(t). The linear and nonlinear relaxation curves are
superposable in the terminal region as one of the two curves is allowed to
shift along the modulus axis (as explained below, a small shift toward the
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Fig. 12.3 Comparison of the relaxation modulus G(t, λ) at λ = 0.2 (in the linear region)
and at λ = 5 (in the nonlinear region) of nearly monodisperse polystyrene sample F40
(Mw = 4.22 × 105), both measured at the same temperature (∼ 167◦C).

shorter time is required for moving the linear curve to superpose on the
nonlinear curve in the case of λ = 5).

(a) Damping function

In making the superposition of two relaxation-modulus curves in the ter-
minal region, the shift factor along the modulus axis defined by

h(λ) =
G(t, λ)

G(t, λ→ 0)
for t > Teq (12.31)

is often referred to as the damping function. The damping function can be
calculated from Q(E) (see Eq. (8.34)), or from Q′(E) when the independent
alignment approximation is used (Eq. (12.18)). In Fig. 9.2, the calculated
h(λ) curves, with and without the independent alignment approximation,
are compared with the measured values for the F40 sample. Some small
shift along the time axis corresponding to a reduction of the relaxation time
at a step shear strain λ ≥ 5 is required to make a good superposition. The
shown h(λ) values measured at large strains (≥ 5) were obtained by allowing
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such a time shift. A greater time shift is required for a greater strain. At
the strain λ = 5, a time shift of about 15% can be observed. Although
this effect has not been clearly expected in the Doi–Edwards theory, some
disentanglement caused by a large deformation (see Eq. (8.29)) may lead to
a small shortening of the reptation time. This effect can be seen by replac-
ing Me of Eq. (9.12) by a greater effective value due to disentanglement
caused by a large deformation. Except for the small time shift involved
at a very large strain, the agreement between the calculated and measured
h(λ) values is very good. The successful prediction of the damping func-
tion by the Doi–Edwards theory is very significant as no fitting parameter
is involved in the calculation. In other words, the damping function is uni-
versal. Indeed the close agreement between theory and experiment for h(λ)
has been observed for different polymers.3–8

(b) Line shape of relaxation modulus

The nonlinear relaxation modulus as shown in Fig. 12.3 contains two dis-
tinctive relaxation processes. It is both interesting and important to see how
well the relative positions of the two relaxation processes are described by
Eq. (12.28) together with Eqs. (9.11), (9.12), (12.22) and (12.25). In Figs.
12.4–12.7, we compare the measured relaxation moduli at λ = 3 and 5 with
those calculated from Eq. (12.28) for two nearly monodisperse polystyrene
samples: F40 and F80 (Mw = 7.75× 105). The molecular-weight distribu-
tions of the two samples included in the calculation are identical to those
that have been extracted from the analyses of their respective linear vis-
coelastic spectra as described in detail in Chapter 10. The decrease in the
modulus from the linear G(t) in the terminal region is determined by the
damping factor h(λ), for which the close agreement between theory and
experiment has been shown in Fig. 9.2. As shown in Figs. 12.4–12.7, the
comparisons of the measured nonlinear relaxation curves with the calcu-
lated are made by matching in the terminal region to obtain the actual
damping factors shown in Fig. 9.2. Overall, the agreement between the-
ory and experiment is good; however, some discrepancies can be observed.
At λ = 3, the theoretical curves in the µ∗

B(t,E)-process region underesti-
mate the measured, by about the same degree for both the F40 and F80
samples. These discrepancies may arise from assumptions made in deriv-
ing Eq. (12.25) as discussed in the last section. The difference between
theory and experiment appears related to the α(E) value, calculated from
Eq. (12.12) at λ = 3, being too small.
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Fig. 12.4 Comparison of the measured (dots) and the calculated (line) relaxation

modulus G(t, λ) at λ = 3 for sample F40. The curves are calculated from Eq. (12.28);
the portion between line B* and line C is the contribution of the µ∗

B(t, E) process, while
below line C is the contribution of the µC (t) process.

Fig. 12.5 Same as Fig. 12.4 for sample F80.
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The molecular-weight dependence of τC is given by Eq. (9.12) for both
the linear and nonlinear relaxation moduli. As pointed out above, it has
been observed experimentally that τC decreases by a small amount ∼ 15%
at λ = 5, most likely due to disentanglement caused by the large strain.
Bearing this small reduction in τC , one still sees in Figs. 12.6 and 12.7 that
the relative positions of the µ∗

B(t,E) and µC(t) processes are reasonably
well described by Eq. (12.28) for both samples with very different molecular
weights. This agreement supports that the molecular-weight dependence of
the relaxation-time ratio of the two processes is well given by

τC
τ∗B

= 3
M

Me

(
1−

√
Me

M

)2

(12.32)

which is obtained from Eqs. (9.12) and (12.22). Equation (12.32) is the
same as Eq. (9.16) for the relaxation-time ratio between µB(t) and µC(t)
in the linear G(t). As the role of the µB(t) process in the linear G(t) has
been well proven in Chapter 10, the observation that Eq. (12.32) is well
followed in the nonlinear G(t) supports that τ∗B = τB and that µB(t) and
µ∗

B(t,E) have the same dynamic origin. This conclusion is expected from
the modeling that leads to Eq. (12.25).

For making a comparison of the roles of the various dynamic processes
in the linear and nonlinear regions, we show in Fig. 12.8 the linear and
nonlinear (at λ = 5) G(t) curves, both calculated and measured, for the
F40 sample. In this figure, the nonlinear G(t) curve is shifted upward
along the modulus axis (by a factor that is equivalent to the reciprocal of
the damping factor) so that its terminal region is superposed on the linear
G(t) curve. The theoretical curve for the linear G(t) is calculated using
Eq. (9.19) while that for the nonlinear G(t) is calculated using Eq. (12.28).
The comparison illustrates the relative positions (or roles) of the involved
processes: µ∗

B(t,E) — nonlinear, µB(t) — linear, µC(t) — linear and non-
linear, µA(t) — linear, and µX(t) — linear. The linear and nonlinear G(t)’s
are linked in the terminal region (the µC(t) process) by the damping factor.

Finally, we shall mention the slip-stick melt fracture phenomenon9 —
a phenomenon often observed in polymer extrusion — which is much
related to the relative positions of the µ∗B(t,E) and µC(t) processes. The
phenomenon is a well-known problem in the polymer processing industry
because it limits the output of polymer through an extruder. In a capillary
flow, the decline of the viscosity observed as the shear rate (or flow rate)
increases from the Newtonian region is much related to the damping factor
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Fig. 12.6 Same as Fig. 12.4 for sample F40 at λ = 5.

Fig. 12.7 Same as Fig. 12.4 for sample F80 at λ = 5.
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Fig. 12.8 Comparison of the linear and nonlinear (at λ = 5) G(t) line shapes, measured
(◦ for the linear; � for λ = 5) and calculated (lines), for sample F40. Also shown are
the separate contributions of the µA(t), µX(t), µB(t), µ∗

B(t, E) and µC (t) processes (see
Figs. 10.1 and 12.6).

associated with the µC(t) process. In a high, but not extremely high, shear-
rate region where still only the contribution of the µC(t) process needs to
be considered, the shear stress will eventually decline with the increasing
shear rate because of the damping factor. In this rate region, the “viscos-
ity” is negative, indicating instability. As the shear rate increases further
to become comparable to 1/τ∗B , the chain tension begins to contribute to
the total shear stress significantly and causes the stress to rise again. Thus
a dip in the flow curve is created. When the two processes µ∗B(t,E) and
µC(t) grow further apart with increasing molecular weight according to
Eq. (12.32), the dip becomes wider and deeper, and more observable. The
maximum point before the dip in the flow curve represents the onset of
instability. It has been shown that the instability point corresponds to the
onset of the slip-stick melt fracture phenomenon. There is the tendency
for the dip to be smeared out by the molecular-weight distribution of the
sample. The wider and deeper dip for a larger molecular weight has a
higher chance to survive the smearing-out effect. Thus, the slip-stick melt
fracture phenomenon is more prone to occur at a higher molecular weight
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in agreement with experimental results. The details of the explanation for
the slip-stick melt fracture phenomenon in terms of the molecular dynamic
processes can be found in the original studies,7,10–13 from which one sees
that the slip-stick melt fracture is a universal phenomenon for flexible linear
polymers.
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Chapter 13

Number of Entanglement Strands
per Cubed Entanglement Distance, nt

13.1 Introduction

How the existence of chain entanglement was initially suggested by several
important viscoelastic observations has been reviewed in Chapter 8. Chain
entanglements occur to any kind of flexible polymer as long as the con-
centration of the polymer system is sufficiently high and the chain length
sufficiently long. In the previous chapters, the universality of chain entan-
glement as reflected by its effect on various viscoelastic properties has been
extensively and consistently analyzed and demonstrated in terms of the
molecular theories. The most prominent aspects of universality in polymer
viscoelasticity related to entanglement include: (1) The linear relaxation
modulus G(t) is a universal function of the normalized molecular weight
M/Me where Me is determined from the plateau modulus. The molecular-
weight dependence of the zero-shear viscosity (including the well-known 3.4
power law) as well as that of the steady-state compliance is a logical con-
sequence of the universality of G(t). (2) In the well-entangled region, the
damping function is independent of molecular weight and the polymer type,
and thus is a universal function. The theories predicting these two impor-
tant aspects of universality are ultimately based on the slip-link model of
the Doi–Edwards theory. A very important element of the slip-link model is
the entanglement strand with the associated quantities: the entanglement
molecular weight Me and the entanglement distance a. The universality
as brought out by the studies mentioned above strongly suggest that there
should be some fundamental universal relation among the entanglement
strand and several basic polymer physical quantities such as density and
the characteristic ratio C∞ (or K∞).

257
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The viscoelastic response functions G(t) and G′(ω) studied so far have
basically been limited to the entropic (rubbery) region, both theoretically
and experimentally. For polystyrene,1,2 the entropic region occurs below
the modulus level ∼ 4 × 107 dynes/cm2. The studied molecular theories
have been developed using the Rouse segment as the most basic structural
unit; in other words, it is assumed that the polymer behaves as a Gaussian
chain. As long as we are only interested in polymer dynamic or viscoelastic
behaviors corresponding to length scales above or comparable to the entan-
glement distance, this assumption is expected to be valid on the basis of the
central limit theorem. In the next five chapters, studies will be extended
into the energetic region (short-time or high-frequency), with modulus val-
ues ranging from ∼ 4×107 to ∼ 1010 dynes/cm2; this assumption as applied
to length scales near and at that of the Rouse segment will be investigated.
Some results of the studies, as will be used in the discussion presented in
this chapter, are briefly summarized in the following:

The relaxation modulus G(t) that is relevant to the topic discussed
in this chapter is limited to the linear-response region and to time scales
longer than the relaxation time of the highest Rouse or Rouse–Mooney
normal mode. In other words, only the entropic region of a linear relax-
ation modulus G(t) is of concern; the glassy relaxation that occurs in the
short-time region is excluded from consideration. In modeling the linear
relaxation modulus of a polymer over only the entropic region, a chain
consisting of N Fraenkel segments3 gives rise to nearly the same result
as a chain consisting of N Rouse segments4 (detailed in Chapter 17). In
other words, limiting our consideration to linear viscoelasticity at entropic-
dynamics time scales, a Fraenkel segment may be regarded as equivalent
to a Rouse segment. At the same time, as far as modeling the polymer
chain conformation is concerned, a freely jointed chain consisting of N
Kuhn segments may be regarded as equivalent to a chain consisting of N
sufficiently rigid Fraenkel segments. Thus, the Fraenkel segment is capa-
ble of playing a dual role: either as the Rouse segment or as the Kuhn
segment. Through their individual equivalence to the Fraenkel segment,
the sizes of the Rouse and Kuhn segments become equivalent. Indeed,
the studies1,2,5−14 as briefly explained in Appendix 13.A has indicated
that the sizes of the Rouse and Kuhn segments experimentally deter-
mined in accordance with their roles as defined above are the same within
experimental error. Thus, for the present discussion purpose, we may con-
sider the polymer chain either as a linkage of freely jointed Kuhn seg-
ments, each of length b, or as a linkage of Rouse segments, each with
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the root mean square length b. The Kuhn and Rouse segments will be
treated as equivalent — mainly their sizes are of concern here — and used
interchangeably.

13.2 Theoretical Basis and Experimental Support
for nt Being a Universal Constant

As in the previous chapters, it has been assumed that the number of (Kuhn)
segments per entanglement strand, Ne, is sufficiently large so that the mean
square end-to-end distance of an entanglement strand can be expressed as

a2 = Neb
2 = C∞

Me

mo
b2o = K∞Me (13.1)

where C∞ is the characteristic ratio, mo is the average mass per chemical
segment, bo is the average length per chemical bond, and K∞ = R2/M

where R2 is the mean square end-to-end distance 〈R2〉 of a freely jointed
chain or a Gaussian chain of molecular weight M . The importance of
Eqs. (8.3) and (13.1) cannot be over-emphasized; we recall their frequent
use in deriving the reptation time and the damping function in the Doi–
Edwards theory (Chapter 8), in obtaining the functional form for the
primitive-chain contour length fluctuation process as well as the terminal
relaxation time in the ERT (Chapter 9) and in describing the chain-tension
relaxation process by Doi (Chapter 12).

The plateau modulus of a polymer melt GN is proportional to the num-
ber of entanglement strands per unit volume nv:

GN =
4ρRT
5Me

=
4
5
nvkT (13.2)

with

nv =
ρNA

Me
(13.3)

where ρ is the polymer density, NA the Avogadro number, and k the
Boltzmann constant. Because of the universality of chain entanglement
as summarized in Sec. 13.1, a certain one-to-one correspondence should
exist between the entanglement distance a and nv. A logical way is to
calculate a quantity which is independent of dimension. This considera-
tion led to proposing that the number of entanglement strands per cubed
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entanglement distance denoted by nt:

nt = nva
3 =

ρNA

Me
(
√
K∞Me)3 (13.4)

should be a universal constant.15 Every quantity in Eq. (13.4) can be inde-
pendently determined by experimental measurements: Me from the mea-
sured value of the plateau modulus (Eq. (13.2)), and K∞ from the R2 value
obtained mainly from the small-angle neutron scattering (SANS) measure-
ment on the polymer melt or from the light scattering measurement or the
intrinsic viscosity measurement of the dilute solution system under the θ
condition. Shown in Tables 13.1 and 13.2 are the measured ρ, K∞, and
Me (or GN ) values of two sets of polymers at two different temperatures,

Table 13.1 Molecular and rheological characteristics for polymers at 413 K. See Table
13.3 for the polymers denoted by the abbreviations. As defined in the text, ρ in g/cm3;
GN in MPa; K∞ in nm2/mol g; and a in nm. Reproduced, with permission, from
Ref. 16.

Polymer ρ GN K∞ × 102 a Me nt

PE 0.78 2.60 1.25 3.22 828 18.98
PEB-2 0.79 2.21 1.21 3.44 976 19.65
PEB-4.6 0.79 1.90 1.15 3.62 1139 19.74
PE0 1.06 1.80 0.81 3.62 1624 18.64
PEB-7.1 0.79 1.55 1.05 3.83 1398 19.11
PEB-9.5 0.79 1.40 1.05 4.04 1552 20.18
PEB-10.6 0.79 1.30 1.06 4.21 1674 21.29
1,4-PBd 0.83 1.25 0.88 3.99 1815 17.37
PEB-11.7 0.79 1.20 0.95 4.16 1815 18.89
alt-PEB 0.79 0.95 0.83 4.36 2284 17.31
PEB-17.6 0.80 0.90 0.91 4.71 2433 20.65
PEB-24.6 0.80 0.67 0.80 5.12 3276 19.66
alt-PEB 0.80 0.52 0.69 5.41 4226 18.02
HHPP 0.81 0.52 0.69 5.44 4279 18.32
a-PP 0.79 0.47 0.67 5.57 4623 17.76
PEB-32 0.80 0.43 0.69 5.95 5124 19.81
1,4-PI 0.83 0.42 0.63 5.83 5429 18.19
PIB 0.85 0.32 0.57 6.45 7288 18.78
PMMA 1.13 0.31 0.43 6.52 10013 18.86
PEB-39.3 0.81 0.30 0.65 6.90 7371 21.55
PEB-40.9 0.81 0.29 0.60 6.80 7652 19.90
H2-3,4-PI 0.81 0.22 0.53 7.31 10114 18.87
PS 0.97 0.20 0.43 7.60 13309 19.24
PDMS 0.90 0.20 0.46 7.50 12293 18.46
PEE 0.81 0.20 0.51 7.50 11084 18.46
PVCH 0.92 0.068 0.32 11.2 38966 20.07

Av. 19.14 ± 5.7%
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Table 13.2 Same as Table 13.1. For polymers at 298 K. Reproduced, with permission,
from Ref. 16.

Polymer ρ GN K∞ × 102 a Me nt

1,4-PEB 0.90 1.15 0.88 3.68 1543 17.35
alt-PEP 0.86 1.15 0.92 3.70 1475 17.58
PEB-17.6 0.86 1.12 0.93 3.75 1522 18.00
PEB-14 0.86 1.12 0.93 3.75 1522 17.97
PEB-24.6 0.86 0.69 0.80 4.46 2482 18.54
alt-PEB 0.86 0.58 0.73 4.62 2942 17.36
HHPP 0.88 0.52 0.69 4.81 3347 17.56
a-PP 0.85 0.48 0.66 4.83 3518 16.45
PEB-32 0.86 0.44 0.64 4.99 3888 16.62
PEB-39.3 0.86 0.38 0.62 5.30 4507 17.17
H2-50-PI 0.86 0.35 0.63 5.56 4876 18.23
1.4PI 0.90 0.35 0.60 5.51 5097 17.80
PIB 0.92 0.32 0.57 5.69 5686 17.93
PEB-40.9 0.86 0.30 0.55 5.59 5709 15.90
PDMS 0.97 0.20 0.42 6.37 9613 15.70
H2-3,4-PI 0.88 0.19 0.46 6.52 9160 15.99
PEE 0.87 0.18 0.49 6.80 9536 17.20
1,4-1,2-PBd 0.84 0.87 0.80 3.87 1880 16.24
62-PBd 0.89 0.81 0.73 3.98 2178 15.50
cis-PBd 0.90 0.76 0.76 4.22 2347 17.32
PPOX 1.00 0.70 0.60 4.12 2832 14.85
cis-PI 0.91 0.58 0.68 4.60 3120 17.18
PVE 0.89 0.57 0.66 4.53 3091 16.10
50-PI 0.89 0.41 0.55 4.85 4317 14.25
1,4-PEB 0.89 0.29 0.54 5.75 6090 16.79
PMA 1.11 0.25 0.44 6.19 8801 18.05
H2-1,4-MYRC 0.85 0.14 0.43 7.24 12077 16.13
1,4-MYRC 0.89 0.10 0.40 8.39 17681 17.93
H2-64-MYRC 0.85 0.10 0.41 8.30 16828 17.34
64-MYRC 0.89 0.07 0.37 9.65 24874 19.35

Av. 17.02 ± 6.6%

413K and 298K, which have been compiled by Fetters et al.16 Also shown
in the two tables are the calculated values of a (according to Eq. (13.1))
and nt (according to Eq. (13.4)). The abbreviations in the first column
of the tables denote polymers shown in Table 13.3. The two tables show
that while the plateau modulus GN , a key viscoelastic property, can dif-
fer by a factor as large as 38 (between PE and PVCH), the nt value
is constant. The averages of nt in Tables 13.1 and 13.2 are 19.14 and
17.02 with only 5.7% and 6.6% for the standard deviation δ, respectively.
The two average nt values differ by about 13%, which, though still small,
is somewhat larger than their standard deviations. Thus nt appears to
have a very weak temperature dependence, which may arise from a small
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Table 13.3 Polymers represented by the abbreviations used in Tables 13.1 and 13.2.
Reproduced, with permission, from Ref. 16.

PE polyethylene (the PE G0
N is from an extrapolation involving values

for the PEB-x samples (see below where x ranged from 2 to 19.7)
PEB-x poly(ethylene-co-butene) (the integer (x) denotes the number of

ethyl branches per 100 backbone carbons; these have been made by
the hydrogenation of polybutadienes of varying vinyl content; these
copolymers have a minimum to two ethylene units between two
1-butene units as a consequence of the 1,4-units in the parent
polybutadienes; thus, PEB-2 is equivalent to an 8 wt % EB and
PEB-50 to polybutene)

PEO poly(ethylene oxide)
62-PBd 1,2-1,4-polybutadiene ∼ 62/30/8 vinyl/trans/cis
cis-PBd 1,4-polybutadiene ∼ 96% cis constant
1,4-PBd 1,4-polybutadiene ∼ 50/40/10 trans/cis/vinyl

1,4-1,2-PBd copolymer of 1,4-polybutadience and 1,2-polybutadiene 60/40;
parent material of PEB-14

cis-PI 1,4-polyisoprene ∼ 100% cis content; natural rubber
1,4-PI 1,4-polyisoprene ∼ 75/20/5 cis/trans/3,4
alt-PEP essentially alternating poly(ethylene-co-propylene); hydrogenated

1,4-PI
1,4-PEB 1,4-poly(ethylbutadiene) ∼ 75/20/5 cis/trans/3,4
alt-PEB essentially alternating poly(ethylene-co-1-butene); hydrogenated

1,4-PEB
HHPP head-to-head polypropylene; hydrogenated

poly(2,3-dimethylbutadiene)
a-PP atactic (in the Bernoullian sense) polypropylene; hydrogenated

P2MP
PIB polyisobutylene
PMA poly(methyl acrylate)
PMMA poly(methyl methacrylate)(∼ 75% syndio-tactic)
H2-3,4-PI copolymer of poly(iospropylethylene) and

poly(1-methyl-1-ethylethylene) 75/25; hydrogenated 3,4-PI
PS polystyrene
PVCH poly(vinylcyclohexane) from the hydrogenation of polystyrene
PDMS poly(dimethylsiloxane)
PVE poly(vinylethylene) or 1,2-polybutadiene
PEE poly(ethylethylene); hydrogenated PVE
50-PI polyisoprene copolymer containing 50%-1,4 units and 50%-3,4 units
H250-PI hydrogenated version of 50-PI
1,4-MYRC 1,4-polymycene 97/3 1,4/3,4
H2-1,4-MYRC hydrogenated 1,4-MYRC
64-MYRC 1,4-3,4 polymyrcene 64/36 1,4/3,4; parent of H264-MYRC
H264-MYRC hydrogenated version of 64-MYRC

deviation from the ideal fundamental assumptions (Eqs. (13.1) and (13.2))
involved in obtaining Eq. (13.4). Nevertheless, the results clearly indi-
cate that nt is a universal constant, regardless of the great diversity in
microstructure.
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13.3 Concentration Dependence of nt

Consider the blend-solution system whose universal viscoelastic behavior
has been extensively studied in Chapter 11. Here we replace the weight
fraction W1 of the solvent component by φ. Then for the blend solution we
have the entanglement molecular weight:

M ′
e =

Me

φ
(13.5)

and the plateau modulus:

G′
N =

4
5
φρRT

M ′
e

=
4
5
ρRT

Me
φ2 . (13.6)

Using Eqs. (13.1), (13.3), and (13.5), the number of entanglement strands
per unit volume and entanglement distance in the blend solution, denoted
by n′

v and a′ respectively, are obtained as

n′v =
φρNA

M ′
e

= nvφ
2 (13.7)

a′2 = K∞M ′
e =

a2

φ
. (13.8)

Corresponding to Eq. (13.4), the number of entanglement strands per cubed
entanglement distance for the blend solution is now defined by

n′t = n′va
′3 . (13.9)

By using Eq. (13.4), the substitution of Eqs. (13.7) and (13.8) into Eq. (13.9)
gives

n′
t = nt

√
φ . (13.10)

Thus, due to the presence of the solvent molecules, the number of entan-
glement strands per cubed entanglement distance decreases with dilution.

13.4 Packing of Polymer Chains

The fact that nt is a universal constant for the pure-melt system indicates
that the constraint effect of entanglement on the viscoelastic behavior is
mainly due to the long length of the polymer chain and basically has nothing
to do with the microstructure of the polymer. Regarding each segment as
a Kuhn segment, we can assume that each segment is cylindrical-shaped,
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with length b and diameter d. The size of a Kuhn segment considered here
contains the average contribution of free volume, which necessarily exists
among segments. Taking the average nt to be 18 and by considering the
packing of the Kuhn segments in a volume a3, we have

π

4
d2bNe =

a3

18
. (13.11)

Using Eq. (13.1), we obtain from Eq. (13.11)

Ne = 200
(
d

b

)4

(13.12)

which indicates that the number of Kuhn segments per entanglement strand
Ne is solely determined by and very sensitive to the aspect ratio d/b of
the Kuhn segment; the thinner the freely jointed chain (or the Gaussian
chain), the smaller the number of segments in one entanglement strand.
Physically, this relation is indeed a very reasonable expectation. Although
the microstructural details are ignored in using the Kuhn segment andNe to
obtain Eq. (13.12), whether both the aspect ratio b/d and Ne are universal
constants remains to be seen. As discussed extensively in the previous
chapters, the viscoelastic behavior of an entangled polymer is universal as
expressed in terms of the normalized molecular weight M/Me (or M/M ′

e).
Whether universality can extend into the size scale below Me (for instance,
Ne being a universal constant) is not now known. We may say that there
is currently a not well-understood gap existing between the Rouse-segment
size scale and the entanglement-strand size scale. Some progresses in this
area have recently been made as summarized in Appendix 13.A. However,
how valid or useful the above analysis in terms of the aspect ratio of the
Kuhn segment is, remains to be confirmed by more experimental studies.
For polystyrene and cis-polyisoprene, whose Me and m (or MK) values are
both available (see Tables 13.1–13.3 and Table 1 of Ref. 2), the Ne values
agree well with each other: 16 for PS and 17 for cis-PIP. By contrast, the
Ne value for polyisobutylene similarly obtained appears somewhat larger
(20–36), with a larger uncertainty.

13.5 Some Comments

From the view point that a plateau modulus GN can only be clearly mea-
sured in a nearly monodisperse high-molecular-weight sample, the num-
ber of entanglement strands per cubed entanglement distance nt, which
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is calculated using the GN value, has a clear definition only in the high-
molecular-weight region. However, the extensive analysis of the viscoelastic
behavior in terms of the ERT shows that Me does not change with molec-
ular weight decreasing to as low as just above Me (Chapters 10 and 11).
Furthermore, it has been shown in Chapter 11 that, within a small experi-
mental error, the onset of entanglement Mo

e is equivalent to the entangle-
ment molecular weight Me determined from the plateau modulus according
to Eq. (13.2).17,18 These results suggest that Eq. (13.4) for nt remain appli-
cable in the molecular-weight region where a clear modulus plateau is not
visible, as long as M > Me. What really affects the polymer viscoelas-
ticity as the molecular weight decreases (such as the gradual disappear-
ance of a clear modulus plateau as M becomes less than about 7Me) is
not an entanglement-related structural change which would affect nt, but
the decline of the reptation influence and the simultaneous increase in the
importance of the primitive-chain-contour-length-fluctuation effect (Chap-
ters 9 and 10).

When Fetters et al. reported the voluminous data covering a wide range
of GN (Tables 13.1 and 13.2), they offered another interpretation for nt as a
universal constant. They started with the idea that the larger the dimension
of a chain coil, the greater the volume it sweeps out, and the greater the
number of other chains it will encounter with which it might entangle. They
defined the volume pervaded by the chain as

Vsp = A〈R2
g〉3/2 = A

[
C∞Mb2o

6mo

]3/2

(13.13)

where A is a constant of order unity. And they considered the situation
that Nsp chains, each with molecular weight M , would fill a volume Vsp:

Nsp =
VspρNA

M
. (13.14)

Then, they defined Me (which they also linked with the plateau modulus
GN according to Eq. (13.2) as described below) as the molecular weight of
a chain at which Nsp = 2, that is, when there is just one other chain in the
spanned volume. Since Vsp is proportional to a3 at M = Me, the argument
naturally leads to an equation equivalent to Eq. (13.4), disregarding the
difference in the proportional constant. The arbitrariness of setting Nsp = 2
at M = Me is absorbed in the proportional constant as well. Fetters et al.
started by setting Nsp equal to 2 at the onset of entanglement, which they
assumed to be Me, and then they moved on to link this Me with the plateau
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modulus GN according to Eq. (13.2), which is really experimentally defined
in the high-molecular-weight region. In view of the result that the onset of
entanglement Mo

e is equivalent to the entanglement molecular weight Me

as shown in Chapter 11 and further pointed out above, the argument of
Fetters et al. might appear equivalent to Lin’s. Since entanglement in a
monodisperse polymer melt involves many chains, even in the region where
entanglements have just begun to occur, it seems somewhat arbitrary to
set Nsp = 2, i.e. only involving two chains, at the onset of entanglement.
In effect, as long as Nsp is held to be a constant, an equation equivalent
to Eq. (13.4) will be obtained. Then, what should Nsp be at M = Me?
As pointed out above, nt is only related to the structural aspect which
remains the same as long as M > Me = Mo

e .

Appendix 13.A — The Rouse Segment vs.
the Kuhn Segment

In its original definition, the Rouse segment is regarded as an artificial struc-
tural unit and its size can be arbitrarily chosen for describing slow polymer
viscoelastic behavior.19 When we are interested in the fast dynamic pro-
cesses in polymer viscoelasticity, such as those that would be theoretically
treated as the high Rouse or Rouse–Mooney modes of motion (Chapter 7
and Appendix 9.B), the size of a Rouse segment becomes an issue. The
Rouse-segment size of concern here is the smallest Rouse-segment size that
can be determined experimentally in accordance with its definition (as in
the Rouse theory for polymer viscoelasticity). Related to this subject are
the early studies of the Kuhn segment based on the determination of the
persistence length by neutron scattering.12−14 A logical question to ask is
what the relative sizes of the Rouse and Kuhn segments are as determined
experimentally in accordance with their respective definitions. While the
distribution based on the freely jointed chain is Gaussian (Eq. (1.42)) only
when the chain is long (large N), the Gaussian distribution of the Rouse-
chain model (Eq. (1.48)) occurs between any two beads in the chain. This
difference seems to suggest that it may take a certain number of segments —
Kuhn segments — in the freely jointed chain model to form one Rouse seg-
ment. But the studies as briefly summarized in the following indicate they
are actually nearly of the same size:

If the molecular weight of a Rouse segment, m, is known, the upper
modulus bound G′

R(ω → ∞) = ρRT/m (or in terms of Young’s modulus,



September 3, 2010 9:11 WSPC/Book Trim Size for 9in x 6in b959-ch13 FA

Number of Entanglement Strands per Cubed Entanglement Distance 267

E′
R(ω → ∞) = 3ρRT/m as used in Refs. 1 and 2) for the range of G′(ω)

(or equivalently G(t); see Appendix 10.A) where either the Rouse theory
or the ERT is applicable can be predicted. As detailed in Chapter 14, a
relaxation modulus G(t) functional form can be assumed to be the sum of
an energy-driven process (the glassy relaxation) and entropy-driven modes
of motion or processes as well described by the Rouse theory or the ERT.
In such a scheme,20,21 G(t) is partitioned at the modulus ρRT/m into
the energetic (short-time and high-modulus) and entropic (long-time and
low-modulus) regions. As the transition from the former to the latter is
basically smooth, one cannot unambiguously extract the value of ρRT/m
from analyzing a measured viscoelastic response alone. Making use of the
observed two different coexisting stress optical rules: one applicable to the
fast glassy-relaxation region and the other to the slow rubbery (or entropic)
region, Inoue and Osaki have obtained the E′

R(ω →∞) = 3ρRT/m values
for different polymers by analyzing dynamic mechanical and birefringence
results together.1,2,5,6 From the obtained E′

R(ω → ∞) values they have
calculated the m values for different polymers. They have also calculated
the molecular-weight values of the Kuhn segment, MK (Sec. 1.4), from the
unperturbed mean square end-to-end and fully extended end-to-end dis-
tances of their studied polymers.2 They have found that the m and MK

values are the same within experimental errors. Through a theoretical
analysis interrelating the depolarized photon-correlation and viscoelastic
results of polystyrene concentrated-solution and melt systems, the dynam-
ics and size of a “Rouse” segment have been studied. The value of m
estimated from the study is close to the value obtained by Inoue et al. for
polystyrene. As the Rouse-segment and Kuhn-segment pictures are allowed
to be interchanged in the analysis, the study is basically consistent with the
conclusion of Inoue and Osaki. For polystyrene, Inoue et al. have obtained
m = 850 and MK = 840 consistent with the values (780–900) obtained
by different studies, including persistence-length measurements by neutron
scattering.7−14 In the later chapters, m (= MK) = 850 will be used in all
the analyses of the results of polystyrene.

Due to its entropic spring potential, the Rouse segment is infinitely
stretchable (Sec. 6.4.b) and is artificially soft. In spite of this unphysi-
cal nature, the Rouse-segment-based molecular theories: the Rouse theory
and the ERT are quantitatively successful in describing polymer viscoelas-
tic responses over the entropic region as extensively shown in Chapters 10
and 11. The Kuhn segment as defined in the freely jointed chain model
is totally rigid, which is mainly useful for describing the conformation of
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a polymer chain — a static property. The excessive softness of a Rouse
segment is in sharp contrast to the total rigidity of a Kuhn segment. As m
is nearly equal to MK, this contrast represents a paradox. Trying to under-
stand this paradox, Inoue and Osaki2 have suggested that the Rouse seg-
ment likely includes contributions from complicated motions, not included
in the Rouse-chain model as originally developed. In Chapter 17, stress
relaxations of Fraenkel chains obtained by Langevin equation-based Monte
Carlo simulations have been analyzed.4 As detailed in that chapter, the
analyses have given rise to a theoretical basis for resolving the paradox.
The physical essence of the basis is that the Fraenkel segment plays a dual
role: as the Rouse segment in a Gaussian chain for describing the entropic
relaxation process in G(t) and as the Kuhn segment in a freely jointed chain
for describing the chain conformation.
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Chapter 14

Glass Transition-Related
Thermorheological Complexity
in Polystyrene Melts

14.1 Introduction

In the short-time or high-frequency region of the viscoelastic response
(relaxation modulus G(t), viscoelastic spectrum G∗(ω) or creep compli-
ance J(t)) of a polymer melt with modulus values in the range from ∼ 107

to ∼ 1010 dynes/cm2 (or compliance values in the range from ∼ 10−7 to
∼ 10−10 cm2/dyne) the chain dynamics (often referred to as the glassy-,
structural- or α-relaxation) is much affected by energetic interactions
among microstructural segments.1−4 For simplicity we refer to this region
as the energetic region. By contrast, the long-time (low-frequency) region
with modulus values below ∼ 107 dynes/cm2 (corresponding to compli-
ance values larger than ∼ 10−7 cm2/dyne), where the Rouse-segment-based
molecular theories: the ERT and the Rouse theory, are quantitatively
applicable5−9 as extensively shown in Chapters 10 and 11, is referred to
as the entropic region. Experimental results10−18 indicate that the tem-
perature dependence of the time scales of (or dynamics in) the energetic
region is in general stronger than that of the entropic region. The effect that
the time (or frequency)–temperature superposition principle is not appli-
cable when the whole time range covering both the regions is considered is
generally referred to as the thermorheological complexity.

The energetic region has rarely been studied for two reasons: one exper-
imental and the other theoretical. Experimentally, accurate measurements
of G(t) or G∗(ω) over the energetic region require an extremely stiff trans-
ducer, which, due to lack of enough sensitivity, is in general not suitable for
the commonly studied entropic region. For this reason, the experimental
G(t) and G∗(ω) results studied in Chapters 10 and 11 are confined to the

269
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entropic region. As opposed to the ERT and the Rouse theory describ-
ing very successfully the viscoelastic relaxation over the entropic region, a
molecular theory applicable in the energetic region does not exist. Due to
these difficulties, the thermorheological complexity has seldom been stud-
ied and analyzed. The thermorheological complexity in polystyrene sam-
ples was first investigated by Plazek performing extensive creep compliance
measurements. Using a frictionless magnetic bearing, Plazek was able to
measure the creep compliance J(t) as small as∼ 10−10 cm2/dyne and obtain
the J(t) curves over five decades in time scale in a single measurement run
in the best cases. Plazek’s J(t) results contain rich information about
the glassy-relaxation process as well as the associated thermorheological
complexity.

Plazek’s J(t) results have been analyzed through a scheme using the
successful description of the viscoelastic relaxation over the entropic region
in terms of the Rouse theory (for entanglement-free systems) or the
ERT (for entangled systems) as the frame of reference. In this scheme,
the glassy-relaxation process AGµG(t) [or Af

GµG(t); Eq. (14.2) or (14.6)
and Eq. (14.3)] represented by the stretched exponential or Kohlrausch,
Williams, and Watts (KWW) function19−21 is incorporated into either of
the two theories. The creep compliance is related to the relaxation modu-
lus by the convolution integral Eq. (4.73). With the G(t) functional form
given, J(t) can be calculated by means of Eq. (4.73) for comparison with
the experimental curves. The convolution integral equation may be solved
numerically by the method of Hopkins and Hamming22,23 as detailed in
Appendix 4.A.

The consistently quantitative capabilities of the ERT and the Rouse
theory as detailed in Chapters 10–11 should be exploited, which led to
developing the above sketched scheme of analysis. With respect to either
of the two theories as the frame of reference, the fast glassy-relaxation pro-
cess can be studied in perspective. The vital basis for using the ERT as
the reference frame in the study of entangled systems is the result that the
frictional factor K is independent of molecular weight as expected theoret-
ically (Sec. 10.5). In accord with K carrying the temperature dependence
of all the relaxation times in the ERT, the time–temperature superposition
principle holds within the entropic region of entangled systems. K being
independent of molecular weight, the temperature dependence of the glassy-
relaxation time with respect to that of K is expected to behave in a cer-
tain universal way. As detailed below, the same can be said about using
the Rouse theory as the reference frame for an entanglement-free system.
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With the ERT and the Rouse theory successfully applied to the entropic
region, J(t) line shapes over the whole time range have been quantitatively
analyzed in a systematic way as the KWW form for the glassy relaxation
AGµG(t) is included.

14.2 G(t) Functional Forms

(a) Entangled case

Incorporating the glassy-relaxation process AGµG(t) into the ERT, the
relaxation modulus G(t) for a nearly monodisperse entangled sample is
expressed as

G(t) = GNF (t)
∫
f(M)GE(M, t)dM (14.1)

with GNGE(M, t) being equal to the right side of Eq. (9.18) and

F (t) = 1 + µA(t/τA) +AGµG(t/τG). (14.2)

In Eq. (14.1), f(M) is the molecular-weight distribution of the sample under
study, which may be expressed in terms of the Schulz distribution (Eq.
(10.3)). The functional forms and relaxation times of the different pro-
cesses contained in the ERT: µA(t), µX(t), µB(t) and µC(t) have been
detailed in Chapter 9. As shown in Chapter 10, the frictional factor K in
the three processes: µX (t), µB(t) and µC(t), is independent of molecular
weight as expected from the theory. However, the frictional factor in the
Rouse–Mooney process µA(t), as denoted by K ′, is found greater than K

by a factor RK that depends on the normalized molecular weight M/Me

(Eq. (11.6)) for the polystyrene system. As it turns out, the predetermined
RK (M/Me) factor plays a very important role in obtaining or discov-
ering the universality of the Tg-related dynamics and thermorheological
complexity of the polystyrene system studied in this chapter. The glassy-
relaxation process, with the relaxation strength given byAG, is expressed
by the stretched exponential (KWW) function

µG(t/τG) = exp
[−(t/τG)β

]
; 0 < β ≤ 1, (14.3)

which is widely known to describe closely the structural relaxation char-
acteristic of glass-forming liquids or polymer melts. With the relaxation
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given by (Eq. (14.3)), the average glassy-relaxation time is defined by

〈τ〉G =
∫ ∞

0

µG(t/τG)dt =
τG
β

Γ(1/β) (14.4)

where Γ is the gamma function. Then, the glassy-relaxation time as a
function of temperature relative to the time scales of the µA(t), µX(t),
µB(t) and µC(t) processes, which are all proportional to the frictional factor
K — including K ′ = RKK in µA(t) — can be characterized in terms of
the structural-growth parameter defined by:

s =
〈τ〉G
K

. (14.5)

The combination of Eqs. (14.1)–(14.5) may be used to analyze the J(t)
results of entangled systems, with s treated as a temperature-dependent
fitting parameter, which has the unit Da2.

(b) Entanglement-free case

As shown in Chapter 11, in an entanglement-free melt or blend solution
the viscoelastic spectrum is quantitatively described by the Rouse theory
over the entropic region. The onset of entanglement has been observed by
monitoring the initial deviation from the Rouse theory as the molecular
weight or concentration increases. The observed onset molecular weight of
entanglement is in close agreement with the entanglement molecular weight,
Me or M ′

e (Eq. (11.4)) calculated from the plateau modulus (Eqs. (8.2) and
(11.A.3)). Furthermore, the G(t) and G′(ω) line shapes of a series of entan-
gled blend solutions have been quantitatively analyzed in terms of the linear
combination of the ERT and the Rouse theory, respectively, multiplied by
the weight fractions of the entangled and entanglement-free components
(Eq. (11.5)). As shown by the quantitative line-shape analyses, the fric-
tional factor K in the ERT is the same as that in the Rouse theory within
a small possible experimental error (< 20%). In other words, the two theo-
ries are on the same footing at the Rouse-segmental level. Thus, Eq. (14.5)
is equally applicable in an entanglement-free system as long as its molecular
weight is greater than that of a Rouse segment. Then, corresponding to
Eqs. (14.1)–(14.4) for a nearly monodisperse entangled polymer melt, the
relaxation modulus for an entanglement-free melt is expressed by

G(t) = Af
GµG(t) + ρRT

∫
f(M)
M

µR(t,M)dM. (14.6)
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In Eq. (14.6), µR(t,M) representing the Rouse relaxation for the component
with molecular weight M is expressed by

µR(t,M) =
N−1∑
p=1

exp
(
− t

τp

)
(14.7)

(in accordance with Eq. (7.58) with the notation sP being replaced by τp
here) with the relaxation times {τp} given by Eq. (7.56) or (7.57). And
Af

G is the full relaxation strength of the glassy relaxation and is related
to AG of Eq. (14.2) by Af

G = AGρRT/Me = (5/4)AGGN . Incorporating
AGµG(t) into the ERT or Af

GµG(t) into the Rouse theory is intended as a
phenomenological description. As the relaxation times of µX(t), µB(t) and
µC(t) are all much longer than the slowest in µG(t), it makes no practical
difference to express the glassy relaxation either as the AGµG(t) term inside
F (t) (Eq. (14.2)) or as a separate term Af

GµG(t) in Eq. (14.6).
The number of the Rouse segments per chain with molecular weight M

as contained in Eq. (7.56) or (7.57) can be defined as

N = c int(M/m) + 1 (14.8)

where the function cint(x) converts a number x to an integer by rounding
the fractional part of x. For the analyses of polystyrene systems, m = 850
as given in Appendix 13.A is used.

In terms of the G(t) functional forms given above, the J(t) curves of two
entangled (samples A and B) and one entanglement-free (sample C) nearly
monodisperse samples (Plazek) and theG∗(ω) spectra of four entanglement-
free nearly monodisperse samples (L10, A5000, A2500 and A1000; Inoue
et al.15) have been analyzed quantitatively and consistently. The weight
average molecular weights of all these samples are given in Table 14.1. As
the ultimate significance of the studies presented in this chapter is based
on the literal applications of the Rouse theory and the ERT, the analyses
are explained and discussed in detail.

14.3 J(t) Line-Shape Analyses of Entangled Systems

(a) Line-shape fitting procedure

The successful application of the ERT to the entropic region of the vis-
coelastic response of entangled systems has been shown by extensive analy-
ses of the G(t) and G′(ω) results (Chapter 10). As expected from this, the
J(t) line shape (at a certain temperature) of an entangled sample over the
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Table 14.1 Characteristics: Mw, Mw/Mn and Tg (based on DSC and defined at τS = 1,000 sec) and parameters: Af
G, β and Z extracted

by analyzing the creep-compliance J(t) curves or viscoelastic spectra G∗(ω) of the polystyrene samples, whose structural-relaxation times
τS , structural-growth parameters s′ and frictional factors K′ are displayed, respectively, in Figs. 14.13, 14.14 and 14.15. Also shown are
the K values at 127.5◦C of samples A, B, C and F2 along with the average value of K shown in Table 10.1; and the Mw, Mw/Mn, and
Tg (DCS) of F2. The reference theory used in each analysis is indicated.

Z
(Mw/Mn)

K(s/Da2)
(127.5◦C)

Af
G × 10−9

dynes/cm2
Tg(◦C)

(τS = 1,000 sec)
Tg(◦C)∗
(DSC)

Displayed in Figs. 14.13,
14.14 or 14.15Sample Mw Theory β

A 46,900 20(1.05) ERT 4.8 × 10−9 12.95 0.41 97 97.1 τS , s′, K ′ from J(t)
B 122,000 20(1.05) ERT † 9.73 0.41 98.03 (99.55

‡) 100 τS , s′, K ′ from J(t)
C 16,400 20(1.05) Rouse 4.15 × 10−9 9.93 0.42 93.8 93.8 τS , s′, K ′ from J(t)
F2 16,700 120(1.01) ERT 4.0 × 10−9 93.9

Average value from Table 10.1 ERT 4.9 × 10−9 ± 10%
Mw from 3.4 × 104 to 6 × 105

L10 10,500 50(1.02) Rouse 9.93 0.42 90.03 90 τS , s′, K ′ from G∗(ω)
A5000 5,970 50(1.02) Rouse 10.9 0.42 81.64 82 τS , s′, K ′ from G∗(ω)
A2500 2,630 20(1.05) Rouse 10.9 0.42 59.43 59.6 τS , s′, K ′ from G∗(ω)
A1000 1,050 (1.13) 11.5 0.36 6.22 τS from G∗(ω)

∗Read from Fig. 14.12.
†Because s-B is contaminated by residual plasticizers, its K value at 127.5◦C is not listed.
‡Correction for the contamination by the residual plasticizers has been made, which is explained in Sec. 14.12.



September 2, 2010 13:28 WSPC/Book Trim Size for 9in x 6in b959-ch14 FA

Glass Transition-Related Thermorheological Complexity in Polystyrene Melts 275

rubber(like)-to-fluid region is well described by Eq. (14.1) with a properly
chosen polydispersity parameter Z for the Schulz distribution f(M). A
full-range J(t) curve can be calculated through Eq. (4.73) from Eq. (14.1)
with K fixed at a certain value and a set of AG, β and s parameters as con-
tained in Eqs. (14.2)–(14.5). The AG, β and s parameters mainly affect the
short-time/small-compliance region (<∼ 5×10−7 cm2/dyne). In the initial
stage of the fitting procedure, the line shape of J(t) is the main concern.
Full-range J(t) curves calculated with AG, β and s as adjustable parame-
ters are allowed to be shifted along the time axis (log scale) to find the one
that best fits the J(t) line shape measured at a certain temperature. In this
way close fittings to the J(t) line shapes of samples A and B at different
temperatures are obtained as shown in Figs. 14.1 and 14.2, respectively.a

Of particular importance are the temperature-dependent s values extracted
from the J(t) line-shape fitting analyses. The experimental J(t) results
shown in Figs. 14.1 and 14.2 are those shown in Fig. 1 of Ref. 10 and Fig. 7
of Ref. 11, respectively, which have all been reduced using 100◦C as the
reference temperature for the compliance (i.e. multiplied by ρT/ρ0T0 with
ρ0 being the density at T0 = 373K). Accordingly, all the theoretical J(t)
curves are calculated at ρT/ρ0T0 = 1. Following Plazek’s notation, a thus
calculated J(t) is denoted by Jp(t); the corresponding relaxation modulus
G(t) is denoted by Gp(t). In Figs. 14.1 and 14.2, all the theoretical Jp(t)
curves are calculated with K = 5×10−9; and the experimental data points
(at individual temperatures) are superimposed on the calculated curves by
a shift along the time axis. The time coordinate axis with respect to which
all the Jp(t) curves calculated with the same K are shown is referred to
as a K-normalized time coordinate axis; and a time scale on it as a K-
normalized time scale. 5 × 10−9 is nearly the K value of polystyrene at
127.5◦C (see Table 10.1). Thus, Figs. 14.1 and 14.2 use a mixed reference
system: 100◦C as the reference temperature for the compliance coordi-
nate (for ρT/ρ0T0 = 1) and 127.5 (±0.4)◦C for the K-normalized time
coordinate. Being wavy, each Jp(t) curve has three bending points: two
concaves and one convex as shown in the figures. Each bending point being
a characteristic position in the two-dimensional plot of log Jp(t) vs. log t,
matching the calculated and measured curves around each bending point
allows the absolute value of compliance (independent of temperature as
all being at the reference temperature 100◦C) and the K-normalized time
scale (dependent on temperature) to be determined. And the simultaneous

aFigures 14.1, 14.2 and 14.7 are formed by superimposing the experimental data
points on the calculated curves using commercially available graphics software.
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Fig. 14.1 Creep compliance Jp(t) data of sample A measured at 114.5 (�); 109.6 (•); 104.5 (◦); 100.6 (�); and 97 (�)◦C superimposed on
the corresponding theoretical curves (solid lines; from left to right, respectively) calculated using K = 5×10−9, GN = 1.89×106dyn/cm2,
and the AG, β and s values obtained as explained in the text and listed in Tables 14.1 and 14.2.
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Fig. 14.2 Creep compliance Jp(t) data of sample B measured at 119.8 (�); 113.8 (•); 105.5 (◦); 101.0 (�); and 98.3 (�)◦C super-
imposed on the corresponding theoretical curves (solid lines; from left to right, respectively) calculated using K = 5 × 10−9, GN =
1.89 × 106 dyn/cm2, and the AG, β and s values obtained as explained in the text and listed in Tables 14.1 and 14.2.
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matching over two bending points is a key criterion for determining the
line shape of Jp(t). For the shown close agreements between the calculated
and measured Jp(t) curves, in the case of sample A, no shift along the
compliance axis is required at different temperatures. In the case of sample
B, no shift along the compliance axis is required at 105.5, 101.0 and 98.3◦C,
while a shift of the experimental data upwards by ∼ 5% has been made (for
a slightly better agreement than can be achieved without making such a
shift) at 119.8 and 113.8◦C. From each superposition, a time-scale shift
factor SF is obtained, which, when multiplied by 5 × 10−9, gives the K
value at the corresponding temperature. Thus determined K values at
different temperatures are listed in Table 14.2. For sample A at 125◦C
and sample B at 134.5◦C, the measured Jp(t) curves cover the region with
compliance from ∼ 4 × 10−7 to ∼ 3 × 10−5 cm2/dyne, which, as discussed
below, can only be used to determine their K values. As trustworthy s

values for sample A at 125◦C and sample B at 134.5◦C are not obtainable,
their full-range Jp(t) curves are not calculated and shown in Figs. 14.1 and
14.2. The K value of sample A at 127.5◦C as shown in Tables 10.1, 14.1
and 14.2 is calculated from its K value at 125◦C using the viscosity ratio
of the sample between the two temperatures.12

(b) Fitting parameters

In analyzing the Jp(t) line shapes as described above, conditions have to
be satisfied to ensure that the close fittings at different temperatures as
shown in Figs. 14.1 and 14.2 are unique and physically meaningful. This is
best explained through discussing one by one the parameters Me, K,K ′(or
RK(M)), Z, m, AG, β, and s involved in describing the Jp(t) line shapes
over eight decades in time scale in one case and nine decades in the other
case. As explained below, some of these parameters have been predeter-
mined; some are uniquely determined in a particular region of Jp(t); and
some may be regarded as equivalent to predetermined ones. As detailed
below, K and Z correlate with the time scale and line shape, respectively,
of the region of Jp(t) with compliance > ∼ 5× 10−7 cm2/dyne; s with the
time scale of Jp(t) over the region < ∼ 5× 10−7 cm2/dyne; and AG and β
with the line shape of Jp(t) over the region < 10−8 cm2/dyne.

The entanglement molecular weight Me has been predetermined from
the plateau modulus — a static property. An error in the Me value will
lead to an error in the obtained K value as both Me and K appear in
the equations for the relaxation times τA, τX , τB and τC as pointed out
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Table 14.2 Structural and dynamic quantities: s′, K, K ′ and τS extracted by analyzing the experimental J(t) curves of samples A
and B at different temperatures.

Sample A Sample B

Temp
(◦C)

K
(s/Da2)

K ′ = 1.61K
(s/Da2)

s′ = s/1.61
(Da2)

Temp
(◦C)

K
(s/Da2)

K ′ = 3.16K
(s/Da2)

s′ = s/3.16
(Da2)τS (s) τS (s)

97 9.84 × 10−4 1.58 × 10−3 35,090 1,000 [98.03]∗ [4.403 × 10−4] [1.39 × 10−3] [39,930] [1,000]
100.6 9.7 × 10−5 1.56 × 10−4 17,560 49.4 98.3 3.6 × 10−4 1.14 × 10−3 38,060 779
104.5 1.2 × 10−5 1.93 × 10−5 10,150 3.53 101 6.02×10−5 1.9 × 10−4 24,500 83.9
109.6 1.2 × 10−6 1.93 × 10−6 6,244 0.217 103.3 1.52 × 10−5 4.79 × 10−5 18,640 16.1
114.5 1.96 × 10−7 3.16 × 10−7 3,903 0.0222 105.5 5.43 × 10−6 1.72 × 10−5 13,033 4.03
125 9.08 × 10−9 1.46 × 10−8 113.8 1.49 × 10−7 4.71 × 10−7 5,474 4.64 × 10−2

127.5 4.8 × 10−9 7.68 × 10−9 119.8 2.61 × 10−8 8.25 × 10−8 2,867 4.26 × 10−3

134.5 8 × 10−10 2.53 × 10−9

∗Values listed in brackets at this temperature are calculated from the equations obtained by least-squares fittings to the values
determined at different temperatures; see the text.
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in Chapter 10. The Me value used in the Jp(t) line-shape analyses is
the value 13,500 that has been well determined and used in the extensive
G(t) and G′(ω) line-shape analyses over the entropic region as detailed in
Chapter 10.

Z = 20 is obtained for both samples A and B giving Mw/Mn = 1.05
which is within the range expected for a nearly monodisperse sample as
those falling between Z = 30 and 120 extracted from the G(t) and G′(ω)
curves over the terminal region (Chapter 10). The Z parameter mainly
correlates with the line shape over the portions of Jp(t) with compliance
>∼ 5 × 10−7 cm2/dyne but not with their time scales, with which the K
value is sensitively correlated. Possible small uncertainties in Z virtually
have no effect on the obtained K value.

The K ′/K ratios, being determined by the time scale of the µA(t) pro-
cess relative to those in the plateau-terminal region (the µX(t), µB(t) and
µC(t) processes) have been extracted from the G(t) and G′(ω) line-shape
analyses (Chapters 10 and 11) and shown to be closely described by the
empirical Eq. (11.6). The K ′/K values used in the analyses of the Jp(t)
curves of samples A and B are calculated from Eq. (11.6).

The molecular weight of a Rouse segment, m, has been determined inde-
pendently (see Appendix 13.A). The m value mainly affects the interface
between the energetic region (dominated by the AGµG(t) process) and the
entropic region (described by the µA(t), µX(t), µB(t) and µC(t) processes in
the ERT). The separation between AGµG(t) and µA(t) in Eqs. (14.1) and
(14.2) represents a discontinuity as the separation between the first and
second terms of Eq. (14.6) does. The same discontinuity is also embod-
ied in Inoue’s analyses of dynamic mechanical and birefringence results
(Appendix 13.A). Using Eqs. (14.1)–(14.5) (or Eqs. (14.3)–(14.7)) for the
Jp(t) line-shape analyses, we have substituted a discontinuity for a smooth
transition as should occur in reality. The discontinuity picture can be con-
sidered as a first-order approximation and should work well if the location
of the discontinuity as represented by the m value is properly determined.
The discontinuity approximation and the value m = 850 used in the calcu-
lations are supported by the close agreements between the calculated and
the measured Jp(t) curves as shown in Figs. 14.1 and 14.2 (and Fig. 14.7).

TheK value is well determined by the time scales of the portions of Jp(t)
with compliance > ∼ 5× 10−7 cm2/dyne. The accuracy of the obtained K
value may be illustrated by the value obtained for sample A at 127.5◦C
being in close agreement the values obtained previously (Table 10.1). At
the same time, the Z value, being sensitive mainly to the line shape of
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Jp(t) over the same region, is well within the expected range. Thus, to the
same effect, we may regard K and Z as predetermined parameters as Me,
RK(M)(K ′/K or K ′ with K determined) and m are. In other words, AG,
β, and s are the main fitting variables, which affect Jp(t) only over the short-
time/small-compliance region. The end result is the seamlessly quantitative
and consistent descriptions of the Jp(t) curves at different temperatures over
the whole time range.

Among the three variables AG, β, and s, AG is basically dictated by
the glassy modulus, the reciprocal of the glassy compliance JG, and β

is determined by the Jp(t) line shape over the small-compliance region,
< 10−8 cm2/dyne. The determination of s (Eq. (14.5)), which sensitively
correlates with the K-normalized time scales of the Jp(t) curve in the
10−8 ∼ 5 × 10−7 cm2/dyne region and is effectively decoupled from how
AG and β are obtained. Figure 14.3 compares three Jp(t) curves calculated
at three different β values: 0.36, 0.41 and 0.46; all with AG = 5482 and
s = 56,550 as obtained for sample A at 97◦C. The one with β = 0.41 is the
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Fig. 14.3 Comparison of the Jp(t) curves calculated using AG = 5,482 and s = 56,550
at β = 0.36 (upper dashed line), 0.41 (solid line) and 0.46 (lower dashed line); the one
at β = 0.41 is the same as the calculated curve shown in Fig. 14.1 for sample A at 97◦C.
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calculated curve shown in Fig. 14.1 for sample A at 97◦C. The comparison
illustrates the sensitivity of the Jp(t) line shape over the small-compliance
region (< 10−8 cm2/dyne) to changes in β. From comparing the differ-
ences among the curves calculated at three different β values and the close
agreement of the calculated β = 0.41 curve with the experimental points
shown in Fig. 14.1, the uncertainty of β = 0.41 should be well within
±0.02. Figure 14.3 also illustrates the independence of the Jp(t) curve over
the s-sensitive region 10−8 ∼ 5 × 10−7 cm2/dyne from variations in β as
pointed out above.

Thus, s values at different temperatures can be uniquely obtained by
fitting the calculated Jp(t) curves closely to the measured ones as shown in
Figs. 14.1 and 14.2 with AG and β well determined by the small-compliance
region. In other words, the whole thermorheological complexity in Jp(t) of
the polystyrene samples is reduced to the simple temperature dependence of
the obtained s values as shown in Fig. 14.4. This reduction is of particular

Temperature (°C)

90 100 110 120 130 140

s 
(D

a
2 )

103
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Fig. 14.4 s values as a function of temperature of samples A (◦), B ( �) and C (�
determined by the Jp(t) line-shape analyses; � determined by matching the calculated
and experimental J0

ep values; the solid line is the best fit of the modified VTF equation
to the � data points).
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significance as we notice in Figs. 14.1 and 14.2 that the shift with tem-
perature in the ∼ 5 × 10−7 cm2/dyne region is not as large as that in
the ∼ 10−8 cm2/dyne region. One observes that the shift with tempera-
ture changes gradually with time scale (K-normalized) between the two
regions. This time-scale dependence of the shift factor in Jp(t) is referred
to as the temporally uneven thermorheological complexity as it occurs over
a considerably wide range, larger than two decades of time scale. The
temporal unevenness over the range is fully and uniquely described by
adjusting the single parameter s as indicated above. Concurrently, the
simple temperature dependence of s has a clear physical meaning: the tem-
perature dependence of the glassy-relaxation process being stronger than
that of the entropy-driven ones. This is clearly illustrated in Fig. 14.5
by the comparison of the Gp(t) curves — with time scale normalized by
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Fig. 14.5 Comparison of the Gp(t) curves (solid lines) corresponding to three Jp(t)
curves shown in Fig. 14.1 for sample A: a for 114.5◦C; b for 104.5◦C; and c for 97◦C.
The short-dash line is calculated without the AGµG(t) process; the long-dash line is
calculated without both the AGµG(t) and µA(t) processes.
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K = 5 × 10−9 — corresponding to the three Jp(t) curves of sample A
at 114.5, 104.5 and 97◦C shown in Fig. 14.1. In contrast to the tempo-
ral unevenness of thermorheological complexity in Jp(t), the shift factor
in Gp(t) changes quite abruptly from the value over the glassy-relaxation
region to that over the entropic region. As will be shown below, the tem-
poral unevenness of thermorheological complexity in Jp(t) arises from the
smearing of the different processes by the convolution integral Eq. (4.73).

On the surface, there are eight parameters involved in fitting the calcu-
lated Jp(t) curves quantitatively to the measured ones over the whole time
range. The above discussion explains why the whole thermorheological
complexity in Jp(t) is uniquely represented by the simple change in s with
temperature. All the other parameters can be determined independently
beforehand or by analyzing Jp(t) with respect to line shape or time scale
in a specific region, which is insensitive to changes in s.

The obtained K value of sample A at 127.5◦C as well as the AG and
β values for samples A and B are listed in Table 14.1. Due to the con-
tamination by residual plasticizers, the K value of sample B is not listed
for comparison and the AG of sample B is about 25% smaller than that
of sample A. As discussed below (Sec. 14.9 and 14.10), the small decrease
in the K and AG values due to the contamination in sample B basically
does not affect the conclusion that will be developed based on its s values
obtained at different temperatures.

Here, it should be stressed that the theoretical basis for the scheme
that enables the Jp(t) results to be quantitatively analyzed is ultimately
the frictional factor K in the ERT being independent of molecular weight
as expected. The ERT having met this crucial criterion for its validity, the-
oretically there is no limit to the time range of Jp(t) that can be analyzed,
depending on the molecular weight of the sample under study.

(c) Smearing Effect in J(t)

Shown in Fig. 14.6 is the comparison of the curves of log Gp(t) and
log Jp(t)−1 vs. log t calculated with K = 5× 10−9 using the s value corre-
sponding to 114.5◦C for sample A. One sees that the Gp(t) curve has clear
line-shape features showing the separate processes as given in Eqs. (14.1)
and (14.2), while the solution of the convolution integral Eq. (4.73) for
calculating Jp(t) smears the separate features greatly. To illustrate this
further, both the Gp(t) and Jp(t)−1 curves calculated without the contribu-
tion of the AGµG(t) process are shown for comparison with the full curves.
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Fig. 14.6 Comparison of the Gp(t) (solid line) and Jp(t)−1 (dashed line) curves for
sample A at 114.5◦C (the same Gp(t) as curve a shown in Fig. 14.5; the same Jp(t) as
the corresponding one shown in Fig. 14.1). Also shown are the Gp(t) (�) and Jp(t)−1

(�) curves calculated without the AGµG(t) process, and the Gp(t) curve (dotted line)
calculated without both the AGµG(t) and µA(t) processes.

Clearly, the contribution of AGµG(t) to Jp(t) extends its influence to the
(K-normalized) time scale of the µA(t) process; in contrast, the AGµG(t)
and µA(t) processes in Gp(t) are localized in their individual time-scale
regions and are well separated. Thus, the stronger temperature dependence
of the µG(t) process can much affect Jp(t) in the time-scale region of the
µA(t) process. In other words, in Jp(t) the effect of the increase in s with
decreasing temperature extends to the region around ∼ 5× 10−7 cm2/dyne
instead of being localized in the region of the glassy relaxation µG(t). As
the effect diminishes gradually with increasing time scale, the temperature
dependence of the time scale in the region around ∼ 5 × 10−7 cm2/dyne
is not as strong as that in the glassy-relaxation region — this is the tem-
poral unevenness of the thermorheological complexity in Jp(t) pointed out
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above. The unevenness has been first observed by Plazek (see Fig. 9 of
Ref. 11) saying “The divergence seen in the region of the ‘knee’ of the
reduced (recoverable compliance) curve indicates that all of the retarda-
tion mechanisms do not have the same temperature dependence.” Indeed,
this observation was an unusual discovery as Plazek stated “This discrep-
ancy would not have been detected without a large range of time scale (of
measurement).” However, without the help of a valid molecular theory as
the base, this observed phenomenon had remained unexplained for many
years. Now it is clear that the intricacy arises mainly from the smearing
effect of the convolution integral (Eq. (4.73)) and the source of the whole
phenomenon is traced back to a physical effect that can be simply stated:
the glassy relaxation having a stronger temperature dependence — as evi-
dently shown in Fig. 14.5. For sample B, a similar comparison of the curves
of log Gp(t) and log Jp(t)−1 vs. log t as that shown in Fig. 14.6 is observed
as it should. In the case of sample A, the glassy-relaxation process has a
small effect on the flow region of Jp(t). The effect is more noticeable in
sample A than in sample B, because the terminal region of the former
with a smaller molecular weight is closer to the glassy-relaxation region
in time scale than that of the latter. The effect becomes more obvious
as s becomes larger with decreasing temperature (see Fig. 14.1). In an
entanglement-free system as studied below with a molecular weight being
even smaller, the Jp(t) curves at different temperatures become even more
featureless because of the smearing effect. To ensure the uniqueness and
correctness of the Jp(t) line-shape analyses in the entanglement-free case,
consistencies with the analyses of the results of steady-state compliance J0

e

and viscosity η0 have to be checked as detailed below.

14.4 Analyses of J(t), J0
e and η0 in an

Entanglement-Free System

The J(t) curves of an entanglement-free system can be analyzed in terms
of Eqs. (14.3)–(14.8) in the same way as those of the entangled systems
in terms of Eqs. (14.1)–(14.5). For an entangled system, a full discussion
of the uniqueness and significance of the involved parameters or fitting
parameters and their predeterminations or determinations have been given
in Sec. 14.3.b. In an entanglement-free system, the number of parameters
is reduced as the ratio K ′/K and the entanglement molecular weight Me

are not involved. As far as the glassy-relaxation process is concerned, the
involved fitting parameters in entangled and entanglement-free systems are
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the same. Thus, the discussion of fitting parameters given in Sec. 14.3.b is
equally applied to entanglement-free systems.

Given the facts that sample C has a molecular weight just slightly above
the entanglement molecular weight Me and a molecular-weight distribution
not extremely narrow, it is not immediately clear whether it is an entan-
gled or entanglement-free system. For achieving quantitative agreements
between the calculated and measured results for both J(t) and J0

e of sam-
ple C, the following factors need to be evaluated and determined: (1) The
choice of the functional form — i.e. Eq. (14.1) or Eq. (14.6) or even a
linear combination of Eqs. (14.1) and (14.6) (namely, using Eq. (11.5) as
the reference frame) if the system behaves as an entangled blend solu-
tion. (2) The Z parameter for the molecular weight distribution f(M).
(3) The AG (or Af

G) and β values for the glassy-relaxation process. They
can best be found by a process of trial and error until consistent quanti-
tative agreements are obtained. For sample C, it has been found that the
combination of Eq. (14.6) and Z = 20 gives the best result. The use of
Eq. (14.6) and the choice Z = 20 are closely related to each other. In view
of sample C’s Mw value being above Me (13,500), Eq. (14.1) instead of
Eq. (14.6) should be used. However, sample C’s molecular-weight distribu-
tion, though nearly monodisperse, is broad enough to have a sufficient total
amount of components with molecular weights belowMe, rendering the sys-
tem entanglement-free by dilution. With Z = 20 (Mw/Mn = 1.05), sample
C has 21 wt% of the distribution below Me. The dilution increases the
entanglement molecular weight from Me to M ′

e = 17, 090 as calculated from
Eq. (11.4). AsM ′

e > Mw, sample C immerses in an entanglement-free state.
By contrast, because of its extremely narrow molecular weight distribution,
F2 does not exhibit signs of entanglement dilution even though it has a
similar weight-average molecular weight (Mw = 16,700):b The viscoelastic
responses G(t) and G′(ω) of F2 clearly could not be described by the Rouse
theory over the entropic region (Chapter 10). Instead they have been suc-
cessfully analyzed in terms of the ERT with Z = 120 (Mw/Mn < 1.01) and
K ′/K = 1. In Table 14.1, the frictional factor K of F2 obtained from the
analysis presented in Chapter 10 is also listed for later discussions.

As s increases in sample C, the time scale of the glassy-relaxation process
becomes closer to those of the Rouse modes of motion; and the steady-state
compliance J0

e is predicted to decline according to Eq. (4.66). For sample C,

bCorrection: The F2 sample with Mw = 16,700 was wrongly referred to as F1 in
Ref. 4. Both F1 and F2 are samples studied in Refs. 6 and 7.
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a computer program can be set up to scan through a wide range of s to
calculate a large set of J0

e values (Eq. (4.63)), from which those matching
with the values determined experimentally at different temperatures can be
identified. The Af

G and β values listed in Table 14.1 for sample C allow con-
sistent and quantitative matching of the calculated results with the J(t) line
shapes from 93 to 119.4◦C and the J0

e values from 93 to 134.1◦C obtained
by Plazek. The Af

G and β values are, respectively, uniquely dictated by the
compliance values and line shapes of J(t) at 93 and 96◦C — namely, the
short-time/low-compliance region of J(t). As shown in Table 14.1, the β
value of sample C is consistent with those obtained for samples A and B.
And the Af

G value for sample C is between those for samples A (correspond-
ing to AG = 5,482) and B (corresponding to AG = 4,119). As indicated
above, the Af

G value of sample B being smaller is due to the contamination
by residual plasticizers. Af

G of sample C being smaller than that of sample A
should be at least partly due to its smaller molecular weight. Furthermore,
the Af

G and β values of sample C are in close agreement with those of three
nearly monodisperse entanglement-free polystyrene melts, L10, A5000 and
A2500 (Table 14.1), obtained by analyzing their viscoelastic spectra using
the same scheme, as will be presented below.

100◦C has been used as the reference temperature at which all the calcu-
lated and measured viscoelastic quantities of sample C are compared after
being adjusted by multiplying them by the factor ρT/ρ0T0. As in the entan-
gled systems studied above, the adjusted J(t) is denoted by Jp(t); and the
corresponding viscoelastic quantities G(t), J0

e and η0 are denoted by Gp(t),
J0

ep and ηp, respectively. Thus, the experimental J0
e values listed in Table

II of Ref. 12 are first adjusted by multiplying them by ρT/ρ0T0. With the
Af

G and β values determined for sample C, the s values at different tem-
peratures are determined by matching the calculated J0

ep with the adjusted
experimental values. These s values are then used to calculate the Jp(t)
line shapes — calculated with ρT/ρ0T0 = 1 — for comparison with the
adjusted measured curves (those shown in Fig. 1 of Ref 12). In general,
the agreements between the thus calculated Jp(t) curves and the measured
are very close. The s values (shown in Fig. 14.4) obtained by matching the
calculated J0

ep values with the measured ones have been modified slightly
in some cases to obtain a better agreement between the calculated and
measured Jp(t) line shapes as shown in Fig. 14.7. Each of the theoretical
Jp(t) curves is first calculated with K = 10−4. In superposing the calcu-
lated Jp(t) on the measured at a certain temperature, shifting only along
the log-time axis is allowed. From each superposition, a time-scale shift
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Fig. 14.7 Creep compliance Jp(t) data of sample C measured at 119.4 (◦); 109.4 (•); 105.1 (�); 102.9 (�); 100.6 ( �); 96 ( �); and
93 (�)◦C superimposed on the theoretical curves (solid line; left to right, respectively) calculated with the s and K values at the

corresponding temperatures as listed in Table 14.3; and the Af
G and β values obtained as explained in the text and listed in Table 14.1.

Also shown are the individual comparisons between the experimental (dashed line) and calculated (� � �) long-time Jp(t) limits, t/ηp,
at the corresponding temperatures.
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factor SF is obtained, which when multiplied by 10−4 gives the K value at
the corresponding temperature. Except for the results at 134.1◦C, s values
obtained by fitting the calculated to the measured Jp(t) line shapes and the
corresponding K values at different temperatures are listed in Table 14.3.
At 134.1◦C, due to the lack of an experimental Jp(t) curve, the s value
obtained by matching the calculated and experimental J0

ep values is listed
in Table 14.3. The K value at 134.1◦C has been determined in an indirect
way using the viscosity enhancement factors at different temperatures that
can be calculated from the s values as explained in the following:

In general the glassy relaxation of a polymer is orders of magnitude
faster than the terminal relaxation if its molecular weight is not partic-
ularly small. The contribution of the glassy relaxation to the zero-shear
viscosity ηp — referred to as the internal viscosity (Sec. 10.3.a) — is thus
negligible if the molecular weight of the sample is sufficiently large. In the
case of sample C whose molecular weight is not large, the contribution of
the internal viscosity to ηp cannot be neglected. At low temperatures, its
viscosity is particularly enhanced by the presence of the glassy-relaxation
process. Using the obtained s values, including the one at 134.1◦C, the
viscosity values of sample C containing the internal-viscosity contributions
can be calculated, as listed under the ηP (K = 10−4) column in Table 14.3
with K set at 10−4. Enhancements due to the glassy-relaxation process
at different temperatures can be numerically evaluated by comparing the
ηP (K = 10−4) values with that calculated with the same K value but with-
out the glassy-relaxation process (i.e. setting Af

G = 0 in the calculation;
the first row of Table 14.3). The extent of enhancement is expressed as the
ratio ηp(K = 10−4)

/
ηp(K = 10−4; Af

G = 0), whose values are also listed in
Table 14.3. The contribution of the internal viscosity is only 11% at 134.1◦C
and increases gradually more rapidly with decreasing temperature, enhanc-
ing the viscosity by a factor of 4.6 at 93◦C. As shown in Fig. 14.8, the large
viscosity enhancement due to the glassy-relaxation process at a low tem-
perature is reflected by the large shift of the corresponding Jp(t) curve in
the flow (long-time) region to larger K-normalized time scales (K = 10−4

for all calculated curves) from one at a high temperature.
Dividing a measured viscosity value by the product of ρT/ρ0T0 and

ηp(K = 10−4)
/
ηp(K = 10−4; Af

G = 0), a reduced viscosity value, denoted
by ηR, is obtained. The ηR value, without the contribution of the internal
viscosity and independent of the small change in modulus with tempera-
ture, is linearly proportional to K. Then, the K value at 134.1◦C can be
calculated by multiplying the K values at other temperatures by the ratio
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Table 14.3 Structural and dynamic quantities extracted by analyzing the experimental J(t) curves of sample C at different temperatures.

Temp
(◦C)

s′ = s
(Da2)

K ′ = K
(s/Da2)

log ηp

(K =10−4)
ηp / ηp (AG =0)

(K =10−4)
log η0

‡
exp.

log η0

calcd
log J0

e
‡

exp.
log J0

e

calcdρT/ρ0T0 τS (s)

AG = 0 10.159 1
134.1 (16,40)∗ (1.06 × 10−9) (10.205) (1.111) 1.072 5.257 (5.261) −6.75 (−6.75) (3.13 × 10−5)
127.5 [4.15×10−9]† [1.28 × 10−4]†
119.4 18,00 3.09 × 10−8 10.210 1.125 1.042 6.730 6.717 −6.79 −6.75 1.00 × 10−3

109.4 44,00 6.89 × 10−7 10.275 1.306 1.021 8.116 8.122 −6.90 −6.87 5.46 × 10−2

105.1 70,00 3.6 × 10−6 10.331 1.486 1.012 8.882 8.893 −6.96 −6.98 4.54 × 10−1

102.9 89,90 8.33 × 10−6 10.370 1.626 1.008 9.270 9.294 −7.05 −7.05 1.35
100.6 13,200 2.45 × 10−5 10.442 1.919 1.003 9.820 9.832 −7.16 −7.19 5.82
96 28,500 2.89 × 10−4 10.633 2.979 0.993 11.088 11.090 −7.54 −7.57 1.48 × 102

93.76 [43,960]† [1.19 × 10−3]† [1,000]†
93 52,300 2.08 × 10−3 10.825 4.635 0.987 12.156 12.138 −7.94 −7.94 1.96 × 103

∗The s value at 134.1◦C is determined by matching the calculated and experimental J0
ep values. All the values in brackets at 134.1◦C

are derived from the thus determined s value as detailed in the text.
†Calculated from the equations obtained by least-squares fittings to the values determined at different temperatures; see the text.
‡Values obtained from Table II of Ref. 12.
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Fig. 14.8 Comparison of creep compliance Jp(t) curves of sample C calculated using K = 10−4 and the s values (listed in Table 14.3)
corresponding to the calculated curves shown in Fig. 14.7 (lines from left to right corresponding to 119.4, 109.4, 105.1, 102.9, 100.6, 96
and 93 ◦C, respectively).
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ηR(134.1◦C)/ηR(t◦C). In this way, the averageK value at 134.1◦C obtained
from the K values at seven other temperatures is 1.06× 10−9 with a stan-
dard deviation of only 3.5%. As any substantial error in s can cause a large
error in the calculated ηR values, especially at low temperatures, the small
standard deviation implies that the s values are consistently and correctly
obtained from the Jp(t) line-shape analyses.

The inclusion of the glassy-relaxation process allows us to adjust the
s values such that the calculated Jp(t) line shapes are fitted closely to
the measured curves and the calculated and experimental J0

ep values are
matched at different temperatures. Still, whether concurrently the cal-
culated viscosity values containing the internal-viscosity contributions are
in agreement with the values measured at different temperatures need to
be checked. Multiplying the ηP (K = 10−4) values by the shift factor SF
(equivalent to K/10−4) and the ratio ρT/ρ0T0 gives the theoretical viscos-
ity values at the corresponding temperatures, as listed under the η0(calcd)
column in Table 14.3. The η0(calcd) values, including at 134.1◦C, are in
close agreement with the measured values as listed under the η0(exp) col-
umn in Table 14.3, confirming the validity of the analysis. The validity
is equivalently confirmed by the agreements between the calculated and
measured Jp(t) long-time limits t/ηp at different temperatures as shown in
Fig. 14.7.

The two sets of s values as a function of temperature: one obtained
from the analyses of the J0

ep data and the other obtained by analyzing the
Jp(t) curves, are in close agreement (Fig. 14.4), indicating the consistency
between the two sets of analyses. The consistency is equivalently indicated
by the close agreement between the experimental J0

e values and those calcu-
lated using the s values obtained from the Jp(t) line-shape analyses, as listed
in Table 14.3 and shown in Fig. 14.9. This agreement explains quantita-
tively the decline in J0

e of a low-molecular-weight sample with temperature
decreasing towards Tg as due to the temperature dependence of the glassy-
relaxation process being stronger than that of the entropy-driven modes of
motion.

The K values shown in Table 14.3 for sample C can be well fitted by the
Vogel–Tammann–Fulcher (VTF) equation24−26 or the Williams–Landel–
Ferry (WLF) equation.27 From the VTF equation with the parameters
obtained from the fitting, the K values at 127.5 and 93.7◦6C are calculated
and listed in Table 14.3, with the former also listed in Table 14.1. The
result of K (and τS) at 93.7◦6C is used in sections 14.8 and 14.10.a where
the structural relaxation time and the length scale at Tg are defined or
studied.
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Fig. 14.9 Comparison of the measured J0
e values (•) of sample C with those calculated

(�) using the s values obtained from the Jp(t) line-shape analyses and the curve calcu-
lated from the empirical functional form log(J0

e ) = a + b/x + c/x2 + d/x3(x being the
temperature in ◦C) best fitted to the calculated values. Note: As the Jp(t) curve at
134.1◦C is not available for analysis to obtain the s value, the J0

e value at 134.1◦C used
in the least-squares fitting is the experimental value itself.

14.5 Analyses of the G∗(ω) Spectra of Entanglement-Free
Systems

The G∗(ω) spectra of L10, A5000, and A2500 are quantitatively analyzed
in terms of Eqs. (14.3)–(14.8) just as the Jp(t) line shapes of sample C
have been. The calculation of G∗(ω) from a G(t) functional form can be
accurately carried out numerically according to the procedure described in
Appendix 14.A. In the case of A1000, as the contribution of the Rouse
modes of motion is negligible due to its very small molecular weight —
about that of a single Rouse segment m = 850 — G∗(ω) is analyzed in
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Fig. 14.10 The viscoelastic spectra G∗(ω) of L10 measured at different temperatures
(� at 92◦C; � at 95◦C; � at 99◦C; • at 105◦C; � at 110◦C; � at 120◦C; and � at
130◦C) composed together by matching all the spectra over the glassy-relaxation region
(using 105◦C (∆T = 15K) as the reference temperature) and superimposed on the
corresponding calculated curves (the glassy-relaxation region: solid line; the entropic
region: solid line at 105◦C (∆T = 15K), long-dash line at 110◦C (∆T = 20K), medium-
dash line at 120◦C (∆T = 30K), and short-dash line at 130◦C (∆T = 40K)).

terms of only a stretched exponential function for the glassy relaxation
(Eq. (14.3)). Comparisons of the calculated and measured G∗(ω) spectra
are shown in Fig. 14.10 for L10. And those for samples, A5000, A2500 and
A1000 are shown in Fig. 14.11.

In these figures, the spectrum at a certain temperature is chosen for
each sample as the reference (for instance 105◦C for L10), with which the
line shapes of the spectra measured at different temperatures are matched
over the glassy region to form a composite spectrum. From such a pro-
cess, the time-scale shift factors aG with respect to the reference spectrum
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Fig. 14.11 (Figure on facing pages) Top: The viscoelastic spectra G∗(ω) of A5000
measured at different temperatures (� at 85◦C; � at 88◦C; � at 92◦C; • at 100◦C;

� 110◦C; and � at 120◦C) composed together by matching all the spectra over the
glassy-relaxation region (using 100◦C as the reference temperature) and superimposed on
the corresponding calculated curves (the glassy-relaxation region: solid line; the entropic
region: solid line at 100◦C, long-dash line at 110◦C, and short-dash line at 120◦C). Mid-
dle: The viscoelastic spectra G∗(ω) of A2500 measured at different temperatures (� at
62◦C; � at 65◦C; � at 70◦C; • at 80◦C; and � at 90◦C) composed together by matching
all the spectra over the glassy-relaxation region (using 80◦C as the reference temper-
ature) and superimposed on the corresponding calculated curves (the glassy-relaxation
region: solid line; the entropic region: solid line at 80◦C, and long-dash line at 90◦C).
Bottom: The viscoelastic spectra G∗(ω) of A1000 measured at different temperatures
(� at 5◦C; � at 10◦C; � at 15◦C; � at 20◦C; • at 25◦C; and � at 30◦C) composed
together by matching all the spectra over the glassy-relaxation region (using 25◦C as the
reference temperature) and superimposed on the calculated curve (solid line).

are obtained at different temperatures.c For each sample, the average
glassy-relaxation time at the reference temperature, 〈τ〉0G, is determined
by matching the calculated spectrum with the composite spectrum over
the glassy-relaxation region. The 〈τ〉G values at different temperatures
are then calculated by multiplying the obtained 〈τ〉0G values by the shift
factors aG for each sample. Concurrently, the parameters Af

G and β are
extracted by fitting the calculated line shapes to the composite spectra over
the glassy-relaxation region. As listed in Table 14.1, the values of Af

G and β
obtained for L10, A5000 and A2500 are consistent with those of samples A,
B and C. The Mw/Mn value of A1000 indicates that its molecular-weight
distribution is broader than those of the other samples. With its small
Mw value, A1000 should contain components with chain lengths as short
as and shorter than the length scale associated with the glassy-relaxation
process in a typical polystyrene sample with chain length of at least sev-
eral times larger than a Rouse segment. As a result, its glassy-relaxation

cIt may not be entirely proper to shift the viscoelastic spectra along the log-modulus
axis over the glassy-relaxation region in accordance with the theory of rubber elasticity
(i.e. using ρ0T0/ρT as the shift factor) to form the composite spectra. At the same
time the largest temperature differences between the spectra measurements are no more
than 25K and no superposition indicates a shift along the log-modulus axis is needed.
Thus, the spectra at different temperatures are superposed on each chosen reference
spectrum by shifting them only along the log-frequency axis. Technically, this is slightly
different from the analyses of the creep compliance J (t) and the steady-state compliance
J0

e which have all been made on the results reduced along the compliance axis by the
multiplication factor ρT/ρ0T0 using 100◦C as the reference temperature. However, any
discrepancies that may arise from this difference are expected to be negligibly small for
the reasons as just explained above.
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time distribution is directly broadened by its molecular-weight distribution,
leading to a β value smaller than those for the other samples.

The G∗(ω) line shapes of L10, A5000 and A2500 in the entropic (or
Rouse) region are affected by their molecular-weight distributions, though
not in a sensitive way. It is sufficient to just use the Z values in the Schulz
molecular-weight distributions corresponding to the respective Mw/Mn val-
ues listed by Inoue et al.15 without any further adjustment to calculate the
G∗(ω) spectra. The thus calculated spectra match closely with the mea-
sured ones (Figs. 14.10 and 14.11), confirming the molecular weight value
(850) of a Rouse segment of polystyrene.

Just as in the cases of samples A, B and C, 〈τ〉G (or structural-relaxation
times τS; see Eq. (14.10)) of L10, A5000 and A2500 can be separated into
two decoupled quantities: the structural-growth parameter s and the fric-
tional factorK. As in the Jp(t) line-shape analyses, s is entirely determined
by the line shape of the G∗(ω) spectrum that spans over both the glassy-
relaxation and entropic regions, while K is calculated from the time-scale
shift factor. However, the way in which the G∗(ω) spectra at different tem-
peratures are presented in Figs. 14.10 and 14.11 is “opposite” to that in
which the Jp(t) (Figs. 14.1, 14.2 and 14.8) and Gp(t) (Fig. 14.5) curves
are shown. The G∗(ω) spectra are matched with one another over the
glassy-relaxation region, while the Jp(t) and Gp(t) curves are composed
together using the same frictional factor K in calculating the shown theo-
retical curves. Thus, here the shift factor aG is first used to calculate 〈τ〉G
(or τS); then the frictional factor K is calculated from Eq. (14.5) using the
s value determined by the line-shape analysis. By contrast, K (as well as
K ′ = RKK in the cases of samples A and B) is first calculated directly
from the time-scale shift factor obtained by matching the calculated and
experimental Jp(t) curves.

14.6 Dynamic Anisotropy in Entangled Systems

The K values obtained by analyzing the viscoelastic results of polystyrene
samples with different molecular weights from 3.4×104 to 6×105 in terms of
the ERT give an average of 4.9× 10−9 with a standard deviation of 10% at
127.5◦C (Table 10.1). With Mw = 1.24Me the K value of F2 is only about
20% below the average value (Table 14.1). As opposed to the molecular-
weight independence of K extending to a molecular weight virtually as low
as just above Me, Tg starts to decrease with decreasing molecular weight
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around 11Me as shown in Fig. 14.12.28,29 From the conventional viewpoint
of the relation between viscoelastic dynamics and Tg as related to free
volume, the contrast represents a paradox. As discussed briefly in Chapter
10, the paradox can be explained by the physical picture that the free
volume at both chain ends is always available to the modes of motion along
the primitive path — namely the µX(t), µB(t) and µC(t) processes —
whose relaxation times are all proportional to K. Such a mechanism may
allow K to be disengaged from dependence on the average free volume in
the bulk and become independent of molecular weight. Thus, it has been
proposed that the decrease in Tg with decreasing molecular weight in the
entangled region should be related to the molecular-weight dependence of
the ratio K ′/K = RK(M/Me) — as described by the empirical Eq. (11.6)
in the case of polystyrene. Equation (11.6) has been obtained by fitting
the empirical function to the K ′/K ratios obtained by analyzing the G(t)
and G′(ω) line shapes of nearly monodisperse polystyrene samples. From a
plateau value 3.3 at high molecular weights, RK(M/Me) declines gradually

Molecular Weight

103 104 105 106

T
g 

(°
C

)

75

90

105

Me

11Me

Fig. 14.12 Glass transition points (Tg) of nearly monodisperse polystyrene samples
with different molecular weights: (•) data measured by differential scanning calorimetry
(Ref. 28) and (�) data measured by differential thermal analysis (Ref. 29; all moved up
by 1◦C).
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with decreasing molecular weight below M/Me = 10 and reaches 1 as
M/Me → 1. K ′/K being greater than 1 indicates that the dynamics in
an entangled system is anisotropic: µA(t/τA) describes the chain motion
of an entanglement strand with both ends fixed. Thus, unlike K being for
the modes of motion along the primitive path that are always facilitated
by the free volume at both chain ends, K ′ should be like Tg, sensitive to
the average free volume in the bulk. Consistent with such a picture is the
observation that Tg starts to decrease from its plateau value with decreasing
molecular weight at around the same molecular weight as RK(M/Me) does
in the case of polystyrene.

The temperature dependences of s for samples A, B, and C are shown
together in Fig. 14.4. Very significantly, while different molecular theo-
ries — the ERT and the Rouse theory — are involved in the analyses for
the entangled and entanglement-free systems, the s values of samples A, B
and C change with temperature in a similar way relative to their individual
Tg. This similarity turns out to be the prelude to the consistency and rela-
tionships among them as will be discussed in Sec. 14.9. The observation of
such results is not surprising considering the conclusion derived from the
study of the blend solutions in Chapter 11: the ERT and the Rouse theory
are on the same footing at the Rouse-segmental level as the frictional factor
K in both theories are the same within a possible error of no more than
20%. Concurrently, it supports that Eq. (14.5) is generally applicable and
indicates that the thermorheological complexity should occur so long as the
molecular weight is greater than the Rouse segment size.

Neglecting the small difference in Tg between samples A and B, it had
been pointed out2 that their s values at the same temperature basically fol-
lowed the molecular-weight dependence of K ′/K — namely, RK(M/Me) as
given by Eq. (11.6). This molecular-weight dependence of s is also borne out
by the analysis that has included sample C’s results and taken the Tg differ-
ences into account as given in Sec. 14.9.4 As can be observed in Fig. 14.12,
Tg of sample C is considerably smaller than the plateau value at high molec-
ular weights due to its relatively low molecular weight. That s and K ′/K
have the same molecular-weight dependence should be closely related to the
fact that the µG(t) and µA(t) processes are next to each other along the time
axis. To eliminate this molecular-weight dependence of s, one may define

s′ =
s

(K ′/K)
=
〈τ〉G
K ′ (14.9)

in which Eq. (14.5) is used for the second equality.
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As detailed in Chapter 10, the quantitative analyses of the relaxation
modulus and viscoelastic spectrum of sample F2 in terms of the ERT have
yielded K ′/K = 1 within a small experimental error (<10%). This result
as well as the calculation using Eq. (11.6) (Fig. 11.1) indicates K ′/K = 1
as Mw → Me. When the tube or topological constraint of entanglement
is disappearing and the Rouse theory becomes applicable at Me, to have
K ′ = K is physically meaningful as it indicates that the dynamics in the
system becomes isotropic as it should. As the molecular weights of both
sample C and F2 are so close to Me and their K values are nearly the
same (Table 14.1), the s value of sample C may be regarded as equivalent
to that of F2. One may do so particularly because there is no difference
between s and s′ for F2 as K ′/K = 1. Conversely, a pair of fictitious
s′ and K ′ may be defined as s′ = s and K ′ = K for sample C (even
though there is only one frictional factor in an entanglement-free system).
As it turns out in the Tg-related universal behaviour studied in this chapter
(Sec. 14.9), the frictional factor K and the structural-growth parameter s
in sample C play, respectively, the same roles as K ′ and s′ in the entangled
systems: samples A and B. For presenting these results altogether, K and
s of sample C are also denoted by K ′ and s′, respectively. Similarly, the
notation K ′ = K and s′ = s may always be used in the entanglement-free
region of molecular weight. This notation system is also used in compar-
ing the analysis-obtained results of entanglement-free systems L10, A5000
and A2500 (Sec. 14.5) against those of samples A, B and C, as studied
later in this chapter. Thus, whenever the notation K′ or s′ for any of the
entanglement-free systems is used in this chapter (in a figure or the text),
automatically its K or s value is meant or used.

14.7 Comparison of the Af
G and β Values Extracted

from the J(t) and G∗(ω) Line Shapes

The values of the glassy-relaxation strength Af
G and stretching parameter

β extracted by analyzing the J(t) (or Jp(t); in what follows, often no dis-
tinction will be made between notations with and without the subscript
p, particularly in discussions, as the difference between the quantities they
represent being insignificantly small) curves of samples A, B and C and
the G∗(ω) spectra of L10, A5000, A2500 and A1000 are listed together
in Table 14.1 for comparison. Because of the contamination by residual
plasticizers, the somewhat smallerAf

G value of sample B may be excluded
from the comparison. Considering some differences in molecular weight and
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temperature, the Af
G and β values of samples A and C are consistent with

those of L10, A5000 and A2500. As sample C and L10 have comparable
molecular weights and the analyses of their results are made at tempera-
tures very close to each other (100 vs. 105◦C), the close agreement between
them is particularly impressive. On the basis of Boltzmann’s superposition
principle, the agreement indicates the consistency between the J(t) and
G∗(ω) results in the glassy-relaxation region. In view of the special tech-
nical requirement for making accurate measurements of J(t) of very low
compliance or G∗(ω) of very high modulus in the glassy-relaxation region,
it should be very rare to observe such an agreement — the only one of this
kind to the author’s knowledge. The agreement also signifies that the two
sets of results from two independent laboratories support each other.

As the Af
G value is dictated by J(0)−1, the line shape of the glassy-

relaxation process is mainly characterized by the stretching parameter β.
The significance of the consistency between the β values obtained from
the J(t) and G∗(ω) line-shape analyses is much more than what meets
one’s eye — namely, much more than the consistency merely in the glassy-
relaxation region — as explained in the following: The convolution integral
(Eq. (4.73)) that converts G(t) into J(t) smears the separate processes in
G(t) giving a much more featureless J(t) line shape. The smearing effect
has been clearly illustrated by the comparison of the G(t) and J(t)−1 curves
calculated with and without the glassy-relaxation process included as shown
in Fig. 14.6. By contrast, such a smearing effect basically does not occur in
converting G(t) into G∗(ω) as the storage modulus spectrum G′(ω) is a near
mirror image of G(t) if 0.7t−1 is regarded as equivalent to ω (see Fig. 4.13
and Appendix 14.A). Thus, the analysis of the J(t) line shape for extracting
the glassy-relaxation process is a much more challenging task than that
of the G∗(ω) line shape. Without a correct functional form (either the
ERT or the Rouse theory) for the entropic dynamic processes as the base
(as the frame of reference), the glassy-relaxation process cannot be properly
extracted by analyzing the J(t) curves. As the ERT being used for an
entangled polystyrene system, the correctness includes the predetermined
ratio K ′/K = RK(M/Me) as given by Eq. (11.6). Including this, we may
summarize that the success of the ERT serving as the reference frame in the
J(t) line-shape analyses for the entangled polystyrene systems are testified
to by agreements between theory and experiment in three aspects: (1)
the quantitative description of the J(t) line shapes over the full range at
different temperatures (Figs. 14.1 and 14.2); (2) the frictional factor K
obtained for sample A being in quantitative agreement with the values
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obtained previously and shown independent of molecular weight as expected
theoretically (Table 10.1); and (3) the correctness of the predetermined
RK(M/Me) values for samples A and B as calculated from Eq. (11.6),
which is strongly indicated by the obtained β values being consistent with
those obtained for sample C, L10, A5000 and A2500 (Table 14.1).

14.8 Tg Defined by the Structural Relaxation
Time τS = 1,000 sec

The structural- (or α-) relaxation time τS may be somewhat arbitrar-
ily defined by the time when the ratio between the contribution of the
glassy-relaxation process (G) to the relaxation modulus G(t) and the total
contributed by all the entropic processes (R), G/R, reaches 3.2 Physically,
this means that G/R has decayed nearly by factor of e (2.72) from ∼ 10,
which is theG/R ratio at the relaxation time (t = τ 15

A ) of the highest Rouse–
Mooney mode when the temperature is at the glass transition point. At the
same time, the contribution from the glassy component in such a state is
still significant. The structural-relaxation time defined this way is basically
equivalent physically to that defined by3

τS = 18 〈τ〉G . (14.10)

The structural-relaxation time as given by Eq. (14.10) is also in close agree-
ment with the α-relaxation time defined in a usual way:3,4 the time at
which the relaxation modulus reaches 108 dynes/cm2 (see Figs. 14.17 and
14.18).d The structural-relaxation time defined by Eq. (14.10), besides
reflecting the effect of the glassy relaxation on the bulk mechanical proper-
ties, has the virtue of following exactly the temperature dependence of the

dIn Figs. 14.17 and 14.18 it is shown that the point in time at which G(t) =
108 dynes/cm2 is very close to the structural relaxation τS defined by Eq. (14.10).
As given in Ref. 1 (p. 323), the frequency where G′(ω) = 108 dynes/cm2 — denoted by

ωGR here — is usually regarded as the characteristic rate of the glass-rubber transition.
The rationale for Eq. (14.10) is explained in the text and detailed in Ref. 2; its validity
is supported by τS = 1, 000 sec at the calorimetrically determined Tg. The rationale
for using G′(ω) = 108 dynes/cm2 as the criterion for determining ωGR is that it is a
value intermediate between those characteristic of the rubberlike and glasslike states. As
can be seen in Fig. 14.22, ωS = 0.7/ τS is very close to ωGR. This is consistent with
what has been pointed out in Ref. 1: corresponding to G′(ω) = 108 dynes/cm2 at ωGR,
G(t) = 0.8 × 108 dynes/cm2 at t = 1/ωGR. The difference between a characteristic
time defined by the point in time at which G(t) = 108 dynes/cm2 and a corresponding
characteristic rate defined by the frequency at which G′(ω) = 108 dynes/cm2 is quite
small. Thus, the structural relaxation time as defined by Eq. (14.10) basically has the
same physical meaning corresponding to that given to ωGR.
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glassy-relaxation process. The other definitions are somewhat affected by
changes in the line shape of the viscoelastic response with temperature —
namely, affected by the thermorheological complexity.

Using Eq. (14.9), the structural-relaxation time given by Eq. (14.10)
may be rewritten as

τS = 18sK = 18s′K ′. (14.11)

By analyzing the J(t) line shape of sample A at the calorimetric Tg (97◦C),
the structural-relaxation time τS = 1, 000 sec is obtained. In the literature,
τS reaching 100–1,000 sec has been used as the criterion for defining Tg.30−32

In view of the τS value of sample A at its calorimetric Tg, τS = 1, 000 sec
is also used for defining the glass-transition points Tg of samples B and C,
which will be used in the analyses and discussions of their results. As shown
in Table 14.1, the thus defined Tg for samples A and C are consistent with
the calorimetric values which are read from Fig. 14.12. Including at the thus
defined Tg, the dynamic and structural quantities at different temperatures:
K, K ′, s′ and τS obtained by analyzing the Jp(t) curves of sample A are
listed in Table 14.2.

As sample B is contaminated by residual plasticizers, its frictional fac-
tor K is smaller than that of a normal sample as expected. Because of the
contamination, the Tg value of sample B has been estimated by Plazek11

to be smaller than that of a normal sample of the same molecular weight
by about one degree. The Tg of sample C is smaller than that of sample
A because of its smaller molecular weight. The contamination by residual
plasticizers in sample B may be treated in a similar way causing its Tg

to become smaller; in other words, the τS = 1, 000 sec criterion is used to
define the Tg of sample B as it is. From the s and K values extracted by
analyzing the Jp(t) curve of sample B at the lowest temperature (98.3◦C),
τS = 779 sec is obtained, which is a little smaller than the criterion value.
The temperature at which τS = 1, 000 sec is calculated by extrapolation
using the VTF equation best-fitted to the analysis-obtained τS values at
different temperatures. The Tg determined this way for sample B is 98.0◦3C.
Then from the best fit of the VTF equation to the K values of sample B
at different temperatures, the K value at this temperature (Tg) has been
obtained as listed in Table 14.2. The s and s′ values at Tg are then cal-
culated from Eq. (14.11) using the thus obtained τS and K values. The
K, K ′(= 3.16K), s′ and τS values of sample B at different temperatures
including those at Tg are listed in Table 14.2.

In the case of sample C, by interpolation — using the best fit of the
VTF equation to the τS values listed in Table 14.3 — τS = 1,000 sec is
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obtained at 93.7◦6C, which is then regarded as the Tg. Then, as also listed
in Table 14.3, the K ′(= K) and s′(= s) values of sample C at this tem-
perature can be obtained from their values at different temperatures by
interpolation — using the best-fit VTF equation for K and the best-fit
modified-VTF equation (the form as given by Eq. (14.13)) for s.

For L10, A5000, A2500, as the longest τS values extracted from the
data of Inoue et al. are around 100–200 sec, their Tg values are determined
by extrapolation using the best fit of the VTF equation to the available
data. As shown in Table 14.1, these Tg values are consistent with the
calorimetric values as closely as those of samples A, B and C are. In the
case of A1000, the τS results at different temperatures are fitted to the VTF
equation, from which the Tg point where τS = 1,000 sec is determined by
interpolation.

The Tg defined by the criterion τS = 1,000 sec as explained above serves
as a common reference point for the different samples, with respect to which
the obtained τS , s′ and K ′ results may be compared in proper perspective.

14.9 Dependences of τS, s′ and K′ on ∆T = T − Tg

The analysis-obtained results of samples A, B and C strongly suggest that
the τS and s′ values of the three samples depend on how far the temperature
is from each individual Tg. Using the Tg defined by τS = 1, 000 sec for each
sample (Table 14.1), the τS values of samples A, B and C as a function of the
temperature difference from Tg, ∆T = T − Tg, are displayed in Fig. 14.13.
In spite of the fact that sample C has a significantly lower Tg due to its
smaller molecular weight and that sample B is contaminated by residual
plasticizers, the τS values of the three samples fall closely on the same curve.
Note that both τS and Tg of sample B are determined for the sample as it is
(contaminated). Apparently, the contamination in sample B by plasticizers
is so low that sample B has kept the Tg-related nature of polystyrene. The
close agreement among the three samples strongly supports the use of ∆T
to account for the differences in Tg. The τS values of the three samples can
be collectively well fitted to the VTF equation:

log(τS) = aτ +
bτ

(∆T + tτ )
(14.12)

as demonstrated in Fig. 14.13 by the close agreement between the data
points and the curve calculated with the best-fit parameters aτ = −11.5045,
bτ = 539.3497 and tτ = 37.1827.
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Fig. 14.13 Mutually consistent ∆T dependences of the structural-relaxation times τS

of samples A (◦), B ( �) and C (�) are shown collectively. The solid line is calculated
from the VTF equation (Eq. (14.12)) which best fits the data points of samples A, B and
C collectively. Also shown are the τS data points of L10 (•), A5000 (�), A2500 ( �, with
the best-fit VTF curve represented by the dotted line) and A1000 (�, with the best-fit
VTF curve represented by the dashed line).

In Fig. 14.14, the s′ data points of samples A, B and C as a function of
∆T are shown to fall closely on the same curve. The ∆T dependence of s′

of the three samples can be collectively well fitted to a modified VTF form:

log(s′) = c1 + c2(∆T + ts) +
c3

∆T + ts
. (14.13)

The curve shown in Fig. 14.14 is calculated with the best-fit parameters
c1 = −4.2189, c2 = 0.0364, c3 = 375.6136 and ts = 55.0922.

The consistency of the ∆T dependences of s′ and τS individually falling
on the same curves implies that the same consistency should be appli-
cable to K ′ as well according to Eq. (14.11); indeed so as illustrated in
Fig. 14.15. The ∆T dependences of K ′ of samples A, B and C can be col-
lectively fitted to the VTF equation of the form given by Eq. (14.12) with
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Fig. 14.14 Mutually consistent ∆T dependences of s′ values of samples A (◦), B ( �)
and C (� determined by the Jp(t) line-shape analyses; � determined by matching with
the experimental J0

ep values) are shown collectively. The solid line is calculated from the
modified VTF equation (Eq. (14.13)) which best fits the data points of samples A, B and
C collectively. Also shown are the s′ data points of L10 (•), A5000 (�) and A2500 ( �).
The dotted lines individually represent the universal curve multiplied by a factor (1.23,
1.9 and 2.2) superposing on the data points of L10, A5000 and A2500, respectively.

the notations τS, aτ , bτ and tτ replaced by K ′, aK , bK and tK , respectively.
The curve shown in Fig. 14.15 is calculated with the best-fit parameters
aK = −15.3931, bK = 536.9037 and tK = 42.8976. The K ′ values of
samples A, B and C as a function of ∆T falling on the same curve indi-
cates that the molecular-weight dependence of Tg is directly related to the
molecular-weight dependence ofK ′. This is exactly what has been proposed
(Secs. 10.2 and 10.3) and further explained in Sec. 14.6 in the context of
this chapter. In the meanwhile, K is independent of molecular weight at
and above 127.5◦C (Sec. 10.5). Therefore, as opposed to the consistency in
the ∆T dependence of K ′ among samples A, B and C, their K values do
not, as expected, have a common ∆T dependence.
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(a) Tg-related universality in polystyrene

It is remarkable that the τS, s′ and K ′ data points of samples A, B and C
as a function of ∆T individually fall naturally on the same curves as shown
in Figs. 14.13, 14.14 and 14.15, respectively. These results suggest a Tg-
related universality. Although there are only three samples involved, such
universality can indeed be claimed within the polystyrene system, because
of the universal nature of the elements involved in the quantitative analyses
of the J(t) results of the three samples. These elements have been studied in
diverse parts of Chapters 9–11 and this chapter; they are summarized here:

(1) The validity of the ERT and the universality it represents have
been well tested as presented in Chapters 10–11. The success of the ERT is
further summarized in Sec. 14.7 with the additional supports obtained from
the study presented in this chapter. The success of the ERT being crucially
testified to by the molecular-weight independence of K, there is no limit to
the time range of J(t) that can be analyzed, depending on the molecular
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Fig. 14.15 Mutually consistent ∆T dependences of K′ values of samples A (◦), B ( �)
and C (�) are shown collectively. The solid line is calculated from the VTF equation
which best fits the data points of samples A, B and C collectively. Also shown are the
K ′ data points of L10 (•), A5000 (�) and A2500 ( �).
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weight of the studied sample. On such a basis, the quantitatively successful
analyses of J(t) results in the single case of sample A have all the ingre-
dients for generalizing the success to polymers of other molecular weights.
Furthermore, the results of samples B and C support such a generalization.

(2) Sample B is contaminated by residual plasticizers; as a result, its
obtained K value is appreciably smaller than the average value of nor-
mal samples as expected. However, its K ′/K ratio as can be calculated
from Eq. (11.6), which represents the predetermined universal normalized
molecular-weight dependence of K ′/K in polystyrene, is not expected to
be affected — as both K ′ and K being affected to the same degree. The
predicted K ′/K ratio of sample B is 3.16 and that of sample A is 1.61. As
explained in Sec. 14.6, one can regard sample C as having K ′/K = 1 —
basically equivalent to F2, an entangled system with K′/K = 1 which is
nearly the value (K ′/K = 1.04) obtained by substituting M/Me = 1.24 for
F2 into Eq. (11.6). These K ′/K ratios are used to calculate s′ and K ′ from
s and K, respectively, of the three samples as explained in Sec. 14.6. Thus,
it is under the condition of maintaining consistency with the universality of
K ′/K predetermined for polystyrene (Eq. (11.6)) that the common curves
of s′ and K ′ shared by the three samples are obtained.

(3) The close agreements between the τS, s′ and K ′ results of sample C
as a function of ∆T = T − Tg and those of samples A and B should not be
surprising even though two different molecular theories are independently
involved. These agreements can be expected on the basis of the conclusion
that the ERT and the Rouse theory are on the same footing at the Rouse
segmental level as derived in Sec. 11.2.b (also see Sec. 14.2.b).

A comment should be made about the contamination by residual plasti-
cizers in sample B. Its Tg value is determined by the criterion τS = 1,000 sec
for the sample as it is; at the same time, the obtained quantities τS , s′

and K ′ are also associated with sample B as it is. Because the contam-
ination is at a very low level, the Tg-related dynamic process of sample
B is dominated by the characteristics of polystyrene. Thus, the results
of τS , s′ and K ′ as a function of ∆T = T − Tg of sample B as shown in
Figs. 14.13, 14.14 and 14.15 can be regarded as equivalent to those of a
“normal sample B”.

On the basis of the universal nature of three elements explained above,
the common curves of τS , s′ and K ′ shared by samples A, B and C can
be regarded as representing a Tg-related universality applicable within
polystyrene system, entangled or not. As shown below, departure from
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the universality occurs as the molecular weight becomes smaller than
Mw ≈ 12,000, nearly 30% below that of sample C.

In the above discussions, one observes that the predetermined factor
RK(M/Me) (Eq. (11.6)) plays a very important role interfacing the ∆T - or
Tg-related universality occurring in the short-time region (the µG(t)−µA(t)
region) and the other universality of topological nature — topological
constraints of entanglements — occurring in the long-time region (the
µX(t)− µB(t)− µC(t) region). Specifically, on the one hand, the universal
∆T dependences of s′ and K ′ cannot be obtained without RK(M/Me); on
the other hand, K ′ is obtained from multiplying K, which is independent
of molecular weight at and above 127.5◦C, by the factor RK(M/Me).

(b) Deviations from the Tg-related universality

The τS values for the four samples, L10, A5000, A2500 and A1000, obtained
from their G∗(ω) line-shape analyses are shown in Fig. 14.13 along with the
results obtained for samples A, B and C. The τS results of L10, A5000 and
A2500 shown in Fig. 14.13 indicate that deviation from the universal curve
increases gradually with decreasing molecular weight, moving towards the
curve for A1000; the largest change occurs between A2500 and A1000. The
data points of L10 cling closely to the universal curve, suggesting that
the universality of the ∆T dependence of τS should extend to a molecu-
lar weight between sample C and L10. The s′ and K ′ values of L10 are
similarly close to or virtually on their respective universal curves as shown
below.

The structural-growth parameter s′ and the frictional factor K ′ for L10,
A5000 and A2500 can only be extracted from a G∗(ω) spectrum that spans
both the glassy-relaxation and entropic regions simultaneously. As the
G∗(ω) spectra measured by Inoue et al.15 at low temperatures (∆T < 14K)
cover only the glassy-relaxation region, the numbers of data points of s′ and
K ′ extractable from the G∗(ω) spectra are considerably less than that of
τS . As s′ decreases with increasing temperature, the entropic region of the
spectrum shifts further away from the glassy-relaxation region — according
to Eq. (14.11) (or (14.9)), K ′ increases with decreasing s′ as τS (or 〈τ〉G)
being kept fixed — as shown in Figs. 14.10 and 14.11.

Shown in Figs. 14.14 and 14.15, respectively, are the s′ and K ′ val-
ues of L10, A5000 and A2500 in comparison with the results of samples
A, B and C as well as the calculated universal curves. The K ′ values of
the low-molecular-weight samples are virtually all on the universal curve,
with slightly noticeable deviation towards the lower side only in the case
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of A2500. The successful use of ∆T to account for the change in Tg with
molecular weight is indeed extraordinary in the case of K ′, considering the
large drops in these samples’ Tg values from the plateau at high molecular
weights (decreasing by ∼ 10, 18 and 40K in L10, A5000 and A2500, respec-
tively; Table 14.1). As the K ′ values of these samples closely follow the
universal curve, the deviation of s′ from the universal curve to the higher
side is mainly correlated with τS deviating towards the same side according
to Eq. (14.11).

As shown in Fig. 14.14, the s′ data points of L10 appear to have just
begun deviating from the universality. When multiplied by a constant, the
calculated universal curve can be shifted upwards to superpose well on the
s′ data points of L10, A5000 and A2500 individually as shown by the dotted
lines in Fig. 14.14. By extrapolating the thus obtained multiplication fac-
tors, it is estimated that deviation from the universal curve begins around
Mw = 12,000, which is between the Mw value of L10 and the Me value.
Thus, although the universal curve is applicable to both entangled (sam-
ples A and B) and entanglement-free (samples C) systems as shown in the
last section, the entanglement-free region in which it is applicable is quite
narrow.

(c) Comparison of the G∗(ω) spectra of sample C and L10

For further illustrating the consistency between the J(t) and G∗(ω) results,
the G∗

p(ω) spectra of sample C have been calculated using the s′ and K ′

values obtained by analyzing its Jp(t) curves and shown in Fig. 14.16 for
comparison with the G∗(ω) spectra of L10 (Fig. 14.10). In both Figs. 14.10
and 14.16, spectra at equivalent ∆T values are shown for a one-to-one
comparison. As the reference temperature chosen in Fig. 14.10 for L10 is
equivalent to ∆T = 15K, the spectra shown in Fig. 14.16 for sample C are
superposed on each other over the glassy-relaxation region with the refer-
ence chosen at 108.8◦C (∆T = 15K). Both L10 and sample C being free of
entanglement with some difference in molecular weight, the great similarity
between the two sets of spectra at equivalent ∆T values is expected based
on what have been shown in Figs. 14.13–14.15. Figure 14.16 also shows
the spectrum of sample C at ∆T = 0 (or at Tg = 93.8◦C); the equivalent
information for L-10 is not contained in the data of Inoue et al. Both being
at the same ∆T (15K), the frequency scale of the glassy-relaxation region
shown in Fig. 14.10 for L10 is about 25% away from that shown for sample
C in Fig. 14.16. At ∆T = 15K, τS = 0.089 sec (or 〈τ〉G = 4.9 × 10−3 sec)
for L10 as opposed to τS = 0.069 sec (or 〈τ〉G = 3.8× 10−3 sec) for sample
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Fig. 14.16 The viscoelastic spectra G∗
p(ω) of sample C at different temperatures or

∆T calculated using the parameters extracted by analyzing its measured Jp(t) curves
and composed together by matching all the spectra over the glassy-relaxation region
(using 108.8◦C as the reference temperature). The glassy-relaxation region: solid line;
the entropic region: dot-dash line at Tg = 93.8◦C (∆T = 0), solid line at 108.8◦C
(∆T = 15K), long-dash line at 113.8◦C (∆T = 20K), medium-dash line at 123.8◦C
(∆T = 30K), and short-dash line at 133.8◦C (∆T = 40K).

C, in accord with the τS values of L10 being slightly above the universal
curve as shown in Fig. 14.13.

14.10 Structure as Revealed in G(t)

(a) Length scale at Tg

With the s′ and K ′ values determined for samples A, B and C (Tables 14.2
and 14.3), the Gp(t) curves of the three samples may be calculated from
Eqs. (14.1)–(14.5) (for samples A and B) and Eqs. (14.3)–(14.7) (for sample
C). The Gp(t) curves calculated for the three samples at their individual
Tg’s are shown together in Fig. 14.17 for a revealing comparison. In the
figure, the curves calculated by setting AG (or Af

G) = 0 are also shown;
in each set of curves, the area between the full curve and the curve with
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AG (or Af
G) = 0 represents the contribution of the glassy-relaxation process

to the relaxation modulus Gp(t). For samples A and B, the curves calcu-
lated without both the glassy relaxation and Rouse–Mooney normal modes
are also shown; the area between a thus calculated curve and that with
AG = 0 represents the contribution of the Rouse–Mooney normal modes to
Gp(t). Also indicated in the figure are the positions of the relaxation times
of the Rouse normal modes in sample C and of the Rouse–Mooney normal
modes in samples A and B.

The positions of the relaxation times of the normal modes may be used
as “graduations” of an internal yardstick for measuring the spatial range
(length scale) influenced by the glassy-relaxation process. The pth Rouse
(or Rouse–Mooney) normal mode represents the local motion of the chain
which includes N/p (or Ne/p) segments, with N (orNe) being the number
of segments per free chain (or per entanglement strand). In other words,
the relaxation time of the pth normal mode, τp (in the Rouse process of
sample C) or τp

A (in the Rouse–Mooney process of samples A and B) is
associated with the length scale given by32

λp ≈ (a2/p)0.5 (14.14)

with a standing for the end-to-end distance in the entanglement-free case
or the entanglement distance in the entangled case. The value a may be
calculated from the characteristic ratio C∞ or equivalently K∞ as given
in Table 13.1; one obtains a =

√
K∞Me = 7.62nm for samples A and B,

and a =
√
K∞Mw = 8.4 nm for sample C. One sees in Fig. 14.17 that the

vertical dotted line at 103 sec representing the structural-relaxation time
τS at Tg passes through between the relaxation times of the seventh and
eighth normal modes in all three cases. Using the position of τS = 103 sec
relative to τ7

A and τ8
A or to τ7 and τ8, the length scale λ at Tg may be

calculated from the values of λ7 and λ8 (Eq. (14.14)) by interpolation. The
λ values so obtained are 2.76, 2.87 and 3.0 nm for samples A, B and C,
respectively. These values are consistent with one another; at the same
time, they are virtually the same as that estimated by the calorimetric
method for polystyrene at Tg.33,34

(b) Change in length scale with ∆T

In accordance with the calculation of the universal curve shown in
Fig. 14.13, τS = 1 sec at ∆T = 9.7K. For illustrating the changes in
length scale with ∆T occurring in samples A, B and C in perspective,
shown in Fig. 14.18 is the comparison of the Gp(t) curves of the three
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Fig. 14.17 Comparison of the Gp(t) curves of samples A (middle figure), B (bottom
one) and C (top one) at individual glass transition points or ∆T = 0. In each figure, the
relaxation times of the Rouse–Mooney normal modes (for samples A and B) or the Rouse
normal modes (for sample C) are indicated (�); the short-dash line is calculated with

Af
G or AG = 0; and the long-dash line is calculated with AG = 0 and the contribution

of the Rouse–Mooney normal modes set to zero. The vertical dotted line represents
the structural-relaxation time τS = 1,000 sec. The individual points in time at which
the three Gp(t) curves cross the horizontal dotted lines at 108 dyn/cm2 represent the
structural- (or α-) relaxation times as usually defined, which are all very close to τS =
1,000 sec.
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Fig. 14.18 Comparison of the Gp(t) figures of samples A (middle figure), B (bottom
one) and C (top one) at ∆T = 9.7K. In each figure, the relaxation times of the Rouse–
Mooney normal modes (for samples A and B) or the Rouse normal modes (for sample C)

are indicated (�); the short-dash line is calculated with A
f
G or AG = 0; and the long-dash

line is calculated with AG = 0 and the contribution of the Rouse–Mooney normal modes
set to zero. The vertical dotted line represents the structural-relaxation time τS = 1 sec.
The individual points in time at which the three Gp(t) curves cross the horizontal dotted
lines at 108 dyn/cm2 represent the structural- (or α-) relaxation times as usually defined,
which are all very close to τS = 1 sec.
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samples calculated at ∆T = 9.7K. The parameters: s′ and K ′ used to
calculate the Gp(t) curve for each of the samples are obtained from the val-
ues determined at different temperatures by interpolation using the best-fit
equations. As shown in the figure, the vertical dotted line at 1 sec rep-
resenting the structural-relaxation time occurs before the relaxation time
of the highest Rouse or Rouse–Mooney mode by about an equal distance
along the log t axis in all three cases — equivalent to log 1.9, log 2.0 and
log 1.6 for samples C, A and B, respectively. Clearly, the consistency among
the three samples observed at ∆T = 0 (Fig. 14.17) holds at ∆T = 9.7K as
well. τS = 1 sec being shorter than the motional time of a single Rouse seg-
ment means that the length scale associated with the structural-relaxation
process is shorter than the Rouse-segmental length of ∼ 2 nm, indicating
a rubbery state. By contrast, the length scale reaches ∼ 3 nm at ∆T = 0,
indicating vitrification at the Rouse-segmental level.

14.11 Frictional Slowdown and Structural Growth

As indicated by the universal ∆T dependence of K ′ shown in Fig. 14.15, the
molecular-weight dependence of K ′ and that of Tg are directly related with
each other. The consistency of the ∆T dependence of s′ among the three
samples indicates that the molecular-weight dependence of K ′ extends into
the time scales of the glassy-relaxation process according to Eq. (14.11). In
other words, after the correction for differences in Tg is made to both the
µA(t) (or µR(t)) and µG(t) processes by expressing K ′ and s′ as a function
of ∆T , they become independent of molecular weight. This also means
that the molecular-weight dependence of Tg in the entanglement region
is directly related to the (same) molecular-weight dependence of the fast
dynamic processes µA(t) and µG(t). Note that while the ∆T dependences of
µA(t) (or µR(t)) and µG(t) either separately or as a whole are independent
of molecular weight, the difference in time scale between µA(t) (or µR(t))
and µG(t) decreases with decreasing ∆T — due to the increase in s′ as
further discussed in the following:

While K ′ is a frictional factor, s′ having the unit Da2 is a structural fac-
tor. Thus the ∆T dependence of s′ (Fig. 14.14) and that of K ′ (Fig. 14.15)
are of different physical nature. With decreasing ∆T, the former represents
the growth of a Tg-related (dynamic) structure while the latter represents
purely the frictional slowdown of the Rouse segment. The structural relax-
ation (µG(t)) with relaxation time defined by Eq. (14.11) contains the effects
of both the frictional slowdown and structural growth while the µA(t) or
µR(t) process is only affected by the frictional slowdown. As a result, the
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Fig. 14.19 Comparison between the collective dependence of τS of samples A, B and C
(τS : • for A, � for B and � for C) on ∆T and that of τv (τv : ◦ for A, � for B and � for C).
The lines (solid line for τS and dashed line for τv) are calculated from the two VTF equa-
tions which individually best fit the τS and τv data of the three samples collectively.

time scale of τS relative to those of {τp
A} or {τp} changes with ∆T as

observed in the comparison of Figs. 14.17 and 14.18. This effect is further
illustrated in Fig. 14.19 by the comparison of τS and the Rouse-segmental
motional time τv over a wide ∆T range. τv is defined by

τv =
K ′π2m2

24
(14.15)

with m = 850 being the mass for a Rouse segment. When N = M/m or
Ne = Me/m is sufficiently large for (N−1)/N ≈ 1 or (Ne−1)/Ne ≈ 1 to be
valid as in the polystyrene case, Eq. (14.15) is virtually of no difference from
the relaxation time of the highest Rouse or Rouse–Mooney normal mode
(Eq. (7.57) for the Rouse modes in the case of sample C with K = K ′;
Eq. (9.B.26) for the Rouse–Mooney modes in the case of samples A and B
withK replaced byK ′ = RKK). In Fig. 14.19, one sees the ∆T dependence
of τS crossing that of τv; and the crossing occurs at ∆T = 4.9K where
τS = τv = 20.5 sec. The results shown in Figs. 14.17, 14.18 and 14.19
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altogether indicate that corresponding to the time scale of τS increasing
with ∆T decreasing, the Tg-related length scale increases gradually and
reaches ∼3 nm at ∆T = 0 (or at Tg) in the same way for all the three
studied samples. This universal behavior within the polystyrene system is
expected on the basis of the universal curves of τS , s′ and K ′ as a function
of ∆T as shown in Figs. 14.13–14.15, respectively.

Because of the clear physical pictures embodied in the ERT and the
Rouse theory used as the reference frames, the time scale and length scale
of the glassy-relaxation process can be characterized unambiguously as both
increasing with temperature decreasing towards Tg. The shown universality
covering both the entangled and entanglement-free cases are significant in
at least two aspects: Firstly, it supports the conclusion that the ERT and
the Rouse theory are on the same footing at the Rouse-segmental level as
derived from their sharing the same frictional factor K in Chapter 11. In
other words, if this conclusion derived in Chapter 11 were not true, that
both the entangled and entanglement-free systems share the same universal
curves associated with τS , s′ and K ′, respectively, could not have been
observed. Secondly, it strongly indicates the importance of the yardstick
roles played by the time scale and length scale associated with a Rouse
segment. Using them as reference points, both the time scale and length
scale of the glassy-relaxation process can be monitored as a function of
temperature decreasing towards the glass transition point.

14.12 K Values in the Close Neighborhood of Tg

As the time coordinates in Figs. 14.17–14.19 are expressed in terms of
real-time scale (sec), the relaxation times as contained or shown in these
figures are ultimately determined by the K values. As the temperature is
approaching Tg (∆T � 20 K; in this temperature region τS � 10−2 sec),
because K ′ = RKK (K ′ = 1.61K for sample A; K ′ = 3.16K for sam-
ple B; and K ′ = K for sample C) K has to change with ∆T in such a
way that the corresponding K ′ values exhibit the universal behavior shown
in Fig. 14.15. In other words, with the temperature approaching Tg, K
becomes influenced by the Tg changing with molecular weight (Fig. 14.12).
This has to be reconciled with the fact that K is independent of molecu-
lar weight at and above 127.5◦C. As shown in Fig. 14.20 and explained in
the following, the comparison of the K values as a function of temperature
between samples A, B and C illustrates such a transition.
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Fig. 14.20 Comparison of the K values of sample A (◦), sample C (•), and the hypo-
thetically uncontaminated sample B (�) as a function of temperature (see the text). The
lines are calculated from the VTF equations which individually best fit the experimental
data of each of the three samples: solid line for sample A, long-dash line for sample C,
and short-dash line for the hypothetically uncontaminated sample B.

Sample C and F2 have similar Mw values and nearly the same K value
at 127.5◦C (Table 14.1). As described by the Rouse theory, the viscoealstic
response of sample C is characterized by a single frictional factor K —
isotropic dynamically. In the case of F2, because its molecular weight is so
close to Me, K = K ′ within a small experimental error — virtually isotropic
dynamically. Thus, the difference in the physical meaning of K between
sample C and F2 should be very small. On the basis of these obtained
results, the K values of sample C and F2 as a function of temperature are
expected to be very close to each other. The pattern that the K values of
samples A and C diverge as the temperature approaching Tg and merge at
high temperatures (�130◦C) as shown in Fig. 14.20 should similarly occur
between sample A and F2. At 127.5◦C, theK values (Table 14.1) for sample
C and F2 are about 17–20% smaller than the average valueK = 4.9×10−9±
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10% obtained for samples with molecular weights ranging from 3.4×104 to
6.0 × 105 (Table 10.1). The K values for sample C and F2 being 17–20%
smaller is most likely due to the effect of Tg being substantially smaller than
the plateau value at high molecular weights (by ∼ 6K). In any case, these
differences inK are so small that these results actually support the ERT and
the Rouse theory being on the same footing at the Rouse-segmental level.

Because sample B is contaminated by residual plasticizers, the K values
of sample B cannot be directly compared with those listed in Table 10.1.
To illustrate the point made above, the curve calculated from the VTF
equation best-fitted to the K values of sample B is shifted to the higher-
temperature side by 1.5K in Fig. 14.20. The temperature shift is to account
for the decrease in Tg due to the contamination by residual plasticizers.
The magnitude of the shift has been chosen such that after the shift, the
curve superposes closely on the best-fit VTF curve of sample A over the
region above∼ 115◦C. The magnitude of the shift is basically in accord with
that (∼ 1K) estimated by Plazek. The superposition satisfies naturally
the expectation (based on the results shown in Table 10.1) that the K

value of the “uncontaminated sample B” be in close agreement with that of
sample A at 127.5◦C. After such a shift, the best-fit VTF curve of sample
B begins to rise above that of sample A below ∼ 115◦C, illustrating the
divergence similar to but smaller than that between samples A and C. If
we use the universal value K ′ = 1.35 × 10−3 predicted at ∆T = 0 (see
Fig. 14.15), the K value at Tg for the “uncontaminated sample B” should
be 4.27× 10−4(= K ′/3.16), which occurs at 99.5◦5C on the shifted best-fit
VTF curve of sample B. This Tg value is consistent with the sum of the shift
(1.5K) and the Tg value of sample B (98.0◦3C) determined by the criterion
τS = 1, 000 sec. In summary, as determined by the criterion τS = 1, 000 sec,
the Tg values for sample A, “uncontaminated sample B”, and sample C
are 97, 99.6 and 93.8◦C, respectively; these values are consistent with the
calorimetric values listed in Table 14.1., which are read from Fig. 14.12.

The analysis-obtained results of K shown above suggest that the free
volume decreasing with decreasing temperature that eventually leads to
the glass transition can be separated into two stages as explained in the
following: the free volume at either of the two chain ends being always
available to the motions along the primitive path, has been given as the
explanation for the isothermal frictional factor K being independent of
molecular weight at and above 127.5◦C (for M ≥ 3.4× 104; Secs. 10.2 and
14.6). At the same time, the universal ∆T dependence of K ′ (Fig. 14.15)
has been explained as due to K ′ being solely dependent on the average
free volume in the bulk, which is affected by two factors: the number of
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chain ends per unit volume and the chain-end free volume. The former
factor is inversely proportional to molecular weight and the latter factor
decreases with decreasing temperature. The former factor makes both the
glass transition point Tg and K ′ start to decline with decreasing molecular
weight around the same point (∼ 11Me; Figs. 10.5 (or 11.1) and 14.12).
With decreasing temperature, the glass transition occurs — i.e. arriving at
Tg — as the decreasing average free volume in the bulk reaches a certain
minimum value. These explanations and the transition of K from being
independent of molecular weight to being affected by a molecular-weight
change around ∆T = 20K (for M � 3.4 × 104 as suggested by the results
shown in Table 10.1 and Fig. 10.20) together suggest that the chain-end
free volume in affecting Tg manifests in two stages. At ∆T > ∼ 20K, the
isothermal average free volume in the bulk of a polystyrene is directly pro-
portional to the number of chain ends per unit volume while the isothermal
chain-end free volume remains the same — i.e. independent of molecular
weight. This is the first stage as characterized by K being independent of
molecular weight. In the temperature region of ∆T < ∼ 20K, the isother-
mal chain-end free volume becomes affected by how far the temperature is
above Tg. This second stage is characterized by the isothermal frictional
factor K becoming molecular weight-dependent, which can be considered
as a sort of positive feedback effect: as the average free volume in the bulk is
reduced below a certain critical value, its further decrease with decreasing
temperature can induce an additional decrease in the isothermal chain-end
free volume. This will not occur in a system whose average free volume in
the bulk is still above the critical value due to a smaller molecular weight.
Thus, as the temperature decreases the system with a higher molecular
weight enters the second stage earlier as indicated in Fig. 14.20.

14.13 Internal Viscosity and Zero Shear Viscosity

As might be suggested by the Rouse theory (Eq. (7.61)), the zero-shear vis-
cosity η0 data of polymer melts had been analyzed in terms of the assump-
tion that the viscosity could be expressed as the product of a structural
factor and a frictional factor.34 Considering the existence of the thermorheo-
logical complexity in different polymers, fundamentally such an assumption
is not expected to hold particularly at temperatures close to the glass transi-
tion point. As shown in Sec. 10.3.a, the molecular-weight dependence of the
zero-shear viscosity calculated by integrating Eq. (9.19) with K ′/K = 3.3
(or 5.5) is in close agreement with the well-known empirical structural



September 2, 2010 13:28 WSPC/Book Trim Size for 9in x 6in b959-ch14 FA

322 Polymer Viscoelasticity

factors: η0 ∝ M below Mc and η0 ∝ M3.4 above Mc.35−38 In the cal-
culation of viscosity, the contribution of the glassy-relaxation process (the
internal viscosity) is not included when K ′/K = 3.3 is used or insufficiently
accounted for when K ′/K = 5.5 is used particularly at temperatures close
to Tg. As T → Tg, the contribution of the internal viscosity to η0 increases
greatly; and its percentage of the total η0 value is particularly large if the
molecular weight is not significantly larger than Me. This can be illustrated
by considering the F2 case, in which the values of the ratio ηp/ηp (AG = 0)
at different temperatures should be very similar to those of sample C listed
in Table 14.3. As can be estimated using the listed ηp/ηp (AG = 0) values
of sample C, the contribution of the internal viscosity to the total η0 value
increases from around 10% at ∆T ≈ 40K to about 80% at ∆T = 0. Thus,
the comparison of the molecular-weight dependence of viscosity calculated
from Eq. (9.19) usingK ′/K = 3.3 (or 5.5) with the empirical structural fac-
tors: η0 ∝M below Mc and η0 ∝M3.4 above Mc as detailed in Sec. 10.3.a
is meaningful only if made at temperatures sufficiently high above Tg. From
the experimental point of view, a meaningful comparison can be made also
only at sufficiently high temperatures as the empirical structural factors
have been constructed on the basis of data measured at temperatures quite
high above Tg. That the comparison is meaningful only at temperatures
sufficiently high above Tg is also indicated by another effect: As the temper-
ature is very close to Tg, the isothermal frictional factor K itself becomes
dependent on molecular weight as shown in Fig. 14.20.

Appendix 14.A — Calculations of the G′(ω) and G′′(ω)
Spectra from a G(t) Functional Form

The storage and loss modulus spectra G′(ω) and G′′(ω) — such as those
of L10, A5000, A2500 and sample C shown in Figs. 14.10, 14.11 and
14.16 — can be accurately calculated from their relaxation-time distribu-
tions H(τn)∆ log τ which are first numerically calculated from the theory
(Eq. (14.1) or (14.6)). The discrete relaxation times {τn} are usually chosen
to be equally spaced on a log scale; namely, τn+1/τn = z with z = 10∆log τ

being a constant. This is often done by setting the number of discrete relax-
ation times per decade to a certain integer; a large integer may be chosen
if a high resolution is desired or needed.

With the frictional factor K set at a certain value, the G(t) curves of
sample C, for example, can be calculated from Eq. (14.6) (in combination
with Eqs. (14.3)–(14.5), (14.7) and (14.8)) using the parameters Af

G, β and
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s extracted by analyzing its measured J(t) curves. Instead of calculating
the G(t) curves, the same equations and parameters can be used to calculate
the H(τn)∆ log τ distributions. In doing so, we consider the Rouse-theory
part and the Af

GµG(t) term in Eq. (14.6) separately. In the former, all the
normal modes and their relaxation times are known. Thus, for this por-
tion, a computer program can be constructed to accumulate the relaxation
strengths of all the normal modes associated with different molecular-weight
components in the sample with relaxation times τ falling in the interval,
τn/
√
z ≤ τ < τn

√
z. In this way, the relaxation-time distribution for the

Rouse-theory part at a chosen resolution can be obtained. At the same
chosen resolution, the relaxation-time distribution of the Af

GµG(t) term
with µG(t) given by Eq. (14.3) can be calculated numerically.21 The total
relaxation-time distribution can be formed by summing the distributions
obtained for the two separate portions. The obtained total relaxation-time
distribution H(τn)∆ log τ can be checked by comparing the G(t) curve cal-
culated numerically according to

G(t) =
∑

n

H(τn) exp(−t/τn)∆ log τ (14.A.1)

with that calculated directly from Eq. (14.6). With the relaxation-time dis-
tribution confirmed this way, the G′(ω) andG′′(ω) spectra can be calculated
numerically in a straightforward manner using their respective expressions:

G′(ω) =
∑

n

H (τn)
ω2τ2

n

1 + ω2τ2
n

∆ log τ (14.A.2)

G′′(ω) =
∑

n

H (τn)
ωτn

1 + ω2τ2
n

∆ log τ. (14.A.3)

In a similar manner, the relaxation-time distributions and viscoelastic
spectra of entangled systems can be calculated from Eq. (14.1) (in combina-
tion with Eqs. (14.2)–(14.5)). Although Eq. (14.1) contains an infinite num-
ber of terms, the numerical calculation can be done because the contribution
of the pth mode in µB(t) as well as in µC(t) diminishes fast with increasing
p (∝ 1/p2; Eqs. (9.5) and (9.11)); one may include a sufficient number of
terms in the computation to achieve the desired high level of accuracy. How-
ever, the computer program involving the ERT is much lengthier because
it contains numerous products of two exponentials and of three exponen-
tials. Furthermore, multiplication of two relaxation-time distributions —
that associated with the glassy relaxation AGµG(t) and that associated
with the processes contained in the GE(t) as defined by Eq. (14.1) — is
involved. Shown in Figs. 14.21 and 14.22 are the comparisons of the H(τ)
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Fig. 14.21 Comparison of the H(τ) distributions of samples A (middle figure),
B (bottom one) and C (top one) at individual glass transition points or ∆T = 0. In each
figure, the relaxation times of the Rouse–Mooney normal modes (for samples A and B)
or the Rouse normal modes (for sample C) are indicated (upper �). In the entangled
cases (samples A and B) the relaxation times of the individual dominant (lowest) modes
in the µX (t), µB(t) and µC(t) processes are also indicated (lower �). The vertical dotted
line represents the structural-relaxation time τS = 1,000 sec.
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Fig. 14.22 Comparison of the G′
p(ω) and G′′

p (ω) spectra of samples A (middle figure),
B (bottom one) and C (top one) at individual glass transition points or ∆T = 0. In
each figure, the relaxation rates (defined as 0.7/relaxation-time) of the Rouse–Mooney
normal modes (for samples A and B) or the Rouse normal modes (for sample C) are
indicated (upper �). In the entangled cases (samples A and B) the relaxation rates of the
individual dominant (lowest) modes in the µX(t), µB(t) and µC (t) processes are also
indicated (lower �). The vertical dotted line represents the structural-relaxation rate
ωS = 0.7 × 10−3 rad/sec. The individual frequencies at which the G′

p(ω) curves of the
three samples cross the horizontal dotted lines at 108 dyn/cm2 represent the traditionally
defined structural- (or α-) relaxation rates.
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distributions (presented at the resolution of 10 relaxation times per decade)
and of the G′

p(ω) and G′′
p(ω) spectra, respectively, of samples A, B and C

at ∆T = 0 — corresponding to the Gp(t) curves shown in Fig. 14.17.
In the shown H(τ) distributions, the correspondences between the peak
positions and the relaxation times of the Rouse (in sample C) or Rouse–
Mooney (in samples A and B) normal modes as indicated by + can be
observed as expected theoretically. Note that the relaxation-time peaks
of the Rouse–Mooney normal modes, as being free from the broadening
due to the finite width of molecular weight distribution of the sample, is
much sharper than those of the Rouse normal modes. However, they are
slightly broadened and shifted to shorter times by coupling (modulation)
with the relaxation modes contained in the µX (t), µB(t) and µC(t) pro-
cesses. The relaxation times or rates of the dominant (lowest) modes in the
µX(t), µB(t) and µC(t) processes are also indicated in Figs. 14.21 and 14.22;
their corresponding relaxation-time peaks are all broadened by the finite
width of molecular weight distribution. Some additional fluctuations can
be observed in the H(τ) distributions; they occur because in the numeri-
cal calculations the molecular weight distribution (the Schultz distribution;
Eq. (10.3)) is represented in a discrete rather than continuous form. How-
ever, detailed features are contained in the shown H(τ) distributions over
the entropic region — the normal-mode peaks; and the bumps in the plateau
and terminal regions of an entangled system — that are absent from those
that have been obtained by conversion from the measured G(t) or G∗(ω)
by procedures involving different orders of approximations.1,13,23,39−41 As
pointed out in Chapter 4, G(t) and G′(ω) are near mirror images to each
other if the time/frequency inversion is made under ωt = 0.7. Thus, cor-
responding to the structural-relaxation time occurring at τS = 1,000 sec in
G(t), the structural-relaxation rate occurs at ωS = 7×10−4 sec−1 in G′(ω).
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Chapter 15

The Basic Mechanism for the
Thermorheological Complexity
in Polystyrene Melts

In the previous chapter, the analyses1–3 of the thermorheological complexity
(TRC) in polystyrene melts4–7 in terms of the structural growth parameter
s or s′ have been studied in detail. The effects of differences in the glass
transition temperature Tg among samples with different molecular weights
on τS, K ′ and s′ can be fully accounted for by expressing them as a function
of the temperature difference from Tg, ∆T = T − Tg. τS , K ′ and s′ values
of samples A, B and C plotted as a function of ∆T fall individually on a
common curve representing a Tg-related universality within the polystyrene
system, entangled or not. It is of great interest to understand the basic
mechanism of the TRC;1 the revealed universality suggests that such an
understanding is fundamentally important.

For polystyrene, the frictional factor (K ′) for the Rouse–Mooney pro-
cess µA(t) in the ERT is greater than that (K) for the µX (t), µB(t) and
µC(t) processes by the temperature-independent factor RK(M/Me) as given
by Eq. (11.6).8–10 The frictional factor K in the ERT is independent of
molecular weight at and above 127.5◦C as expected theoretically and has
also been shown to be the same as that in the Rouse theory within small
experimental errors10 (Chapters 10 and 11). In the study of the TRC in
polystyrene, as explained in Sec. 14.6, the notation K ′ = K and s′ = s —
which also means RK = 1 — has been adopted for an entanglement-free
system.3 That is, whenever the notation K ′ or s′ for an entanglement-free
system is used, automatically its K or s value is meant or used. As defined
by Eq. (14.11), s (or s′) may be regarded as representing the K-normalized
(or K ′-normalized) glassy (or structural)-relaxation time. As RK(M/Me)
is independent of temperature, either K or K ′ carries the temperature
dependence of the relaxation times of all the dynamic processes or modes
of motion in the entropic region of a polystyrene melt system, entangled or

328
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not. As s or s′ decreases with increasing temperature, the entropic region
shifts more away from the glassy-relaxation region (Figs. 14.5, 14.17–14.19),
representing the TRC. Thus, the basic mechanism of the TRC may be ana-
lyzed in terms of either the pair of s andK or the pair of s′ andK ′. Because
of the universality associated with K ′ and s′ expressed as a function of ∆T ,
the analysis in terms of K ′ and s′ as done below is systematic and is the
preferred representation.

15.1 The Basic Mechanism of the Thermorheological
Complexity (TRC)

Equivalent to Eq. (3.57), the frictional factor K ′ may be expressed as

K ′ =
ζ′b2

kTπ2m2
=

b2

D′π2m2
(15.1)

where D′ = kT/ζ ′ denotes the diffusion constant of the Rouse segment.
Undergoing Brownian motion, the diffusion constant of the Rouse segment
can generally (see Appendix 3.D) be expressed as

D′ =
kT

ζ′
≈ l2

∆t
(15.2)

where l is the step length that the Rouse segment has moved in a short
time interval ∆t that can be as short as the segmental collision time-scale.
The only criterion for choosing ∆t and l is that the steps are indepen-
dent of one another; then, after a sufficiently large number of steps, the
central limit theorem11,12 (Chapter 1) ensures convergence to a Gaussian
stochastic process. This is an essential element in the Langevin equa-
tion as applied to slow chain dynamics. As pointed above, one may also
express Eq. (15.2) in terms of the diffusion constant D as corresponding
to K(= ζb2/kTπ2m2 = b2/Dπ2m2); the two representations differ only by
a proportionality constant, RK . For an entanglement-free system, as the
notation K ′ = K and s′ = s is used, D′ = D is also adopted.

At high temperatures, there is a wide range down to very small values
from which to choose l and ∆t satisfying Eq. (15.2); the dynamic process is
often referred to as the continuous (small-step) or “free” diffusion.13–19 At
a temperature close to Tg, the structure is formed with a certain lifetime
τS , which has increased greatly with s′ and K ′ (Eq. (14.11)); then, the
smallest independent time step that can be chosen is of the same order of
magnitude as the lifetime of the structure ∆τ ≈ τS = 18〈τ〉G. We can



August 18, 2010 20:27 WSPC/Book Trim Size for 9in x 6in b959-ch15 FA

330 Polymer Viscoelasticity

choose ∆τ as the time step because it is still much shorter than the relax-
ation times of the low Rouse–Mooney or Rouse normal modes (particularly
the first three), τp=1,2,3

A or τp=1,2,3, even at Tg or ∆T = 0 (see Fig. 14.17).
In other words, by the time t ≈ τp=1,2,3

A or τp=1,2,3, the chain dynamics has
regained homogeneity and ergodicity — as indicated by the agreements of
experiments with the ERT or the Rouse theory (Chapter 14). Correspond-
ing to ∆τ being longer at lower temperatures, a larger length scale denoted
by d is expected for the step length as explained in the following:

As K ′ is determined by the quantitative analysis of a J(t) curve (or
G∗(ω) spectrum), so D′ is defined through Eq. (15.1). Corresponding to
K ′ being for the dynamics in the entropic region of the viscoelastic response
of a polymer melt, D′ is a characteristic of the long-time or diffusion regime
of the mean square segmental displacement. This is an essential element of
both the Rouse theory and the ERT (based on the Doi–Edwards theory),
predicting the relations between the viscoelasticity of a polymer and its
molecular (whole-chain) translational diffusion, DG. D (or D′) is propor-
tional to DG for an entanglement-free (Rouse) chain (detailed in Chapters
3 and 7); and to DG and Dcv (curvilinear diffusion constant as defined in
the Doi–Edwards theory)11,20 for a well-entangled chain (detailed in Chap-
ters 8–10) by different structural factors (see Eqs. (3.41), (8.6), (8.20) and
(10.5)). Due to Eq. (15.1), the following constraint is imposed on the
system:

const = D′K ′ ≈
(
d2

∆τ

)
K ′ ≈

(
d2

τS

)
K ′ =

(
d2

18s′

)
(15.3)

where Eq. (14.11) has been used. To maintain D′K ′ constant, d has to
increase by about five times as s′ increases from ∼ 1500 at temperatures
higher than ∼Tg + 40K to ∼ 40,000 at Tg as shown in Fig. 14.14. All the
relaxation times of the dynamic processes or modes of motion as observed
in the viscoelastic response of a polymer over the entropic region are pro-
portional to K ′ ∝ ζ ′/kT ≈ ∆τ/d2 while the structural relaxation time
is τS ≈ ∆τ ∝ 〈τ〉G. With decreasing temperature, ∆τ increases more
strongly than ∆τ/d2 does as d increases with the structural growth param-
eter s′. This difference in temperature dependence represents the basic
mechanism for the TRC. Viscoelastic and dynamic results of glass-forming
polymers4−7,21−27 generally show a stronger temperature dependence in
the short-time (high-frequency) region than that in the long-time (low-
frequency) region; thus, the TRC is a general phenomenon. The above
described mechanism for the TRC is expected to be generally applicable.
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15.2 Breakdown of the Stokes–Einstein Relation (BSE)
Sharing the Same Basic Mechanism

As the glass transition temperature Tg is approached from above, fragile
glass-forming liquids display an interesting phenomenon: the temperature
dependence of the translational diffusion becomes gradually weaker than
that of the viscosity η or the rotational relaxation time τrot . This effect is
often referred to as the breakdown of the (Debye–) Stokes–Einstein relation
(BSE).28–34 The BSE in glass-forming liquids has been actively studied
and various models33,35−40 have been proposed to explain it. The BSE
observed in o-Terphenyl (OTP)28−32 will be presented in this chapter as a
representative example.

Without the entropy-driven modes of motion — as described by either
the ERT or the Rouse theory — in OTP, the viscosity can be expressed by

η ∝
∫ ∞

0

µG(t)dt = 〈τ〉G ∝ τS ≈ τrot ≈ ∆τ. (15.4)

What is explained above concerning the diffusion of the Rouse segment in
polystyrene melts can similarly be applied to the molecular diffusion Dg in
OTP; i.e.

Dg ≈ d2

∆τ
. (15.5)

Thus, from Eqs. (15.4) and (15.5), one sees that Dgτrot increases with
increasing d as Tg is approached from above, indicating the BSE.

To characterize the BSE, a translational diffusion enhancement factor
µ has been defined by

µ =
Dg

DSE
(15.6)

where DSE is the translational-diffusion constant predicted by the Stokes–
Einstein relation. As the Stokes–Einstein relation holds at temperatures
far above Tg in OTP, its µ value at a temperature T close to Tg may be
calculated from

µ(T ) =
Dg(T )τrot(T )

Dg(Thigh)τrot (Thigh)

(
or

Dg(T )η(T )/T
Dg(Thigh)η(Thigh)/Thigh

)
(15.7)

where Thigh stands for a high temperature in the region where the Stokes–
Einstein relation holds.
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As s′ for the polystyrene system reaches a plateau value of about 1,500
as the temperature is more than 40K above Tg (Fig. 14.14), under the
constraint imposed by Eq. (15.3), d should reach a lower limiting value d0

at high temperatures. Denoting the plateau value of s′ at high temperatures
by s′0, the s′ value at a temperature T above Tg may be expressed by

s′(T ) = s′0

(
d(T )
d0

)2

. (15.8)

Applying the same idea to the translational diffusion enhancement param-
eter in OTP and substituting Eqs. (15.4) and (15.5) into Eq. (15.7), the µ
value at a temperature T above Tg may be expressed by

µ(T ) =
(
d(T )
d0

)2

. (15.9)

The comparison of Eqs. (15.8) and (15.9) indicates that µ(T ) for OTP is
equivalent to s′(T )/s′0 for polystyrene melts, reflecting the same mechanism.

The essence in the above comparative analysis of TRC and BSE is that
the entropic region of the viscoelastic response of a polystyrene melt is
regarded as equivalent to the diffusion regime of the molecular displacement
in OTP. This is based on the central limit theorem, which is expected to
hold in both types of long-time regimes. They play equivalent roles by
serving individually as the reference frame for characterizing the glassy
relaxation that occurs in the short-time region. Specifically, just as Eq.
(14.9) or (14.11) uses the entropic region of the viscoelastic response of a
polystyrene sample as the reference frame (note 1/K ′ ∝ D′ as indicated
by Eq. (15.1)), the calculation of the product Dgτrot in the case of OTP
amounts to using the diffusion regime as the reference frame.

15.3 Comparison of the TRC and BSE Results

The µ(T ) data for OTP as defined by Eq. (15.7) have been compiled
by Mapes et al.32 from diffusion results obtained by NMR,28 isothermal
desorption32 and the results of rotational relaxation time28 and viscosity.41

In Fig. 15.1, the µ(∆T ) results of OTPa are compared with the s′(∆T )/s′0
values of the three polystyrene samples: A, B and C as a function of ∆T =
T − Tg (Chapter 14). The magnitude of the enhancement factor µ(∆T )

aData of OTP (Ref. 32) provided by Prof. Ediger in digital form are shown in Fig. 15.1.
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Fig. 15.1 Comparison of the s′(∆T )/s′0 values (with s′0 = 1,500) of polystyrene sam-
ples: A(◦), B( �) and C(� obtained by analyzing the J(t) line shapes; � by matching
the calculated and experimental steady-state compliance J0

e values) with the diffusion
enhancement factors µ(∆T ) of OTP (• isothermal desorption; � NMR) as a function of
∆T = T −Tg . The solid line is calculated from the modified VTF equation (Eq. (14.13))
which best fits the s′(∆T )/s′0 results of the three polystyrene samples collectively. The
dashed line represents the curve calculated from the modified VTF equation best fitting
the µ(∆T ) data of OTP.

being different for different materials, the similarity in shape between the
µ(∆T ) and s′(∆T )/s′0 curves shown in Fig. 15.1 supports the conclusion
that µ(∆T ) for OTP plays the same role as s′(∆T )/s′0 for polystyrene.

The G∗(ω) spectra of the entanglement-free samples L10, A5000 and
A2500 have also been analyzed in terms of the same G(t) functional form,
Eq. (14.6), as the J(t) curves of sample C have been. It has been found
that the τS , s′ and K ′ values of these samples obtained from the analyses
deviate more from the respective universal curves with decreasing molecular
weight. As shown in Fig. 14.14, the common curve of log(s′) vs.∆T shared
by samples A, B and C can be superposed closely on the data of L10,
A5000 and A2500 individually by a vertical shift. By extrapolating the
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obtained shift factors to the no-shift point, deviation is estimated to start
occurring around Mw = 12,000 for polystyrene. The close superposition
suggests that these low-molecular-weight samples have the same or very
similar dependence of s′(∆T )/s′0 on ∆T as shown in Fig. 15.1 for samples
A, B and C.

15.4 A Discussion of the Glass Transition as Viewed
from the Study of TRC

As studied in Chapter 14, the TRC is closely related to the glass transition;
so is the BSE as indicated by various studies.14−19,35−38 The implications
regarding the glass transition as can be derived by analyzing the TRC may
be summarized as in the following:

(a) The stretching parameter β for the glassy-relaxation process
obtained by analyzing the J(t) curves or G∗(ω) spectra of nearly monodis-
perse polystyrene samples of different molecular weights, entangled and
entanglement-free, is consistently within 0.41–0.42 (Table 14.1). It is com-
monly assumed that the observed nonexponential relaxation is strongly
influenced by the underlying energy landscape associated with the struc-
tural configurations that the system may adopt14−18 — a picture of
dynamic heterogeneity.

(b) As indicated by Eq. (14.11), both the increases in s′ and K ′

(Figs. 14.14 and 14.15) contribute to the increase in the structural-
relaxation time τs with temperature decreasing towards Tg. The increase in
K ′ represents frictional slowdown. As s′ has the dimension of Da2 —
playing the same role as the structural factors in the expressions for relax-
ation times studied in earlier chaptersb — the quantification of s′ implies the
existence of some structure in the system and its temperature dependence
indicates that the mass (size) of the structure increases with decreasing
temperature. Traditionally, the existence of some structure in the glass
transformation range has been inferred from the change of heat capacity in
the neighborhood of Tg as a function of the DSC scanning rate and the slug-
gishness of the stress relaxation.13,14 The gradually larger increase in s′ with

bAs can be seen by comparing the expression 〈τ〉G = K′s′ (= Ks) (Eq. 14.11) with
the expression of any of the different relaxation times as given by Eqs. (3.62), (7.57),
(8.56), (9.12) and (9.B.26).
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temperature approaching Tg from above causes an even greater slowdown
on the glassy relaxation, by which a glass-forming liquid is characterized as
fragile.14−18 Thus, the structure growing with decreasing temperature as
indicated by the increase in s′ greatly contributes to fragility of polystyrene.

(c) s′ as a quantity embodying the size aspect of the structure is
straightly extracted from the glassy relaxation itself. Being part of a relax-
ation process, the structure cannot be permanent but rather should be
fluctuating or flickering with a certain lifetime. This picture implies that
the system is dynamically heterogeneous, which is consistent with (a).

(d) With more structural formation (as a result of increasing s′),
the average segment spends an increasing fraction of time in trajectory-
reversing collisions with its neighbors — as if a particle with a finite kT
being situated inside a cage; as a result, the mean waiting time ∆τ ≈ τs
between two successive jumps becomes longer. The constraint imposed by
Eq. (15.3) dictates that as s′ increases with temperature decreasing towards
Tg, the average length d, over which the segments jump, must increase. The
transition from free diffusion to hopping (or activated motions) of the seg-
ments starts around 45K above Tg for polystyrene (see Fig. 14.14). With
less volume available, more cooperation is needed between neighbors in
order for one to escape its initial “cage” in making a jump.15,16 The coop-
erative jump motion has often been inferred from the apparent activation
energy associated with τs in the neighborhood of Tg being many times larger
than the value that can be assigned to a single segment14−18,42,43 — such
as the value in the high temperature region.

(e) With respect to the length scales of the Rouse (for entanglement-
free systems) or Rouse–Mooney (for entangled systems) normal modes, the
length scale of the glassy relaxation increasing with s′ as the temperature
decreases can be monitored (Figs. 14.17–14.19). In this way, the length
scale of polystyrene at Tg has been determined to be ∼ 3 nm consistently
for samples A, B and C.

The above summary gives a general picture of the glassy relaxations of
a flexible linear polymer at and near Tg. The general picture has several
basic features: the existence of a fluctuating structure (corresponding to
an energy-landscape picture), contribution of structural growth to fragility,
dynamic heterogeneity, the transition from free diffusion to cooperative
hopping or activated motions, the existence of a characteristic length scale
at Tg. As the TRC in polystyrene and the BSE in OTP are sharing the same
basic mechanism, these basic features may also be regarded as applicable
to fragile glass-forming liquids such as OTP. These features have indeed
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been suggested, discussed or revealed in various studies of fragile glass-
forming liquids.13−19,43−55 Furthermore, the study of the TRC allows a new
physical meaning to be assigned to the translational-diffusion enhancement
factor µ(T ) for fragile glass-forming liquids. Considering that s′(T )/s′0 is
equivalent to µ(T ) and that s′ has the unit Da2, µ(T ) may be regarded as
a quantity that reflects the square of an effective or average mass size of
some structure growing with temperature decreasing towards Tg.

15.5 Specific Relations with Literature-Reported Studies
of BSE

Different studies have been reported to explain the BSE. These studies are
based on or lead to dynamic heterogeneity in glass-forming systems. In the
following, the specific relations of two models explaining the BSE35,50 with
the discussed basic mechanism, which is initially derived from the study of
the TRC, are pointed out:

(a) For explaining the enhancement of translational diffusion in deeply
super-cooled liquids, Stillinger and Hodgdon (S&H)35 have proposed a two-
state model. As shown in Appendix 15.A, a one-to-one correspondence
between the two-state model formulated by S&H and the hopping picture
as represented by Eq. (15.5) can be found. The average length d jumped by
the molecule after having waited for an average period ∆τ ≈ τS since the
previous jump is shown to be equivalent to the distance the molecule moves
by diffusion in a fluidized domain (with viscosity η0 inside the domain) over
the domain’s lifetime t0 in the S&H model:

d2 ≈ Dg∆τ ≈ DgτS =
(

kT

6πη0R

)
t0 ∝ µ. (15.10)

Equation (15.10) agrees with Eq. (15.9) indicating d increasing with
decreasing temperature. Either Eq. (15.5) or the two-state model of S&H
has reflected that this effect takes place as the temperature decreases
towards Tg. Despite their simplicity, either of them has captured the
notion — the “hopping” mechanism or the presence of the mobile frac-
tion — that characterizes the collective motions of particles effectively as
far as the long-time (diffusion) regime is concerned, therefore explaining
the BSE occurring at low temperatures.

(b) Simulations on glass-forming binary mixtures by Yamamoto and
Onuki50 (Y&O) have shown that the BSE occurs in highly super-cooled



August 18, 2010 20:27 WSPC/Book Trim Size for 9in x 6in b959-ch15 FA

The Basic Mechanism for the Thermorheological Complexity 337

states. Based on the van Hove self-correlation functions concurrently cal-
culated, dynamic heterogeneity has been demonstrated to play an essential
role in causing the BSE. The notation τα given in Ref. 50 may be regarded
as ∆τ defined in this chapter; for consistency τα of Ref. 50 is replaced by ∆τ
in the following discussion. At low temperatures where the BSE occurs, at
time scales of ∼∆τ , the mobile and slow components can be resolved; and
the hopping of the mobile molecules gives a dominant contribution to the
mean square displacement 〈[∆r(t = ∆τ)]2〉.c As opposed to clear dynamic
heterogeneity at t ≈ ∆τ , with time increasing in the long-time region t >

10∆τ , the van Hove correlation function approaches the Gaussian formd —
confirming the central limit theorem. As shown in Ref. 50, Dg∆τ(=
〈[∆r(∆τ)]2〉/6)e increases with increasing ∆τ (or decreasing temperature)
from the plateau expected from the Stokes–Einstein relation in the small
∆τ (or high temperature) region. Thus, Dg∆τ or 〈[∆r(∆τ)]2〉 of Y&O may
be regarded as corresponding to d2 in Eq. (15.5). Y&O have clearly shown
that the BSE is directly related to the increase in 〈[∆r(∆τ)]2〉 with decreas-
ing temperature just as the increase in d2 is responsible for the TRC and
BSE in the basic mechanism studied in this chapter. In other words, the
picture revealed by the simulations of Y&O represents an “actual” depiction
of the basic mechanism as occurring in a model system. The equivalence
is characterized by three key elements: the existence of a structure that is
flickering in nature (corresponding to the coexistence of mobile and slow
components as shown by Y&O); the validity of the central limit theorem as
applied to long times t� ∆τ ; and the correspondence between 〈[∆r(∆τ)]2〉
and d2, both reflecting molecular hopping at low temperatures.

Appendix 15.A — Comparison with the Two-State
Model of BSE

The two-state picture proposed by Stillinger and Hodgdon35 consists of
flickering fluidized domains in an essentially solid matrix; in the fluidized
domains, stress can be released quickly and the molecule can move faster.
The fluidized domains in the SH picture was described in terms of four
temperature-dependent average characteristics:

(1) domain volume v0;
(2) domain appearance rate per unit volume, r0;

cSee Fig. 3 of Ref. 50.
dSee Fig. 5 of Ref. 50.
eSee Fig. 2 of Ref. 50.
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(3) domain lifetime t0;
(4) domain internal viscosity η0.

η0 must reflect the fluidized nature of the domains, and thus its magnitude
must be substantially less than the macroscopically measured viscosity η.
Following SH, as the volume fraction φ0 of the system that is interior to
the fluidized domains is given by

φ0 = r0v0t0; (15.A.1)

the structural relaxation time τS is expressed as

τS(≈ τrot) =
1

r0v0
=
t0
φ0
. (15.A.2)

And the viscosity η may be given by

η ≈ G∞τS =
G∞
r0v0

. (15.A.3)

A key assumption in the SH model is that the system’s overall translational
diffusion constant Dg is a simple volume average over fluidized domains and
surrounding static matrix. Thus,

Dg = φ0D0 + (1− φ0)× 0 = φ0

(
kT

6πη0R

)
(15.A.4)

where the Stokes–Einstein equation is assumed to hold in the fluidized
domains; and R is the effective radius of the diffusing molecule. Then
using Eqs. (15.A.1) and (15.A.3), the enhancement factor µ as defined by
Eq. (15.6) is expressed as

µ = φ0

(
kT

6πη0R

)/(
kT

6πηR

)
= r0v0t0

η

η0
≈ G∞

t0
η0
. (15.A.5)

As observed, µ increases with decreasing temperature; so must t0/η0
do. Then, using Eqs. (15.A.2) and (15.A.4), we obtain Eq. (15.10) from
Eq. (15.5).
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Chapter 16

Monte Carlo Simulations of Stress
Relaxation of Rouse Chains

In Chapters 3, 6 and 7, the two equivalent descriptions of Brownian motion:
the Langevin and Smoluchowski equations for an entanglement-free system
have been studied in the cases where analytic solutions are obtainable: the
time-correlation function of the end-to-end vector of a Rouse chain and the
constitutive equation of the Rouse model. When the Brownian motion of a
more complicated model is to be studied, where an analytical solution can-
not be obtained, the Monte Carlo simulation becomes a useful tool. Unlike
the Monte Carlo simulation that is employed to calculate static proper-
ties using the Metropolis criterion,1,2 the simulation based on the Langevin
equation can be used to calculate both static and dynamic quantities.3−5

In this chapter, the simulation scheme will be introduced and illustrated
by applying it to the Rouse chain. The computer simulation results of the
Rouse-chain model can be directly compared with the analytical solutions
to demonstrate the validity of the simulations. This will serve to validate
simulations by the same scheme on systems of which analytical solutions
are not available. In Chapters 17 and 18, simulations on entanglement-free
Fraenkel chains4−6 are studied giving new understandings at the molecular
level of polymer viscoelasticity.

16.1 The Basic Monte Carlo Simulation Scheme
as Applied to the Rouse Model

In the Monte Carlo simulation, the continuous change in time, dt, in the
Langevin equation is replaced by a small time step, ∆t. The changes in the
positions {Rn(t)} of the beads of a Rouse chain are slow varying processes
as opposed to the fluctuations {gn(t)} defined by Eqs. (3.34) and (3.35)
being instantaneously fast. Thus, with the random displacement dn(ti) of

341
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the nth bead during the ith time step (∆t) defined as

dn(ti) = dn(i) =
∫ ti+∆t

ti

gn(t)dt. (16.1)

Equation (3.31) can be replaced by

Rn(ti + ∆t) = Rn(ti) +
1
ζ
Fn(ti)∆t+ dn(ti). (16.2)

As derived from the interaction potential Eq. (3.30), the total force Fn(ti)
asserted on an internal bead by the springs is given by

Fn(ti) = −3kT
b2

(2Rn(ti)−Rn+1(ti)−Rn−1(ti)) . (16.3)

Equivalent to Eq. (16.3), the equations for the end beads (for n = 1 or
N) can be similarly obtained. Being in a general form, Eq. (16.2) can be
used as long as the interaction potential is a coarse-grained one (such as
the Fraenkel potential studied in Chapters 17 and 18), from which the sum
of spring forces on each bead Fn(ti) can be similarly obtained.

Obviously, corresponding to Eq. (3.34), the average of the random dis-
placement for any time step i is

〈dn(i)〉 = 〈dn(ti)〉 = 0. (16.4)

The diffusion constant D of a single Rouse bead, as shown in Appendix
3.D, can be defined by

D =
kT

ζ
=

d2

2∆t
(16.5)

where d is the step length traversed by a bead during a time step ∆t along
each of the three Cartesian axes. Using Eqs. (3.35), (16.1) and (16.5), the
correlation of dn(i)(= dn(ti)) at two time steps is obtained as

〈dn(i)dm(j)〉

=
∫ ti+∆t

ti

dt′
∫ tj+∆t

tj

dt′′〈gn(t′)gm(t′′)〉

= d2δδnmδij (16.6)

which means that the random steps {dn(i)} may take up the role played by
the random fluctuations {gn(t)} in the Langevin equation. Equation (16.6)
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indicates that a random step taken by a bead in a certain coordinate direc-
tion during a certain time step is totally correlated with itself. At the same
time, one random step is totally uncorrelated with another, if between the
two at least one of the following is true: the two steps are separately taken
by two different beads (n �= m); the two steps are in different coordinate
directions (α �= β, with α, β ≡ x, y or z); and the two steps occur separately
during two different time steps (i �= j). Each of the three components of
dn(i) for any bead and any time step, can be calculated by multiplying
d by +1 or −1 that can be generated randomly with equal probability
by a computer.1,2 Thus generated random steps {dn(i)} satisfy the condi-
tions given by Eqs. (16.4) and (16.6). Using Eq. (16.5), Eq. (16.2) may be
rewritten as

Rn(i+ 1) = Rn(i) +
d2

2kT
Fn(i) + dn(i) (16.7)

where i denotes some current time step ti/∆t, while i+ 1 denotes the next
one. For the Rouse model, Eqs. (3.31), (3.34) and (3.35), which collec-
tively define the Langevin equation for the internal beads, are replaced
by Eq. (16.7) together with Eqs. (16.3), (16.4) and (16.6) in the Monte
Carlo simulation. The equivalent transformation is applied to Eqs. (3.32)
and (3.33) for the end beads. In a computer simulation, Eq. (16.7)
allows us to calculate the chain configuration of the next time step,
{Rn(i+ 1)}, from the current configuration {Rn(i)}. As the diffusion
constant D is given by Eq. (16.5), the number of steps required for a
dynamic response or time-correlation function to relax or decay to a cer-
tain extent depends on the d value chosen. Using Eq. (16.5), the relax-
ation time τp as given by Eq. (3.55) can be expressed in units of the time
step as

τp
∆t

=
b2

6d2 sin2 (pπ/2N)
. (16.8a)

In the same way, corresponding to Eq. (7.56),

τp
∆t

=
b2

12d2 sin2 (pπ/ 2N)
. (16.8b)

Clearly, a smaller d representing a higher time-scale resolution leads to
greater computing-time requirements as a larger number of steps are
required for the time-correlation function or relaxation function under
simulation to reach the same point in time.
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Through Eq. (16.8a) or (16.8b), the time-correlation function C(t) =
〈R(0) ·R(t)〉 of the end-to-end vector and the relaxation modulus G(t) cal-
culated from Eqs. (3.59) and (7.58), respectively, may be compared with
the corresponding simulation results for a Rouse chain. In the simulation of
a time-correlation function, an equilibrium state is first established by run-
ning a sufficiently large number of Monte Carlo steps. Then, a time window
is set up, within which the time-correlation function may be calculated as
explained in the following:

The end-to-end vectors {R(i); i = 1 to Nw} of Nw sequential time
steps — the time-window set of vectors — are first calculated in an equi-
librium state and stored. As the simulation advances one step forward, the
first end-to-end vector in the time-window set, R(1), kept in the storage is
discarded and replaced by the second R(2), the second by the third, . . . ,
and the last R(Nw) by the newly generated. Updating the stored time-
window set of vectors in the same replacement scheme is repeated a large
number of times — one for each advancing step. Before each updating, the
dot products of the first end-to-end vector R(1) and each of the vectors in
the set {R(i); i = 1 to Nw} are calculated and individually accumulated
over many repetitions — for averaging over the number of repetitions. After
a sufficiently large number of repetitions, the obtained (time-)averaged val-
ues as denoted by R(1) ·R(1), R(1) ·R(2), R(1) ·R(3) · · · are equivalent to
C(0), C(1), C(2), . . . respectively, under the ergodic assumption.7 As shown
in Fig. 16.1, the quantitative agreements between simulations and theory
for the end-to-end vector time-correlation function confirm the validity of
the Monte Carlo simulation scheme.

16.2 Simulation of the Rouse Relaxation Modulus —
Following the Application of a Step Shear Strain

The relaxation modulus G(t) can be calculated by the Monte Carlo simu-
lation after a step shear deformation

E =


1 λ 0

0 1 0
0 0 1


 (16.9)

is applied in an affine way to the polymer chain in an equilibrium state at
t = 0. Following the application of E, the evolution of {Rn(i)} is calculated
according to Eq. (16.7), and the stress relaxation of a chain with N beads,
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Fig. 16.1 Comparison of the analytical solutions (solid lines) and the Monte Carlo sim-
ulations for the time-correlation functions of the end-to-end vector, C(t) = 〈R(0) · R(t)〉,
of the Rouse chains with two beads (◦) and three beads (•) (b = 10 and d = 0.4 are used
in the simulations.).

normalized per segment, is given by

Sxy(λ, i) =
1

(N − 1)

N∑
n=1

〈Fnx(i)Yn(i)〉 . (16.10)

As shown in Appendix 16.A, the expression for the stress tensor given in
Eq. (16.10) is equivalent to that expressed in terms of connector force and
bond vector in Chapters 6 and 7 (see Eq. (6.35)).

In the simulation, a large number of relaxation processes following a
step deformation are repeated and the calculated values of the dynamic
quantity

∑N
n=1 Fnx(i)Yn(i) at individual time steps (i) are accumulated for

averaging as denoted by the angular bracket 〈 〉 in Eq. (16.10). Before
a new cycle is started, the simulation must be run for a sufficiently large
number of time steps for the system to reach an equilibrium state. To
prevent some residual stress from accumulating, the step deformation may
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be applied in a cyclic manner. If the E given by Eq. (16.9) is referred
to as a deformation in the x direction and denoted by x, the deformation
cycle: x → −x → y → −y → z → −z is repeated. Following each step
deformation, the physically equivalent stress component is monitored and
its numerical values at different time steps are registered. The registered
values are accumulated for averaging over each cycle and over the number
of cycles. Although the cyclic scheme has been used for obtaining the
results reported in this chapter (and Chapters 17 and 18), the obtained
simulation results are discussed with respect to Eq. (16.9) as the chosen
direction of deformation — in other words, the shear stress is denoted by
the xy component. With Sxy(λ, i) (Eq. (16.10)) calculated this way, the
normalized relaxation modulus per segment is given by

GS(i) = −Sxy(λ, i)
λ

. (16.11)

Both the Rouse theory and the Rouse-model Monte Carlo simulation are
a mean-field representation, meaning that the stress relaxation is the sum
of contributions from all the chains in a unit volume, each represented
by its statistically averaged time dependence (Chapters 6 and 7).8,9 Thus,
simulations as explained above are performed on a singe chain.

16.3 Simulation of the Rouse Relaxation Modulus — in an
Equilibrium State

In accordance with the fluctuation–dissipation theorem (Appendix 16.B), at
low strains λ in the linear region, the normalized relaxation modulus given
by Eqs. (16.10) and (16.11) is equivalent to the time-correlation function:

GS(i) =
1

(N − 1)kT
〈Jxy(0)Jxy(i)〉

=
1

(N − 1)kT
Jxy(0)Jxy(i)

=
1

I(N − 1)kT

I∑
i0=1

Jxy(i0)Jxy(i0 + i) (16.12)

where Jxy(i) is the stress component given by

Jxy(i) =
N∑

n=1

Fnx(i)Yn(i). (16.13)
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In Eq. (16.12), I represents a large number of iterations.a In the simulation,
all the six combinations of Jαβ(t) (with α �= β)b may be used for averaging
in the calculation of the time-correlation function; the xy component is used
as the representative of the shear stress in all the discussions. The simula-
tion result as obtained through Eqs. (16.10) and (16.11) may be referred to
as the step strain-simulated GS(t), as opposed to the equilibrium-simulated
GS(t) obtained through Eq. (16.12).

16.4 Comparison between Simulation and Theory of
the Rouse Model

(a) Step strain-simulated relaxation modulus

The shear relaxation modulus GS(t) and the first normal-stress difference
function GΨ1(t), both normalized on a per-segment basis and with kT
set to 1, are obtained from the constitutive equation of the Rouse model
(Eq. (7.55) with sp replaced by τp) as

GS(t) =
−Sxy(t, λ)

λ
=
−τxy(t, λ)
λn (N − 1)

=
1

(N − 1)

N−1∑
p=1

exp
[
− t

τp

]
(16.14)

and

GΨ1(t) = −Sxx(t, λ)− Syy(t, λ)
λ2

= −τxx(t, λ) − τyy(t, λ)
λ2n (N − 1)

=
1

(N − 1)

N−1∑
p=1

exp
[
− t

τp

]
(16.15)

Several key predictions of the Rouse theory may be summarized as in
the following:

(1) The relaxation time of the pth Rouse normal mode, τp(N), has the N
and p dependences as given by Eq. (7.56) or Eq. (16.8b).

(2) No nonlinear effect in the shear stress relaxation; in other words, GS(t)
as given by Eq. (16.14) is independent of the applied strain λ.

aCorrection: the typical number of iterations I ∼ 3 × 104 indicated in Ref. 4 should
have been I ∼ 3 × 108.

bAt any time-step of simulation computation Jαβ(t) = Jβα(t) is observed, except for
extremely small run-off errors.
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(3) The Lodge–Meissner relation holds; namely, GS(t) = GΨ1(t) as indi-
cated by Eqs. (16.14) and (16.15).

(4) The second normal-stress difference as defined by N2(t, λ) =
−(Syy(t, λ)− Szz(t, λ)) is zero.

These results are exactly confirmed by the simulations; cases (1)–(3) are
illustrated in the following: The relaxation time in units of the time step as
expressed by Eq. (16.8b) allows one to compare the simulated GS(t) curve
with that calculated from Eq. (16.14). In Fig. 16.2, such a comparison
is made for two-bead, five-bead and ten-bead Rouse chains. The perfect
agreements between the simulated and theoretical line shapes without any
shift along both the modulus and time-step axes confirm the predicted N

and p dependences of the relaxation times of the Rouse normal modes. As
predicted by the theory, no nonlinear effect can be observed between the

t (steps)
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G
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t)
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100

101

102

Fig. 16.2 Comparison of the step strain-simulated GS(t) results of two-bead, five-bead
and ten-bead Rouse chains (� for N = 2; � for N = 5; • for N = 10) with the
equilibrium-simulated GS(t) curves (� for N = 2; � for N = 5; and ◦ for N = 10) and
the Rouse theoretical curves (short-dash line for N = 2; long-dash line for N = 5; and
solid line for N = 10).



September 1, 2010 15:46 WSPC/Book Trim Size for 9in x 6in b959-ch16 FA

Monte Carlo Simulations of Stress Relaxation of Rouse Chains 349

t (steps)

100 101 102 103 104 105

G
s(

t)
, 

G
ψ

1(
t)

10-3

10-2

10-1

100

101

102

Fig. 16.3 Comparison of the Rouse theory (solid line) and the results of GS(t) (◦ at
λ = 1 and � at λ = 2) and GΨ1(t) (• at λ = 1 and � at λ = 2) obtained from simulations
on the five-bead Rouse chain following the application of a step shear strain λ.

GS(t) curves simulated at λ = 0.5 and 1 for the Rouse chain model; in other
words, the shown step strain-simulated GS(t) curves are linear results. In
Fig. 16.3, the strain independence of GS(t) and GΨ1(t) for a five-bead
Rouse chain and the close agreements of the simulation results with the
theoretical Rouse curve are shown.

(b) Equilibrium-simulated relaxation modulus

Based on the fluctuation–dissipation theorem, the equilibrium-simulated
GS(t) is predicted to be equivalent to the step strain-simulated GS(t) in
the linear region. In Fig. 16.2, the equilibrium-simulated GS(t) curves
for two-bead, five-bead and ten-bead Rouse chains are also shown. These
equilibrium-simulated GS(t) results are in perfect agreement with the step
strain-simulated results and the Rouse theoretical curves, illustrating the
fluctuation–dissipation theorem as applied to the Rouse model and con-
firming the validity of the Monte Carlo simulations.
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Appendix 16.A — Molecular Expression for the Stress Tensor

Consider a volume V0, which contains N beads. There are totally
N(N − 1)/2 pair interactions between the beads, chemically bonded or not.
Then Eq. (6.35) can be generalized to express the stress tensor arising from
the interactions between the N beads in V0 as

τ =
1

2V0

N∑
n=1

N∑
m=1

〈Fnm (Rm −Rn)〉 (16.A.1)

where Fnm denotes the force that the nth bead exerts on the mth bead (cf.
Eq. (6.4) or (6.5)); in the double sum, the terms with n = m being zero,
there are in effect only N(N − 1) terms; and the double sum is divided by
2 to correct for double counting. The total force exerted on the mth bead
is given by:

Fm =
∑

n

Fnm. (16.A.2)

Using Newton’s third law Fnm = −Fmn and Eq. (16.A.2), Eq. (16.A.1) is
rewritten as

τ =
1

2V0

〈∑
m

∑
n

FnmRm −
∑
m

∑
n

FnmRn

〉

=
1
V0

〈∑
m

FmRm

〉
. (16.A.3)

When only a single chain is considered as in a mean-field representation,
Eq. (16.A.3) reduces to the normalized form given by Eq. (16.10).

Appendix 16.B — Time-Correlation Functional Form for the
Relaxation Modulus

In accordance with the fluctuation–dissipation theorem, the self time-
correlation function of a physical quantity or the time-correlation function
between it and another quantity in an equilibrium system is related to
its response to a weak applied external field — weak enough to be in the
linear region. Here, after a general proof of the fluctuation–dissipation the-
orem, the expression of the time-correlation function corresponding to the
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relaxation modulus obtained following the application of a step shear strain
will be derived.

Consider a time-dependent external field h(t) applied to a system in
equilibrium under a potential V (x). For the sake of simplicity, x has been
used to denote the whole set of coordinates {xi} appearing in the Smolu-
chowsky equation. Because the applied field perturbs the system, the aver-
age values of physical quantities in the system change from those in the
equilibrium state. If the field is weak, the change in any physical quantity
is a linear functional of h(t) as expressed by

〈A(t)〉h − 〈A〉0 =
∫ t

−∞
µ (t− t′) h (t′) dt′. (16.B.1)

In Eq. (16.B.1), 〈A(t)〉h denotes the value of A at time t when the field h(t)
is applied and 〈A〉0 is the equilibrium value of A in the absence of the field.
As µ (t) is equivalent to M(t) in Eq. (4.23) if the linear viscoelasticity is
being considered, it is referred to as the memory function.c

The effect of the field on the system may be represented by a perturba-
tion potential as given by

V ′(x, t) = −h(t)B(x) (16.B.2)

where B(x) is the physical quantity conjugate to the field h(t). Then the
memory function is related to the time-correlation function between A and
B in the absence of the field as given by

µ (t) = − 1
kT

d

dt
〈A(t)B(0)〉h=0 (16.B.3)

which is called the fluctuation–dissipation theorem.
To prove Eq. (16.B.3), we consider the situation that a constant field h

has been applied for so long that the system has reached equilibrium; then
the field is switched off at t = 0. In this case, Eq. (16.B.1) is rewritten as

〈A(t)〉h = 〈A〉0 + h

∫ 0

−∞
µ (t− t′) dt′ = 〈A〉0 + hα(t) (16.B.4)

cµ(t) is also called the response function as in Ref. 8. Another reason to refer to µ(t)
as the memory function is to avoid confusion with G(t), G∗(w) and J(t) which are called
the viscoelastic response functions in this book.
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where

α(t) =
∫ ∞

t

µ (τ) dτ (16.B.5)

At t = 0, 〈A(t = 0)〉h as defined in Eq. (16.B.4) represents the equilibrium
value of A when the constant field h is being applied. α(t) is the relaxation
function characterizing the average quantity 〈A(t > 0)〉h changing, in the
absence of the field (h = 0 for t > 0), from 〈A(t = 0)〉h to 〈A〉0. If the
distribution function Ψ (x, t) in the Smoluchowski equation (Eq. (3.20)) is
known, 〈A(t)〉hcan be expressed by

〈A(t)〉h =
∫
A(x)Ψ(x, t)dx. (16.B.6)

As there is no applied field for t > 0,Ψ (x, t) is related to Ψ (x, t = 0) by
the Green function G (x, x′; t) under h = 0,

Ψ(x, t) =
∫
G(x, x′; t)Ψ(x′, 0)dx′. (16.B.7)

As indicated by Eq. (16.B.7), Ψ(x, t) = G(x, t) if the initial condition
Ψ(x′, t = 0) = δ(x− x′) = Πnδ(xn − x′n)(= G(x, x′; t = 0)). In other
words, the Green function G(x, x′; t) can be obtained from the Smolu-
chowski equation as given by Eq. (3.20) with Ψ(x, t) replaced by G(x, x′; t)
under the initial condition G(x, x′; t = 0) = δ(x− x′). However, Eq. (3.20)
need not be directly involved here. Since the system is at equilibrium in
the presence of the field h at t = 0,

Ψ(x, 0) =
exp[−(V (x)− hB(x))/kT ]∫
exp[−(V (x)− hB(x))/kT ]dx

. (16.B.8)

To terms linear in h, Ψ(x, 0) may be expanded as

Ψ(x, 0) =
exp[−V (x)/kT ](1 + hB(x)/kT )∫
exp[−V (x)/kT ](1 + hB(x)/kT )dx

=
exp[−V (x)/kT ](1 + hB(x)/kT )∫
exp[−V (x)/kT ]dx(1 + h〈B〉0/kT )

=
exp[−V (x)/kT ][1 + h(B(x) − 〈B〉0)/kT ]∫

exp[−V (x)/kT ]dx

= Ψeq(x)
[
1 +

h(B(x)− 〈B〉0)
kT

]
(16.B.9)
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Using Eqs. (16.B.7) and (16.B.9), Eq. (16.B.6) may be rewritten as

〈A(t)〉h =
∫
dx

∫
dx′A(x)G(x, x′; t)Ψeq(x′)

[
1 +

h(B(x′)− 〈B〉0)
kT

]
.

(16.B.10)

Using the stationary property of the equilibrium state,

Ψeq(x) =
∫
G(x, x′; t)Ψeq(x′)dx′, (16.B.11)

Equation (16.B.10) is further rewritten as

〈A(t)〉h =
∫
dxA(x)Ψeq(x)

[
1− h〈B〉0

kT

]

+
h

kT

∫
dx

∫
dx′A(x)G(x, x′; t)Ψeq(x′)B(x′)

= 〈A〉0 − h

kT
〈A〉0〈B〉0 +

h

kT
〈A(t)B(0)〉0 (16.B.12)

Comparison of Eqs. (16.B.4) and (16.B.12) gives

α(t) =
1
kT

(〈A(t)B(0)〉0 − 〈A〉0〈B〉0) (16.B.13)

which in turn leads to Eq. (16.B.3) through Eq. (16.B.5).
For the relaxation of the stress induced by the application of a step

strain λ at t = 0, Eq. (4.23)d can be written as

τxy(t) = 〈Jxy(t)〉 = −λ
∫ 0

−∞
M (t− t′) dt′ = −λG(t) (16.B.14)

as λ(t, t′) = 0 for t′ ≥ 0+ and λ(t, t′) = −λ for t ≤ 0−. Into Eq. (16.B.14),
we have incorporated the molecular expression for the shear stress

Jxy(t) =
1
V0

N∑
n=1

Fnx(t)Yn(t) (16.B.15)

for a system of N particles and volume V0. Note that in the main text,
Jxy(t) as given by Eq. (16.13) is defined differently: N being the total
number of beads in the single chain under simulation without involving the
volume. It is convenient to use Eq. (16.13) in the simulations studied in this

dIf the Rouse chain model being considered, the use of Eq. (7.55) instead of Eq. (4.23)
leads to the same result.
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chapter and the next two. Here, we consider a general case, which is not
limited to the mean-field approach as taken in the Monte Carlo simulations
studied in the main text. (The difference arising between using Eq. (16.13)
and the complete expression Eq. (16.B.15) needs to be taken into account
when a comparison between simulation and experiment is to be made as
shown in Fig. 17.7).

From comparing Eqs. (16.B.14) and (16.B.4), the following one-to-one
correspondences are obtained:

λ(t, t′ ≤ 0−)↔ h or − λ↔ h, (16.B.16)

A(t)↔ Jxy(t), (16.B.17)

µ(t)↔M(t), (16.B.18)

α(t)↔ G(t), (16.B.19)

and

〈A〉0 = 〈Jxy〉0 = 0. (16.B.20)

Using Eqs. (16.B.17), (16.B.19) and (16.B.20), from Eq. (16.B.13) we obtain

G(t) =
1
kT
〈Jxy(t)B(0)〉0. (16.B.21)

Substituting Eq. (16.B.16) into Eq. (16.B.2), we obtain the perturbation
potential

V ′ = λB ({Rn}) (16.B.22)

that has been applied to the system so long that the system is in equilib-
rium when the field h = −λ is turned off at t = 0. We need to find the
quantity B({Rn}) that is conjugate to −λ. Physically, the removal of the
perturbation potential V ′ = λB({Rn}) at t = 0 can be regarded as equiv-
alent to the application of U ′ = −V ′ at t = 0 to the system to nullify V ′.
In obtaining Eqs. (16.B.4 or 16.B.12) and (16.B.14), we have regarded the
system at t > 0 as free of perturbation (h = 0 or λ(t, t′ > 0) = 0). We
may also consider the step strain applied at t = 0 as a deformation applied
to an equilibrium state that remains unperturbed until that moment — as
Eq. (4.28) is obtained through Eq. (4.27). Then the step strain applied at
t = 0 is equivalent to the imposition of the perturbation U ′ = −V ′ onto
the system.
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We can study the perturbation potential that arises from a small step
strain applied to an equilibrium system by considering the change in the
dynamic free energy. Here, the potential under which the system is in
equilibrium at t ≤ 0− is denoted by U . Then the dynamic free energy of
the system is defined as

A =
∫
d {Rn}Ψ (kT ln Ψ + U). (16.B.23)

At equilibrium,

Ψeq =
exp

(−U
kT

)
Z

(16.B.24)

with

Z =
∫
d {Rn} exp

(−U
kT

)
. (16.B.25)

Corresponding to Ψ = Ψeq ,

Aeq = −kT logZ (16.B.26)

which is the definition of the free energy in equilibrium statistical thermo-
dynamics. If U is independent of time and there is no flux at the boundary,
it can be shown that dA /dt is negative until Ψ reaches Ψeq .

8 (Here Ψeq is
redefined by Eq. (16.B.24), as opposed to that given in Eq. (16.B.9).)

As the step strain is applied at t = 0, the dynamic free energy of the
system becomes

A ′ =
∫
d {Rn}Ψ(kT ln Ψ + U + U ′) (16.B.27)

and the change in the free energy is

δA =
∫
d {Rn}ΨU ′ = −λ

∫
d {Rn}ΨB({Rn}). (16.B.28)

A step shear deformation λ can be regarded as equivalent to a con-
stant strain rate λ/δt being applied over a very short time interval
δt (cf. Eq. (4.27)). The velocity gradient tensor K = (∇V)T is expressed by

K = xy
λ

δt
. (16.B.29)
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As δt → 0, K becomes very large and the evolution of Ψ during the time
interval δt (at t = 0) is dominated by the term containing K (see Eqs. (7.20)
and (7.30)):

∂Ψ
∂t

= −
∑

n

∂

∂Rn
·K ·RnΨ. (16.B.30)

Then the change in Ψ due to the step deformation λ is given by

δΨ =
∂Ψ
∂t
δt = −

∑
n

∂

∂Rn
· (λxy ·RnΨ)

= −
∑

n

∂

∂Xn
(λYnΨ). (16.B.31)

From Eq. (16.B.23), a differential change in the dynamic free energy related
to δΨ is obtained as

δA =
∫
d {Rn} (kT ln Ψ + kT + U) δΨ. (16.B.32)

Substituting Eq. (16.B.31) into Eq. (16.B.32) and using integration by parts
twice, we obtain

δA =
∫
d {Rn}

∑
n

λYnΨ
∂

∂Xn
(kT ln Ψ + U)

= −λ
∫
d {Rn}

∑
n

FnxYnΨ. (16.B.33)

Equating Eq. (16.B.28) with (16.B.33), we arrive at the result:

λ

∫
d {Rn}

(
B ({Rn})−

∑
n

FnxYn

)
Ψ = 0. (16.B.34)

As Eq. (16.B.34) holds for any arbitrary small value of λ,

B ({Rn}) =
∑

n

FnxYn =V0Jxy. (16.B.35)

Comparing Eqs. (16.B.17) and (16.B.35), and using Eq. (16.B.20), we con-
clude that B = V0A and 〈A〉0 = 0 in applying Eq. (16.B.13) to the case
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of linear viscoelasticity. Substituting Eq. (16.B.35) into Eq. (16.B.21), we
obtain

G(t) =
V0

kT
〈Jxy(t)Jxy(0)〉0

=
1

V0kT

〈(
N∑

n=1

Fnx(t)Yn(t)

)(
N∑

m=1

Fmx(0)Ym(0)

)〉
. (16.B.36)

As Jxy(t) is redefined by Eq. (16.13), Eq. (16.B.36) leads to the GS(t)
expression given by Eq. (16.12), which has been normalized on a per-
segment basis.
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Chapter 17

Monte Carlo Simulations of Stress
Relaxation of Fraenkel
Chains — Linear Viscoelasticity
of Entanglement-Free Polymers

In Chapter 16, the Monte Carlo simulations on the Rouse chains have
been studied confirming the validity of the simulation scheme by comparing
with the theoretical results. Using the same scheme, simulations on the
Fraenkel chain model1,2 — whose Langevin equation, being nonlinear, lacks
an analytical solution — have been carried out, allowing its performance
in describing the polymer viscoelastic behavior to be evaluated.3,4

The molecular viscoelastic models — the Rouse model and the extended
reptation model — studied in this book are developed using the Rouse seg-
ment as the most basic (smallest) structural unit. Analytical solutions for
these models have been studied in Chapters 3 and 6–9. As extensively
shown in Chapters 10, 11 and 14, these theories are quantitatively suc-
cessful in describing the viscoelastic response functions (relaxation moduli
G(t) and/or viscoelastic spectra G∗(ω)) over the long-time or low-frequency
region (the entropic region). In spite of these successes, the unphysical
nature of the Rouse segment has long been a concern. As pointed out in
Sec. 6.4, a Rouse segment or chain is infinitely extensible as opposed to
a real polymer having a finite backbone contour length. The Rouse seg-
ment with its entropic-force constant is equivalent to a spring that is too
soft. Particularly, the studies5–15 as summarized in Appendix 13.A indicat-
ing that the Rouse segment and the Kuhn segment are nearly of the same
sizea represents a fundamental paradox embedded in the successes of the
Rouse-segment-based theories — referred to as the Rouse–Kuhn paradox.

aNote: In Ref. 3, saying that the Rouse and Kuhn segments are of the same order of
magnitude in size is an incomplete description of their relatives sizes.

358
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As specifically pointed out in Appendix 13.A, the applicability of a
Rouse-segment-based theory (the Rouse theory or the ERT) in the relax-
ation modulus G(t) is limited to the region below the modulus value
ρRT/m. Because of the relationship between the entropic-force constant
of the Rouse segment and the modulus, the applicable range of the theory
has been referred to as the entropic region. For polystyrene, m = 850;
the Rouse theory and the ERT are applicable only over the range of mod-
ulus below ∼ 4 × 107 dynes/cm2, as clearly illustrated in Figs. 14.17 and
14.18. In other words, the Rouse theory and the ERT are incapable of
describing the polymer viscoelastic response over the short-time or high-
frequency region where modulus values reach as high as ∼ 1010 dynes/cm2

and dynamic processes are driven by energetic interactions. As presented
in Chapter 14, the inadequacy is made up for by incorporating a stretched
exponential (KWW) form for the glassy-relaxation process into the ERT or
the Rouse theory.15−17 As studied in this chapter, the Monte Carlo simu-
lations on Fraenkel chains3,4 have led to new fundamental understandings
of the polymer viscoelastic behavior at the molecular level. The simulation
studies shed light on the main factors behind the inadequacy of the Rouse-
segment-based theories and concurrently give rise to a theoretical basis for
resolving the Rouse–Kuhn paradox.

17.1 The Fraenkel Chain Model

We can picture an N -bead Fraenkel chain as the chain shown in Fig. 3.2
just as we have pictured an N -bead Rouse chain in Chapters 3 and 7. Here,
the only difference is that the spring connecting two beads, instead of being
entropic (Eq. (3.30)), is characterized by the Fraenkel potential:

UF =
HF

2

N−1∑
n=1

( |Rn −Rn+1|
b0

− 1
)2

. (17.1)

Then the total force asserted on an internal bead by the two immediate
springs connected to it is given by

Fn(i) = −HF

b20
(2Rn(i)−Rn+1(i)−Rn−1(i))

+
HF

b0

[
Rn(i)−Rn−1(i)
|Rn(i)−Rn−1(i)| +

Rn(i)−Rn+1(i)
|Rn(i)−Rn+1(i)|

]
. (17.2)
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The equivalent equations for the end beads: n = 1 or N can be obtained
in the same way. In Eqs. (17.1) and (17.2), b0 represents the tensionless
length of the segment; the constant HF characterizes the rigidity of the
segment. For the simulations presented in this chapter, b0 is set at 1 as the
reference length scale and HF = 400 kT is used. The Langevin equation for
a Fraenkel chain can be obtained by substituting Eq. (17.2) into Eq. (16.2)
or (16.7). As the (entropic) tensile force on the Rouse segment is replaced
by that derived from the Fraenkel potential, the stiffness of the segment is
greatly enhanced. With the Fraenkel force being a nonlinear function of
the bead positions, the Langevin equation of a Fraenkel chain cannot be
solved analytically; the Monte Carlo simulation becomes a crucial means
of obtaining its solution.

17.2 Equilibrium-Simulated Relaxation Modulus Curves

The simulations of Fraenkel chains in the equilibrium state give rise to
two distinct modes in the relaxation modulus GS(t) curves as shown in
Fig. 17.1 for a five-bead chain — normalized per segment. The “bead”
is actually a volume-less point as in the Rouse chain model (Sec. 6.2);
with this understanding, it is still referred to as a bead. In Fig. 17.1, the
results obtained from simulations with the step length d chosen at 0.01 and
0.03 are compared; a time step for the latter is regarded as equivalent to
nine times — the predicted ratio (Eq. (16.8)) — as long as that for the
former. The close agreement between the two results indicates that the
step length d = 0.03 is sufficiently short, causing virtually no distortion
in the obtained GS(t) curve; at the same time, no additional information
particularly significant can be gained by choosing the much more time-
consuming one, d = 0.01. Thus, all the simulations presented in the present
chapter and the next are done with d = 0.03.

In Fig. 17.2, the equilibrium-simulated GS(t) curves for two-, five-, ten-
and twenty-bead Fraenkel chains are compared; their line shapes are similar
to what have been typically observed experimentally (see the Gp(t) curves
of sample C shown in Figs. 14.17 and 14.18). In the same figure, theseGS(t)
results are also compared with the Rouse theoretical curves — calculated
with relaxation times given by Eq. (16.8b) — each for a chain with the
corresponding number of beads. In obtaining the shown close superposition
of the Rouse theoretical curves on the simulation results over the long-time
region, only small shifts need to be applied to the Rouse curves along the
log-modulus axis. The multiplication factors corresponding to the shifts
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Fig. 17.1 Comparison of the equilibrium-simulated GS(t) curves of the five-bead
Fraenkel chain using the step length d = 0.01 (solid line) and d = 0.03 (◦).

are 0.7, 0.85, 0.9, and 0.95 for the two-, five-, ten- and twenty-bead chains,
respectively. The trend indicates that the multiplication factor approaches
the “perfect” value 1 as the number of beads increases. The shown close
agreement of the slow modes with the theoretical GS(t) curves with only
a small shift along the log-modulus axis strongly indicates that the slow
mode is well described by the Rouse theory. And clearly the N depen-
dence of the relaxation time as given by Eq. (16.8b) is well followed. Such
agreements mean that the slow mode is of entropic nature as the Rouse
modes of motion. Considering that the Fraenkel potential between two
beads represents a strong energetic interaction and that a Fraenkel seg-
ment is much stiffer than a same-size Rouse segment, the emergence of
the entropic slow mode is indeed very intriguing. As shown by the analyses
described below, the fast mode is an energetic-interaction-driven (or simply
as energy-driven) dynamic process while the slow mode is an entropy-driven
one. For the sake of simplicity, the Fraenkel dumbbell case has been con-
sidered; and the analyses can be extended to a Fraenkel chain with more
than two beads.
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Fig. 17.2 Comparison of the equilibrium-simulated GS(t) curves of two-bead, five-bead,
ten-bead and twenty-bead Fraenkel chains (� for N = 2; � for N = 5; � for N = 10;
and ◦ for N = 20) with the Rouse theoretical curves (short-dash line for N = 2; medium-
dash line for N = 5; long-dash line for N = 10; and solid line for N = 20). The Rouse
theoretical curves have been slightly shifted vertically: multiplied by the factors 0.7,
0.85, 0.9 and 0.95 for N = 2, 5, 10 and 20, respectively.

If there is no attractive interaction potential between two beads, the
thermal fluctuations in an equilibrium state will eventually separate them
far apart. Therefore, at equilibrium, the average distance (or the average
distance over a long period of time) between the two beads of a dumbbell
is not that corresponding to the tensionless point of the potential between
them — namely, when the bond length is equal to b0 in the Fraenkel-
segment case — but larger. There are different ways to define the average
distance as will be discussed below; however, this is true in all cases. Hence,
the two beads of a dumbbell are more often than not under a tension to
bring them closer to each other. The tension is determined by the average
kinetic energy associated with the fluctuations built in the Langevin equa-
tion (see Appendix 17.A).18 It is so with a Rouse segment as well as with a
Fraenkel segment. Such tensile forces on the segments of a chain play impor-
tant roles in contributing to the stress tensor of the chain molecule. Because
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the Fraenkel potential rises up sharply with a displacement from the ten-
sionless point, the average bond length in the equilibrium state should be
larger than b0 by only a small amount δ0. Physically, δ0 being small has
much to do with the existence of the entropy-driven slow mode. With δ0
being small, as a linear approximation, the tensile force on a segment may be
expressed as a linear function of the bond vector as in the Rouse-dumbbell
case.

For the Fraenkel dumbbell, the Langevin equation in terms of the bond
vector, b(t) = R2(t)−R1(t), is given by

db(t)
dt

= −
(

2
ζ

)
HF

b20

[
1− b0
|b(t)|

]
b(t) + g(t) (17.3)

where the fluctuation term is given by g(t) = g2(t)− g1(t), with g1(t) and
g2(t) being the fluctuations on beads one and two, respectively, as defined
by Eqs. (3.34) and (3.35).

Equation (17.3) can be transformed into the discrete form for simulation
in the same way as described in Sec. 16.1. Defining

1− b0
|b(t)| =

δ(t)
b0

, (17.4)

Equation (17.3) is rewritten as

db(t)
dt

= −
(

2
ζ

)
HF

b30
δ(t)b(t) + g(t). (17.5)

Corresponding to Eq. (17.5), the xy stress component is given by

Jxy(t) = −HF

b30
δ(t)bx(t)by(t). (17.6)

Substituting Eq. (17.6) into Eq. (16.12), we obtain

GS(t) =
1
kT
〈Jxy(0)Jxy(t)〉 =

H2
F

kT b60
〈δ(0)bx(0)by(0)δ(t)bx(t)by(t)〉.

(17.7)

As expected, the simulation results obtained for the Fraenkel dumbbell
based on the combination of Eqs. (16.12) and (16.13) and on Eq. (17.7)
are identical. During a simulation, the fluctuation in δ(t) as defined by
Eq. (17.4) can be monitored separately allowing the time correlation func-
tion 〈δ(0)δ(t)〉 to be calculated. Physically, δ(t) approximately represents
the deviation of |b(t)| from b0. Any small change in |b(t)| leads to a large
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relative change in δ(t); for instance, a change in |b(t)| from 1.005 to 1.01
doubles the value of δ(t). Thus, compared to the motion associated with the
bond vector b(t) itself (mainly the reorientation motion), δ(t) represents
fast fluctuations with large relative fluctuation amplitude, giving rise to a
fast relaxation process in GS(t) as shown below. As δ(t) originates from
the particular form of the Fraenkel potential and represents the fluctua-
tions in tension along the Fraenkel segment, the fast relaxation mode may
very well be referred to as an energy-driven dynamic process. Because of
the large difference between the fluctuation rate of δ(t) and that associated
with bx(t)by(t), Eq. (17.7) may be approximated by

GS(t) ≈ H2
F

kT b60
〈δ(0)δ(t)〉〈(bx(0)by(0))(bx(t)by(t))〉

=
H2

F

kT b60
[〈∆δ(0)∆δ(t)〉 + δ20 ]〈(bx(0)by(0))(bx(t)by(t))〉 (17.8)

where formally

δ(t) = ∆δ(t) + δ0 (17.9)

with

〈∆δ(t)〉 = 0; and 〈δ(t)〉 = δ0. (17.10)

As explained above, the average distance between the two beads is larger
than b0; thus δ0 is greater than zero. Equation (17.8) suggests the coexis-
tence of two distinct relaxation processes in GS(t). At long times when the
correlation function 〈∆δ(0)∆δ(t)〉 has diminished greatly, GS(t) as given
by Eq. (17.8) enters a slow-relaxation region, which would be described by

1
kT
〈Jxy(0)Jxy(t)〉 = H2

F

kT b60

[
δ20
]〈(bx(0)by(0))(bx(t)by(t))〉. (17.11)

In the short-time region where the process 〈∆δ(0)∆δ(t)〉 is dominant, the
approximation as used in Eq. (17.8) is expected to be good. By contrast,
over a long period of time, as the nonvanishing residual fluctuations in
δ(t) are small and more comparable in (relative) magnitude to the slow
fluctuations in bx(t)by(t), the approximation expressed as a product of two
separate terms δ20 and 〈(bx(0)by(0))(bx(t)by(t))〉 in Eq. (17.11) may not be
well justified. Nevertheless, the approximate form as given by Eq. (17.8)
helps us understand the coexistence of the fast and slow modes of motion as
distinctly observed in the simulation results. To illustrate the results and at
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the same time somewhat make up for the deficiency of the approximation as
represented by Eq. (17.8) in the long-time region, the baseline of 〈δ(0)δ(t)〉
is determined or set in two different ways. Based on either of the two
baselines, an approximate GS(t) curve can be obtained for comparison with
the exact result — such comparison analyses help reveal the key physical
elements that affect GS(t). In one case, the natural baseline of 〈δ(0)δ(t)〉
is used, which, denoted by δ2N (= δ20 , formally according to Eq. (17.8)), is
found to be 4×10−6. In the other case, an adjustable parameter δ2x is added
to the natural baseline δ2N such that a close fitting to the exact GS(t) curve
(obtained using Eq. (17.7)) is obtained. The best value of δx is found to
be 0.008. The GS(t) curves calculated with and without δ2x = 6.4 × 10−5

added are compared with the exact results in Fig. 17.3. The corresponding
〈δ(0)δ(t)〉 and 〈δ(0)δ(t)〉 + δ2x curves are shown in Fig. 17.4. With δ2x =
6.4 × 10−5 added, the total baseline becomes δ2F = δ20 + δ2x = 6.8 × 10−5.
It is interesting to note that δF = 0.00825 is only larger by 10% than the
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Fig. 17.3 The equilibrium-simulated GS(t) curves of the Fraenkel dumbbell: exact
result (solid line; using Eq. (17.7)) and approximations (�, using Eq. (17.8) with δ2

0 =
δ2
N = 4×10−6 as the baseline of 〈δ(0)δ(t)〉; and ◦, using Eq. (17.8) with δ2

x = 6.4×10−5

added to the baseline).
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Fig. 17.4 Time-correlation functions 〈δ(0)δ(t)〉 or 〈δ(0)δ(t)〉 + δ2
x obtained from simu-

lations on the Fraenkel dumbbell with δ(t) defined by Eq. (17.4): � with δ2
0 = δ2

N =
4 × 10−6; and ◦ with δ2

x = 6.4 × 10−5 added to the baseline.

value 0.0075 (denoted by δV ) expected on the basis of the virial theorem.19

As shown in the Appendix 17.A, the virial theorem is well confirmed by
the simulation.

One can notice that the fast declines in the early parts of GS(t) and
〈δ(0)δ(t)〉 (or 〈δ(0)δ(t)〉 + δ2x) occur on the same time scale with negligi-
ble difference between the simulation results calculated with and without
δ2x = 6.4 × 10−5 added. Clearly, this is due to the mean square fluctu-
ation magnitude 〈δ(0)δ(0)〉 being much larger than δ2x. For GS(t), the
approximate results are also virtually indistinguishable from the exact one
over the most part of the fast-mode region — the early portion. Clearly,
these agreements occurring in the short-time region are due to the dom-
inant effect of 〈∆δ(0)∆δ(t)〉 and indicate that the fast mode in GS(t)
arises from the segment-tension fluctuation δ(t) — therefore, an energy-
driven dynamic process. In the long-time region, large divergences between
the curves calculated with and without δ2x = 6.4 × 10−5 added occur in
both GS(t) and 〈δ(0)δ(t)〉. Because the expression as a product of δ20 and
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〈(bx(0)by(0))(bx(t)by(t))〉 (Eq. (17.11)) is not a well-justified approxima-
tion as explained above, using the natural baseline δ2N , which is much
smaller than the value of δ2V or δ2F , leads to the poorest result. With
δ2F = 6.8×10−5 as the baseline, the simulation using the approximate form
gives a GS(t) curve which is virtually indistinguishable from that obtained
using the exact form.

The magnitude of δ0 that appears in Eq. (17.11) may also be studied
in a dynamic way as described in the following: Eq. (17.11) represents
the time-correlation function of the stress tensor component Jxy(t) in the
long-time region described by the Langevin equation:

db(t)
dt

= −
(

2
ζ

)
HF δ0
b30

b(t) + g(t) (17.12)

which is linear and has the same form as that of the Rouse dumbbell:

db(t)
dt

= − 6kT
ζ〈b2〉R b(t) + g(t). (17.13)

Thus, the slow mode is expected to behave very similarly to the single
mode of motion in the Rouse dumbbell. If the δV value as obtained from
the virial theorem (δV = 3 kT b0/HF , as from Eq. (17.A.1)) is used for δ0,
Eq. (17.12) with b0 = 〈b2〉1/2

R = 1 becomes identical to Eq. (17.13) and
will lead to the same time-correlation function of the bond vector as given
by the Rouse dumbbell model (Chapter 3):

〈b(0) ·b(t)〉 = 〈b2〉R exp
(
− t
τ

)
(17.14)

with

τ =
ζ〈b2〉R
6kT

=
ζb20

2HF (δV /b0)
. (17.15)

The mean square bond length 〈b2〉 obtained from the simulation of the
Fraenkel dumbbell is greater than that of the Rouse dumbbell 〈b2〉R by
1.3%. This will make a small difference in the value of Eq. (17.14) at t = 0.
As this difference is very small, particularly much smaller than the differ-
ence between δN , δV and δF , it can be neglected here. The 〈b(0) ·b(t)〉
curve obtained from the simulation of the Fraenkel dumbbell is quanti-
tatively described by a single exponential form just as that of the Rouse
dumbbell model but with a relaxation time longer by about 45%. In other
words, using the relaxation time of 〈b(0) ·b(t)〉 as the criterion for deter-
mining the δ0 value, the best value, denoted by δτ , should be 0.0052.



August 18, 2010 20:32 WSPC/Book Trim Size for 9in x 6in b959-ch17 FA

368 Polymer Viscoelasticity

The close match between the approximation and exact GS(t) curves as
shown in Fig. 17.3 is obtained with δF = 0.00825, which is only slightly
larger than δV = 0.0075. As opposed to a slight underestimate in this
case, the use of the virial theorem gives an overestimate of the δ0 value when
the relaxation time of the time-correlation function 〈b(0) ·b(t)〉 is used as
the criterion. Involving only a very slight approximation (see Eq. (17.A.1))
which is unrelated to the approximation — the separation into two time-
correlation functions — made in Eq. (17.8), the δV value obtained using
the virial theorem can be regarded as independent and trustworthy. As
opposed to the independence of δV , each of the equations (Eqs. (17.8),
(17.11) and (17.12)) as involved in estimating the δN , δτ and δF values,
contains an approximation which deviates from the true representation in
different ways. Thus, the obtained δN , δτ and δF values are not expected
to be the same. The δN value, which apparently comes from a bad approx-
imation, may be excluded. The obtained δτ and δF values are within 30%
of their average, which is very close to the δV value expected based on
the virial theorem. These consistencies support that the approximations
involved in the above analyses are well justified and confirms the physical
picture revealed — the fast mode in GS(t) is an energy-driven dynamic pro-
cess and the slow mode is an entropy-driven one as the Rouse relaxation is.

The above analysis can be extended to Fraenkel chains longer than a
dumbbell. As detailed in Appendix 17.B, by comparing the simulation
results obtained with and without the contribution from couplings between
different segments, the above conclusion has been shown to be applicable
to a multiple-segment Fraenkel chain as well. The basic nature of the fast
mode and that of the slow mode are further confirmed by the studies of the
step strain-simulated GS(t) curves as detailed below.

17.3 Step Strain-Simulated Relaxation Modulus Curves

The step strain-simulatedGS(t) curves obtained at λ = 0.2 and 0.5 are com-
pared with equilibrium-simulated GS(t) ones in Fig. 17.5 for the two-, five-,
ten- and twenty-bead Fraenkel chains. There are clear differences between
the equilibrium-simulated curves and the step strain-simulated at λ = 0.2
in the cases of two- and five-bead chains, indicating that the fluctuation–
dissipation theorem is not fulfilled totally as in the Rouse-chain case. This
may be due to λ = 0.2 not being in the linear region yet as some small dif-
ferences can be observed between the GS(t) curves at λ = 0.2 and 0.5. In
fact, the numerically calculated GS(0) values as a function of the strain λ
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Fig. 17.5 Comparison of the step strain-simulated GS(t) curves for the two-bead, five-
bead, ten-bead and twenty-bead Fraenkel chains at λ = 0.2 (�) and 0.5 (◦) with the
equilibrium-simulated curves (•). To avoid overlapping between different sets of curves,
the results of N = 5, 10 and 20 have been multiplied by 10, 102 and 103, respectively.

(see Fig. 18.5) indicate that rigorously, the linear region should not extend
beyond λ = 0.005. However, further investigation into decreasing the λ
value indicates that this is not the main cause.

As shown in Fig. 17.5, differences between the equilibrium-simulated
and step strain-simulated GS(t) curves occur mainly in the cases of N = 2
and 5; and virtually no differences can be observed for N = 10 and 20 even
though λ = 0.2 and 0.5 are not really in the linear region. In the N = 2
case, while the whole shapes of the GS(t) curves are very similar, differ-
ences can be observed in different regions. In the N = 5 case, the difference
becomes obvious in the early part of the slow mode, where an effect related
to the coupling between δ(t) and bx(t)by(t) — a subject discussed in the
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last section — is very likely to occur. The results of N = 5 suggests that
the coupling between δ(t) and bx(t)by(t) may be reflected differently in the
two types of simulations. This is also suggested by the similarity of trends
that can be noticed by comparing Fig. 17.2 and Fig. 17.5, as explained
in the following. The results shown in Fig. 17.5 indicates that the agree-
ment between the equilibrium-simulated and step strain-simulated GS(t)
curves becomes much better as N becomes significantly greater than 2. In
a similar way as shown in Fig. 17.2, the shifting along the log-modulus axis
required for superposing the Rouse theoretical curves on the equilibrium-
simulated GS(t) curves progresses towards the perfect situation — namely,
no shifting — as N increases. As may be viewed in terms of the Rouse the-
ory, the number of normal modes (in the slow mode) increases with N . At
the same time, the lower modes among them become more removed from the
fast mode as N increases. These two effects may improve the overall decou-
pling of the fast and slow modes asN increases. In other words, the trend in
Fig. 17.2 suggests that the coupling between δ(t) and bx(t)by(t) is effectively
reduced as the number of modes of motion in the slow mode increases, mak-
ing the slow mode better described by the Rouse theory. As the difference
in coupling may be reduced by the decrease in the coupling itself, this leads
to a better agreement between the equilibrium-simulated and step strain-
simulated GS(t) curves as N increases. When N = 2 or 5, in spite of the
visible differences, an overall agreement between the equilibrium-simulated
and step strain-simulated GS(t) curves is apparent, each revealing clearly
two separate modes. Such an overall agreement has been referred to as a
quasi-version of the fluctuation–dissipation theorem.

Figure 17.6 shows the mean square segment length 〈b2(t)〉 and its com-
ponents: 〈b2x(t)〉, 〈b2y(t)〉 and 〈b2y(t)〉 of a five-bead Fraenkel chain as a func-
tion of time following the application of the step shear strain λ = 0.5.
Although λ = 0.5 deviates more from the linear region than λ = 0.2,
these results show more clearly the changing pattern with time while the
corresponding GS(t) curve does not differ from the equilibrium-simulated
one very much. Collectively, these results can better serve the illustra-
tion purpose, as discussed below, than the results at λ = 0.2. As shown in
Fig. 17.6, the segment length is stretched by the step strain applied at t = 0
and relaxes back to its equilibrium value, as opposed to fluctuating around
its equilibrium value in an equilibrium state. The dramatic decline in the
early part of 〈b2(t)〉 (Fig. 17.6) occurs on the same time scales as that in
the early part of GS(t) (Fig. 17.5). The observed concurrence indicates
that the fast mode occurring in the step strain-simulated GS(t) reflects
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Fig. 17.6 The time-step dependences of 〈b2(t)〉 and the components 〈b2x(t)〉, 〈b2y(t)〉 and
〈b2z(t)〉 for the five-bead Fraenkel chain following a step strain λ = 0.5.

the decrease in the average segment length back to its equilibrium value
and the corresponding reduction in the average tension along the segment.
This segment-tension relaxation corresponds to the time-correlation func-
tion of segment-tension fluctuation, 〈δ(0)δ(t)〉, as shown in Fig. 17.4. It is
interesting to note that right after 〈b2(t)〉 has completed its first decline, it
displays signs of overshooting and oscillation around its equilibrium value
before reaching its final stable equilibrium value. On the same time scales
as the early part of the slow mode in GS(t), the mean square segment length
〈b2(t)〉 has declined to a level (including the average level in the oscilla-
tion zone as can be noticed in Fig. 17.6) that is the same as maintained
at all times in an equilibrium-state simulation. However, as opposed to
isotropy in the equilibrium state, segmental orientation anisotropy occurs
on the same time scales in the system as indicated by the differences among
the time dependences of the components

〈
b2x(t)

〉
,
〈
b2y(t)

〉
and

〈
b2y(t)

〉
. As
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orientation does not cause a change in the potential energy of the seg-
ment, the anisotropic orientation gives rise to the entropic nature of the
slow mode in GS(t). In the light of the fluctuation–dissipation theorem,
corresponding to the randomization of segmental orientation (destroying
the anisotropy) in the slow-mode region of a step strain-simulated GS(t),
fluctuations in segmental orientation should occur at all times in an equi-
librium state. It is basically the time-correlation function of the orientation
fluctuations that determines the time dependence of the entropic slow mode
in an equilibrium-simulated GS(t), as detailed in Sec. 17.2. The close cor-
relation between the slow mode in GS(t) and the anisotropic segmental
orientation is further shown by analyzing the step strain-simulated results
obtained well inside the nonlinear region in Chapter 18.

17.4 Comparison between Simulation and Experiment

Both the Rouse theory (Chapter 7) and the Monte Carlo simulation using
the Rouse-chain model (Chapter 16) or the Fraenkel-chain model (this chap-
ter) are based on a mean-field approach to describe the viscoelastic behav-
iors of entanglement-free polymers. In other words, the relaxation modulus
of an entanglement-free polymer system is the sum of contributions from
all the chains in a unit volume, each being represented by the statistically
averaged time-dependent behavior of a single chain. The quantitatively
successful description of experimental results of entanglement-free polymer
melts by the Rouse theory as studied in Chapter 11 indicates that the mean-
field representation works very well as applied to the entropic region. At the
same time as observed in Fig. 17.2, the Rouse theory and the simulation
results of Fraenkel chains with N � 2 agree very well over the entropic
region. Besides these theory-vs.-experiment and theory-vs.-simulation
agreements over the entropic region, the overall line shape of a simu-
lated GS(t) curve is very similar to that typically observed experimentally.
Thus, it is of great interest to compare simulation and experimental results
over the whole time range. Such a comparison would shed light on how
well the key features of the relaxation modulus in the short-time region —
the structural-relaxation process — can be captured by the Fraenkel-chain
model. Intuitively, the mean-field Fraenkel-chain model should be an over-
simplified representation of the viscoelastic behavior of a polymer melt over
the structural-relaxation region, as interactions among microstructural seg-
ments (both intra-molecular and inter-molecular), whose total contribution
should be substantial, have not been included.
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As presented in Chapter 14, the creep compliance J(t) curves of sample
C — an entanglement-free system — have been quantitatively analyzed in
terms of the G(t) functional form given by Eq. (14.6), which uses the Rouse
theory as the frame of reference. Using the best-fit parameters obtained
from the analyses, the G(t) curves of sample C can be faithfully calculated
just as those shown in Figs. (14.17) and (14.18) for ∆T = T − Tg = 0 and
9.7K, respectively. Such calculated G(t) curves may be regarded as equiv-
alent to experimentally measured curves for a purpose such as the present
one of comparing experiment with simulation. The Monte Carlo simulation
being based on the Langevin equation implies that the simulation is for a
system that is ergodic. Thus, the G(t) line shape at temperatures suffi-
ciently high above Tg is the one that should be calculated for comparison
with the simulation result. Furthermore, as the Monte Carlo simulation is
performed on a single chain, the G(t) curve that can be used for compar-
ison with the simulation result should be that for an ideal sample system
whose chains all have exactly the same molecular weight. The molecular
weight for a single Rouse segment, m, being about 850 for polystyrene,
sample C with Mw = 16,400 corresponds to a chain with 20 beads on
average according to Eq. (14.8). The G(t) curve for the ideally monodis-
perse system with molecular weight M identical to the Mw value of sample
C may be calculated using the best-fit parameters obtained for sample
C. The calculation is carried out in the same way as the calculations of
those shown in Figs. (14.17) and (14.18) except that the convolution of the
molecular-weight distribution f(M) in Eq. (14.6) is eliminated. As shown
in Fig. 17.7, the equilibrium-simulated G(t) curve for a 20-bead Fraenkel
chain with HF = 400 kT is compared with the “experimental” curve for the
ideally monodisperse polystyrene “sample” with molecular weight equal to
16,400 in the high-temperature limit (T > Tg + 40 K = 407 K). Although
the experimental G(t) line shape is for T > 407K, the modulus is that
corresponding to T = 373K (see Chapter 14). As shown, the experimental
curve is calculated with the frictional factor K = 10−4 — an arbitrarily
chosen value. The simulation curve has been superposed on the experimen-
tal curve by shifting along both the log-modulus and log-time axes. As the
time-scale multiplication factor depends on the K value used in the calcu-
lation and the step-length d employed in the simulation, its value is not of
particular interest. However, the shift along the log-modulus axis has much
to do with the entropic nature of the slow mode as discussed in Sec. 17.2
regarding the results shown in Fig. 17.2. The required vertical multiplica-
tion factor for the shown superposition is 4.2×107, which is very close to the
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Fig. 17.7 Comparison of the equilibrium-simulated G(t) curve (◦) for the twenty-bead
Fraenkel chain with HF = 400kT and the predicted “experimental” curve (solid line) for
an “ideally monodisperse polystyrene sample” with the molecular weight equivalent to
N = 20; also shown are the points (�) representing the relaxation times of the 19 Rouse
normal modes.

value 3.8× 107 predicted if the simulated G(t) is in perfect agreement with
the Rouse theory over the entropic region. The ratio of 3.8/4.2 also agrees
closely with the multiplication factor 0.95 used to superpose the Rouse
theoretical curve on the simulated GS(t) curve of the 20-bead Fraenkel
chain shown in Fig. 17.2. Part of the small difference may be due to the
fact that only one adjustable parameter — the shift along the log-modulus
axis — is involved in the superposition made in Fig. 17.2 while shifting is
allowed along both the log-time and log-modulus axes in Fig. 17.7. The
close matching between the experimental and simulated G(t) curves over
a wide dynamic range spanning both the energy-driven and entropy-driven
modes is indeed very encouraging, considering the simplicity of the model
used in the simulation.

HF = 400kT is somewhat arbitrarily chosen as the model is basi-
cally a primitive one. Changing the HF value mainly affects the mod-
ulus level as well as the relaxation in the fast-mode region; an increase
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in HF leads to higher modulus values in the very short-time region and
causes a faster decline in the later part of the fast-mode region. As pointed
out above, the mean-field Fraenkel-chain model should be too simple to
describe adequately the viscoelastic behavior of a polymer melt over the
structural-relaxation region, a fine tuning of the HF value does not appear
to serve a particularly meaningful purpose. The important thing is that
the Fraenkel-chain model with a finite HF value gives a generic descrip-
tion of the coexistence of the fast energy-driven and slow entropy-driven
modes in the experimental G(t). It is striking to observe an energy-driven
mode emerges naturally above the short-time region of the slow mode in
the simulated GS(t) curves for entanglement-free Fraenkel chains.

17.5 A Resolution of the Rouse–Kuhn Paradox

As shown in Fig. 17.2, the close agreements between the theoretical and sim-
ulated GS(t) curves over the slow-mode region are each obtained between
counterparts (the Rouse chain vs. the Fraenkel chain) with the same num-
ber of beads, N . The close agreements between theory and simulation
indicate that the size of the Fraenkel segment is the same as that of the
Rouse segment. This result strongly suggests that the chain domain that
can be properly assigned as a Rouse segment as used in the Rouse the-
ory which successfully describes the linear viscoelastic behavior over the
entropic region actually can have a considerable degree of rigidity. In other
words, the entropic-force constant on each segment is not a required element
for the existence of the entropic modes of motion as so well described by the
Rouse theory. Physically, the force constants of the various chemical bonds
and bond angles (responsible for vibration modes) and the potential barri-
ers impeding internal rotations in the microstructure of the polymer would
actually provide such rigidity to a chain domain of the Rouse- or Fraenkel-
segment size. Fluctuation in or randomization of segmental orientation
gives rise to the slow mode and is responsible for its entropic nature. This
is ultimately due to applicability of the virial theorem (Appendix 17.A).

As each segment in a Fraenkel chain becomes totally rigid when HF →
∞, the mean-square length 〈b2〉 of each segment becomes identical to b20; in
other words, each segment becomes a Kuhn segment and the Fraenkel chain
becomes a freely jointed chain. For a Fraenkel chain with HF = 400kT ,
the 〈b2〉 value of each segment is larger than b20 by only 1.3%. Under
this condition, the difference between the end-to-end distance of a Fraenkel
chain and that of the freely jointed chain converted from it by allowing
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HF →∞ should be extremely small. Thus, with HF being not particularly
small, one may regard each segment in a Fraenkel chain as equivalent to a
Kuhn segment and the Fraenkel chain as a freely jointed chain, as far as
the chain conformation is concerned.

Summarizing the discussions in the last two paragraphs, clearly the
functional form of the Fraenkel potential enables the Fraenkel segment to
play a dual role: As opposed to functioning as a Rouse segment as far as
the entropic viscoelasticity of a polymer is concerned, a Fraenkel segment
behaves as a Kuhn segment as far as the static chain-conformation property
is concerned. Thus, the dual role played by the Fraenkel segment resolves
the Kuhn–Rouse paradox which has been indicated by the studies summa-
rized in Appendix 13.A. Furthermore, the Fraenkel chain model represents
a dramatic improvement over the Rouse chain model in the study of poly-
mer viscoelasticity. The physics behind the coexistence of the two modes in
GS(t) as studied in this chapter represents a significant conceptual advance
beyond the scheme of incorporating a glassy-relaxation process into the
Rouse theory (Eq. (14.6)) as used for analyzing experimental results in
Chapter 14.

Appendix 17.A — Application of the Virial Theorem
to the Fraenkel Dumbbell

The average kinetic energy being kT/2 for each degree of freedom is
a built-in element of the Langevin equation.18 For simplicity, we con-
sider the Fraenkel dumbbell case; however, the analysis as presented here
can be extended to a Fraenkel chain with any number of beads. For
a dumbbell, according to the virial theorem K = − 1

2

∑2
i=1 Fi ·Ri =

(HF /2b30)δ(t)b(t) · b(t), where K = 3kT/2 is the average internal kinetic
energy. This relation is well confirmed by the simulation results shown
in Fig. 17.8. Since as indicated by simulations, b(t) ·b(t) in an equilib-
rium state fluctuates within 10% above and below its mean value, which is
larger than b20 by only 1.3%, the virial theorem as applied to the Fraenkel
dumbbell can be closely approximated by

HF

b0
δ(t) = 3kT. (17.A.1)

For HF = 400kT and δ(t) = 0.0075. In the main text, this δ(t) value is
denoted by δV .
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Fig. 17.8 Fluctuations of the internal kinetic energy for a Fraenkel dumbbell calcu-
lated in two different ways as represented by A(t) = −P2

i=1 Fi(t) ·Ri(t) and B(t) =
(HF /b30)δ(t)b(t) ·b(t), each in a different equilibrium state, giving an average value of
3.073 for A and 3.075 for B; the dashed lines are drawn at the value of 3 expected based
on the virial theorem (with kT = 1).

Appendix 17.B — Contribution of the Dynamic Couplings
between Different Segments to the Relaxation Modulus

Corresponding to Eq. (17.7) for a dumbbell, the relaxation modulus for an
N -bead Fraenkel chain is given by

GS(t) =
1

(N − 1)kT
〈Jxy(0)Jxy(t)〉

=
H2

F

(N − 1)kT b60

〈(
N−1∑
i=1

δi(0)bix(0)biy(0)

)N−1∑
j=1

δj(t)bjx(t)bjy(t)


〉 .

(17.B.1)
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As being dynamically correlated, the contributions of the cross-terms (with
i �= j) in Eq. (17.B.1) to GS(t) are not zero.b Such dynamic cross-
correlations also occur in the Rouse-chain model. As it turns out, the
sum of the self-terms (with i = j) of Eq. (17.B.1) as given by

Gself
S (t) =

H2
F

(N − 1)kT b60

N−1∑
i=1

〈δi(0)bix(0)biy(0)δi(t)bix(t)biy(t)〉, (17.B.2)

virtually solely contributes toGS(t) in the short-time region; in other words,
the cross-terms only contribute to the long-time region. This is illustrated
by comparing the simulated curves of GS(t) and Gself

S (t) for a five-bead
Fraenkel chain in Fig. 17.9. As there is virtually no difference between
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Fig. 17.9 Comparison of the equilibrium-simulated GS(t) (� based on Eq. (17.B.1)) and
Gself

S (t) (� based on Eq. (17.B.2)) curves for the five-bead Fraenkel chain; also shown
are the equilibrium-simulated GS(t) (solid line) and Gself

S (t) (dashed line) curves for the
five-bead Rouse chain. The Rouse curves have been slightly shifted vertically: multiplied
by the factor 0.85 as in Fig. 17.2.

bNote: For the mean square end-to-end vector of a Fraenkel chain, which is a static
property, there is no correlation between different segments, just as in the case of the
freely jointed chain (Chapter 1).
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GS(t) and Gself
S (t) in the fast-mode region, the short-time region may be

analyzed in terms of only Eq. (17.B.2). Since the sum in Eq. (17.B.2)
just represents a multiple of the single term in Eq. (17.7), the analysis of
tension fluctuations in the Fraenkel dumbbell presented in the main text
can be readily applied to an N -bead chain. This means that the fluctuating
δi(t) is the dominant factor in the short-time region of GS(t) for a multiple-
segment Fraenkel chain as it is in the Fraenkel-dumbbell case. As opposed
to the analysis of the fast mode of anN -bead chain being simplified this way,
the contributions of the cross-terms clearly cannot be neglected in the slow-
mode region. This and the lack of a good justification for forming a product
of 〈δ(0)δ(t)〉 and 〈(bx(0)by(0))(bx(t)by(t))〉 (Eq. (17.8)) in the long-time
region collectively makes an analysis similar to that done on the Fraenkel
dumbbell for the slow mode unwieldy. However, as also shown in Fig. 17.9,
the relative weight between the self-term and cross-term components in the
Rouse-chain model is virtually the same as in the Fraenkel chain model (over
the slow-mode region). The consistency in the internal behavior between
the two models further supports that the slow mode behaves virtually just
as the Rouse process does. Thus, the conclusion that the fast mode is driven
by energetic interactions and the slow mode by entropy as derived from the
analysis on the simulation results of the Fraenkel dumbbell, is applicable
to multiple-bead Fraenkel chains as well.
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Chapter 18

Monte Carlo Simulations of Stress
Relaxation of Fraenkel
Chains — Nonlinear Viscoelasticity
of Entanglement-Free Polymers

As presented in Chapter 17, the Monte Carlo simulation study of linear
viscoelasticity of entanglement-free Fraenkel chains has revealed two dis-
tinct dynamic modes in the relaxation modulus GS(t):1 (1) The fast mode
arises from the fluctuations in segment tension or reflects the relaxation of
the segmental tension created by segments being stretched by the applied
step shear deformation — an energy-driven dynamic process. (2) The slow
mode arises from the fluctuations in segment orientation or represents the
randomizations of the strain-induced segmental orientation — an entropy-
driven dynamic process. Very significantly, the slow mode is well described
by the Rouse theory in all aspects: the magnitude of modulus, the line
shape and the N (number of beads) dependence of the relaxation time,
particularly when N � 2. This result means that as far as the slow mode
is concerned, one Rouse segment may be replaced by one Fraenkel seg-
ment, or vice versa, even though the latter is much stiffer than the for-
mer. Furthermore, as indicated by comparing experiment and simulation
(Fig. 17.7), the coexistence of the glassy- (structural- or α-) relaxation
process (fast energy-driven mode) and the Rouse relaxation mode (slow
entropy-driven mode) observed in an entanglement-free polymer melt is
explained and their relative time scales are properly described. The shown
agreement between simulation and experiment over a wide range spanning
both the two modes is consistent with the success of the Rouse theory
in explaining the linear viscoelastic response functions of entanglement-
free polymer melts in the long-time (low-frequency) or entropic region
(Chapters 11 and 14).2–4 At the same time, it strongly suggests that the
Fraenkel-chain model has captured the essential element of the energetic
interactions that affect the glassy relaxation in a polymer melt. Describing

381
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in a natural way the emergence of the fast energy-driven mode above the
slow Rouse mode in its short-time region, the Fraenkel-chain model repre-
sents a dramatic improvement over the Rouse model in the study of linear
viscoelasticity. The new understandings in turn suggest that the stress
relaxations of Fraenkel chains obtained from the Monte Carlo simulations
in the nonlinear region may be profitably analyzed by comparing them with
the constitutive equation of the Rouse model (Chapter 7).5 In Sec. 16.4, the
stress-relaxation results of the Rouse model obtained from the simulations
following the application of a step shear deformation have been presented
and their perfect agreements with the Rouse theoretical results have been
illustrated.

18.1 Effects of the Nonlinearly Enhanced Tensile Force
along the Fraenkel Segment

The relaxation modulus GS(t) and the first normal-stress difference func-
tion GΨ1(t) (Eqs. (16.14) and (16.15)) of the Rouse model are indepen-
dent of the applied strain. By contrast, the equivalent dynamic quantities
GS(t, λ) and GΨ1(t, λ) obtained from the Monte Carlo simulations on a
five-bead Fraenkel chain at different strains from λ = 0.5 to 4 are strain-
dependent as shown in Fig. 18.1. However, even though both GS(t, λ) and
GΨ1(t, λ) exhibit nonlinear effects, the Lodge–Meissner relation holds per-
fectly well as can be observed in the same figure. Furthermore, unlike in the
Rouse model, the second normal-stress difference N2(t, λ) in the Fraenkel-
chain model is not zero as shown in Fig. 18.2. Thus, the Fraenkel-chain
model exhibits significant deviations in the nonlinear viscoelastic behavior
from the Rouse model, even though its linear relaxation modulus in the
long-time region is well described by the Rouse theory. Analyses of these
differences as related to the particular form of the Fraenkel potential are
given in the following:

A large tensile force along the Fraenkel segment is created when it is
significantly stretched by an applied strain, which leads to the stress show-
ing up in the fast mode region. The strain hardening of the fast mode (Fig.
18.1) can be understood by examining the tensile force FF along a Fraenkel
segment denoted by b:

FF =
HF

b20
b− HF

b0

[
b
|b|
]

= HF
δ(t)
b30

b (18.1)
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Fig. 18.1 Comparison of the results of GS(t, λ) (solid line at λ = 0.5; long-dash line at
λ = 1; medium-dash line at λ = 2; and short-dash line at λ = 4) and GΨ1(t, λ) (◦ at
λ = 0.5; � at λ = 1; � at λ = 2; and � at λ = 4) obtained from simulations on the
five-bead Fraenkel chain following the application of a step shear strain λ.

where δ(t) is defined by Eq. (17.4). As shown in Fig. 18.3, right after the
application of a step shear strain to the Fraenkel chain in equilibrium, a
|b(t = 0+)| (t = 0+ is used to denote the state right after the application
of a step strain) value larger than b0 (set equal to 1) on average is created;
as a result, the second term of Eq. (18.1) becomes smaller than the first
term, leading to a tensile force that will pull the two separated beads back
to the equilibrium distance — a recoiling effect. In the simulations under
equilibrium conditions as studied in Chapter 17, δ(t) is used to represent the
deviation of the bond length |b| from the b0 value in the linear region. In
the present nonlinear case, it is better to regard δ(t) simply as a parameter
characterizing the nonlinear enhancement of the tensile force exerted on
the segment as the segment is significantly stretched.

A close examination of the calculated values of GS(λ, t = 0+) (Fig. 18.5)
shows that the shear stress increases nonlinearly with the shear strain λ

at as low as ∼ 0.005. The calculated GS(λ, t = 0+) results indicate that
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Fig. 18.2 Second normal stress N2(t, λ) obtained from simulations on the five-bead

Fraenkel chain following the application of a step shear strain (◦ at λ = 0.5; � at λ = 1;
� at λ = 2; and � at λ = 4).

the average tensile force along the segment start to increase greatly in a
nonlinear way at λ ≈ 0.3. The nonlinearly enhanced segmental tension
is responsible for the strain hardening of the fast mode as can clearly be
seen in Fig. 18.1. Besides this obvious result, it leads to the emergence
of the second normal-stress difference (Fig. 18.2). The second normal-
stress difference is of significant magnitude in the fast-mode region; as the
time enters the slow-mode region, it declines towards the zero line and
beyond; and finally relaxes as a negative diminishing tail. These effects of
the nonlinearly enhanced segmental tension can be understood by means
of the following analysis:

The use of the Langevin equation has implied that our studied system
is ergodic.6,7 Thus, the concept or language of ensemble averaging may be
used to discuss the results obtained by averaging the behavior of a single
chain over time in the equilibrium state or over the repeating cycles follow-
ing the step deformation. As obtained from the simulations under equilib-
rium conditions, the mean squared bond length 〈b2〉0 is only 1.3% larger
than b20 = 1; and the ensemble-averaged components of 〈b2〉0 are identical:
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Fig. 18.3 〈b(t)2〉 (top) and 〈|b(t)|〉 (bottom) as a function of time following the appli-
cation of a step shear strain (λ = 0.5, 1, 2 and 4) obtained from simulations on the
five-bead Fraenkel chain. The insets show the oscillations in 〈b(t)2〉 and 〈|b(t)|〉 visible
in the time region of 102–103 before reaching their stable equilibrium values.

〈
b2x
〉
0

=
〈
b2y
〉
0

=
〈
b2z
〉
0

= 0.3377 as expected. However, in the ensemble,
different segments have different b2x, b2y and b2z values. Among the segments
with the same b2x, those with larger b2y have to have a smaller b2z on average.
Following the step shear deformation E as defined by Eq. (16.9), those seg-
ments with a larger b2y and a smaller b2z will be stretched more — leading to
greater nonlinear enhancements of their tensile forces as characterized by
the parameter δ(t) — than those with a smaller b2y and a larger b2z. Since the
contribution of a segment to the normal stress in the y direction is propor-
tional to δ(t)by(t)2 at time t, the average of the initial value δ(0+)by(0+)2

is much more weighted by those segments with larger b2y; the opposite can
be said about the normal stress in the z direction. As a result, a posi-
tive second normal-stress difference (N2(t) > 0) occurs in the short-time or
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fast-mode region, as shown in Fig. 18.2. Such an effect will not occur in
the Rouse-segment case, where the tensile force increases with bond length
linearly (Chapters 6 and 7).

As explained above, the segmental tensile force created by the step
deformation will shrink the segmental length back to its equilibrium value.
Those segments with a larger initial y component, as having larger ten-
sile forces, will be more affected by the recoiling effect. The average
values 〈bx(0+)2〉, 〈by(0+)2〉, and 〈bz(0+)2〉 in accordance with the affine
deformation are expected to be given, respectively, by

〈
b2x(t = 0+)

〉
=〈

b2x
〉
0

+ λ2
〈
b2y
〉
0

= 0.3377(1 + λ2);
〈
b2y(t = 0+)

〉
=
〈
b2y
〉
0

= 0.3377 and〈
b2z(t = 0+)

〉
=
〈
b2z
〉
0

= 0.3377. These values obtained from the simula-
tions are in close agreement with the expected values at different strains.
As the chain configuration evolves according to the Langevin equation,
the recoiling effect causes all the

〈
bx(t)2〉, 〈by(t)2〉 and

〈
bz(t)2

〉
values to

decline, as shown in Fig. 18.4. Due to the nonlinearly enhanced initial ten-
sile force associated with segments with larger b2y,

〈
by(t)2

〉
decreases faster

than
〈
bz(t)2

〉
as
〈
b(t)2

〉
declines reaching its equilibrium value at a time

near the end of the fast mode, as shown in Fig. 18.3. As 〈b(t)2〉 reaches
or nears its equilibrium value, 〈by(t)2〉 and 〈bz(t)2〉 reach their respective
minimum points (at around 20–40 time steps), signifying the ending of
recoiling. Due to its fast declining rate from the very beginning, 〈by(t)2〉
is smaller than 〈bz(t)2〉 at the end of the recoiling process. Thus, at about
this point the second normal-stress difference N2(t, λ) crosses the zero line
and becomes negative. In the time-scale region of the early part of the
slow mode, even though there is a significant degree of segment-orientation
anisotropy, the segmental tensile force is oscillating within a very small
range (as reflected by 〈b(t)2〉 or 〈|b(t)|〉; see the insets of Fig. 18.3) around
a value virtually identical to the equilibrium value. The small overshooting
(only observed at λ = 0.5 and 1) and damped oscillations should be the
after effect of the recoiling of the stretched segment. As a result, as shown
in Fig. 18.2, the second normal-stress differences in the region are of small
magnitude and, being most sensitive to the small changes in the segmental
tensile force, exhibit some waviness. One can observe most clearly in the
region of 102–103 time steps that when 〈b(t)2〉 or 〈|b(t)|〉 is at its oscillation
crests, |N2(t, λ)| is also at the crests of its wavy form (see Fig. 18.2). The
mechanism interrelating chain dynamics and viscoelasticity as revealed by
analyzing the results shown in Figs. 18.1–18.4 becomes more clearly visible
as the applied strain λ increases.
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Fig. 18.4 〈bx(t)2〉 (solid line); 〈by(t)2〉 (long-dash line); 〈bz(t)2〉 (short-dash line) and
〈ux(t)2〉 (◦); 〈uy(t)2〉 (�); and 〈uz(t)2〉 (�) as a function of time following the application
of a step shear strain (λ = 0.5, 1, 2 and 4) obtained from simulations on the five-bead
Fraenkel chain.
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18.2 The Lodge–Meissner Relation for the Fraenkel Chain

The relation GS(t, λ) = GΨ1(t, λ) was first found by Lodge and Meissner
using a phenomenological argument.8 However, the Lodge–Meissner rela-
tion observed in the simulations of the Fraenkel-chain model as shown in
Fig. 18.1 can be proved analytically. This is done by considering the con-
figurations of all the chains in a finite volume right after the application of
a step deformation and their subsequent evolution.

Consider a volume V0 containing n Fraenkel chains, each with N beads.
Right after the application of a step shear deformation E to such a system
in equilibrium, the shear stress, −σxy(0+), is given by (setting kT = 1)

−σxy(0+) =
n(N − 1)

V0
〈Tx(0+)by(0+)〉

=
HF

V0b30

n∑
k

N−1∑
s

δk
s (λ)

(
bo,k
s,x + λbo,k

s,y

)(
bo,k
s,y

)
(18.2)

where Tx denotes the x component of the tensile force FF along a represen-
tative Fraenkel segment in the ensemble. In the second part of Eq. (18.2),
bo,k
s,α (α = x, y) denotes the α component of the sth segment on the kth

chain of the system in an equilibrium state right before the application of
the step deformation E. Because of the presence of δk

s (λ), which depends
on the applied strain and the orientation of the segment, the sum of the
terms containing the products of bo,k

s,x and bo,k
s,y over all the segments in the

ensemble is not zero. In the Rouse model, as δk
s (λ) is a constant, the sum

equals zero. Because 〈b2〉 = 1.013b20 in equilibrium, we may for conve-
nience and easy understanding regard each segment as having unit length
before the initial step deformation is applied.a Then the stress component
as given by Eq. (18.2) but normalized to that for a single segment (denoted
by −Sxy(0+)) can be expressed by

−Sxy(0+) = HF

〈
δ(λ)

(
uo

xu
o
y + λuo

yu
o
y

)〉
uo (18.3)

aNote: This is not a required assumption. In the ensemble, segments with a certain
bond length are oriented in all directions with equal probability; this is true with any
bond length that can occur in an equilibrium state. Each “group” of segments which
have the same bond length can be normalized in the same way and averaged over all
orientations as described in the text.
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where

δ(λ) = 1− 1√(
uo

x + λuo
y

)2 +
(
uo

y

)2 +
(
uo

z

)2 . (18.4)

In Eqs. (18.3) and (18.4), uo
x, uo

y and uo
z denote the x, y and z components of

a unit vector uo representing the orientation of a segment in the equilibrium
system right before the step shear deformation is applied; and 〈f〉uo denotes
averaging f over all orientations of uo.

Similarly the first normal-stress difference −(σxx(0+)−σyy(0+)) can be
expressed by

−(σxx(0+)− σyy(0+))

=
n(N − 1)

V0
(〈Tx(0+)bx(0+)〉 − 〈Ty(0+)by(0+)〉)

=
HF

V0b30

n∑
k

N−1∑
s

[
δk
s (λ)

(
bo,k
s,x + λbo,k

s,y

)(
bo,k
s,x + λbo,k

s,y

)− δk
s (λ)

(
bo,k
s,y

)2]
.

(18.5)

In the same way as Eq. (18.3) is obtained from Eq. (18.2), the first normal-
stress difference given by Eq. (18.5) but normalized to that for a single
segment can be expressed by

N1(0+) = −(Sxx(0+)− Syy(0+))

= HF

〈
δ(λ)

(
uo

x + λuo
y

)(
uo

x + λuo
y

)− δ(λ)
(
uo

y

)2〉
uo . (18.6)

As shown in Appendix 18.A, Eq. (18.6) can be rewritten as

N1(0+) = HFλ
〈
δ(λ)

(
uo

xu
o
y + λuo

yu
o
y

)〉
uo = −λSxy(0+). (18.7)

As there exists a one-to-one correspondence between the segmental (molecu-
lar) representation and the orientation-based representation — i.e. between
Eqs. (18.2) and (18.3) or between Eqs. (18.5) and (18.6) — the contribution
of
∑n

k

∑N−1
s δk

s (λ)
[(
bo,k
s,x

)2 − (bo,k
s,y

)2 + λbo,k
s,xb

o,k
s,y

]
has to be zero as it cor-

responds to Eq. (18.A.1). In other words, as corresponding to Eq. (18.7),
Eq. (18.5) may be rewritten as

−(σxx(0+)−σyy(0+)) =
HF

V0b30
λ

n∑
k

N−1∑
s

δk
s (λ)

(
bo,k
s,x +λbo,k

s,y

)(
bo,k
s,y

)
. (18.8)
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Comparison of Eqs. (18.2) and (18.8) indicates that both the shear
stress and the first normal-stress difference arise from the same molecu-
lar source(s)

∑n
k

∑N−1
s δk

s (λ)
(
bo,k
s,x + λbo,k

s,y

)(
bo,k
s,y

)
; therefore, the evolutions

of the corresponding configurations responsible for their relaxations are the
same. As N1(0+) = −λSxy(0+) (Eq. (18.7)), the Lodge–Meissner relation
holds. It is easier to apply the above analysis to the Rouse model, in which
N1(0+) = λ2GS(0+) and −Sxy(0+) = λGS(0+). As opposed to GS(t) and
GΨ1(t) being independent of strain as given by Eqs. (16.14) and (16.15)
for the Rouse chain model, GS(t, λ) and GΨ1(t, λ) as defined by

GS(t, λ) = −Sxy(t, λ)
λ

, (18.9)

and

GΨ1(t, λ) =
N1(t)
λ2

(18.10)

have the same strain dependence as shown in Fig. 18.1. The initial values of
GS(t = 0+, λ) (or GΨ1(t = 0+, λ)) at different λ may be calculated numer-
ically from Eq. (18.3) (or Eq. (18.7)) by performing the averaging over all
orientations for comparison with the values obtained from the simulations
as shown in Fig. 18.5. As shown in the same figure, the agreement can be
further improved when the calculated curve is multiplied by the correction
factor 〈b2〉0/b20 = 1.013. The agreements between simulations and numer-
ical calculations shown in Fig. 18.5 and between the simulation results of
GS(t, λ) and GΨ1(t, λ) as shown in Fig. 18.1 confirm the above theoretical
analysis.

Only after the performed averaging is so complete that
∑n

k

∑N−1
s δk

s (λ)[(
bo,k
s,x

)2−(bo,k
s,y

)2+λbo,k
s,xb

o,k
s,y

]→ 0, Eq. (18.5) becomes identical to Eq. (18.8).
Before this condition is fully realized, GΨ1(t, λ) should show a higher noise
level than GS(t, λ) as indeed observed in the simulations. As the ideal
is never fully realized in the practice, one may regard the Monte Carlo
simulations as showing that the Lodge–Meissner relation holds only within
some fluctuating noise.

The second normal-stress difference as a function of time obtained from
the simulations on the five-bead Fraenkel chain is nonzero as shown in
Fig. 18.2. By averaging over all orientations, the initial value of the second
normal-stress difference calculated from

N2(0+) = −(Syy(0+)− Szz(0+)) = HF

〈
δ(λ)

((
uo

y

)2 − (uo
z

)2)〉
uo ,

(18.11)
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Fig. 18.5 Comparison of the initial values GS(t = 0+, λ)(◦) and GΨ1(t = 0+, λ)(�)

obtained from simulations on the five-bead Fraenkel chain with the λ-dependent curve
(solid line) calculated by averaging Eq. (18.3) or (18.7) over all orientations; the line
(dashed) indicating the λ-dependent curve corrected for the ratio 〈b2〉0/b20 = 1.013.

is nonzero. In Fig. 18.6, the N1(0+) and N2(0+) values obtained from
the simulations at different strains are compared, and are shown to be in
close agreement with the values calculated from Eqs. (18.7) and (18.11),
respectively.

18.3 Stress and Segmental Orientation

As shown in Chapter 17, the slow mode in the Fraenkel chain’s linear relax-
ation modulus reflects the randomization of orientation of segments, whose
average length is virtually the same as that in an equilibrium state. In other
words, the slow mode is an entropy-driven dynamic process. At strains in
the nonlinear region (from λ = 0.5 to 4), the strong correlation between the
stress and the segmental orientation in the slow-mode region is maintained
as well. Such strong correlation can be observed in Figs. 18.7, 18.8, and 18.9,
in which −Sxy(t), 〈bx(t)by(t)〉 and 〈ux(t)uy(t)〉; N1(t), 〈bx(t)2〉 − 〈by(t)2〉
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Fig. 18.6 Comparison of the initial first and second normal stress differences N1(0+)

(•) and N2(0+) (◦) obtained from simulations on the five-bead Fraenkel chain at dif-
ferent strains with the λ-dependent curves of N1(0+) (solid line) and N2(0+) (dashed
line) numerically calculated by averaging Eqs. (18.7) and (18.11), respectively, over all
orientations.

and 〈ux(t)2〉−〈uy(t)2〉; and |N2(t)|, 〈by(t)2〉−〈bz(t)2〉 and 〈uy(t)2〉−〈uz(t)2〉
are, respectively, compared. The most important feature of these results is
that virtually over the whole slow-mode range, all the stress components
are proportional to the corresponding orientation components by about the
same factor 4, which can be concisely denoted by

−S(t, λ) = 4〈b(t, λ)b(t, λ)〉 (18.12)

or

−S(t, λ) = 4〈u(t, λ)u(t, λ)〉 (18.13)

with the difference between 〈b(t)b(t)〉 and 〈u(t)u(t)〉 being negligibly small.
The Rouse theory predicts

−S(t, λ) = 3〈b(t, λ)b(t, λ)〉. (18.14)
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Fig. 18.7 Comparison of the time dependences of −Sxy(t, λ)(◦); 4 × 〈bx(t)by(t)〉 (solid
line); and 4 × 〈ux(t)uy(t)〉 (dashed line) obtained from simulations on the five-bead
Fraenkel chain at λ = 0.5, 1, 2 and 4. To avoid overlapping between shown curves, the
results at different λ values have been shifted along the vertical axis by the indicated
factors.

Note that Sxz(t) = Syz(t) = 0 in both Eqs. (18.12) (or (18.13)) and (18.14);
and Syy(t) �= Szz(t) in Eq. (18.12) (or (18.13)), while Syy(t) = Szz(t) in Eq.
(18.14). The factor 4 in Eq. (18.12) being so close to the value 3 predicted
based on the entropic force constant of the Rouse segment (Eq. (18.14))
strongly indicates the entropic nature of the slow mode. The revealed
entropic nature of the slow mode is very significant considering that the
Fraenkel segment is much stiffer than the Rouse segment and that the seg-
ment has (initially) been greatly stretched by an applied strain well into the
nonlinear region. Clearly, the entropic slow mode is made possible by the
fast relaxation of segmental tension allowing the average segmental length
to reach its equilibrium value while the segment-orientation anisotropy is
still strong.
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Fig. 18.8 Comparison of the time dependences of N1(t, λ)(◦); 4 × (〈bx(t)2〉 − 〈by(t)2〉)
(solid line); and 4× (〈ux(t)2〉− 〈uy(t)2〉) (dashed line) obtained from simulations on the
five-bead Fraenkel chain at λ = 0.5, 1, 2 and 4. To avoid overlapping between shown
curves, the results at different λ values have been shifted along the vertical axis by the
indicated factors.

In the slow mode region, as 〈b(t)2〉 has a value virtually identical to
the equilibrium value, we may assume that all the Fraenkel segments in a
chain have the same length — equal to the equilibrium value, which is not
a bad assumption as b(t) · b(t) in an equilibrium state fluctuates within
10% above and below its mean value. With the unit vector u representing
the direction of a segment, we may denote the polarizability of the segment
in the direction parallel to u by α‖ and in the perpendicular direction by
α⊥. Then the anisotropic part of the polarizability tensor of each Fraenkel
segment may be expressed as9

ααβ = (α‖ − α⊥)
(
uαuβ − 1

3
δαβ

)
. (18.15)
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Fig. 18.9 Comparison of the time dependences of |N2(t, λ)| (◦); −4 × (〈by(t)2〉 −
〈bz(t)2〉) (solid line); and −4 × (〈uy(t)2〉 − 〈uz(t)2〉) (dashed line) obtained from simu-
lations on the five-bead Fraenkel chain at λ = 0.5, 1, 2 and 4; the vertical lines indicate
the points where N2(t, λ) changes sign. To avoid overlapping between shown curves, the
results at different λ values have been shifted along the vertical axis by the indicated
factors.

With the polarizability anisotropy given by Eq. (18.15), the relation as
given by Eq. (18.13) means that the stress-optical rule holds in the entropic
region. The widely observed stress-optical rule over the entropic region has
always been explained by assuming that the distribution of the distance
between any two segments in a chain is Gaussian.6,10,11 The Gaussian statis-
tics as applied to the study of chain conformation is also used as the source
from which the entropic force constant of the Rouse segment is derived.
Here, we show that the entropic Rouse process occurring in the relaxation
modulus and the stress-optical rule holding over its relaxation time scales
can both be explained by the Fraenkel chain model without invoking the
Gaussian statistics.
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In the entropic region where the stress-optical rule is valid, the orien-
tation angle χ′ of the stress ellipsoid is identical to the extinction angle χ
of the birefringence; and the stress relaxation corresponds to the decay of
the birefringence ∆n with time. In the simulated stress relaxation, because
the Lodge–Meissner relation holds over the whole time range, the orienta-
tion angle χ′ is predicted to remain the same in both the fast-mode and
slow-mode regions (see Appendix 18.B). While χ = χ′ over the slow-mode
region, it is not clear whether the same is true over the fast-mode region
as the knowledge about how the polarizability changes with the elongation
of the segment is required. However, it is expected that the stress-optical
coefficient will be quite different if another stress-optical rule holds over the
fast-mode region. Inoue et al.12–14 have analyzed the results of dynamic
(linear) viscoelasticity and birefringence measurements on different poly-
mers in terms of a sum of two stress-optical rules (a modified stress-optical
rule): one for the high-frequency region (glassy component as denoted by
Inoue et al.) and the other for the low-frequency region (rubbery com-
ponent as denoted by Inoue et al., which occurs in the entropic region
and is the kind ordinarily encountered). The two stress-optical coefficients
obtained are in general of very different magnitude and some with opposite
signs;15 for instance, CR = −5 × 10−9 Pa−1 vs. CG = 3 × 10−11 Pa−1 for
polystyrene melts.

18.4 Similarities in Nonlinear Relaxation Modulus between
Entangled Polymer and Entanglement-Free
Fraenkel-Chain Systems

(a) Overall line shapes of GS(t, λ)

One may recall the two consecutive processes: the chain-tension relaxation
process16–18 (denoted by µ∗B(t,E)) and the terminal mode (denoted by
µC(t)) occurring in the nonlinear relaxation modulus G(t, λ) of an entan-
gled system as studied in Chapter 12. There are some interesting simi-
larities between the sequence of these two processes and that of the two
relaxation modes in the GS(t, λ) of an entanglement-free Fraenkel chain
studied in this chapter. To draw an analogy between the two kinds of
systems, each Fraenkel segment may be regarded as corresponding to an
entanglement strand and each bead as corresponding to a slip-link (of the
Doi–Edwards model;19 see Chapter 8). As the discussion is on an analogy,
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important differences between the counterparts need to be pointed out:
Firstly, stronger-than-average chain tension on an entanglement strand will
draw segments from neighboring entanglement strands slipping through the
entanglement links; while uneven tension in the Fraenkel chain is basically
localized in each segment. Secondly, the tensile force along the Fraenkel
segment is quite large — proportional to HF /b0 (see Eq. (18.1)) — and
is much greater than 3kT/b0; while the tensile force on an entanglement
strand is typically of the order ∼ 3kT/a with a (> b0) being the entan-
glement distance (Chapters 8, 9 and 13). Thus, the two different descrip-
tions or pictures are suitably applied to different regions of a measured
relaxation modulus. The segment-tension relaxation of the Fraenkel chain
occurring in the short-time region of G(t, λ) has very high modulus val-
ues as indicated by the comparison between simulation and experiment
shown in Fig. 17.7. As shown in Figs. 14.17 and 14.18, in the short-time
region, the G(t, λ → 0) of polystyrene has modulus values ranging from
∼ 4×107 to ∼ 1010 dynes/cm2, which are much larger than the plateau mod-
ulus GN = 2× 106 dynes/cm2 (Chapter 10). In contrast, the chain-tension
relaxation µ∗

B(t,E) occurs at modulus levels similar in order of magnitude
to that of GN as can be observed in Fig. 12.3. In spite of these differences
between the two cases, the similarity in the G(t, λ) line shape showing
a two-step relaxation can be clearly observed by comparing Figs. (12.3)–
(12.7) with Fig. (18.1). Furthermore, of great interest and importance is
the effect of the same nature that exists in both kinds of long-time processes
(the terminal mode in the entangled polymer case and the slow mode in
the entanglement-free Fraenkel-chain case), each occurring following a dif-
ferent kind of tension-relaxation process (the chain-tension relaxation vs.
the segment-tension relaxation). A discussion of the effect may shed light on
the basic (entropic) nature of a physical effect (orientation) occurring in the
nonlinear viscoelasticity of a polymer system, entangled or not, over a wide
time-scale range. Following either the segment-tension or chain-tension
relaxation process, it is the orientation randomization that is responsible for
the relaxation of the remaining stress. In the entanglement-free Fraenkel-
chain case, the randomizations of segmental orientation are caused directly
by the Brownian motion of the beads in the chain. In comparison, the
orientation associated with each of the entanglement strands (or primitive
steps) in an entangled system is randomized by the reptation mechanism
with assistance from the chain contour-length fluctuation process (Chap-
ters 9 and 12).17,18,20,21 Either of the two different kinds of orientation
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randomizations is an entropy-driven process: In the Fraenkel-chain case,
the process is well described by the Rouse model as can be concluded by
comparing the results shown in Figs. 17.2 and 17.5 and those shown in
Fig. 18.10. In the entangled-polymer case, the process is well described by
the µC(t) process contained in the extended reptation model (Figs. 12.4–
12.8) with the strain dependence of the modulus quantitatively described
by the damping function of the Doi–Edwards theory (Fig. 9.2).18,22−26 As it
turns out in the Fraenkel-chain case, the strain dependence of GS(t, λ) over
the entropic region also agrees with the Doi–Edwards damping function
quite well for a different physical reason as analyzed in the following:

(b) Damping factor over the entropic region of GS(t, λ)

As shown in Fig. 18.10, the Fraenkel-chain GS(t, λ) curves at different λ
values can be superposed on one another over the entropic region closely
by allowing a vertical shift. Thus from these simulation results, one can
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Fig. 18.10 Superposition of the GS(t, λ) curves at different strains obtained from simu-
lations on the five-bead Fraenkel chain as shown in Fig. 18.1 by an upward vertical shift
(multiplied by 1 at λ = 0.2 and 0.5; 1.1 at λ = 1; 1.5 at λ = 2; and 3.5 at λ = 4).
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unequivocally determine the damping factors h(λ) defined by

h(λ) =
[

GS(t, λ)
GS(t, λ→ 0)

]
(18.16)

with t spanning only the slow-mode region.
As indicated by Eq. (18.13), the damping factor is closely related to the

strain dependence of the orientation tensor 〈u(t, λ)u(t, λ)〉 over the entropic
region. As shown in Figs. 18.7–18.9, 〈u(t, λ)u(t, λ)〉 in the very early part
of the entropic region, remains basically the same as it is right after the
application of the step strain. In other words, the randomization of segmen-
tal orientation has hardly taken place during the fast-mode relaxation —
namely, during the recoiling of segments back to the equilibrium length.
Thus the obtained damping factors h(λ) can be approximated by the func-
tion ho(λ) calculated from the initial orientation caused by the step strain
via affine deformation:

ho(λ) =
g(λ)

g(λ→ 0)
(18.17)

with

g(λ) =

〈 (
uo

x + λuo
y

)
uo

y

λ
((
uo

x + λuo
y

)2 +
(
uo

y

)2 +
(
uo

z

)2)
〉

uo

. (18.18)

Eq. (18.17) is simply the definition of the Doi–Edwards damping function
with the independent-alignment approximation (Chapters 8 and 12). The
damping functions of Doi and Edwards with and without the independent-
alignment approximation both explain well the experimental results of a
well-entangled nearly monodisperse polymer system (Fig. 9.2). Note that
here the unit vector uo represents the orientation of a Fraenkel segment
as opposed to the orientation associated with an entanglement strand or
primitive step in the Doi–Edwards theory.

In Fig. 18.11, we compare the ho(λ) curve calculated numerically from
Eq. (18.17) and the h(λ) values determined by superposing the G(t, λ)
curves over the entropic region (Fig. 18.10). As the difference between
GS(t, λ = 0.2) and GS(t, λ = 0.5) is very small and ho(λ = 0.2) is only
1% smaller than ho(λ→ 0), GS(t, λ = 0.2) has been used to substitute for
GS(t, λ → 0) which is designated in Eq. (18.16) for determining h(λ) at
different values of λ. As shown in the figure, ho(λ) basically describes the
strain dependence of h(λ).
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It is interesting and important to note that the relaxation modulus
over the entropic region in the entanglement-free Fraenkel-chain case and
that in the entangled system have very different relaxation functional forms,
while their dependences on orientation are similar — both can be quite well
described by the damping function given by Eq. (18.17). The relaxation
strength in the former case receives equal contributions from all normal
modes (Eq. (7.58)) as opposed to being dominated by the lowest normal
mode (Eq. (9.11)) in the latter case.

In Fig. 18.11, ho(λ) is also compared with the damping factor associated
directly with the unit vector u over the entropic region, hu(λ), defined by

hu(λ) =
〈ux(t, λ)uy(t, λ)〉/λ

[〈ux(t, λ)uy(t, λ)〉/λ]λ→0
. (18.19)

More directly representing the segmental orientation, the hu(λ) values
appear to have a closer agreement with ho(λ) than h(λ). The small dif-
ferences between hu(λ) and h(λ) — less than 10% — merely reflect the
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Fig. 18.11 Comparison of the damping factors h(λ) (•) determined using Eq. (18.16)
from simulations on the five-bead Fraenkel chain at different λ with the ho(λ) curve cal-
culated numerically from Eqs. (18.17) and (18.18); also shown are the values of hu(λ)(�)
(Eq. (18.19)) obtained from the simulations.
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small deviations of the proportional constant in Eq. (18.13) from a certain
fixed value — such as 4 as used in Eq. (18.13) — at different strains. These
small differences, which may arise from fluctuations in simulations or minor
unaccounted-for effects, do not affect the basic physics that the slow mode
is closely associated with the segmental orientation.

(c) Comparison of the first and second

normal-stress differences

Experimentally the second normal-stress difference N2(t, λ) of a polymer
is, in general, much smaller than the first normal-stress difference N1(t, λ);
so is indicated by the comparison of the two obtained from the simu-
lations as shown in Fig. 18.12. As pointed out above, as opposed to
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Fig. 18.12 Comparison of the N1(t, λ) (solid line) and |N2(t, λ)| (dashed line) results
obtained from simulations on the five-bead Fraenkel chain at different strains (λ = 0.5,
1, 2 and 4); the vertical lines indicate the points where N2(t, λ) changes sign. To avoid
overlapping between shown curves, the results at different λ values have been shifted
along the vertical axis by the indicated factors.
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N1(t, λ) being positive over the whole time range, N2(t, λ) is negative in
the entropic region. Based on the understanding gained from the analy-
sis given in Sec. 18.3, one may use birefringence measurements to deter-
mine the hard-to-obtain first and second normal-stress differences over the
entropic region where the stress-optical rule is expected to be applicable.
Interestingly, precisely in this way Osaki et al.27 have carried out an exper-
imental study on the stress relaxation of an entangled system. Making
use of the stress-optical rule proven applicable in the rubbery (entropic)
region, Osaki et al. studied the first and second normal-stress differences
of an entangled nearly monodisperse polystyrene solution (Mw = 6.7×105;
32.6% in Aroclor 1248) as a function of time over the terminal-mode region
following a step shear deformation. The comparisons of their obtained first
and second normal-stress differences over the terminal region are similar
to the simulation results shown in Fig. 18.12 in several aspects. This may
not be surprising as either the terminal mode of an entangled polymer
system or the slow mode of an entanglement-free Fraenkel-chain system
reflects the randomization of orientation — of the entanglement strands
(or primitive steps) in the former case or of the segments in the latter
case — as discussed above with respect to the damping factor. Despite the
above-mentioned great difference in the relaxation functional form between
the two different systems, their first and second normal-stress differences
are of opposite sign in the same way and their −N2(t, λ)/N1(t, λ) ratios
have nearly the same values and λ dependence. Just as the damping func-
tion can be calculated from Eq. (18.17), the ratio −N2(t, λ)/N1(t, λ) can
be calculated as a function of λ from the Doi–Edwards expression with
independent-alignment approximation (Eq. (12.17)). The calculated curve
is compared with the simulation results and Osaki’s experimental values
in Fig. 18.13. Results of a well entangled nearly monodisperse polyiso-
prene melt consistent with those obtained by Osaki et al. have also been
obtained by Olson et al. by means of birefringence measurements.28 The
simulation values of −N2(t, λ)/N1(t, λ) being about 30% below the calcu-
lated curve should be mainly due to the mutual cancellation of the two
effects — the positive effect ebbing while the negative effect rising —
behind the N2(t, λ) changing sign upon entering the slow-mode region as
discussed in Sec. 18.1. Such a mutual cancellation effect is indicated by
the differences between |N2(t, λ)| and the corresponding orientation ten-
sor component given in Eq. (18.13) (multiplied by 4) in the time region
right before and after the point where N2(t, λ) changes sign as shown
in Fig. 18.9.
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Fig. 18.13 Comparison of the simulation values (•) of −N2(t, λ)/N1(t, λ) in the slow-
mode region obtained from the present study and the experimental values (◦) in the
terminal region of the entangled system studied by Osaki et al. with the curve (solid
line) numerically calculated from the Doi–Edwards expression (Eq. (12.17)) with the
independent-alignment approximation.

(d) The observation of the Lodge–Meissner relation

Based on the Lodge–Meissner relation being applicable over the whole
time range and the stress-optical rule in the slow-mode region, the relation
(2 cot 2χ)/λ = 1 (Appendix 18.B) is predicted to hold over the slow-mode
region in the entanglement-free Fraenkel-chain case. The same relation has
also been clearly observed by Osaki et al. over the terminal-mode region. In
other words, in their studied entangled system, both the stress-optical rule
and the Lodge–Meissner relation hold over the entropic (terminal-mode)
region.

Simulations of the entanglement-free Fraenkel-chain model and exper-
iments of an entangled system studied by Osaki et al. have been com-
pared with respect to the damping factor, the ratio −N2(t, λ)/N1(t, λ) and
the Lodge–Meissner relation over the entropic region. As revealed, the
sameness or close similarity in magnitudes and behaviors between the two
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sets of results represents the great similarities between the slow mode of
the entanglement-free Fraenkel-chain model and the terminal mode of the
entangled polymer system. These shared properties and behaviors also sug-
gest that the revealed close correlation of the slow mode or the terminal
mode as well as its entropic nature with orientation anisotropy — as of the
Fraenkel segments or the primitive steps in the Doi–Edwards model — is
generally valid in polymer viscoelasticity.

18.5 A Final Note

In Chapter 17, it is shown that the Rouse and Fraenkel chains with the
same number of beads, N , describe virtually equally successfully the slow
entropic mode of the relaxation modulus of an entanglement-free system. In
Chapter 18, it is shown that the entropic nature of the slow mode as well as
the ordinarily observed (rubbery) stress-optical rule is due to the segmen-
tal orientation anisotropy. In sharp contrast with the picture revealed in
these studies, the Gaussian chain model has been assumed in the molecular
theories studied in this book (Chapters 2, 3, 6–9 and 12) and tradition-
ally used to explain the stress-optical rule.6,10,11 However, the two models
or pictures need not be regarded as mutually exclusive: as the polymer is
sufficiently long, the chain statistics becomes Gaussian due to the central
limit theorem, which is confirmed by the polymer conformation studies. In
the first twelve chapters, the studies, both theoretical and experimental,
mainly focus on the viscoelastic behaviors corresponding to length scales
above and slightly below the entanglement distance. As these length scales
are sufficiently large for the Gaussian chain statistics to be valid or at least
nearly valid29–31 allowing us to develop molecular theories and obtain their
analytical solutions, which would otherwise be unfeasible if not impossi-
ble. In this practical sense, the newly revealed effects or mechanisms can
be viewed as extending the range of rubbery elasticity and applicability of
the Rouse theory and the stress-optical rule to polymer chains too short to
be regarded as Gaussian chains.

Appendix 18.A — Proof of The Lodge–Meissner Relation
as Applied to the Fraenkel-Chain Model

If one proves

〈δ(λ)
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)〉
uo = 0, (18.A.1)
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then Eq. (18.6) becomes Eq. (18.7). In the expression obtained by sub-
stituting Eq. (17.4) into Eq. (18.A.1), the first term is zero as

〈(
uo

x

)2 −(
uo

y

)2 + λuo
xu

o
y

〉
uo = 0 for the reason of symmetry; thus, Eq. (18.A.1) is

true if

A(λ) =
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〉
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(18.A.2)

is zero for all values of λ. Both the numerator and denominator of
Eq. (18.A.2) contain even and odd terms with respect to the transfor-
mation uo

x → −uo
x or uo

y → −uo
y. The averaging over all orientations of

uo is invariant to a rotation of the coordinate system. The way to show
A(λ) = 0 is to perform an orthogonal transformation on Eq. (18.A.2) mak-
ing its denominator contain only even terms. This is done by first finding
the principal axes of the quadratic form inside the square root sign, which
is simply uo ·C · uo with C being the Cauchy tensor. With C represented
by a matrix C:

C =


 1 λ 0
λ 1 + λ2 0
0 0 1


 (18.A.3)

and the unit vector uo represented by a column U :

U =



uo

x

uo
y

uo
z


 , (18.A.4)

one may write

uo ·C · uo = UTCU. (18.A.5)

Expressing the unit vector uo with respect to the principal axes as

U ′ =



u′x
u′y
u′z


 , (18.A.6)

the orthogonal transformation is given by

U = SU ′ (18.A.7)
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with

S =


 cosα − sinα 0

sinα cosα 0
0 0 1


 (18.A.8)

where cosα =
√

2/(µ+ λµ1/2) and sinα = (λ+µ1/2)/
√

2(µ+ λµ1/2) with
µ = λ2 + 4. In terms of u′x, u′y and u′z, Eq. (18.A.2) is expressed by

A(λ) =

〈
−√µu′xu′y√

q1(u′x)2 + q2(u′y)2 + q3(u′z)2

〉
u′

(18.A.9)

where q1, q2 and q3 are the three eigenvalues of C:

q1 =
µ− 2 + λ

√
µ

2
(18.A.10)

q2 =
µ− 2− λ√µ

2
(18.A.11)

q3 = 1. (18.A.12)

While the denominator of Eq. (18.A.9) contains only even terms, the numer-
ator contains just an odd term. Thus, A(λ) = 0 for all λ leading to the
conclusion that the Lodge–Meissner relation GS(t, λ) = GΨ1(t, λ) holds.

Appendix 18.B — The Stress-Optical Rule in the Case
of Simple Shear

In the case of simple shear, the stress tensor of a polymer system is in
general expressed as

τ =


 τxx τxy 0
τyx τyy 0
0 0 τzz


 . (18.B.1)

The shear stress τxy and the normal stress differences: N1st = −(τxx− τyy)
and N2nd = −(τyy − τzz) can be obtained by measuring the birefringence
of the studied system. The measured optical properties are converted into
τxy, N1st and N2nd through the stress-optical rule. One measures two bire-
fringence quantities ∆nxy and ∆nxz corresponding to two mutually per-
pendicular cross sections (refractive index ellipses) of the refractive index
ellipsoid, and the extinction angle χ, which defines the orientation of the
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ellipse corresponding to ∆nxy. The stress-optical rule states that the bire-
fringence ∆nxy is linearly proportional to the difference between the two
principal stresses in the xy plane and the orientation of the optical axis χ
coincides with that of the principal stress axis χ′. Clearly, the z direction
is one of the principal axes of the stress tensor given by Eq. (18.B.1). The
two principal axes in the xy plane can be found by the transformation (a
rotation around the z axis) that diagonalizes the 2× 2 matrix:

T =
(
τxx τxy

τyx τyy

)
. (18.B.2)

The two eigenvalues (principal stresses) of T are found to be

p1 =
τxx + τyy +

√
α

2
(18.B.3)

p2 =
τxx + τyy −

√
α

2
(18.B.4)

where α = m2 + 4τ2
xy with m = τxx − τyy. And the transformation is

represented by the matrix:

S =
(

cosχ′ − sinχ′

sinχ′ cosχ′

)
(18.B.5)

where cosχ′=τxy/
√

(α−mα1/2)/2 and sinχ′=(α1/2−m)/
√

2(α−mα1/2);
and χ′ denotes the orientation angle of the stress ellipse. The difference
between the two principal stresses in the xy plane is given by

∆p = p1 − p2 =
√
α. (18.B.6)

Using Eq. (18.B.6), one obtains

sin 2χ′ = 2 sinχ′ cosχ′ =
2τxy√
α

=
2τxy

∆p
, (18.B.7)

cos 2χ′ = cos2 χ′ − sin2 χ′ =
m√
α

=
τxx − τyy

∆p
(18.B.8)

and thus,

tan 2χ′ =
sin 2χ′

cos 2χ′ =
2τxy

τxx − τyy
(18.B.9)

When the stress-optical rule holds,

∆nxy = C∆p (18.B.10)

χ = χ′ (18.B.11)
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where C is the stress-optical coefficient, which should be predetermined.
Using Eqs. (18.B.10) and (18.B.11), one obtains from Eqs. (18.B.7) and
(18.B.8), respectively:

τxy =
∆p
2

sin 2χ′ =
∆nxy

2C
sin 2χ (18.B.12)

−N1st = τxx − τyy = ∆p cos 2χ′ =
∆nxy

C
cos 2χ. (18.B.13)

As τxy is relatively easy to measure, Eq. (18.B.12) is often used to check
the validity of the stress-optical rule and determine the value of C.

When the Lodge–Meissner rule is applicable,

−N1st = τxx − τyy = λτxy. (18.B.14)

Using Eqs. (18.B.14) and (18.B.11), Eq. (18.B.9) is rewritten as

2 cot 2χ/λ = 1 (18.B.15)

According to Eq. (18.B.15), the extinction angle of the birefringence, χ, is
solely determined by the step strain applied initially and remains the same
(independent of time) as long as the Lodge–Meissner rule holds.

Both ∆nxy and χ are measured with a light beam directed perpendicular
to the xy plane. Using the third relation of the stress-optical rule,

∆nxz = −C(N1st +N2nd), (18.B.16)

the second normal stress difference can be calculated from the difference
between the principal values of the refractive index ellipse ∆nxz on the shear
plane (the xz plane) — measured with a light beam directed perpendicular
to the shear plane.
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affine deformation, 20, 142, 245, 344,
386, 399

α relaxation, see structural relaxation

binary blends, 234–240

binomial random walk, 46–49

relation to diffusion constant, 48

birefringence, 267, 280, 396, 402,
406–408

blend solutions

entangled, 215–225, 234–236,
240, 263

entanglement-free, 226–228

onset of entanglement, 226–233

blending law, 183

basic form for a binary blend,
238, 239

linear-additivity rule for a nearly
monodisperse system, 183,
184, 186, 240

Boltzmann’s superposition principle,
57, 58

equivalence to generalized
Maxwell equation, 57, 58

breakdown of Stokes–Einstein
relation (BSE), 331

basic mechanism shared with
thermorheological complexity,
331, 332, 336–338

Brownian motion, 28–33, 40, 43, 44,
49, 98, 122, 138, 156, 158, 177, 329,
397

see binomial random walk,
diffusion equation, ERT,
Langevin equation, Monte

Carlo simulations of stress
relaxation, reptational motion
of the primitive chain, Rouse
theory, Smoluchowski
equation

BSE, see breakdown of
Stokes–Einstein relation

Cauchy tensor, 87, 89, 90, 113, 405

simple shear, 90

solid-body rotation, 90

uniaxial extension, 89

central limit theorem, 5–7

applications, 11, 46, 48, 258,
329, 332, 337, 404

chain dynamics

summary views at different
length scales, 26, 27

see chain-tension relaxation,
diffusion constant,
Doi–Edwards theory, ERT,
glassy relaxation, Monte Carlo
simulations of stress
relaxation, Rouse theory,
time-correlation function

chain tension, see equilibrium tensile
force

chain tension in a Gaussian chain
between two fixed points, 150

chain-tension relaxation

comparison of theory and
experiment, 252, 254, 255

Doi’s model, 243–248

incorporated with ERT,
248, 249
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characteristic function, 4–6, 10, 47
characteristic ratio, see ratio of mean

square end-to-end distance to
molecular weight

codeformational (convected) time
derivative, 103, 113

complex modulus, 65
complex viscosity, 63
configurational distribution functions

elastic dumbbell in homogeneous
flow, 101

freely jointed chain, 8, 10
Gaussian chain, 12
Rouse chain in homogeneous

flow, 122
connector force, 100, 106, 345, 350,

382
constitutive equations

convected Maxwell model, 113
Doi–Edwards theory, 135
elastic dumbbell model, 104–109
neo-Hookean material, 90
Newtonian fluid, 93
objectivity or admissibility of,

115, 116, 118
Rouse model, 127, 128, 347, 348

contour length, see primitive chain
contour length fluctuation, see

primitive chain
contravariant component, 115
convected base vector, 114, 115
convected coordinate, 109, 114
convected Maxwell model, 113

generalized, 113
convected time derivative, see

codeformational time derivative
creep compliance, 71–73

calculation from G(t), 72, 73, see
also Hopkins–Hamming
Method

full-range line-shape analysis of
polystyrene melt(s)

entangled (with ERT as the
reference frame), 271–286

entanglement-free (with
Rouse theory as the

reference frame), 272,
273, 286–294

fictional factors K′

extracted, 279, 291, 308
glassy-modulus values

extracted, 274
stretching parameters of

the glassy-relaxation
process extracted, 274

structural-growth
parameters extracted,
279, 282, 291, 307

structural-relaxation times
extracted, 279, 291, 306

smearing effect, 284–286
creep measurement, 68, 71
critical molecular weight Mc, 61, 62

see entanglement molecular
weight

critical molecular weight M ′
c, 69, 70

see entanglement molecular
weight

curvilinear diffusion constant, see
primitive chain

damping factor (or function) of
entangled system, 153, 250

based on independent alignment
approximation, 155, 250

comparison of theory and
experiment, 154, 155, 250–254

Doi–Edwards model, 144, 145,
155

effect on flow curve, 255
universality of, 154, 155

damping factor of entanglement-free
Fraenkel chain system, 398–400

comparison with independent
alignment approximation, 400

relation with segmental
orientation, 400

deformation gradient tensor, 84, 113,
142, 171, 243–245, 388

simple shear, 86, 145, 344
solid-body rotation, 86
uniaxial extension, 84–86
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diffusion constant, 29, 48, 342
comparison with viscoelastic

results in terms of ERT,
205–210

Doi–Edwards theory, 138–140
reciprocal relation to the

frictional factor, 329, 330
Rouse model, 35, 45
translational diffusion

enhancement factor, 331–333,
336–338

see binary random walk,
curvilinear diffusion constant,
Einstein relation

diffusion equation, 28–30, 48, 49
Dirac delta function, 3, 13–15
displacement function, 110, 111, 113
Doi’s equation of steady-state

compliance, 166
Doi’s equations of viscosity, 166
Doi’s equation of chain-tension

relaxation, 247, 248
Doi–Edwards theory, 133–150

diffusion constant, 140, 205
(pure) reptation time, 148, 149
stress tensor, 141
viscoelastic-quantity equation,

149, 150
see curvilinear diffusion

constant, damping factor,
ERT, primitive chain, slip-link
picture

dyadic product, 96
dynamic (or motional) anisotropy

as related to Tg correction, 194,
201, 298–301, 308–311

K′/K > 1 for M > Me and
K′/K → 1 as M → Me, 194,
298–301

(normalized-)molecular-weight
dependence of K′/K in
polystyrene, 193, 219

relevance of the ratio
RK = K′/K, 272, 278, 281,
298–303, 310, 317, 318, 328,
329

see frictional factor, K′

dynamic-mechanical spectroscopy, 61

Einstein relation, 29, 138
elastic dumbbell model, 98–113

constitutive equation, 109
end-to-end vector

of freely jointed chain, 7–9
see mean square end-to-end

distance, time correlation
function

energetic region (in G(t)), 163,
211–213, 258, 267, 269

figures showing partition into
energetic and entropic regions,
283, 285, 314, 315

of Fraenkel chains, see Monte
Carlo simulations of stress
relaxation

see glassy relaxation
entanglement

onset concentration, 226, 230
onset molecular weight, 231–233
onset of, 202, 203, 226–233
see Doi–Edwards theory ERT,

slip-link picture
entanglement distance, a, 137, 138,

169, 179, 216, 257–264, 404, see
tube diameter

as an internal yardstick, 313
number of entanglement strands

per a3, nt, 257–266
basis and support for nt

being a universal
constant, 259–262

values of various flexible linear
polymers, 260–262

entanglement molecular weight Me,
24, 134, 137, 216, 259, 278

as used to normalize molecular
weight in ERT, 160–166

concentration dependence,
216–225, 240, 263

determination from plateau
modulus, 24, 134, 192, 216,
259, 263
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effective value in binary blend,
185, 234, 237, 238

equivalence to onset molecular
weight of entanglement,
230–233

relation to critical molecular
weight Mc

experiment and ERT,
198–202, 208, 209

relation to critical molecular
weight M ′

c

experiment and ERT, 203,
204

values of various flexible linear
polymers, 260–262

entanglement strand, 136–138,
141–148

orientation, 144–148, 243–247,
397, 399, 402

Rouse motions of, see
Rouse–Mooney model

tensile force, 141, 142, 397
see entanglement distance,

primitive step
entropic force constant, 100, 103
entropic region (in G(t)), 72, 73, 130,

159, 163, 211–213, 258, 267,
269–273, 280

figures showing partition into
energetic and entropic regions,
283, 285, 314, 315

region of the entropy-driven
mode in Fraenkel chains, see
Monte Carlo simulations of
stress relaxation

equilibrium tensile force, see
primitive chain

ERT, see extended reptation theory
extended reptation theory (ERT),

153–180, 201–211, 217, 218
consistency with Rouse theory,

218–225, 233, 272, 309, 318,
320

equivalence between K and
K′′, see frictional factor
K′′

universality in, 164–166
validity of the theory, 209
viscoelastic-quantity equation,

158, 160, 161, 163, 164, 166,
175

see creep compliance, relaxation
modulus, structural factors of
relaxation times, viscoelastic
spectrum

Fick’s law, 28, 29
fictitious tensile force, see equilibrium

tensile force
Finger tensor, 88–90, 92, 113, 114,

151
simple shear, 90
solid-body rotation, 90
uniaxial extension, 89

flow curve, 255
fluctuation–dissipation theorem

for relaxation modulus, 346,
353–357

general proof, 350–353
perfect validity in the Rouse

chain model, 349
quasi-version in the Fraenkel

chain model, 370
fluid velocity field, 100
forward recoil spectroscopy, 26, 205
Fraenkel chain, 359
Fraenkel segment, see segments in

Fraenkel chains
free-volume correction, see Tg

correction
freely jointed chain, 7–11, 17, 18, 137,

258, 259, 264, 266–268, 375, 376
friction constant, 29, 99, 194, 201,

216, 224
frictional factor, K

as normalization reference for
the average glassy-relaxation
time, 272

see structural-growth
parameter,
thermorheological
complexity
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definition, 38

general temperature dependence,
40

in relaxation-time functional
forms, 38, 39, 128, 149, 158,
160, 164, 175

in viscosity functional forms,
130, 150, 166

molecular weight independence
of K in entangled polystyrene
melts (as analyzed in terms of
ERT), 193, 209, 210

K in the close neighborhood of
Tg, 319

frictional factor, K′

as normalization reference for
the average glassy-relaxation
time, 300

see structural-growth
parameter,
thermorheological
complexity

definition, 193, 218

universal dependence on
∆T = T − Tg in polystyrene,
308

see dynamic anisotropy

frictional factor, K′′

definition, 218

equivalence between K and K ′′,
219, 224, 272, 300, 318

Gaussian chain, 8, 11–13, 27, 28, 404

entangled, 137, 138, 141, 156,
158, 243

entanglement-free, 33, 119

generalized Maxwell equation, 56, 57

Giesekus stress tensor, 108

glass transition temperature, Tg (of
polystyrene)

calorimetrically determined, 274,
299, 303

molecular-weight
dependence, 299

defined by the
structural-relaxation time
τS = 1000 sec, 274, 303–305

glassy compliance, 281

glassy modulus, 281

glassy relaxation, 72, 163, 200,
211–213, 258, 269–322, 329–335,
359, 376, 381

average time, 272, 303, see
structural-relaxation time

see structural relaxation,
internal viscosity

homogeneous flow, 100, 103, 122

Hookean solid, 53–55

Hopkins–Hamming Method, 75, 76

hypothetical tensile force, see
equilibrium tensile force

ideal gas as analogous to ideal
rubber, 18, 24

incompressible fluid, 93, 100

independent alignment
approximation, 155, 244, 247, 249,
250, 399, 402, 403

internal viscosity, 200, 290, 293, 321,
322

Kohlrausch, Williams and Watts
(KWW) function, 270–272

Kramers matrix, 130

trace of, 131

Kuhn segment, 9, 15, 258, 259, 263,
264, 266–268, 358, 359, 375, 376

see freely jointed chain,
persistence length,
Rouse–Kuhn paradox

Langevin equation

general form, 32, 33

of entanglement strand, 171–175

of particle in a harmonic
potential, 42, 43

of primitive chain, 168, 169

of Rouse chain, 34–37, 43–45
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see Monte Carlo simulations of
stress relaxation

Lodge–Meissner relation

experimental observation, 403

for Fraenkel-chain model, 382,
383

proof, 388–390, 404–406

for Rouse-chain model, 347–349

loss modulus, 65, 67, see viscoelastic
spectrum

loss tangent, 65

marker displacement technique, 205

material time derivative, 117

Maxwell equation, 52–55

Maxwellian distribution, 106, 107

mean square end-to-end distance, 9,
100, 112, 137, 177, 205, 259, 267

of entanglement strand, 259

see ratio of mean square
end-to-end distance to
molecular weight

memory function, 57, 351

microstructure of polymer, 1, 2, 27,
163, 260–262, 269, 372, 375

mobility matrix, 31, 34

mobility tensor, 34

modulus plateau, 59, 133, 134, 186,
187, 192, 224, 265

see plateau modulus

molecular weight of a chain strand
between two cross-links, 22

moments of a stochastic variable, 3, 4

Monte Carlo simulations of stress
relaxation

Basic simulation scheme,
341–345

Fraenkel chain model, 358–379,
381–404

basis for the (rubbery)
stress-optical rule,
394–396

comparison with
experimental relaxation
modulus, 372–375

comparison with Rouse
theory, 360–362, 378,
379, 392

energy-driven mode, 361,
364, 368, 374, 375, 381,
382

entropy-driven mode, 361,
363, 368, 374, 375, 381,
391, 398

first normal stress
difference, 383, 390–394,
401

quasi-version of
fluctuation–dissipation
theorem, 369, 370

ratio of the first and second
normal stress differences,
401–403

resolution of Rouse–Kuhn
paradox, 375, 376

second normal stress
difference, 384, 392, 393,
395, 401, 403

similarity to entangled
systems in nonlinear
viscoelastic behavior,
396–404

simulations following the
application of a step
shear strain,

effects of nonlinearly
enhanced tensile
force, 382–387

initial values, 390–392

relation to segmental
orientation, 391–395

simulations in equilibrium
state, 360–368

correspondence
between fluctuations
and randomization
of segmental
orientation, 368–372

strain dependence, 383,
387, 391–395, 398–403
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see damping factor,
segment in Fraenkel
chain, independent
alignment
approximation,
Lodge–Meissner relation

Rouse chain model, 341–349

simulations following the
application of a step
shear strain, 344–349

simulations in equilibrium
state, 346–349

comparison with theory,
347–349

validity of
fluctuation–dissipation
theorem, 348, 349

Virial theorem as tested in
Fraenkel dumbbell case, 376,
377

neo-Hookean material, 90–92

Newtonian fluid, 52, 54, 55, 92–94

normal-stress difference, 82, 91, 92,
111, 112, see Monte Carlo
simulation of stress relaxation

normalized molecular weight

ratio K′/K as a function of, 219

relaxation strengths as a
function of, 161

relaxation-time ratios as a
function of, 161, 164, 178,
180, 253

viscoelastic quantities as a
function of, 166

viscoelastic response-function
line shape as a function of,
160, 161, 163–165, 218, 219,
see universality in polymer
viscoelasticity

number of entanglement strands per
cubed entanglement distance, nt,
257–266

concentration dependence of nt,
263

persistence length, 15, 266, 267
plateau modulus, 134, 149, 182–184,

257, 259–265
concentration dependence of,

218, 223–225, 239
determination methods, 192
values of various flexible linear

polymers, 260–262
plateau region, 154, 156, 161,

184–188, see modulus plateau
primitive chain, 135–138

contour length, 141, 143, 144,
147, 160

contour length fluctuation
dynamics, 156–161, 168–171
effect on reptation,

159–161, 248
effect on stead-state

compliance, 166
effect on viscosity, 166
fluctuation amplitude,

157–161
curvilinear diffusion constant,

138–140
Langevin equation, 170
relation to translational

diffusion constant, 140
relation to terminal

relaxation time, 148, 159
relations to relaxation times

at different length scales,
178

equilibrium tensile force, 136,
137, 141–143, 169, 247

reptational motion
with fixed contour length,

138–140, 143, 148,
with fluctuating contour

length, 158, 159
segmental equilibrium time on,

142–144, 146, 148, 153, 156,
157, 160–162, 242, 244, 246,
247, 250

distinction between linear
and nonlinear regions,
242
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primitive path, 136, 137, 147, 163,
168–170, 194, 242, 244, 299, 300,
320

see primitive chain

primitive step, 137, 139, see
entanglement strand

length, see entanglement
distance

orientation, 144, 147, 148, 397,
399, 402, 404

probability distribution functions, 2–5

displacement of a random walk,
48

end-to-end vector of freely
jointed chain, 10, 11, 18

freely jointed-chain segment, 7

vector between two beads in
Gaussian chain, 13

pure reptational time, 148, 149,
157–160, 179, 206

random walk, see binomial random
walk

rate-of-strain, 52, 58

rate-of-strain tensor, 92–94, 104,
107–109, 117, 118, 128

ratio of mean square end-to-end
distance to molecular weight, K∞,
205, 216, 257, 259, 263, 313

values of various flexible linear
polymers, 260–262

relative strain tensor, 109, 114, 128

relaxation modulus in linear region,
58–60

comparison with relaxation
modulus in nonlinear region,
154, 250, 255

Doi–Edwards theory, 149

elastic dumbbell model, 110

equation for binary blend,
238–240

equation for blend solution
(linear combination of ERT
and Rouse theory), 217, 218

experimental results, 60

extended reptation theory
(ERT), 156–165, 217, 218

µA(t) process, 163, 175
µB(t) process, 158–161,

170, 171
µC(t) process, 159–161
µX(t) process, 162, 164,

177–180
line-shape analysis of

polystyrene binary blends,
234–238

line-shape analysis of
polystyrene blend solutions,

entangled (in terms of the
linear combination of
ERT and Rouse theory),
218–225

entanglement-free (in terms
of Rouse theory),
226–228

line-shape analysis of
polystyrene melts,

entangled (in terms of
ERT), 186–197

Rouse theory, 129
see Monte Carlo simulations of

stress relaxation
relaxation modulus in nonlinear

region,
comparison of theory and

experiment, 251–255
comparison with relaxation

modulus in linear region, 154,
250, 255

theory (combination of ERT and
Doi’s equation of
chain-tension relaxation),
243–249

see chain-tension relaxation,
damping function, Monte
Carlo simulations of stress
relaxation

relaxation strength
of µB(t) process, 161
of µ∗

B(t, E) process, 248
of µC(t) process, 161
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of µX(t) process, 162
relaxation time

see frictional factor, structural
factors of relaxation times

relaxation-time distribution, 70, 212,
322–324

rheological equation of state, see
constitutive equation

rod-climbing phenomenon, 92
Rouse–Kuhn paradox, 267, 268, 358,

359
resolution of, see Monte Carlo

simulations of stress
relaxation

Rouse matrix, 36, 121, 122, 130, 131
eigenvalues and eigenvectors,

40–42
inverse of, see Kramers matrix
trace of, 131

Rouse–Mooney matrix, 172
eigenvalues and eigenvectors of,

176, 177
Rouse–Mooney model

continuous model, 175
discrete model, of finite number

of beads, 171–175
in ERT, 163

Rouse segment,
connector potential, 34, 100
connector force, 100
mass, 38, 273

relation to the upper bound
of rubbery (entropic)
modulus, 164, 266, 267,
280

value for polystyrene, 192,
267, 280

motional time, 317
Rouse-segment-based molecular

theories, 28, 163, 213, 267, 269,
358, 359

Rouse theory
consistency with ERT, 218–225,

233, 272, 300, 309, 318, 320
constitutive equation, 128
continuous model, 43–46

diffusion constant, 35, 45
discrete model, of finite number

of beads, 33–38, 119–130
time-correlation function of the

end-to-end vector, 38, 46, 344,
345

comparison of theory and
experiment, 226–228, 231,
286–298

comparison of theory and
simulations, 343–349

viscoelastic-quantity equations,
128–130

see creep compliance, relaxation
modulus, structural factors of
relaxation times,

viscoelastic spectrum
rubber elasticity

analogy to ideal gas, 18, 24
entropy change, 17–23
equivalent expressions for, 151
modulus, 22
molecular theory, 18–22

Schulz distribution, 186, 187
segments in Fraenkel chains

connector potential, 359
connector force, 382
orientation anisotropy, 371, 381,

391–396, 399–401, 404
associated entropic nature

(of the slow mode), 372,
375, 381, 391–396, 404

orientation fluctuation, 372, 375,
381

orientation randomization, 372,
381, 391–397, 399

tension fluctuation, 366, 371, 381
tension relaxation, 371, 381, 397
see Monte Carlo simulations of

stress relaxation
self-diffusion constant, 205, see

diffusion constant
shear (deformation) rate, 52, 93
shear strain, 53, 86
shear viscosity, 93, see viscosity
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simple shear, 85, 86, 90, 93, 145, 246,
406

slip-link picture, 134–146, 177–180

extended, 179–180

slip-stick melt fracture (as related to
chain dynamics) 253–256

Smoluchowski equation

elastic dumbbell model in
homogeneous flow, 98–102

general form, 28–34

Rouse model in homogeneous
flow, 122–126

solid-body rotation, 86, 87, 90

steady-state compliance, 65–71

comparison of experiment and
ERT, 203, 204

comparison of Doi–Edwards
theory, ERT and Rouse
theory, 203

Doi’s equation, 166

Doi–Edwards theory, 150

experimental results, 70, 203

ERT, 165, 166, 203, 204

of an entanglement-free
polystyrene sample

experimental and calculated
values, 291

structural growth
parameter extracted
from, 287, 288

temperature dependence
(measured and
calculated), 294

Rouse theory, 129, 130

steady-state shear flow, 60, 111, 129

step strain or step deformation,
57–59, 110, 142–146, 153, 171,
242–245, 344–346, 353–356,
368–372, 381–404

stochastic variable, 2–6

Stoke’s law, 99, 338

storage modulus, 65, 66, see
viscoelastic spectrum

stress-optical rule, 167, 267, 402, 403,
406–408

basis for, see Monte Carlo
simulations of stress
relaxation

stress relaxation, see relaxation
modulus in linear region, relaxation
modulus in nonlinear region, Monte
Carlo simulations of stress
relaxation

stress tensor, 79–82

bead-spring model, 127

contravariant component, 115

contravariant convected
derivative, 117

Doi–Edwards model, 141–144

Doi’s model, 243–248

elastic dumbbell model, 104–107

Giesekus expression, 108

Kramers expression, 107

molecular expression, 105, 106,
350

neo-Hookean material, 90

rubber network, 146, 151

symmetry of, 82

see constitutive equation

stretched exponential function, see
Kohlrausch, Williams and Watts
(KWW) function

stretching parameter β, 271, 274, 301,
302, 334

structural factors of relaxation times

Rouse modes, 38, 39, 128

pure reptation, 149

ERT processes

τp
A (Rouse–Mooney modes),
175

τB, 158

τC , 160

τX , 164, 178–180

chain tension relaxation, τ∗
B, 248

structural-growth parameter s,
278–294, 298, 300, 301, 304, 328,
329

definition, 272, 304

structural-growth parameter s′,
304–311, 316–318, 328–336

definition, 300, 301, 304
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universal dependence on
∆T = T − Tg in polystyrene,
307

values at different temperatures,
279, 291

structural relaxation

length scale, 312–316, 335

universality in polystyrene,
305–310

deviations from universality
at low molecular weights,
310, 311

see glassy relaxation

structural-relaxation time τS , 279,
291, 303–326, 328–338

definition, 303, 304

universal dependence on
∆T = T − Tg in polystyrene,
305, 306

tensile viscosity, 94

tensor, 81

operations, 94

see Cauchy tensor, deformation,
gradient tensor, Finger tensor,
stress tensor

terminal process or region, 153–155,
163, 182, 183, 185, 187, 192, 206,
224, 234–237, 248–253, 259, 280,
286, 290, 326, 396, 397, 402–404

Tg correction, 199–202, 208, 233, 300,
305–322, 328, 329, 332, 333

thermo-elastic inversion effect, 17

thermorheological complexity (TRC),
215, 269–322

basic mechanism, 328–338

shared with the breakdown
of Stokes–Einstein
relation (BSE), 331, 332,
336–338

characterization in terms of the
structural-growth parameter,
282–284

comparison of the TRC and BSE
results, 332, 333

temporal unevenness, 283–286

thermorheological simplicity, see
time–temperature superposition
principle

θ solutions, 39, 260
time-correlation function

form for relaxation modulus,
350–357

of particle in a harmonic
potential, 43

of end-to-end vector of a Rouse
chain, 38, 39, 46

Monte Carlo simulation,
343–345

of primitive-chain contour-length
fluctuation, 158, 168–171

time (or frequency)–temperature
superposition principle, 159, 215,
269, 270

failure of, see thermorheological
complexity

topological interactions, see
entanglement

tracer diffusion constant, 205, 206
transition region (I) (from glasslike to

rubberlike consistency), 167, 168
transition region (II), 153, 154, 163,

167, 168
translational diffusion, see diffusion
TRC, see thermorheological

complexity
Trouton’s rule, 94
tube diameter, 136, 137, 183–186,

194, 216
see entanglement distance,

entanglement molecular
weight, tube dilation

tube model, see primitive chain
tube stress, 156–160, 185, 249
tube-dilation, 184–186, 217, 234–239
tube-renewal process, 239

uniaxial extension, 19, 84–86, 89, 91,
93

unit dyad, 81
universal constant, nt, 259–262
universality in glass transition-related

dynamics, 305–310
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deviations from (at low
molecular weights), 310, 311

universality in polymer viscoelasticity,
27, 62, 154, 155, 251, 259–262

in terms of ERT, 160–167, 182,
183, 186–211, 217–225

velocity distribution function, 106
velocity field, 100
velocity gradient tensor, 100, 355
virial theorem, 366–368, 375–377
viscoelastic response functions, 58,

65, 71, 74, 269, 351
see relaxation modulus,

viscoelastic spectrum, creep
compliance

viscoelastic spectrum, 65–67, 74
full-range line-shape analysis of

entanglement-free polystyrene
melts (with

Rouse theory as the
reference frame), 294–298

structural-growth
parameters extracted,
307

structural-relaxation times
extracted, 306

frictional factors K′ = K
extracted, 308

line-shape analysis of
polystyrene blend solutions

entangled (in terms of the
linear combination of
ERT and Rouse theory),
220–225

entanglement-free (in terms
of Rouse theory),
226–228

for probing onset of
entanglement, 228–231

line-shape analysis of
polystyrene melts

entangled (in terms of
ERT), 186–197

entanglement-free (in terms
of Rouse theory), 231

for probing onset of
entanglement, 231, 232

viscosity
comparison of Doi–Edwards

theory, ERT, and Rouse
theory, 199–203

comparison of experiment and
ERT, 198–203, 207, 209, 210

comparison of viscosity and
diffusion data in terms of
ERT, 205–210

Doi–Edwards theory, 150
Doi’s equations, 166
elastic dumbbell model, 111
ERT, 165, 166
experimental results, 62
of an entanglement-free

polystyrene melt
enhancement due to glassy

relaxation, 290–293
experimental and calculated

values, 291
Rouse theory, 129, 130
3.4 power law, 62
3.4 power law as explained by

ERT, 199, 202

Vogel–Tammann–Fulcher (VTF)
equation, 40

data fitted to the VTF equation,
293, 304–308, 317, 319, 320

data fitted to a modified VTF
equation, 282, 305–307, 333

Williams–Landel–Ferry (WLF)
equation, 40, 293

worm-like chain, 15

Young’s modulus, 91, 92, 94, 266

zero-shear viscosity, see viscosity
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