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Preface to First Edition

This text is an outgrowth or organized compilation of the notes the authors have

used to teach an introductory course on the viscoelasticity of polymers for more

than 30 years for the senior author and about 15 years for the junior author.

Originally, the course was taught only to graduate students, but in recent years

an effort has been made to teach a modification of the course to senior-level

mechanical engineering students. The authors have long held the view that the

lack of knowledge of the fundamental aspects of the time and temperature

behavior of polymer materials is a serious shortcoming in undergraduate as

well as graduate engineering education. This is especially important in our

present society because the use of polymeric materials pervades our experience

both in our daily lives and in our engineering profession. Still, the basic thrust of

undergraduate education and even graduate education to some degree in the

areas of mechanical and civil engineering is toward traditional materials of

metal, concrete, etc. Until about 25 years ago, elementary undergraduate text-

books on materials contained little coverage of polymers. Today, many elemen-

tary materials texts have several chapters on polymers, but in general, the thrust

of such courses is toward metals. Even the polymer coverage that is now

included treats stress analysis of polymers using the same procedures as for

metals and other materials and therefore often misleads the young engineer on

the proper design of engineering plastics. Thus, it is not surprising that some

structural products made from polymers are often poorly designed and do not

have the durability and reliability of structures designed with metallic materials.

For the above reasons, the view of the authors is that specific courses on

polymer materials as well as associated stress analysis and engineering design

need to be offered to every engineer. The present text has been developed with

this in mind. The intent is to have sufficient coverage for a two-semester

introductory sequence that would be available to upper-class undergraduates

and first-year graduate students. The level is such that only basic knowledge of

solid mechanics and materials science are needed as prerequisites. The book is

intended to be self-sufficient even for those that have little formal training in

solid mechanics, and therefore, chemical engineers; materials, forestry, chem-

istry, and bioengineering students; as well as mechanical and civil engineering

students can use this text successfully. Similarly, because chemistry background

is often weak for nonchemical engineers, introductory material is provided on

the chemical basis of polymers, which is essential for proper appreciation of the

thermomechanical response.
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Another major objective is for the text to be readable by recent engineering

graduates who have not had the advantage of a formal course on polymer science

or viscoelasticity. The reason, of course, is that today’s engineering curricula,

both undergraduate and graduate, have few extra hours such that new courses

can be accommodated in degree plans. Therefore, a book such as this one should

be of great value to the young engineer who finds him/herself in a position

heavily involved with the engineering design and use of polymer-based mate-

rials. In addition, a text such as this should be invaluable to those cross-

disciplinary scientists such as biologists, bio-chemists, etc. that need to under-

stand the basic background to rigorous mechanics approaches to the design of

structures made with polymer-based materials.

The first chapter gives insight to the historical aspects of the subject. A review

of basic mechanics of materials (strength of materials) and materials science is

given in Chap. 2. Chapter 3 gives an introduction to the mechanical properties of

polymers and how they are determined as well as general information on optical,

electrical, and other properties. Chapter 4 is an introduction to the general

character of polymers from a molecular viewpoint and is valuable in assessing

the mechanisms associated with viscoelastic deformations. Chapter 5 and

beyond speak to the formal mathematics and experimental methods associated

with the relationship between stress and strain in viscoelastic solids, both linear

and nonlinear, as well as stress analysis and failure.
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Preface to Second Edition

In the time since our first edition was released, the use of polymers and their

composites in structures, devices, medicine, and all varieties of commercial

products has continued to increase. We have witnessed the launch of what the

news media dubbed the “plastic plane,” Boeing’s 787 Dreamliner, with over

50 % polymer composites comprising its structure. There has been an explosion

of 3D printing technology using polymers as means of prototyping, designing,

and creating complex components and providing options for easy customization.

This continuously increasing use of polymers for their weight savings, durabil-

ity, and manufacturability make the content of this monograph even more

important as a resource for all engineers. In spite of the increased use of poly-

mers, the ever-increasing base of knowledge combined with the constant 4-year

timeline of university study prevents significant inclusion of polymer engineer-

ing concepts in a typical undergraduate engineering education. As with the first

edition, we believe this book addresses a key niche by providing a one-stop

resource for understanding both the underlying materials science of polymers as

well as the mathematical description of their thermomechanical behavior.

Armed with this text, engineers are enabled to better understand and design

polymeric structural components and devices.

In this second edition, new content has been introduced in nearly all chapters,

and numerous changes have been made to clarify the text. Marketing data has

been updated in Chap. 3, and the discussion of strain measurement techniques

has been updated to include more modern approaches to strain measurement

using digital imaging techniques such as the digital imaging correlation method

(DIC). Also included is a brief discussion of strain measurement at the micro- or

nanoscale with reference citations for further study. More detail has been added

in Chap. 4 about block copolymers and thermoplastic elastomers. Also, a section

on microscopy has been added at the end of the chapter where the capabilities of

near-field scanning optical microscopy (NSOM) and electron microscopy in the

realm of polymers are discussed. More detail about the origin of the time–

temperature superposition principle (TTSP) is given in Chap. 7, and a new

Appendix C has been added on the durability and accelerated life prediction of

structural polymers. Appendix D has been added that gives additional interesting

detail about Herbert Leaderman and his connection to the invention of the

electrical resistance strain gage.
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1. Introduction

1.1. Historical Background

Development of synthetic polymers and growth of the polymer industry during

the last 100 years has been staggering. The commercial success of polymer-

based products has generated a demand such that the total production of plastics

(by volume) has exceeded the combined production of all metals for more than

20 years. It has been suggested that Polymer Science evolved from the follow-

ing five separate technologies: (1) Plastics, (2) Rubbers or Elastomers,

(3) Fibers, (4) Surface Finishes, and (5) Protective Coatings, each of which

evolved separately to become major industries (Rosen 1993). As a result much

of the early development of polymers or plastics was focused on these com-

mercial products and other non-structural uses. The need to develop synthetic

rubber due to the interruption of trade routes during WW II served as a catalyst

to large scale federal funding for polymer research. This increased effort

resulted in better understanding of the nature of polymers as well as improved

analytical and experimental approaches to their behavior. In more recent years,

however, polymers have become an engineering structural material of choice

due to low cost, ease of processing, weight savings, corrosion resistance and

other major advantages. In fact modern polymeric adhesives and polymer

matrix composites (PMC) or fiber-reinforced plastics (FRP) are today being

used in many severe structural environments of the aerospace, automotive and

other industries.

Not withstanding the recent developments of synthetic structural polymers,

naturally occurring polymers have been used for thousands of years and early

civilizations understood how to mix fibers (such as wheat flax) with resins to

obtain added strength. For example, pottery cemented with natural resins have

been found in burial sites that date back to 4000 BC. A cedar chest with

extensive glue construction was found in King Tutankhamen’s tomb and dates

back to 1365 BC. Clegg and Collyer (1993) report that bitumen, a complex mix

of heavier petroleum fractions, is mentioned in the Bible and that amber, a

gum-like or brittle fossilized resin from pine trees, was known in ancient Rome.

© Springer Science+Business Media New York 2015
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They further note that shellac, a derivative of the lac insect, has been in use since

1000 BC and was used as late as 1950 for gramophone records.

Rodriguez (1996) notes that the natives of South America made use of the

latex derived from trees in the pre-Columbian era. Sometime after the discovery

of the Americas, rubber was introduced to Europe and was used as a water-

proofing material (McCrum et al. 1997). Most authors trace the beginning of

polymer science to the development of the vulcanization process by MacIntosh

and Hancock in England and Goodyear in the United States in 1839. However,

Rodriguez (1996) indicates others had developed applications for rubber as early

as the late eighteenth century. (An excellent time line of polymer science and

technology is given by Rodriguez (1996)).

One of the first man-made polymers was Parkesine, so named after its

inventor Alexander Parkes. It was introduced in about 1862 but was not a

commercial success (Fried 1995). However, this early effort led to the develop-

ment of celluloid (cellulose nitrate) by John Hyatt in 1870 which was a com-

mercial success. The first truly synthetic polymer was a phenol-formaldehyde

resin called Bakelite developed in 1907 by Leo Baekeland but it would be two

more decades before the nature of the polymerization process would be under-

stood sufficiently to develop polymers based upon a rational process.

While natural polymers had found extensive early use, knowledge of their

molecular nature was generally unknown before the middle of the nineteenth

century, when the first speculations about the large molecular weights of poly-

mers were voiced. At that time, the chemical or molecular character of a

material’s composition was defined in terms of its stoichiometric formula and

its properties were defined in terms of color, crystal habit, specific gravity,

refractive index, melting point, boiling point, solubility, etc. (Tolbolsky and

Mark 1971). It was only around the beginning of the twentieth century that

concern turned to the chemical structure of materials, which together with

advances in measurement techniques led finally to understanding and later

acceptance of polymers as consisting of large covalently bonded molecules.

In the late nineteenth century, materials we now define as molecular high

polymers were thought to be composed of large molecules or colloidal aggre-

gates. These colloidal aggregates were said to form from smaller molecules

through the action of intermolecular forces of “mysterious origin” which were

responsible for the unusual properties such as high viscosity, long-range elas-

ticity, and high strength (Flory 1953). Flory attributes the term colloid to

Thomas Graham in 1861 and the concept of a colloidal state to Wolfgang

Ostwald in about 1907 who suggested that virtually any substance could be in

such a state just as in a gas, liquid or solid state.
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Until Kekulé in 1877, all geometrical formulas referred to the structure and

behavior of small molecules. However, Kekulé in 1877 during a lecture upon

becoming the Rector of the U. of Bonn “advanced the hypothesis that the natural

organic substances associated with life (proteins, starch, cellulose, etc.) may

consist of very long chains and derive their special properties from this peculiar

structure” (Tolbolsky and Mark 1971).

The fundamental difficulty in evaluating the molecular nature of polymers in

the early twentieth century was the lack of quantitative characterization

methods. Perhaps the greatest limitation resided in the limited means available

to accurately measure the high molecular weight of macromolecular materials.

The vapor density method which was widely used for low molecular weight

materials could not be employed. In 1881 attempts were made to use diffusion

rates to distinguish between the molecular weights of starch and the dextrins

(Flory 1953). Flory further reports that the development of the cryoscopic

method for determining molecular weight by Raoult in 1882 and van Hoff’s

solution laws in 1886 were instrumental in proving the validity of the macro-

molecular concept. In 1889 Brown and Morris used a freezing point suppression

of aqueous solutions method to determine molecular weights as high as 30,000.

Rodewald and Kattein in 1900 used osmotic pressure measurements to deter-

mine molecular weights as high as 39,700. X-ray procedures were used in 1920

by Polanyi to investigate the nature of cellulose fibers but it was not until

Svedberg developed the ultracentrifuge in 1940 that accurate and reproducible

measurement of molecular weights from 40,000 to several million was possible.

(For an excellent review of ultracentrifugation techniques, see Williams 1972).

Dr. Hermann Staudinger who was awarded a Nobel Prize in 1953 for his work

(see below for other Nobel Prize winners in polymer science) proposed the

“macromolecular hypothesis” in the 1920s explaining the common molecular

makeup of macromolecular materials. He contradicted the prevalent view of his

time that polymeric substances were held together by partial valances and

instead proposed the idea of long molecular chains. He accurately gave the

proper formulas for polystyrene, polyoxymethylene (paraformaldehyde) and for

rubber (Flory 1953).

In 1929W. H. Carothers was the first to clearly define what we know today as

the basic parameters of polymers science. Clearly stating his objectives before-

hand, he prepared (or synthesized) molecules of definitive structure (mostly

condensation polymers such as the polyesters) through established reactions in

organic chemistry and proceeded to investigate how the properties of these

substances depended on their constitution (Flory 1953). Shortly after Carothers

definitive work, polymer scientists began to introduce the concepts of statistical
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thermodynamics to describe the characteristics of long chain polymers of high

molecular weight.

More than 30 individuals have been awarded the Nobel prize for Chemistry

for their contributions either directly or indirectly to the development of polymer

science and associated technology. A few of these are listed below. The inter-

ested reader can find more information on all Nobel Laureates at the web address

http://www.nobel.se.

1939: Ruzicka Leopold, Switzerland, Eidgenössische Technische

Hochschule, (Federal Institute of Technology), Zurich, (in Vukovar,

then Austria-Hungary): “For his work on polymethylenes and higher

terpenes.”

1953: Staudinger, Hermann, Germany, University of Freiburg im Breisgau

and Staatliches Institut für makromolekulare Chemie (State Research

Institute for Macromolecular Chemistry), Freiburg in Br.: “For his

discoveries in the field of macromolecular chemistry.”

1963: Ziegler, Karl, Germany, Max-Planck-Institut für Kohlenforschung

(Max-Planck-Institute for Carbon Research Mülheim/Ruhr); and

Natta, Giulio, Italy, Institute of Technology, Milan: “For their discov-

eries in the field of the chemistry and technology of high polymers.”

1968: Onsager, Lars, U.S.A., Yale University, New Haven, CT: “For the

discovery of the reciprocal relations bearing his name, which are funda-

mental for the thermodynamics of irreversible processes.”

1973: Fischer, Ernst Otto, Federal Republic of Germany, Technical Univer-

sity of Munich, Munich; and Wilkinson, Sir Geoffrey, Great Britain,
Imperial College, London: “For their pioneering work, performed inde-

pendently, on the chemistry of the organometallic, so called sandwich

compounds.”

1974: Flory, Paul J., U.S.A., Stanford University, Stanford, CA: “For his

fundamental achievements, both theoretical and experimental, in the

physical chemistry of the macromolecules.”

1985: Hauptman, Herbert A., U.S.A., The Medical Foundation of Buffalo,

Buffalo, NY; and Karle, Jerome, U.S.A., US Naval Research Labora-

tory, Washington, DC: “For their outstanding achievements in the

development of direct methods for the determination of crystal

structures.”
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1990: Corey, Elias James, U.S.A., Harvard University, Cambridge, MA: “For

his development of the theory and methodology of organic synthesis.”

1991: Ernst, Richard R., Switzerland, Eidgenössische Technische

Hochschule Zurich, b. 1933: “For his contributions to the development

of the methodology of high resolution nuclear magnetic resonance

(NMR) spectroscopy.”

2000: Heeger, Alan J., University of California, Alan G. MacDiarmid, Uni-
versity of Pennsylvania, Hideki Shirakawa, University of Tsukuba:

“For the discovery and development of Conductive Polymers.”

2002: Fenn, John Bennett, Virginia Commonwealth University, Richmond,

USA; Tanaka, Koichi, Shimadzu Corp., Kyoto, Japan and Wüthrich,
Kurt, Swiss Federal Institute of Technology, Zurich, Switzerland, “For
the development of methods for identification and structure analyses of

biological macromolecules.”

2005: Chauvin, Yves, Institut Français du Pétrole, Rueil-Malmaison, France;

Grubbs, Robert H., California Institute of Technology, U.S.A.;

Schrock, Richard R., Massachusetts Institute of Technology: “For the

development of the metathesis method in organic synthesis.”

2014: Betzig, Eric1, The Howard Hughes Medical Institute (HHMI); Hell,
Stefan W., Max Planck Institute for Biophysical Chemistry; and

Moerner, William W., Stanford University, “For the development of

super-resolved fluorescence microscopy.”

The authors realize that many other Nobel Laureates in chemistry have made

notable contributions that have impacted the development and understanding of

polymer science but those listed here seem to us to be of particular importance.

In addition, Nobel Prizes in physics also have encompassed the field of polymer

science. Most recently for example, Pierre-Gilles de Gennes received the 1991

Nobel Prize in Physics for his discovery that mathematical methods to describe

simple systems can be extended to complex forms of matter including liquid

crystals and polymers.

In this brief overview of the historical aspects of polymer science and

technology, it would be very inappropriate not to acknowledge the tremendous

contributions made by many polymer chemists, polymer physicists, materials

1 For more on microscopes and nanoscopes see Chapter 4, section 4.11.
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scientists and engineers in the last 50 years. The list is so large that it would be

impossible to acknowledge everyone. However, all will agree that Paul Flory

(Stanford University), Herman Mark (Brooklyn Polytechnic), John Ferry

(University of Wisconsin), Turner Alfred (Dow Chemical), Nick Tschoegl

(California Institute of Technology), Arthur Tolbolsky (Princeton University),

Herbert Leaderman (National Bureau of Standards, now NIST), Bob Landel (Jet

Propulsion Laboratory) and many others have provided the framework and

scientific details such that polymers can now be used with confidence as

engineering structural materials.

1.1.1. Relation Between Polymer Science and Mechanics

As discussed briefly in the next section, polymers have a unique response to

mechanical loads and are properly treated as materials which in some instances

behave as elastic solids and in some instances as viscous fluids. As such their

properties (mechanical, electrical, optical, etc.) are time dependent and cannot

be treated mathematically by the laws of either solids or fluids. The study of such

materials began long before the macromolecular nature of polymers was under-

stood. Indeed, as will be evident in later chapters on viscoelasticity, James Clerk

Maxwell (1831–1879), a Scottish physicist and the first professor of experimen-

tal physics at Cambridge, developed one of the very first mathematical models to

explain such peculiar behavior. Lord Kelvin (Sir William Thomson (1824–

1907)), another Scottish physicist, also developed a similar mathematical

model. Undoubtedly, each had observed the creep and/or relaxation behavior

of natural materials such as pitch, tar, bread dough, etc. and was intrigued to

explain such behavior. Of course, these observations were only a minor portion

of their overall contributions to the physics of matter.

Ludwig Boltzmann (1844–1906), an Austrian physicist, correctly conceived

the hereditary nature of materials which we now describe as viscoelastic in a

series of publications throughout his career. Such ideas were hotly debated at the

time by Boltzmann, Ostwald and others but it is now clear that Boltzmann’s

view was the correct approach. For an excellent discussion of Boltzmann’s

contributions and their significance, see Markovitz (1975, 1977).

In 1812, even before Maxwell, Kelvin and Boltzmann, the Scottish scientist

Sir David Brewster (1781–1868) discovered that certain transparent optically

isotropic solids (e.g., glass) when loaded developed optical characteristics of

natural crystals. That is, he found that such a solid when loaded exhibited

birefringence or double refraction and thus behaved as a temporary crystal. His

discovery was the beginning of the well-known photoelastic method by which it
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is possible to experimentally determine the state of stress or strain on the interior

of a loaded elastic body using polarized light. Maxwell (as well as F. E. Neumann

at an earlier date) also studied the technique and deduced the relationship

between stress and the optic effect now known as the Maxwell-Neumann

stress-optic law. The importance of these discoveries became apparent during

the industrial revolution in the early part of the twentieth century when the safe

design of precision mechanical parts such as wheels, gears, pushrods, etc.

required a stress analysis that was only possible using photoelasticity. As a result,

engineers became very interested in finding suitable model materials (polymers)

that had desirable characteristics such as good transparency, high stress-optic

coefficient, little creep, etc. For this reason, engineers began working with

chemists in an effort to create polymers with suitable properties.

Initially, natural crystals (such as mica and quartz) were used to obtain

polarized light and model materials were either glass or resins derived from

living organisms, e.g., isinglass, a gelatin prepared from the bladder of a

sturgeon. The photoelastic procedure was so successful that it led engineers to

widely seek more optically sensitive and stable materials. Coker and Filon

(1931) in their famous treatise used a number of materials including glass and

celluloid. Bakelite, developed at the beginning of the twentieth century by L. H.

Baekeland, became a favorite photoelastic material for many years. During the

1930s a particular form of Bakelite (BT-61-893) was introduced which greatly

aided the development of photoelasticity in two and three dimensions. Hetenyi

(1938), used this material to develop and explain the so-called “stress-freezing”

and slicing method to determine the interior stresses in three-dimensional

bodies. CR-39 or Columbia Resin 39 (allyl diglycol carbonate developed by

the Columbia Chemical Company in 1945) was also used extensively in the

1940s and 1950s.

The details of cross-linking were not understood at the time and Bakelite was

often termed by engineers as a “heat hardening” resin. Hetenyi (1938) used

Houwink’s (1937) interpretation of the “micelle” nature of polymers to explain

the frozen stresses (photoelastic fringe patterns) inside a body after removal of

loading. That is, if a load is applied after the temperature of a birefringent

material is raised to a suitable level and then held constant as the temperature

is slowly lowered to ambient, a residual fringe (stress) pattern will remain when

the load is removed at the lower temperature. The residual pattern was believed

to remain due to the network nature of the material and an analogy of a solid

network or skeletal phase and a fluid phase in between the network sites was

used to explain the frozen stress phenomena. In early photoelastic literature,

such polymers were often referred to as di-phase or bi-phase, (i.e., part fluid and

part solid), in nature. The specific analogy likened network polymers to a sponge

filled with a highly viscous fluid. At low temperatures, the viscous portion would
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solidify and the network polymer would become a brittle glassy solid with high

modulus and high strength. At high temperatures, the viscosity of the fluid phase

would decrease sufficiently such that the external load was supported only by the

skeletal phase and thus the sample would become a low modulus rubbery

material. While this was a useful analogy for the time, it is now more appropriate

to explain the phenomena in terms of primary and secondary bonds between

molecular chains and, in some sense, one might liken the secondary bonds

between network sites as the fluid phase and the primary bonds of the network

skeleton as the solid phase.

The engineering use of photoelasticity was greatly aided by the development

of polaroid films by E. H. Land (1909–1991). This film is a polymer in which the

molecular structure has been oriented to cause light to be plane polarized. As

plane polarization can also be achieved by reflection (at angles of approximately

57�), the film can be used as a filter to minimize glare as in sunglasses made with

polaroid plastics. By careful orientation, the degree of double refraction can be

controlled to obtain films with a retardation of a quarter of a wavelength of a

particular light. Quarter wave plates used between two oppositely polarized

films causes light to be elliptically polarized. The “ellipsometer” often used by

polymer chemist is based on such a procedure and, of course, the polarizing

microscope uses polaroid films to control the light vector and allows the

observation of crystallites in polymers and gives an estimate of their crystalline

nature.

In recent years, epoxy resins have become the polymer of choice for three-

dimensional photoelastic investigations. Further, the phenomena of birefrin-

gence has been used to study plasticity and viscoelasticity effects in materials

through the use of extensions to the photoelastic method called photoplasticity

and photoviscoelasticity (see Brill (1965) and Brinson (1965, 1968), respec-

tively). Brill used polycarbonate, a thermoplastic polymer, as a model material

for his work on photoplasticity and Brinson used an epoxy, a thermosetting

polymer, as a model material for his work on photoviscoelasticity. Later, it will

become clear why thermoplastic materials are used for photoplasticity while

thermosetting materials are used for photoviscoelasticity.

While it is beyond the scope of the discussion here, it can be shown that the

stress (strain) tensor, the dielectric tensor and the birefringence tensor are related

and, generally, the same types of governing equations apply to each phenome-

non. That is, a quadric surface similar to the stress quadric of Cauchy applies to

the birefringence tensor and to the dielectric tensor. This knowledge led to the

interest of early mechanicians to identify and understand the nature of birefrin-

gent materials which, in fact, were natural polymers. As polymer science began

to develop, the same group was led to study, understand and use synthetic
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polymers. For more information on these and other aspects of photoelasticity

and experimental mechanics, see Hetenyi (1950), Kobayashi (1988) and

Sharpe (2008).

In addition to the use of polymers to study fundamental concepts in mechan-

ics, another driving force for the critical link between polymer science and

mechanics has been the use of polymers in applications. As the understanding

of the physical nature of polymers increased and synthesis techniques matured,

many polymers of widespread usage were developed. As these materials were

employed in devices and structures, it was essential to analyze and understand

from an engineering perspective the response of polymers to load and other

environmental variables, such as temperature and moisture. As indicated earlier,

today high performance polymer composites are used for critical load bearing

applications as diverse as alpine skis and airframe parts, and thus the study of the

mechanics of polymers as a structural material is an active and important area of

research. Later sections in this text will deal explicitly with the viscoelastic

nature of polymeric response and mathematical methods to analyze this

behavior.

The fundamental point of the above discussion is that persons interested in

theoretical and experimental mechanics of necessity have been aware of and

keenly interested in all developments associated with natural and synthetic

polymers throughout the history of both natural and synthetic polymers. They

have, in some cases, contributed to the general understanding of the properties of

polymers and to a high degree have been responsible for their use as engineering

materials.

As in the previous section, it would be very inappropriate not to acknowledge

the efforts of many who have made outstanding contributions to the develop-

ment of mathematical and experimental aspects of viscoelasticity which allow

the correct interpretation of the mechanical behavior of polymers. The contri-

butions of a few will be discussed in more detail in subsequent chapters but again

it should be noted that the number of contributors is so large that it would be

impossible to acknowledge everyone. However, all will agree that Marcus

Reiner, (Technion), R.S. Rivlin (Leheigh University), C. Truesdall (Johns Hop-

kins University), E.H. Lee (Stanford University), R.H. Schapery (University of

Texas), Wolfgang Knauss (California Institute of Technology), M. L. (Max)

Williams (University of Pittsburgh), Harry Hilton (University of Illinois),

R.M. Christensen (Lawrence Livermore Laboratories and Stanford University),

J. G. Williams (Imperial College) and many others have contributed to our

ability to design safe engineering structures using polymer based materials.

(See Reiner, M., Lectures on Theoretical Rheology, North-Holland, Amsterdam,

1960, for an excellent Bibliography of early contributors).
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1.1.2. Perspective and Scope of This Text

Polymers possess many interesting and useful properties that are quite different

from those of more traditional engineering materials and these properties cannot

be explained or modeled in engineering design situations by traditional

approaches. As suggested by Rosen (1993), verification can be observed with

three simple experiments.

Silly Putty: This material (polydimethyl siloxane) bounces when

dropped but flows when laying stationary and, obviously, has some

characteristics of an elastic solid and some characteristics of a viscous

fluid.

Joule Effect: A rubber band will contract when heated while a weight is

suspended from it. Other materials will undergo the expected thermal

expansion.

Weissenberg Effect: When a rod is rotated in a molten polymer or in a

concentrated polymer solution, the liquid will rise on rod. For other

fluids, the lowest point in fluid will be at rod.

The fundamental difference between polymers and other materials resides in the

inherent rheological or viscoelastic properties of polymers. Simply stated, the

mechanical (as well as optical, electrical, etc.) properties of polymers such as

modulus, strength and Poisson’s ratio vary with time. While many materials

have properties that vary with time due to creep at high temperature, moisture

intrusion, corrosion, and other factors, the time dependent behavior of polymers

is due to their unique molecular structure. As will be discussed later, the long

chain molecular structure of a polymer gives rise to the phenomena of “fading”

memory. It is this fading memory which creates the need to characterize

engineering properties in a manner different than those used for traditional

structural materials.

One manifestation of the time dependent character of polymers is that they

exhibit characteristics of both an elastic solid and that of a viscous fluid as with

the example of silly putty above. For this reason, materials such as polymers that

exhibit such properties are often said to be viscoelastic. Sometimes the term

viscoelastic is used primarily for solid polymers while the term rheologic is for

liquid polymers. Fading memory provides the explanation for the three exam-

ples mentioned above. To illustrate the point, a demonstration of the

Weissenberg effect is given in Fig. 1.1 which is a photo of a solid rod being

rotated rapidly while being immersed in a viscoelastic liquid. While in a
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Newtonian fluid, the liquid moves away from the rod due to inertial effects, the

liquid polymer will climb the rod due to the combination of elastic and viscous

forces in the entangled polymer chains.

To further illustrate the point of a liquid with both elastic and viscous

behavior, the flow of a rheological liquid is shown in Fig. 1.2. Here a polymer

liquid is in a clear horizontal (to avoid gravity effects) tube and a dark reference

mark has been inserted that moves with the fluid. The liquid is unpressurized in

frame 1 but a constant pressure has been applied in frames 2–5 where motion can

be seen to have taken place as time progresses. In frame 6 the pressure has been

removed and in frames 7 and 8 the liquid can be seen to partially recover. No

recovery would take place if this were an ordinary viscous liquid. This is known

as an “elastic after effect” and a similar effect or creep recovery is observed in

viscoelastic solids and/or all polymers provided the correct temperature is

chosen. A recent video of the recoil effect can be seen online for the rebound

of viscoelastic droplets on a rigid surface, where direct contrast to Newtonian

fluids is also shown: http://www.youtube.com/watch?v¼u_jFzoYadJ8.

Fig. 1.1 Example of the Weissenberg effect due to a rotating rod in a viscoelastic fluid

(Photo taken by Dr. José Bico, Ryan Welsh and Gareth McKinley, see also

videos at http://web.mit.edu/nnf/)
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The Joule effect arises from thermodynamic (entropy) considerations and will

be discussed in sections related to the time and temperature dependent behavior

of polymers.

2 2

2 2

2 2

2 2

3 3

3 3

3 3

3 3

Fig. 1.2 Illustration of recoil in a viscoelastic fluid. (The fluid is on the right in each frame

and pressure, indicated by the arrow, is applied from the left) (Drawn from

photograph in Fredrickson (1964). Original photograph from N.N. Kapoor, MS

thesis, U. of Minn.)
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In this text, emphasis will be on the phenomenological differences between

the mechanical behavior of polymers and other materials, rather than their

similarities. Emphasis will also be placed on proper procedures to experimen-

tally determine time dependent mechanical properties as well as analytical

methods to represent these properties and to use them in the stress analysis of

engineering structures.

The classifications of materials used by Fredrickson and given in Fig. 1.3 is

suggestive of the evolution of constitutive (stress-strain) relations and the

scientists responsible for their creation. Material rigidity increases from left to

right on the top row and the vertical development emphasizes the generality of

Boltzmann’s contributions. The Bingham representation was for a viscous

material that displayed a yield point and was originally developed for paint. It

is important to understand the connotation of the word “plastic” as used in

Fig. 1.3 and when used to describe a polymer. In fact, the use of the word

“plastic” to describe a polymer is unfortunate. This word is best used to denote a

type of mechanical behavior associated with unrecoverable deformation or flow,

and is misleading when used in a generic way to refer to polymers in general.

Certain polymers under favorable conditions will not exhibit any unrecoverable

deformation. Hopefully, these distinctions will become clear upon further study

of the following chapters.

It is recognized that the terms “materials science” and “materials engineer-

ing” as applied to the study of materials are generally understood to imply

different facets of the same subject. In the same manner, the terms “polymer

science” and “polymer engineering” may be interpreted to mean different

approaches to the study of polymers. Herein, care has been taken to use the

term “polymer engineering science” to imply the study of the nature of polymers

which gives rise to their unique engineering properties. Our focus will be on the

Fig. 1.3 Rheological classification of materials (After Fredrickson 1964)
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relation between the molecular structure of polymers, their mechanical proper-

ties and the mathematical framework required for the proper stress analysis of

polymeric structures. This will, of necessity, entail a general knowledge of

polymerization processes, the resulting molecular structure and the relation of

each to the final engineering properties. However, no effort will be made to learn

how to “engineer” a polymer or, in other words, to learn sufficient chemistry to

synthesize a polymer to have specific engineering properties.

Because polymers are, in general, viscoelastic and/or have mechanical prop-

erties that are a function of time, the phenomenological and molecular interpre-

tations of viscoelasticity will be covered in detail. While there are approximate

methods to design load bearing polymer structures using elementary mechanics

of materials principles (some of these will be presented), more precise and more

correct procedures will also be discussed at length.

1.2. Review Questions

1.1. Name four naturally occurring polymers.

1.2. Name the earliest polymer mentioned and where it came from.

1.3. Explain the distinction between a mixture, a solution, a suspension and a

colloid.

1.4. What was Staudinger’s hypothesis?

1.5. Who was the first person to clearly understand the nature of polymers?

1.6. Name the five separate technologies from which Polymer Science is said

to have evolved.

1.7. Name four Noble Laureates.

1.8. Name two Scots who did early work on mathematical models for visco-

elastic behavior.

1.9. Who correctly conceived the hereditary nature of polymers?

1.10. Who is credited with discovering the phenomena of double refraction?

1.11. Name three materials that have been used in photoelastic analysis.

1.12. Who developed polaroid films?

1.13. Describe the Joule effect.

1.14. Describe the Weissenberg effect.

1.15. Explain differences in the terms “polymer” and “plastic”.

1.16. Define viscoelasticity.
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2. Stress and Strain Analysis and Measurement

The engineering design of structures using polymers requires a thorough knowledge

of the basic principles of stress and strain analysis and measurement. Readers of

this book should have a fundamental knowledge of stress and strain from a

course in elementary solid mechanics and from an introductory course in

materials. Therefore, we do not rigorously derive from first principles all the

necessary concepts. However, in this chapter we provide a review of the

fundamentals and lay out consistent notation used in the remainder of the text.

It should be emphasized that the interpretations of stress and strain distributions

in polymers and the properties derived from the standpoint of the traditional

analysis given in this chapter are approximate and not applicable to viscoelastic

polymers under all circumstances. By comparing the procedures discussed in

later chapters with those of this chapter, it is therefore possible to contrast and

evaluate the differences.

2.1. Some Important and Useful Definitions

In elementary mechanics of materials (Strength of Materials or the first under-

graduate course in solid mechanics) as well as in an introductory graduate

elasticity course five fundamental assumptions are normally made about the

characteristics of the materials for which the analysis is valid. These assump-

tions require the material to be,

• Linear
• Homogeneous
• Isotropic
• Elastic
• Continuum

Provided that a material has these characteristics, be it a metal or polymer, the

elementary stress analysis of bars, beams, frames, pressure vessels, columns, etc.

using these assumptions is quite accurate and useful. However, when these

assumptions are violated serious errors can occur if the same analysis

approaches are used. It is therefore incumbent upon engineers to thoroughly
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understand these fundamental definitions as well as how to determine if they are

appropriate for a given situation. As a result, the reader is encouraged to gain a

thorough understanding of the following terms:

Linearity: Two types of linearity are normally assumed: Material linearity

(Hookean stress-strain behavior) or linear relation between stress and strain;

Geometric linearity or small strains and deformation.

Elastic: Deformations due to external loads are completely and instanta-

neously reversible upon load removal.

Continuum: Matter is continuously distributed for all size scales, i.e. there

are no holes or voids.

Homogeneous: Material properties are the same at every point or material

properties are invariant upon translation.

Inhomogeneous or Heterogeneous: Material properties are not the same at

every point or material properties vary upon translation.

Amorphous: Chaotic or having structure without order. An example would

be glass or most metals on a macroscopic scale.

Crystalline: Having order or a regular structural arrangement. An example

would be naturally occurring crystals such as salt or many metals on the

microscopic scale within grain boundaries.

Isotropic: Materials which have the same mechanical properties in all

directions at an arbitrary point or materials whose properties are invariant

upon rotation of axes at a point. Amorphous materials are isotropic.

Anisotropic: Materials which have mechanical properties which are not the

same in different directions at a point or materials whose properties vary with

rotation at a point. Crystalline materials are anisotropic.

Plastic: The word comes from the Latin word plasticus, and from the Greek

words plastikos which in turn is derived from plastos (meaning molded)

and from plassein (meaning to mold). Unfortunately, this term is often used

as a generic name for a polymer (see definition below) probably because

many of the early polymers (cellulose, polyesters, etc.) appear to yield

and/or flow in a similar manner to metals and could be easily molded.

However, not all polymers are moldable, exhibit plastic flow or a definitive

yield point.

Viscoelasticity or Rheology: The study of materials whose mechanical

properties have characteristics of both solid and fluid materials. Visco-

elasticity is a term often used by those whose primary interest is solid
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mechanics while rheology is a term often used by those whose primary

interest is fluid mechanics. The term also implies that mechanical

properties are a function of time due to the intrinsic nature of a material

and that the material possesses a memory (fading) of past events. The

latter separates such materials from those with time dependent proper-

ties due primarily to changing environments or corrosion. All polymers

(fluid or solid) have time or temperature domains in which they are

viscoelastic.

Polymer: The word Polymer originates from the Greek word “polymeros”

which means many-membered (Clegg and Collyer 1993). Often the word

polymer is thought of as being composed of the two words; “poly” meaning

many and “mer” meaning unit. Thus, the word polymer means many units

and is very descriptive of a polymer molecule.

Several of these terms will be reexamined in this chapter but the intent

of the remainder of this book is to principally consider aspects of the last

three.

2.2. Elementary Definitions of Stress, Strain
and Material Properties

This section will describe the most elementary definitions of stress and strain

typically found in undergraduate strength of materials texts. These definitions

will serve to describe some basic test methods used to determine elastic material

properties. A later section will revisit stress and strain, defining them in a more

rigorous manner.

Often, stress and strain are defined on the basis of a simple uniaxial tension

test. Typically, a “dogbone” specimen such as that shown in Fig. 2.1a is used

and material properties such as Young’s modulus, Poisson’s ratio, failure (yield)

stress and strain are found therefrom. The specimen may be cut from a thin flat

plate of constant thickness or may be machined from a cylindrical bar. The

“dogbone” shape is to avoid stress concentrations from loading machine con-

nections and to insure a homogeneous state of stress and strain within the

measurement region. The term homogeneous here indicates a uniform state of

stress or strain over the measurement region, i.e. the throat or reduced central

portion of the specimen. Figure 2.1b shows the uniform or constant stress that is

present and that is calculated as given below.
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The engineering (average) stress can be calculated by dividing the applied

tensile force, P, (normal to the cross section) by the area of the original cross

sectional area A0 as follows,

σav ¼ P

A0

(2:1)

The engineering (average) strain in the direction of the tensile load can be found

by dividing the change in length, ΔL, of the inscribed rectangle by the original

length L0,

εav ¼
ðL
L0

dL

L0

¼ ΔL
L0

¼ L� L0

L0

(2:2)

or

εav ¼ L

L0

� 1 ¼ λ� 1 (2:3)

The term λ in the above equation is called the extension ratio and is sometimes

used for large deformations such as those which may occur with low modulus

rubbery polymers.

True stress and strain are calculated using the instantaneous (deformed at a

particular load) values of the cross-sectional area, A, and the length of the

rectangle, L,

σt ¼ F

A
(2:4)

and

εt ¼
ðL
L0

dL

L
¼ ln

L

L0

¼ ln 1þ εð Þ (2:5)

d0

L0

P PP
σ=P/A0

(a) (b)

Fig. 2.1 “Dogbone” tensile specimen
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True strain is related to the engineering strain as indicated in Eq. 2.5 and can also
be shown to differ from the engineering strain by higher order terms (ε2, ε3, etc.)
which are negligible for the small (linear) strain regime. Thus in the limit of

small strain, the true strain and engineering strain are identical. These and other

nonlinear measures are used for polymers and other materials undergoing large

deformations.

Hooke’s law is valid provided the stress varies linearly with strain and

Young’s modulus, E, may be determined from the slope of the stress-strain

curve or by dividing stress by strain,

E ¼ σav
εav

(2:6)

or

E ¼ P=A0

ΔL=L0

(2:7)

and the axial deformation over length L0 is,

δ ¼ ΔL ¼ PL0

A0E
(2:8)

Poisson’s ratio, ν, is defined as the absolute value of the ratio of strain transverse,
εy, to the load direction to the strain in the load direction, εx,

ν ¼ εy
εx

(2:9)

The transverse strain εy, of course can be found from,

εy ¼ d� d0

d0
(2:10)

and is negative for an applied tensile load.

Shear properties can be found from a right circular cylinder loaded in torsion

as shown in Fig. 2.2, where the shear stress, τ, angle of twist, θ, and shear strain,
γ, are given by,

τ ¼ Tr

J
, θ ¼ TL

JG
, γ ¼ δ

L
¼ rθ

L
(2:11)

2 Stress and Strain Analysis and Measurement 19



Herein, L is the length of the cylinder, T is the applied torque, r is the radial

distance, J is the polar second moment of area and G is the shear modulus. These

equations are developed assuming a linear relation between shear stress and strain

as well as homogeneity and isotropy. With these assumptions, the shear stress and

strain vary linearly with the radius and a pure shear stress state exists on any

circumferential plane as shown on the surface at point A in Fig. 2.2. The shear

modulus, G, is the slope of the shear stress-strain curve and may be found from,

G ¼ τ
γ

(2:12)

where the shear strain is easily found by measuring only the angular rotation, θ,
in a given length, L. The shear modulus is related to Young’s modulus and can

also be calculated from,

G ¼ E

2 1þ νð Þ (2:13)

As Poisson’s ratio, ν, varies between 0.3 and 0.5 for most materials, the shear

modulus is often approximated by, G~E/3.

While tensile and torsion bars are the usual methods to determine engineering

properties, other methods can be used to determine material properties such as

prismatic beams under bending or flexure loads similar to those shown in Fig. 2.3.

The elementary strength of materials equations for bending (flexural) stress,

σx, shear stress, τxy, due to bending and vertical deflection, v, for a beam loaded

in bending are,

σx ¼ Mzzy

Izz
, τxy ¼ VQ

Izzb
,

d2v

dx2
¼ Mzz

EIzz
(2:14)

where y is the distance from the neutral plane to the point at which stress is

calculated, Mzz is the applied moment, Izz is the second moment of the cross-

sectional area about the neutral plane, b is the width of the beam at the point of

T

T

T

X

rA

y
δ

θ

τxy

τ

Fig. 2.2 Typical torsion test specimen to obtain shear properties
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calculation of the shear stress,Q is the first moment of the area about the neutral

plane (see a strength of materials text for a more explicit definition of each of

these terms), and other terms are as defined previously.

For a beam with a rectangular cross-section, the bending stress, σx, varies
linearly and shear stress, τxy, varies parabolically over the cross-section as

shown in Fig. 2.4.

y

x
Mzz Mzz

L

P

P Paa

P

L RR

x

x

a1 a2 a3

y

P
(a)

(b)

(c)

Fig. 2.3 Beams in bending

R
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xτxy

σxx

y

y

A σx

neutral plane

a1

τxy

h/2

h/2

b

y

A

z

y y

y

Fig. 2.4 Normal and shear stress variation in a rectangular beam in flexure
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Using Eq. 2.14, given the applied moment, M, geometry of the beam, and

deflection at a point, it is possible to calculate the modulus, E. Strictly speaking,
the equations for bending stress and beam deflections are only valid for pure

bending as depicted in Fig. 2.3a, b but give good approximations for other types

of loading such as that shown in Fig. 2.3c as long as the beam is not very short.

Very short beams require a shear correction factor for beam deflection.

As an example, a beam in three-point bending as shown in Fig. 2.5 is often

used to determine a “flex (or flexural) modulus” which is reported in industry

specification sheets describing a particular polymer.

The maximum deflection can be shown to be,

δmax ¼ PL3

48EI
(2:15)

from which the flexural (flex) modulus is found to be,

E ¼ PL3

48I

1

δmax

(2:16)

Fundamentally, any structure under load can be used to determine properties

provided the stress can be calculated and the strain can be measured at the same

location. However, it is important to note that no method is available to measure

stress directly. Stresses can only be calculated through the determination of

forces using Newton’s laws. On the other hand, strain can be determined directly

from measured deformations. That is, displacement or motion is the physically

measured quantity and force (and hence stress) is a defined, derived or calculated

quantity. Some might argue that photoelastic techniques may qualify for the

direct measurement of stress but it can also be argued that this effect is due to

L/2 L/2

P/2P/2

PNeutral axis
before deformation

Neutral axis
after deformation

δmax

Fig. 2.5 Three-point bend specimen
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interaction of light on changes in the atomic and molecular structure associated

with a birefringent material, usually a polymer, caused by load induced dis-

placements or strain.

It is clear that all the specimens used to determine properties such as the

tensile bar, torsion bar and a beam in pure bending are special solid mechanics

boundary value problems (BVP) for which it is possible to determine a “closed

form” solution of the stress distribution using only the loading, the geometry,

equilibrium equations and an assumption of a linear relation between stress and

strain. It is to be noted that the same solutions of these BVP’s from a first course

in solid mechanics can be obtained using a more rigorous approach based on the

Theory of Elasticity.

While the basic definitions of stress and strain are unchanged regardless of

material, it should be noted that the elementary relations used above are often

not applicable to polymers. As will be discussed in detail in the next chapters,

polymers are inherently viscoelastic. For example, the rate of loading in a simple

tension test will change the value measured for E in a viscoelastic material since

modulus is inherently a function of time.

2.3. Typical Stress-Strain Properties

Properties of materials can be determined using the above elementary

approaches. Often, for example, static tensile or compression tests are performed

with a modern computer driven servo-hydraulic testing system such as the one

shown in Fig. 2.6. The applied load is measured by a load cell (shown in (a) just

above the grips) and deformation is found by either an extensometer (shown in

(b) attached to the specimen) or an electrical resistance strain gage shown in (c).

The latter is glued to the specimen and the change in resistance is measured as

the specimen and the gage elongate. (Many additional methods are available to

measure strain, including laser extensometers, moiré techniques, etc.). The

cross-sectional area of the specimen and the gage length are input into the

computer and the stress strain diagram is printed as the test is being run or can

be stored for later use. The reason for a homogeneous state of stress and strain is

now obvious. If a homogeneous state of stress and strain do not exist, it is only

possible to determine the average strain value over the gage length region with

this procedure and not the true properties of the material at a point.

Typical stress-strain diagrams for brittle and ductile materials are shown in

Fig. 2.7. For brittle materials such as cast iron, glass, some epoxy resins, etc., the

stress strain diagram is linear from initial loading (point 0) nearly to rupture
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(point B) when average strains are measured. As will be discussed subsequently,

stress and strain are “point” quantities if the correct mathematical definition of

each is used. As a result, if the strain were actually measured at a single point,

i.e., the point of final failure, the stress and strain at failure even for a brittle

material might be slightly higher than the average values shown in Fig. 2.7.

For ductile materials such as many aluminum alloys, copper, etc., the stress-

strain diagram may be nonlinear from initial loading until final rupture. How-

ever, for small stresses and strains, a portion may be well approximated by a

straight line and an approximate proportional limit (point A) can be determined.

For many metals and other materials, if the stress exceeds the proportional limit

a residual or permanent deformation may remain when the specimen is unloaded

and the material is said to have “yielded”. The exact yield point may not be the

same as the proportional limit and if this is the case the location is difficult to

determine. As a result, an arbitrary “0.2 % offset” procedure is often used to

determine the yield point in metals. That is, a line parallel to the initial tangent to

the stress-strain diagram is drawn to pass through a strain of 0.002 in./in. The

yield point is then defined as the point of intersection of this line and the stress-

strain diagram (point C in Fig. 2.7). This procedure can be used for polymers but

the offset must be much larger than 0.2 % definition used for metals. Procedures

to find the yield point in polymers will be discussed in Chaps. 3 and 11.

Fig. 2.6 (a) Servo-hydraulic testing system: (b) extensometer, (c) electrical resistance

strain gage
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An approximate sketch of the stress-strain diagram for mild steel is shown in

Fig. 2.8a. The numbers given for proportional limit, upper and lower yield points

and maximum stress are taken from the literature, but are only approximations.

Notice that the stress is nearly linear with strain until it reaches the upper yield

point stress which is also known as the elastic-plastic tensile instability point. At

this point the load (or stress) decreases as the deformation continues to increase.

That is, less load is necessary to sustain continued deformation. The region

between the lower yield point and the maximum stress is a region of strain

hardening, a concept that is discussed in the next section. Note that if true stress

and strain are used, the maximum or ultimate stress is at the rupture point.

The elastic-plastic tensile instability point in mild steel has received much

attention and many explanations. Some polymers, such as polycarbonate, exhibit

a similar phenomenon. Both steel and polycarbonate not only show an upper and

lower yield point but visible striations of yielding; plastic flow or slip lines

(Luder’s bands), at an approximate angle of 54.7� to the load axis, occur in each
for stresses equivalent to the upper yield point stress. (For a description and an

example of Luder’s band formation in polycarbonate, see Fig. 3.7c). It has been
argued that this instability point (and the appearance of an upper and lower yield

point) in metals is a result of the testing procedure and is related to the evolution

of internal damage. That this is the case for polycarbonate will be shown in

Chap. 3. For a discussion of these factors for metals, see Drucker (1962) and

Kachanov (1986).

If the strain scale of Fig. 2.8a is expanded as illustrated in Fig. 2.8b, the
stress-strain diagram of mild steel is approximated by two straight lines; one for

the linear elastic portion and one which is horizontal at a stress level of the lower

yield point. This characteristic of mild steel to “flow”, “neck” or “draw” without

Strain, ε, %
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Fig. 2.7 Stress-strain diagrams for brittle and ductile materials
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rupture when the yield point has been exceeded has led to the concepts of plastic,

limit or ultimate design. That is, just because the yield point has been exceeded

does not mean that the material cannot support load. In fact, it can be shown that

economy of design and weight savings can be obtained using limit design

concepts. Concepts of plasticity and yielding date back to St. Venant in about

1870 but the concepts of plastic or limit design including computational plas-

ticity evolved primarily in the latter half of the twentieth century (see

Westergaard (1964) for a discussion of the history of solid mechanics including

comments on the evolution of plasticity). Also, an excellent discussion of

plasticity and metal forming is given by Osakada (2010). Computational plas-

ticity has its origins associated with calculations of deformations beyond the

yield point for stress-strain diagrams similar to that of mild steel and will be

briefly discussed in Chap. 11 in the context of polymers.

As will be discussed in Chap. 3, the same procedures discussed in the present

chapter are used to determine the stress-strain characteristics of polymers. If

only a single rate of loading is used, similar results will be obtained. On the other

hand, if polymers are loaded at various strain rates, the behavior varies signif-

icantly from that of metals. Generally, metals do not show rate effects at ambient

temperatures. They do, however, show considerable rate effects at elevated

temperatures but the molecular mechanisms responsible for such effects are

very different in polymers and metals.

It is appropriate to note that industry specification sheets often give the elastic

modulus, yield strength, strain to yield, ultimate stress and strain to failure as

determined by these elementary techniques. One objective of this text is to

emphasize the need for approaches to obtain more appropriate specifications

for the engineering design of polymers.

(a) Stress-strain diagram for mild steel (b) Expanded scale up to 2%strain

ε0

Lower yield point, σLyp

Upper yield point, σuyp

σ

Proportional limit, σpL

0.020

415
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Approximately 0.0012

Loweryield point

Upper
yield point

(M
P
a)

σ

Conventional σ−ε curve
True σ−ε curve

ε

Rupture

Fig. 2.8 Typical tensile stress-strain diagrams (not to scale)
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2.4. Idealized Stress-Strain Diagrams

The stress-strain diagrams discussed in the last section are often approximated by

idealized diagrams. For example, a linear elastic perfectly brittle material is

assumed to have a stress-strain diagram similar to that given in Fig. 2.9a. On the
other hand, the stress-strain curve formild steel can be approximated as a perfectly

elastic-plastic material with the stress-strain diagram given in Fig. 2.9b.
Metals (and polymers) often have nonlinear stress-strain behavior as shown in

Fig. 2.10a. These are sometimes modeled with a bilinear diagram as shown in

Fig. 2.10b and are referred to as a perfectly linear elastic strain hardeningmaterial.

Here the 0.2 % offset method for determining the yield point for metals is used

as an illustration. For polymers a different method must be used (See Chap. 3).

(a) Linear elastic perfectly brittle (b) Linear elastic perfectly plastic

0

E

0

E

σr is the rupture stress
σ

σr

σy is the yield point stress
σ

ε ε

σy

Fig. 2.9 Idealized uniaxial stress-strain diagrams

(a) Nonlinear behavior (b) Bilinear approximation

0

E

σy

0

E

σ

σy

σ

ε ε

Fig. 2.10 Nonlinear stress-strain diagram with linear elastic strain hardening approxi-

mation (σy is the yield point stress)
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2.5. Mathematical Definitions of Stress, Strain
and Material Characteristics

The previous sections give a brief review of some elementary concepts of solid

mechanics which are often used to determine basic properties of most engineer-

ing materials. However, these approaches are sometimes not adequate and more

advanced concepts from the theory of elasticity or the theory of plasticity are

needed. Herein, a brief discussion is given of some of the more exact modeling

approaches for linear elastic materials. Even these methods need to be modified

for viscoelastic materials but this section will only give some of the basic

elasticity concepts.

Definition of a Continuum A basic assumption of elementary solid mechanics

is that a material can be approximated as a continuum. That is, the material

(of mass ΔM) is continuously distributed over an arbitrarily small volume, ΔV,
such that,

Lim
ΔV!0

ΔM
ΔV

¼ dM

dV
¼ const: ¼ ρ ¼ density at a pointð Þ (2:17)

Quite obviously such an assumption is at odds with our knowledge of the atomic

and molecular nature of materials but is an acceptable approximation for most

engineering applications. The principles of linear elasticity, though based upon

the premise of a continuum, have been shown to be useful in estimating the

stress and strain fields associated with dislocations and other non-continuum

microstructural details.

Physical and Mathematical Definition of Normal Stress and Shear
Stress Consider a body in equilibrium under the action of external forces Fi

as shown in Fig. 2.11a. If a cutting plane is passed through the body as shown in
Fig. 2.11b, equilibrium is maintained on the remaining portion by internal forces

distributed over the newly exposed internal surface.
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At any arbitrary point p, the incremental resultant force, ΔFr, on the cut

surface can be broken up into a normal force in the direction of the normal, n, to
surface S and a tangential force parallel to surface S. The normal stress and the

shear stress at point p is mathematically defined as,

σn ¼ lim
ΔΑ!0

ΔFn
ΔA

τs ¼ lim
ΔΑ!0

ΔFs
ΔA

(2:18)

where ΔFn and ΔFs are the normal and shearing forces on the area ΔA
surrounding point p.

Alternatively, the resultant force, ΔFr, at point p can be divided by the area,

ΔA, and the limit taken to obtain the stress resultant σr as shown in Fig. 2.12.
Normal and tangential components of this stress resultant will then be the normal

stress σn and shear stress τs at point p on the infinitesimal area ΔA.
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Fig. 2.11 Physical definition of normal force and shear force
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If a pair of cutting planes a differential distance apart are passed through the

body parallel to each of the three coordinate planes, a cube will be identified.

Each plane will have normal and tangential components of the stress resultants.

The tangential or shear stress resultant on each plane can further be represented

by two components in the coordinate directions. The internal stress state is then

represented by three stress components on each coordinate plane as shown in

Fig. 2.13. (Note that equal and opposite components will exist on the unexposed

faces). Therefore at any point in a body there will be nine stress components.

These are often identified in matrix form such that,

σij ¼
σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

0
@

1
A (2:19)

Using equilibrium, it is easy to show that the stress matrix is symmetric or,

τxy ¼ τyx, τxz ¼ τzx, τyz ¼ τzy (2:20)

leaving only six independent stresses existing at a material point.

Physical andMathematical Definition of Normal Strain and Shear Strain If

a differential element is acted upon by stresses as shown in Fig. 2.14a both

normal and shearing deformations will result. The resulting deformation in

the x-y plane is shown in Fig. 2.14b, where u is the displacement component

in the x direction and v is the displacement component in the y direction.

0

90o

τxy

σyy

τyx

σxx

Δx

Δy

y

x 0

u
v Δx

Δy

y

x

u Δy+ Δu Δy

u Δx+Δu Δx

v
Δy

+
Δv

Δy

v Δx+Δv Δx

θ2

θ1

(a) (b)

Fig. 2.14 Definitions of displacements u and v and corresponding shear and normal

strains
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The unit change in the Δx dimension will be the strain εxx and is given by,

εxx ¼ lim
Δx!0

uþ Δu
Δx

Δx
� �

� u

Δx

8>><
>>:

9>>=
>>; (2:21)

with similar definitions for the unit change in the y and z directions. (The

assumption of small strain and linear behavior is implicit here with the assump-

tion that θ is small and thus its impact on Δu is ignored). Therefore the normal

strains in the three coordinate directions are defined as,

εxx ¼ lim
Δx!0

Δu
Δx

¼ ∂u
∂x

, εyy ¼ lim
Δy!0

Δv
Δy

¼ ∂v
∂y

,

εzz ¼ lim
Δz!0

Δw
Δz

¼ ∂w
∂z

(2:22)

where u, v and w are the displacement components in the three coordinate

directions at a point. Shear strains are defined as the distortion of the original

90� angle at the origin or the sum of the angles θ1 + θ2. That is, again using the

small deformation assumption,

tan θ1 þ θ2ð Þ � θ1 þ θ2ð Þ¼ lim
Δx,Δy!0

vþ Δv
ΔxΔx

� �� v

Δx
þ

uþ Δu
Δy

� �
� u

Δy

2
4

3
5
(2:23)

which leads to the three shear strains,

γxy ¼
∂v
∂x

þ ∂u
∂y

� �
, γxz ¼

∂w
∂x

þ ∂u
∂z

� �
, γyz ¼

∂w
∂y

þ ∂v
∂z

� �
(2:24)

Stresses and strains are often described using tensorial mathematics but in order

for strains to transform as tensors, the definition of shear strain must be modified

to include a factor of one half as follows,

εxy ¼ 1

2

∂v
∂x

þ ∂u
∂y

� �
, εxz ¼ 1

2

∂w
∂x

þ ∂u
∂z

� �
, εyz ¼ 1

2

∂w
∂y

þ ∂v
∂z

� �
(2:25)

The difference between the latter two sets of equations can lead to very errone-

ous values of stress when attempting to use an electrical strain gage rosette to

determine the state of stress experimentally. In Eq. 2.25 the traditional symbol ε

32 Polymer Engineering Science and Viscoelasticity: An Introduction



with mixed indices has been used to identity tensorial shear strain. The symbol γ
with mixed indices will be used to describe non-tensorial shear strain, also called

engineering strain.

In general, as with stresses, nine components of strain exist at a point and

these can be represented in matrix form as,

εij ¼
εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

0
@

1
A (2:26)

Again, it is possible to show that the strain matrix is symmetric or that,

εxy ¼ εyx, εxz ¼ εzx, εyz ¼ εzy (2:27)

Hence there are only six independent strains.

Generalized Hooke’s Law As noted previously, Hooke’s law for one dimen-

sion or for the condition of uniaxial stress and strain for elastic materials is given

by σ¼E ε. Using the principle of superposition, the generalized Hooke’s law

for a three dimensional state of stress and strain in a homogeneous and isotropic

material can be shown to be,

εxx ¼ 1

E
σxx � ν σyy þ σzz

� �� 	
, γxy ¼

τxy
G

εyy ¼ 1

E
σyy � ν σxx þ σzzð Þ� 	

, γyz ¼
τyz
G

εzz ¼ 1

E
σzz � ν σxx þ σyy

� �� 	
, γxz ¼ τxz

G

(2:28)

where E, G and ν are Young’s modulus, the shear modulus and Poisson’s ratio

respectively. Only two are independent and as indicated earlier,

G ¼ E

2 1þ νð Þ (2:29)

The proof for Eq. 2.29 may be found in many elementary books on solid

mechanics.

Other forms of the generalized Hooke’s law can be found in many texts. The

relation between various material constants for linear elastic materials are shown

below in Table 2.1 where E, G and ν are previously defined and where K is the

bulk modulus and λ is known as Lame’s constant.

2 Stress and Strain Analysis and Measurement 33



Hooke’s law is a mathematical statement of the linear relation between stress

and strain and usually implies both small strains (ε2<< ε) and small deforma-

tions. It is also to be noted that in general elasticity solutions in two and three

dimensions, the displacement, stress and strain variables are functions of spatial

position, xi. This will be handled more explicitly in Chap. 9.

Again, it is important to note that stress and strain are point quantities, yet

methods for strain measurement are not capable of measuring strain at an

infinitesimal point. Thus, average values are measured and moduli are obtained

using stresses calculated at a point. For this reason, strains are best measured

where no gradients exist or are so small that an average is a good approximation.

One approach when large gradients exist is to try to measure the gradient and

extrapolate to a point. The development of methods to measure strains within

very small regions has become a topic of great importance due to the

Table 2.1 Relation between various elastic constants. λ and G are often termed Lame’

constants and K is the bulk modulus

{A �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ λð Þ2 þ 8λ2

q
Lamé’s

modulus, λ
Shear

modulus, G

Young’s

modulus, E

Poisson’s

ratio, ν
Bulk

modulus, K

λ, G G 3λþ 2Gð Þ
λþ G

λ
2 λþ Gð Þ

3λþ 2G

3

λ, E A{ þ E� 3λð Þ
4

A{ � Eþ λð Þ
4λ

A{ þ 3λþ Eð Þ
6

λ, ν λ 1� 2νð Þ
2ν

λ 1þ νð Þ 1� 2νð Þ
ν

λ 1þ νð Þ
3ν

λ, K 3 K� λð Þ
2

9K K� λð Þ
3K� λ

λ
3K� λ

G, E 2G� Eð ÞG
E� 3G

E� 2G

2G

GE

3 3G� Eð Þ
G, ν 2Gν

1� 2ν
2G(1 + ν) 2G 1þ νð Þ

3 1� 2νð Þ
G,K 3K� 2G

3

9KG

3Kþ G

3K� 2G

2 3Kþ Gð Þ
E,ν νE

1þ νð Þ 1� 2νð Þ
E

2 1þ νð Þ
E

3 1� 2νð Þ
E,K 3K 3K� Eð Þ

9K� Eð Þ
3EK

9K� E

3K� E

6K

ν,K 3Kν
1þ ν

3K 1� 2νð Þ
2 1þ νð Þ

3K(1� 2ν)
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development of micro-devices and machines. Further, such concerns as interface

or interphase properties in multi-phase materials also creates the need for new

micro strain measurement techniques.

Indicial Notation and Compact Form of Generalized Hooke’s Law Because

of the cumbersome form of the generalized Hooke’s Law for material constitu-

tive response in three dimensions (Eq. 2.28), a shorthand notation referred to as

indicial or index notation is extensively used. Here we provide a brief summary

of indicial notation and further details may be found in many books on contin-

uum mechanics (e.g., Flügge 1972). In indicial notation, the subscripts on

tensors are used with very precise rules and conventions and provide a compact

way to relate and manipulate tensorial expressions.

The conventions are as follows:

• Subscripts indicating coordinate direction (x, y, z) can be generally

represented by a roman letter variable that is understood to take on the values

of 1, 2, or 3. For example, the stress tensor can be written as σij which then

gives reference to the entire 3� 3 matrix. That is the stress and strain matrices

given by Eqs. 2.19 and 2.26 become,

σij ¼
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

0
@

1
Aεij ¼

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

0
@

1
A (2:30)

• Summation convention: if the same index appears twice in any term, sum-

mation is implied over that index (unless suspended by the phrase “no sum”).

For example,

σii ¼ σ11 þ σ22 þ σ33 (2:31)

• Free index: non-repeated subscripts are called free subscripts since they are

free to take on any value in 3D space. The count of the free indices on a

variable indicates the order of the tensor. e.g. Fi is a vector (first order tensor),

σij is a second order tensor.

• Dummy index: repeated subscripts are called dummy subscripts, since they

can be changed freely to another letter with no effect on the equation.

• Rule 1: The same subscript cannot appear more than twice in any term.

• Rule 2: Free indices in each term (both sides of the equation) must agree (all

terms in an equation must be of the same order).

Example of valid expression: vi¼ aijuj� λekldikl
• Rule 3: Both free and repeated indices may be replaced with others subject to

the rules.
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Example of valid expression: aijuj + di¼ aikuk + di
• Unlike in vector algebra, the order of the variables in a term is unimportant, as

the bookkeeping is done by the subscripts. For example consider the inner

product of a second order tensor and a vector:

Aijuj ¼ ujAij (2:32)

• Differentiation with respect to spatial coordinates is represented by a comma,

for example

dvi

dxj
¼ vi, j (2:33)

• The identity matrix is also referred to as the Kronecker Delta function and is

represented by

δij ¼ 1, if i ¼ j

0, if i 6¼ j

�
(2:34)

The properties of δij are thus

δii ¼ 3

δijvj ¼ vi
δijδjk ¼ δik
δijσjk ¼ σik

(2:35)

Although the conventions listed above may seem tedious at first, with a little

practice index notation provides many advantages including easier manipula-

tions of matrix expressions. Additionally, it is a very compact notation and the

rules listed above can often be used during manipulation to reduce errors in

derivations.

The generalized Hooke’s Law from Eq. 2.28 may be rewritten to relate

tensorial stress and strain in index notation as follows:

εij ¼ 1þ ν
E

σij � ν
E
σkkδij (2:36)

or

σij ¼ 2Gεij þ λεkkδij (2:37)
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Additionally, the strain-displacement relations, Eqs. 2.22 and 2.25, can be

written as

εij ¼ 1

2
ui, j þ uj, i
� �

(2:38)

where ui are the three displacement components, represented as u, v, and
w earlier (e.g., u2¼ v).

These expressions will be used extensively later in Chap. 9 when dealing with

viscoelasticity problems in two and three dimensions.

Consequences of Homogeneity and Isotropy Assumptions It is interesting to

examine the consequences if a material is linearly elastic but not homogeneous

or isotropic. For such a material, the generalized Hooke’s law is often expressed

using index notation as,

σij ¼ Eijkqεkq (2:39)

For a material that is nonhomogeneous, the material properties are a func-

tion of spatial position and Eijkq becomes Eijkq(x,y,z). The nonhomogeneity for

a particular material determines exactly how the moduli vary across the

material. The geometry of the material on an atomic or even microscale

determines symmetry relationships that govern the degree of anisotropy of

the material. Without regard to symmetry constraints, Eq. 2.39 could have

81 independent proportionality properties relating stress components to strain

components.

The complete set of nine equations (one for each stress) each with nine

coefficients (one for each strain term) can be found from Eq. 2.39. This is

accomplished using the summation convention over repeated indices. That is,

Eq. 2.39 is understood to be a double summation as follows,

σij ¼
X3
k¼1

X3
q¼1

Eijkqεkq (2:40)

(The expansion is left as an exercise for the reader. See problem 2.4).

If a material is nonlinear elastic as well as heterogeneous and anisotropic,

Eq. 2.39 becomes,

σij ¼ Eijkl x; y; zð Þεkl þ E
0
ijkl x; y; zð Þε2kl þ � � � (2:41)
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Again each term on the right hand side of Eq. 2.40 represents a double summa-

tion and each coefficient of strain is an independent set of material parameters.

Thus, many more than 81 parameters may be required to represent a nonlinear

heterogeneous and anisotropic material. Further, for viscoelastic materials, these

material parameters are time dependent. The introduction of the assumption of

linearity reduces the number of parameters to 81 while homogeneity removes

their spatial variation (i.e., the Eijkq parameters are now constants). Symmetry of

the stress and strain tensors (matrices) reduces the number of constants to 36.

The existence of a strain energy potential reduces the number of constants to 21.

Material symmetry reduces the number of constants further. For example, an

orthotropic material, one with three planes of material symmetry, has only 9

constants and an isotropic material, one with a center of symmetry, has only two

independent constants (and Eq. 2.39 reduces to Eq. 2.28). Now it is easy to see

why the assumptions of linearity, homogeneity and isotropy are used for most

engineering analyses.

A plane of material symmetry exists within a material when the material

properties (elastic moduli) at mirror-imaged points across the plane are identical.

For example, in the sketch given inFig. 2.15a, the yz plane is a plane of symmetry

and the elastic moduli would be the same at the material points A and B.

A

B

z

y

x

x1

-x1

y1

z1

y1

z1

Fig. 2.15 (a) Definition of a plane of material symmetry
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Experimentation is needed to determine if a material is homogeneous or

isotropic. One approach is to cut small tensile coupons from a three-dimensional

body and perform a uniaxial tensile or compressive test as well as a torsion test

for shear. Obviously, to obtain a statistical sample of specimens at a single point

would require exact replicas of the same material or a large number of near

replicas. Assuming that such could be accomplished for a body with points A

and B as in Fig. 2.15a, the following relationships would hold for homogeneity,

Exxxx

��
A
¼ Exxxx

��
B

Eyyyy

���
A
¼ Eyyyy

���
B

Ezzzz

��
A
¼ Ezzzz

��
B

(2:42)

That is, the modulus components are invariant (constant) for all directions at a

point (See Problem 2.5).

The above measurement approach illustrates the influence of heterogeneity

and anisotropy on moduli but is not very practical. A sonic method of measuring

properties, though not as precise as tensile or torsion tests, is often used and is

based upon the fact that the speed of sound, vs, in a medium is related to its

modulus of elasticity, E, and density, ρ, such that (Kolsky 1963),

vs ¼
ffiffiffi
E

ρ

s
(2:43)

The above is adequate for a thin long bar of material but for three-dimensional

bodies the velocity is related to both dilatational (volume change – see subse-

quent section for definition) and shear effects as well as geometry effects, etc.

It is to be noted that the condition of heterogeneity and anisotropy are

confronted when considering many materials used in engineering design. For

example, while many metals are isotropic on a macroscopic scale, they are

crystalline on a microscopic scale. Crystalline materials are at least anisotropic

and may be heterogeneous as well. Wood is both heterogeneous and anisotropic

as are many ceramic materials. Modern polymer, ceramic or metal matrix

composites such as fiberglass, etc. are both heterogeneous and anisotropic.

The mathematical analysis of such materials often neglects the effect of hetero-

geneity but does include anisotropic effects. (See Lekhnitskii (1963), Daniel and

Ishai (2005)).
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2.6. Principal Stresses

In the study of viscoelasticity as in the study of elasticity, it is mandatory to have

a thorough understanding of methods to determine principal stresses and strains.

Principal stresses are defined as the normal stresses on the planes oriented such

that the shear stresses are zero – the maximum and minimum normal stresses at a

point are principal stresses. The determination of stresses and strains in two

dimensions is well covered in elementary solid mechanics both analytically and

semi-graphically using Mohr’s circle. However, practical stress analysis prob-

lems frequently involve three dimensions. The basic equations for transforma-

tion of stresses in three-dimensions, including the determination of principal

stresses, will be given and the interested reader can find the complete develop-

ment in many solid mechanics texts.

Often in stress analysis it is necessary to determine the stresses (strains) in a

new coordinate system after calculating or measuring the stresses (strains) in

another coordinate system. In this connection, the use of index notation is very

helpful as it can be shown that the stressσ0
ij in a new coordinate system,x

0
i, can be

easily obtained from the σij in the old coordinate system, xi, by the equation,

σ
0
ij ¼ aikajqσkq (2:44)

where the quantities aij are the direction cosines between the axes x
0
i and xi and

may be given in matrix form as,

aij ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A (2:45)

Figure 2.15b illustrates coordinate transformation for stress at a material point

in two dimensions, showing the primed and unprimed axis systems where the

angle between them is defined as θ. In Eq. 2.44, the repeated indices on the right
again indicate summation over the three coordinates, x,y,z or the indices 1,2,3. It
is left as an exercise for the reader to show that this process leads to the familiar

two-dimensional expressions found in the first course in solid mechanics (see

Problem 2.6),

σ
0
x ¼ σx cos 2θþ σy sin 2θþ 2τxysinθcosθ (2:46a)

or

σ
0
x ¼

σx þ σy
2

þ σx � σy
2

cos 2θþ τxy sin 2θ (2:46b)
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τ
0
xy ¼ � σx � σy

� �
sinθcosθþ τxy cos 2θ� sin 2θ

� �
(2:47a)

or

τ
0
xy ¼ � σx � σy

2
sin 2θþ τxy cos 2θ (2:47b)

Using Eq. 2.44 it is possible to show that the three principal stresses (strains) can

be calculated from the following cubic equation,

σ3i � I1σ2i þ I2σi � I3 ¼ 0 (2:48)

where the principal stresses, σi, are given by one of the three roots σ1, σ2 or σ3 and,

I1 ¼ σxx þ σyy þ σzz ¼ σ1 þ σ2 þ σ3

I2 ¼ σxxσyy þ σyyσzz þ σxxσzz � σ2xy � σ2yz � σ2xz ¼ σ1σ2 þ σ2σ3 þ σ3σ1

I3 ¼ σxxσyyσzz � σxxσ2yz � σyyσ2xz � σzzσ2xy þ 2σxyσyzσzx ¼ σ1σ2σ3

(2:49)

The quantities I1, I2, and I3 are the same for any arbitrary coordinate system

located at the same point and are therefore called invariants.

In two-dimensions when σzz¼ 0 and a state of plane stress exists, Eq. 2.48
reduces to the familiar form,

σ1,2 ¼ σxx þ σyy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σxx � σyy

2

� �2

þ τxy
� �2r

(2:50)

Fig. 2.15 (b) Illustration of coordinate transformation in two dimensions
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where the comma does not indicate differentiation in this case, but is here used to

emphasize the similarity in form of the two principle stresses by writing them in

one equation. The proof of Eq. 2.50 is left as an exercise for the reader.

The directions of principal stresses (strains) are also very important. How-

ever, the development of the necessary equations will not be presented here but it

might be noted that the procedure is an eigenvalue problem associated with the

diagonalization of the stress (strain) matrix.

2.7. Deviatoric and Dilatational Components
of Stress and Strain

A general state of stress at a point or the stress tensor at a point can be separated

into two components, one of which results in a change of shape (deviatoric) and

one which results in a change of volume (dilatational). Shape changes due to a

pure shear stress such as that of a bar in torsion given in Fig. 2.2 are easy to

visualize and are shown by the dashed lines in Fig. 2.16a (assuming only a

horizontal motion takes place).

Shear Modulus Because only shear stresses and strains exist for the case of

pure shear, the shear modulus can easily be determined from a torsion test by

measuring the angle of twist over a prescribed length under a known torque, i.e.,

τxy

y

x

z

dy

dx

dz
σzz = σ3

σxx = σ1

σyy = σ2

σzz

σxx

σyy

θ

(a) (b)

Fig. 2.16 (a) Shape changes due to pure shear. (b) Normal stresses leading to a pure

volume change
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T ¼ θ
JG

L
(2:51)

where all terms are as previously defined in Eq. 2.11.

Bulk Modulus. Volume changes are produced only by normal stresses. For

example, consider an element loaded with only normal stresses (principal

stresses) as shown in Fig. 2.16b. The change in volume can be shown to be

(for small strains),

ΔV
V

¼ εxx þ εyy þ εzz (2:52)

Substituting the values of strains from the generalized Hooke’s law, Eq. 2.28,
gives,

ΔV
V

¼ 1� 2ν
E

σxx þ σyy þ σzz
� �

(2:53)

If Poisson’s ratio is ν ¼ 0.5, the change in volume is zero or the material is

incompressible. Here it is important to note that Poisson’s ratio for metals and

many other materials in the linear elastic range is approximately 0.33 (i.e., ν ~ 1/3).
However, near and beyond the yield point, Poisson’s ratio is approximately 0.5

(i.e., ν ~ 1/2). That is, when materials yield, neck or flow, they do so at constant

volume.

In the case when all the stresses on the element in Fig. 2.16b are equal

(σxx¼ σyy¼ σzz¼ σ), a spherical state of stress (hydrostatic stress) is said to

exist and,

ΔV
V

¼ 1� 2ν
E

3σð Þ (2:54)

By equating Eqs. 2.52 and 2.54 the Bulk Modulus can be defined as the ratio of

the hydrostatic stress, σ, to volumetric strain or unit change in volume (ΔV/V),

K ¼ E

3 1� 2νð Þ (2:55)

Notice that the bulk modulus becomes infinite, K~1, if the material is incom-

pressible and Poisson’s ratio is, ν ~ 1/2.

Obviously, one method for obtaining the bulk modulus of a material would be

to create a hydrostatic compression (or tension) state of stress and measure the

resulting volume change.
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Dilatational and Deviatoric Stresses for a General State of Stress For a

general stress state, the dilatational or volumetric component is defined by the

mean stress or the average of the three normal stress components shown in

Fig. 2.13,

σ ¼ σm ¼ σxx þ σyy þ σzz
3

¼ 1

3
σkk (2:56)

In Eq. 2.56 care has been taken to provide three different symbolic ways of

indicating the volumetric stress, σ, σm, or σkk/3 to emphasize the many notations

found in the literature. Since the sum of the normal stresses is the first Invariant,

I1, the mean stress, σm, will be the same for any axis orientation at a point

including the principal axes as shown in Eq. 2.56. Thus, independent of axis
orientation the general stress state can be separated into a volumetric component

plus a shear component as shown in Fig. 2.17. That is, if the stresses responsible
for volumetric changes are subtracted from a general stress state, only stresses

responsible for shape changes remain. This statement can be expressed in

matrix form as,

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

0
@

1
A ¼

σm 0 0

0 σm 0

0 0 σm

0
@

1
Aþ

sxx sxy sxz
syx syy syz
szx szy szz

0
@

1
A (2:57)

or in index notation as

σij ¼ 1

3
σkkδij þ sij (2:58)

where sij are the deviator (shape change) components of stress and δij is the

Kronecker Delta function as defined earlier (Eq. 2.34).
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dx

dz
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dx

dzσm

σm

σm

y

x

z
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dz

syx

sxy

szy
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syz

sxz

szz

syy

sxx

Fig. 2.17 Separation of a general stress state into dilatational and deviator stresses
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Since the trace of the first two matrices in Eq. 2.52 are the same, i.e.,

σkk ¼ σxx þ σyy þ σzz ¼ 3σm (2:59)

the trace of the third matrix is zero, i.e.,

skk ¼ sxx þ syy þ szz ¼ 0 (2:60)

Using Eq. 2.60, the deviator matrix can be separated into five simple shear stress

systems,

sxx sxy sxz

syx syy syz

szx szy szz

0
B@

1
CA ¼

0 sxy 0

syx 0 0

0 0 0

0
B@

1
CAþ

0 0 0

0 0 syz

0 szy 0

0
B@

1
CAþ

0 0 sxz

0 0 0

szx 0 0

0
B@

1
CA

þ
sxx 0 0

0 �sxx 0

0 0 0

0
B@

1
CAþ

0 0 0

0 �szz 0

0 0 szz

0
B@

1
CA

(2:61)

That the stress states given by the first three matrices on the right side of Eq. 2.61
are pure shear states is obvious. The last two are also pure shear states but at 45�

to the indicated axis as shown in Fig. 2.18.

Therefore each term in Eq. 2.61 represents a pure shear state and results in

only shape changes with no volume change.

τx'y'
τx'y'

y'

x'

y

x

sxx

-sxx

Fig. 2.18 Pure shear state
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Strains can also be separated into dilatational and deviatoric components and

the equation for strain analogous to Eq. 2.58 is,

εij ¼ eij þ εmδij or εij ¼ eij þ 1

3
εkkδij (2:62)

where eij are the deviatoric strains and em ¼ 1
3
εkk is the dilatational component.

Clearly the trace of the strain tensor equivalent to Eq. 2.59 can be recovered

from Eq. 2.62.

The generalized Hooke’s law given by Eq. 2.28 or Eq. 2.36 can now be

written in terms of deviatoric and dilatational stresses and strains using the

equations above as well as Eqs. 2.52–2.55

sij ¼ 2Geij
σkk ¼ 3Kεkk

(2:63)

The importance of the concept of a separating the stress (and strain) tensors into

dilatational and deviatoric components is due to the observation that viscoelastic

and/or plastic (meaning yielding, not polymers) deformations in materials are

predominately due to changes in shape. For this reason, volumetric effects can

often be neglected and, in fact, the assumption of incompressibility is often

invoked. If this assumption is used, the solution of complex boundary value

problems (BVP) are often greatly simplified. Such an assumption is often made

in analyses using the theory of plasticity and theory of viscoelasticity and each

will be discussed in later chapters.

Further, the observation that deformations in viscoelastic materials such as

polymers is more related to changes of shape than changes of volume suggest

that shear and volumetric tests may be more valuable than the traditional

uniaxial test.

It can be shown that additional invariants exist for both dilatational and

deviatoric stresses. For a derivation and description of these see Fung (1965)

and Shames et al. (1992). The invariants for the deviator state will be used briefly

in Chap. 11 and are therefore given below.

J1 ¼ σ1 þ σ2 þ σ3 ¼ 0

J2 ¼ 3σ2m � I2

J3 ¼ I3 � J2σm � σ3m

(2:64)

All invariants have many different forms other than those given herein.
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2.8. Failure (Rupture or Yield) Theories

Simply stated, failure theories are attempts to have a method by which the failure

of a material can be predicted and thereby prevented. Most often the physical

property to be limited is determined by experimental observations and then a

mathematical theory is developed to accommodate observations. To date, no set

of universal failure criteria has been determined which is suitable for all mate-

rials. Because of the large interest in light weight but strong materials such as

polymer, metal and ceramic matrix composites (PMC, MMC and CMC respec-

tively) that will operate at high temperatures or under other adverse conditions

there has been much activity in developing special failure criteria appropriate for

individual materials. As a result, the number of failure theories now is in the

hundreds. Here we will only give the essential features of the classical theories,

which were primarily developed for metals. For this reason, it is suggested that

the reader keep an open mind and be extremely careful when investigating the

behavior of polymers using these traditional methods. It is virtually certain that

actual behavior will not always be well represented using any of the following

theories due to the time dependent nature of polymer based materials. The same

statement is likely true for most of the current popular theories used for

composites.

Ductile materials often have a stress-strain diagram similar to that of mild

steel shown in Fig. 2.8 and can be approximated by a linear elastic-perfectly

plastic material with a stress-strain diagram such as that given in Fig. 2.9b.
Failure for ductile materials is assumed to occur when stresses or strains exceed

those at the yield point. Materials such as cast iron, glass, concrete and epoxy are

very brittle and can often be approximated as perfectly linear elastic-perfectly

brittle materials similar to that given in Fig. 2.9a. Failure for brittle materials is

assumed to occur when stresses or strains reach a value for which rupture

(separation) will occur.

The following are the simple statements and expressions for three well known

and often used failure theories. They are described in terms of principal stresses,

where σ1>σ2>σ3, and a failure stress in a uniaxial tensile test, σfjtensile, which
is either the rupture stress or the yield stress as appropriate for the material.

Typically, tensile and compression properties as found in a uniaxial test are

assumed to be the same.
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Maximum Normal Stress Theory (Lame-Navier) Failure occurs when the

largest principal stress (either tension or compression) is equal to the maximum

tensile stress at failure (rupture or yield) in a uniaxial tensile test.

σ1 ¼ σf jtensile (2:65)

Maximum Shear Stress Theory (Tresca) Failure occurs when the maximum

shear stress at an arbitrary point in a stressed body is equal to the maximum shear

stress at failure (rupture or yield) in a uniaxial tensile test.

τmax ¼ σ1 � σ3
2

¼ τmaxjtensile ¼
σf jtensile

2

σ1 � σ3 ¼ σf jtensile
(2:66)

Maximum Distortion Energy (or Maximum Octahedral Shear Stress) The-
ory (von Mises) Failure occurs when the maximum distortion energy

(or maximum octahedral shear stress) at an arbitrary point in a stressed medium

reaches the value equivalent to the maximum distortion energy (or maximum

octahedral shear stress) at failure (yield) in simple tension

σ21 þ σ22 þ σ23 � σ1σ2 þ σ2σ3 þ σ3σ1ð Þ ¼ 2σ2f
��
tensile

(2:67)

Development of the octahedral shear stress can be found in many texts and

will not be given here. However, it is appropriate to note the geometry of the

octahedral plane. That is, if a diagonal plane is identified for stressed element as

shown in Fig. 2.19a such that the normal to the diagonal plane makes an angle of

54.7�, the stress state will be as shown in Fig. 2.19b. The resultant shear stress on
this octahedral plane, so named because there are eight such planes at a point, is

the octahedral shear stress. The octahedral shear stress and the octahedral plane

is very important especially for polymers as the majority of viscoelastic behavior

is associated with shear or deviatoric response as opposed bulk or dilational

response. This is discussed in more detail in the next section.
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Comparison Between Theory and Experiment Comparisons between theory

and experiment have been made for many materials. Shown in Fig. 2.20 are the

graphs in stress space for the equations for the three theories given above. Also

shown is experimental data on five different metals as well as four different

polymers. It will be noted that cast iron, a very brittle material agrees well with

the maximum normal stress theory while the ductile materials of steel and

aluminum tend to agree best with the von Mises criteria. Polymers tend to be

better represented by von Mises than the other theories.

z

x

y

dz

dx

dy

τzx

τxz

τyz

τxy

τzy

τxy

σyy

σzz

σxx

54.7°
54.7°

σn

τoct

54.7°

(a) (b)

Fig. 2.19 Definition of the octahedral shear stress
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2.9. Atomic Bonding Model for Theoretical
Mechanical Properties

Materials scientists and engineers have long sought methods to determine the

mechanical properties of materials from knowledge of the bonding properties of

individual atoms, which, of course, hold materials together. Observation of

elastic behavior suggests the existence of both attractive and repulsive forces

between individual atoms. Stretching an elastic bar in tension, stretches the

atomic bonds and release of the load allows the bonds to return to their original

equilibrium positions. Likewise, compression causes atoms to move closer

together and release of the load allows the atoms to return to their equilibrium

position. A hypothetical tensile (or compressive) bar composed of perfectly

packed atoms is shown in Fig. 2.21. The distances between the centers of four

Von Mises
Lame
Navier

Tresca

-1.0

1.0

-1.0
1.0

Polymers
PC

-0.5

-0.5

0.5

0.5

PVC
PMMA

PS

Metals
3S-H AI

2024-T4 AI
Ni-Cr-Mo Steel
Cast Iron
AISI 1023 Steel

Fig. 2.20 Comparison between failure theories and experiment (Data from Dowling

(1993): metal p. 252, polymer p. 254)
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neighboring atoms, mnpq, form a rhombus. When stretched, the strains in the

vertical and horizontal directions, εx and εy, can be calculated from geometrical

changes in the position of the spheres and the ratio can be shown to give a

Poisson’s ratio of ν¼ 1/3, which is close to the measured value for metals and

many materials. The proof is left as an exercise for the reader (see Problem 2.8).

This simple calculation tends to give some confidence in the use of an atomic

model to represent mechanical behavior.

Now consider just two atoms in equilibrium with each other as shown in

Fig. 2.22. Application of a tensile force, FT, will induce an attractive force, FA,

between the two atoms in order to maintain equilibrium. Application of a

compressive force will induce a repulsive force, FR, between the two atoms to

maintain equilibrium. These attractive and repulsive forces will vary depending

upon the separation distance. It is to be noted that the attractive forces in

interatomic bonds are largely electrostatic in nature. For example, Coulomb’s

law for electrostatic charges indicates that the force is inversely proportional to

the square of the spacing. The repulsive forces are caused by the interactions of

the electron shells of the atoms and is somewhat difficult to estimate directly.

The variation of attractive and repulsive forces and energies with separation

distance are given in Fig. 2.22d–e, where r0 is the equilibrium spacing. The

forms of the equations agree with physical observations but the values of the

constants α, β, m and n vary for different materials. Obviously, the effect of

dislocations, vacancies, grain boundaries, etc. complicates the picture in metals

and the long molecular chains, entanglements and other defects complicate the

picture in polymers. The energy equations and diagrams given in Fig. 2.22 can

be simply calculated from the force diagram using the basic definitions of work

and energy given in elementary mechanics. This proof is left as an exercise for

the reader.

Obviously, if the tensile forces are large enough, the distance between atoms

can become so great that the attractive force will tend to zero and no force would

be required for the atom to be in equilibrium. On the other hand, the application

of a compressive forces can not force the two atoms to merge and the repulsive

force will increase without bound. For this reason, it should be possible to

calculate the theoretical strength of a material if sufficient information is

known about the bonding forces in atoms of a particular material. This interpre-

tation has been used by many (see for example, (Courtney (1990), McClintock

and Argon (1966), Richards (1961), Shames and Cozzarelli (1992)) to formulate

nonlinear stress-strain relations, laws for creep, plasticity effects, etc. However,

as far as is known by the authors, no direct experimental verification has ever

been made and, at best, such deduction must be termed empirical.
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Not withstanding the empirical nature of the force and energy variations in

Fig. 2.22, this approach does give insight to the strength limitations of materials.

For example, by examination of Fig. 2.22d it can be shown that for a perfect

crystalline arrangement of atoms as in Fig. 2.21 that the strength of a material

should be the same order of magnitude as its elastic modulus (see Richards

1961). The fact that no material has such high strength properties is an indication

of weaknesses caused by imperfections in their molecular structure

(e.g. imperfections such as dislocations, vacancies, etc.). Even near perfect

crystalline materials do not have such high strength properties. On the other

hand, it has been recognized that it is possible to increase strength properties

drastically by developing processing approaches to create more nearly perfect

crystalline structure and to minimize imperfections in molecular structure. Most

of these processing improvements (directional solidification, powder metal-

lurgy, etc.) are used for metals and ceramic type materials. Indeed, it is recog-

nized that the large number of secondary bonds as opposed to primary bonds in

polymers gives rise to their relatively modest properties when compared with

most metals. Never-the-less, as will be noted in the following chapters, the

properties of polymers can also be improved greatly by increasing crystallinity,

using additives and developing improved processing techniques.

(a) Close packed crystal structure in
   a material subject to tensile stress.

(b) Elongation and contraction of
     centers due to tensile loading.
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Fig. 2.21 Atomic deformations in a material composed of perfectly packed atoms
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2.10. Review Questions

2.1. Name five assumption that are normally made to solve problems in

elementary solid mechanics.

2.2. Name two types of nonlinearities encountered in solid mechanics.

2.3. Describe a heterogeneous or an inhomogeneous material. Name several

materials that are inhomogeneous

2.4. Describe an anisotropic material. Name several materials that are

anisotropic.

2.5. Give a mathematical definition for a continuum.

2.6. Define crystallinity, amorphous, anisotropic and material symmetry.

2.7. Define true stress and true strain and write an appropriate equation

for each.

2.8. Discuss the characteristics one would seek in developing a test specimen

to determine material properties.

2.9. What is a Luder’s band? At what angle do they occur? Name two

materials in which they are known to occur.

2.10. Explain the difference between engineering shear strain and the tensorial

alternative.

(d) Interatomic attractive
     and repulsive forces.

(e) Interatomic attractive
     and repulsive energies.
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Fig. 2.22 Attractive and repulsive forces and energies between atoms
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2.11. How many material constants are needed to characterize a linear elastic

homogeneous isotropic material? How many material constants are

needed to characterize a linear elastic homogeneous anisotropic material?

2.12. Describe a plane of material symmetry. What type of symmetry does an

isotropic material possess?

2.13. Define a stress invariant and give the proper expression for the first

invariant of stress.

2.14. Define deviatoric and dilatational stresses.

2.15. Give a definition for the classical failure theories of Tresca and vonMises.

2.16. A brittle material is likely to follow which failure theory? On what plane

would a brittle material tested in uniaxial tension fail?

2.17. A ductile material is likely to follow which failure theory?

2.18. What is the octahedral shear stress.

2.19. At what angle does a slip band form for a Tresca material tested in

uniaxial tension.

2.20. At what angle does a slip band form for a von Mises material tested in

uniaxial tension.

2.21. The strength of a material for a perfect arrangement of atoms might be

expected to be on the order of what other material parameter?

2.22. Poisson’s ratio can be shown to be equal to what value for a perfect

arrangement of atoms?

2.11. Problems

2.1. If the engineering strain in a tensile bar is 0.0025 and Poisson’s ratio is

0.33, find the original length and the original diameter if the length and

diameter under load are 2.333 ft. and 1.005 in. respectively.

2.2. Find the true strain for the circumstances described in problem 2.1.

2.3. A circular tensile bar of a ductile material with an original cross-sectional

area of 0.5 in.2 is stressed beyond the yield point until a neck is formed. The

area of the neck is 0.25 in.2 Find the average engineering strain in the

necked region. Calculate also the true strain. (Hint: Assume yielding

occurs with no volume change).

2.4. The generalized Hooke’s law in tensor (matrix) notation is given as

σij¼Eijkq εkq. Expand and find the algebraic expansion for σ12.
2.5. From a thin plate of material small tensile coupons are cut at points A, B

and C as shown and the following moduli properties are determined

ExjA, ExjB, ExjC, Ey

��
A
, Ey

��
B
, Ey

��
C
, EθjA, EθjB, EθjC
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Give a correct relationship among the moduli for a homogeneous material.

Give a correct relationship among the moduli for an anisotropic material.

y

x

A

B

C

2.6. For a 2-D state of stress show that the tensorial transformation relation

given by σ0
ij ¼ aikajqσkq reduces to the form

σ
0
x ¼ σx cos 2θþ σy sin 2θþ 2τxy sin θ cos θ

2.7. Expand Eq. 2.58 and show that the matrix given below is recovered.

sij ¼
σxx � σm σxy σxz

σyx σyy � σm σyz
σzx σzy σzz � σm

0
@

1
A

2.8. Using the geometry given in Fig. 2.21 show that the ratio of lateral to

longitudinal strain is 1/3. (Hint: spheres at m and n that are initially in

contact stretch vertically when a stress is applied resulting in a separation

of the spheres at m and n. Also, spheres at p and q will move inward

to maintain contact with spheres at m and n).
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3. Characteristics, Applications and Properties
of Polymers

Many materials found in nature are polymers. In fact, the basic molecular

structure of all plant and animal life is similar to that of a synthetic polymer.

Natural polymers include such materials as silk, shellac, bitumen, rubber, and

cellulose. However, the majority of polymers or plastics used for engineering

design are synthetic and often they are specifically formulated or “designed” by

chemists or chemical engineers to serve a specific purpose. Other engineers

(mechanical, civil, electrical, etc.) typically design engineering components

from the available materials or, sometimes, work directly with chemists or

chemical engineers to synthesize a polymer with particular characteristics.

Some of the useful properties of various engineering polymers are high strength

or modulus to weight ratios (light weight but comparatively stiff and strong),

toughness, resilience, resistance to corrosion, lack of conductivity (heat and

electrical), color, transparency, processing, and low cost. Many of the useful

properties of polymers are in fact unique to polymers and are due to their long

chain molecular structure. These issues will be discussed at length in the next

chapter. In this chapter, focus will be on general characteristics, applications and

an introduction to the mechanical behavior including elementary concepts of

their inherent time dependent or viscoelastic nature.

3.1. General Classification and Types of Polymers

There are a variety of ways to classify polymers according to their molecular

structure and these will be covered in more detail later in Chap. 4. However,

there are two general types that should be mentioned here. Most polymers can be

broadly classified as either thermoplastics or thermosets. The fundamental

physical difference between the two has to do with the bonding between

molecular chains – thermoplastics have only secondary bonds between chains,

while thermosets also have primary bonds between chains. The names are not

only associated with the chemical structure of each but their general thermal and

processing characteristics as well since this basic structural difference greatly

impacts material properties. Thermoplastic polymers can be melted or molded

© Springer Science+Business Media New York 2015
H.F. Brinson, L.C. Brinson, Polymer Engineering Science
and Viscoelasticity, DOI 10.1007/978-1-4899-7485-3_3
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while thermosetting polymers cannot be melted or molded in the general sense

of the term. Thermoplastic or thermosetting polymers are sometimes identified

by other names such as “linear” and “cross-linked” respectively. It should be

noted that the term linear here applies to molecular structure and not to mechan-

ical (stress-strain) characteristics.

As will be discussed later, a polymer can be a hard and stiff glass-like solid, a

soft and flexible elastomeric rubber, or a viscous liquid depending only on the

use temperature as compared to two reference temperatures identified as the

glass-transition temperature, Tg, and the melt temperature, Tm. All thermoplas-

tic materials may exist in one of these three phases upon changes in the use

temperature, while thermosetting polymers generally exist only in the first two

phases. The glass-transition and melt temperatures for different polymers range

from well below to well above ambient and therefore a particular polymer may

be either glassy, elastomeric or liquid at room temperature depending only on its

chemical composition. These reference or transition temperatures as well as

thermal effects will be thoroughly discussed in later chapters.

Thermoplastic Polymers Thermoplastic polymers may be either amorphous or

crystalline. Crystallinity (or morphology) will be discussed in more detail in the

next chapter but it is important to point out here that the degree of crystallinity is

low by standards for crystalline metals, ceramics and other materials. That is,

polymers are rarely over 50 % crystalline. Crystalline polymers are often more

dense than amorphous polymers due to closer packing of their long chain

molecules and, in general, the following properties are enhanced.

Hardness
Friction and wear
Less creep or time dependent behavior
Corrosion resistance and/or resistance to environmental stress
cracking

An example of a much-used crystalline thermoplastic polymer is polyethylene.

LDPE (low density polyethylene) is considered to be semi-crystalline while

HDPE (high density polyethylene) or UHDPE (ultra high density polyethylene)

are considered to be highly crystalline. LDPE is one of the most widely used

plastics accounting for more than 20 % of the total polymer market and is used

extensively for milk containers and other packaging operations. HDPE and

UHDPE are used extensively in water and gas (natural) pipelines. Other typical

crystalline thermoplastics used in engineering design include LLDPE (linear

low density polyethylene) and the following;

Polypropylene Polyamides (nylon)
Acetals Polytetrafluoroethylene (PTFE)
Polyesters Polyetheretherketone (PEEK)
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Amorphous thermoplastics (those with no regular molecular structure) are;

Polyvinyl chloride (PVC) Polymethyl methacrylate (PMMA)
Polystyrene (PS) Acrylonitrile-butadiene-styrene (ABS)
Polycarbonate Polyethersulphone

In general thermoplastic polymers are easier to produce and cost less than

thermosets. Information on the volume of sales in the US and basic costs of a few

thermoplastics is given in Table 3.1 and the volume distribution by products in

Fig. 3.1.

Table 3.1 US polymer productiona

Resin

US production

(�106 lbs)

US production

(�106 kg)

% Total

production

Price

(US$/lb)

Epoxy 1,874 850 1.6 1.12

Polyurethanes 4,982 2,260 4.3 1.35

Phenolic 4,674 2,120 4.0 0.80

Other thermosets 5,556 2,520 4.8

Total thermosets 17,086 7,750 14.7

LDPE 6,885 3,123 5.9 1.17

LLDPE 13,441 6,097 11.6 1.12

HDPE 17,738 8,046 15.3 1.06

PP 16,325 7,405 14.1 1.17

ABS 1,731 785 1.5 1.18

PS 4,572 2,074 3.9 1.25

Nylon 1,193 541 1.0 1.99

PVC 15,309 6,944 13.2 1.10

PET 4,850 2,200 4.2 1.15

Other thermoplastics 9,381 4,255 8.1

Total thermoplastics 91,425 41,470 78.8

Natural rubber 688 312 0.6 1.47

Synthetic rubberb 6,768 3,070 5.8 1.48

Grand total 115,967 52,602 100

aProduction volume data for thermoplastics from American Plastics Council for 2012: Canadian
and Mexican production data included in some categories; dry-weight basis except phenolic resins.

Pricing data from Plastics News for Feb. 2013. Production volume and pricing data for elastomers

from International Rubber Study Group. Production volume and pricing for thermosets from

Thermoset Resin – A Global Market Watch 2011–2016 and combined other sources. See current

data on respective websites
bIncludes styrene butadiene rubber (SBR), polyisoprene, polybutadiene, polyisobutylene, ethylene-

propylene rubber
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Thermosetting Polymers Highly crosslinked thermosetting polymers are used

where high thermal and dimensional stability are required. Applications include

use as electrical and thermal insulation materials, adhesives, high performance

composites and especially where high strength and modulus are required.

Lightly crosslinked polymers are often termed elastomers, have high flexibility

and are used in applications such as seals, dampers, insulation and tires. Some

examples of thermosetting polymers are:

Aminos Phenolics (bakelite)
Polyurethanes Polyesters
Epoxides Rubbers

Information on the volume of sales in the US and basic costs of the major

thermosetting and thermoplastic polymers is given in Table 3.1.

Thermoplastic Elastomers (TPE). This sub-class of polymers exhibits char-

acteristics of both thermoplastics and elastomers, which are typically thermo-

sets, yet TPEs are thermoplastics. In this case, the backbone consists of two

different polymers in a block copolymer arrangement (see Chap. 4 for more

details) which phase segregate into hard and soft domains (Das et al. 2007;

Arman et al. 2012). The hard domains form by hydrogen bonding (secondary

bonds) between of one of the polymer segments with itself which then aggregate

into dispersed crystalline domains, 10’s of nanometers in size. At the same time,

the soft chain segments consist of flexible chains which act as a supple

Fig. 3.1 Major markets for thermoplastic resins 2012. Data compiled by VERIS Con-

sulting, LLC and reported on the web by APC’s Plastics Industry Producers’

Statistics Group. Resins included in market distribution are low density poly-

ethylene (LDPE), Linear low density polyethylene (LLDPE), high density

polyethylene (HDPE), polypropylene (PP), polystyrene (PS), polyvinyl chlo-

ride (PVC), styrene butadiene latexes (SBL)
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continuous matrix for the network of hard domains. The network of hard

domains creates a physical cross-link system in a flexible matrix, enabling

superior elasticity. Since the hydrogen bonding provides the inter-chain joining,

these materials are recognized as thermoplastically cross-linked elastomers. The

unique construction of TPEs increases the overall polymer strength due to the

high glass transition temperature of the hard domains. Yet the lack of covalent

interchain bonds means that that materials can be processed as thermoplastics.

Common examples of TPEs are polyureas, polyurethanes and polystyrene-

polybutadiene rubbers (SBRs).

Additives A “pure” synthetic polymer may not have the desirable characteris-

tics for a particular application. However, through the use of additives (or fillers)

various properties can often be modified to fill a particular need. For example,

many “structural plastics” often contain additives to enhance their properties for

a special application. As a result, commercial plastics may be very different

from those of the base polymer even though they may have the same basic

chemistry. Some typical additives are (See Crawford (1992) for a discussion

of each):

Antistatic agents Coupling agents
Lubricants Flame retardants
Plasticizers Pigments
Stabilizers Reinforcements (alumina, fibers, etc.)

A good example for additives is the inclusion of rubber particles to increase the

toughness of otherwise brittle polymers. In the case of epoxy adhesives, the

fracture toughness can be significantly improved by the addition of microscopic

rubber particles. These particles form a second phase and normally are not

covalently bonded to the matrix phase. A photomicrograph of a rubber-

toughened polymer, high impact polystyrene (HIPS), is given Fig. 3.2. Under
sufficient external loading the rubber inclusions become highly stressed and

cavitation of these particles occur (rupture) absorbing energy and enhancing

toughness.

Blends or Alloys Sometimes two or more plastics are mixed or “alloyed” to

achieve special properties and are known as polyblends. ABS (acrylonitrile,

butadiene and styrene) and PBT (polybutylene terephthalate) are often used in

engineering applications with polycarbonate, polysulphone, etc. Several combi-

nations and their improved features are given below (see Crawford (1992) for a

more complete discussion of alloys).
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Alloy Characteristics

Polycarbonate/ABS Good heat and impact resistance
Polycarbonate/PBT High toughness
PVC/acrylic Good chemical and flame resistance
PVC/ABS Good processability, flame resistance and impact

strength

The fundamental point is that many structural plastics are, in fact, composites

composed of combinations of several materials. As a result, mechanical and

other properties are influenced by each component and it is most appropriate for

design engineers to have a familiarity with the effect of various additives. Often,

manufacturers change additives or blend ratios from time to time to enhance

certain properties for a large volume customer or for enhanced and more

economical processing, etc. Changing additives or the introduction of new

additives may change one or more engineering property and creates the need

for continual testing to evaluate commercial polymers.

While additives, fillers and blends do alter a polymer and, in effect, may cause

a polymer to be both heterogeneous and anisotropic most testing programs to

determine mechanical properties are performed under the assumption of homo-

geneity and isotropy. As a result, industrial test programs to measure stress,

strain, modulus and strength and other properties given in “specification” sheets

are very similar to those described in Chap. 2 for metals or other time indepen-

dent materials. Such information may not be adequate to evaluate the long-term

structural performance of a polymer used in engineering design.

Fig. 3.2 Example of a rubber toughened polymers: HIPS (left, Serpooshan et al. 2007)

and ABS (right, Bucknall et al. 2000) (Reprinted with permission of JohnWiley

and Sons, Inc and Elsevier)
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3.2. Typical Applications

Polymers are widely used in the automotive industry, aerospace industry, com-

puter industry, building trades and many other applications. For example,

automobile bumpers are now made with a polymer blend that has sufficient

toughness to meet state and federal standards. This has resulted in a significant

weight saving and the conversion from metal has also been cost effective due to

decreased energy costs and the ability to easily recycle the polymer blend from

older cars to manufacture bumpers for new vehicles.

The above illustrates, interestingly, that the cost to produce polymers is

sometimes less than the cost to produce certain metals. Crawford 1992, gives

data on the relative energy required to manufacture thin sheets of various poly-

mers and metals including the proportion of energy related to the feedstock, fuel

and processing. Since this data is not for the a uniform sheet thickness the data

has been divided by the sheet thickness and normalized with respect to the

energy required to produce mild steel. The result is given in Table 3.2 and

indicates that aluminum requires approximately 11 % more total energy to

manufacture than steel while the polymers cited require at least 50 % less energy

to manufacture than similar thin sheets of metal. This gives a good indication

why polymer products are replacing such items as aluminum foil food wraps,

soft drink containers, computer housings, etc. Of course this substitution of

polymer for metal occurs mostly for non-structural products. Because the mod-

ulus and strength of structural metals such as aluminum and steel are much

greater than the modulus and strength of polymers, the latter cannot perform as

well in structural circumstances. The exception is for fiber reinforced polymers

but then the production cost is often much higher.

Table 3.2 Relative energy required to manufacture various sheet materials normalized

relative to steel

Aluminum 1.11

Steel 1.00

PC 0.49

Acrylic 0.47

Nylon 0.52

LDPE 0.26

HDPE 0.29

Polystyrene 0.34

Polypropylene 0.24

PVC 0.26
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Fiber Reinforced Plastics Fiber reinforced plastics (FRP) or polymer matrix

composites (PMC) are now frequently used in automotive, aerospace, boating,

sporting goods, construction and other applications. Unfortunately, these prod-

ucts go by many different names. For example the FRP materials made with

glass fibers often are called glass reinforced polymers (GRP) or simply

fiberglass.

FRP or PMC materials are made by a number of processes. For example, the

materials used in many applications (bathtubs, boats, auto hoods, etc.) are

formed by compression molding a polymer containing chopped glass fibers

(usually about 1 in. long) in a polyester matrix to form what is known as a

sheet-molding compound (e.g. SMC-25, sheet molding compound with 25 %

fiber). FRP or PMC composites used for water, oil or gas pipelines are formed by

a filament winding process using continuous glass fibers which are first passed

through a polymer (e.g., polyester, epoxy, etc.) bath to coat the fiber prior to

winding.

Advanced composites See fiber reinforced plastics (so called due to the

extremely high mechanical properties of the fibers) used in the aerospace

industry and for certain sports equipment (e.g. skis, tennis rackets, golf clubs,

etc.) are made with continuous carbon fibers in a polymer matrix (e.g., epoxy,

PEEK, etc.) and are most often laminated, vacuum bagged and cured under high

heat and pressure.

All composites are in general inhomogeneous, anisotropic and cannot be

considered a continuum at a local or microscopic level. Therefore special testing

programs are normally required to determine mechanical properties. The

assumptions of a continuum, homogeneity and isotropy are often made and

may give estimates of behavior that can be used in engineering design though

this should only be done with extreme care.

Adhesives Nearly all adhesives are polymers and are used extensively to

connect structural components made of wood, composites, metals, polymers,

and other materials. Though the amount of adhesive needed for a particular

application is small, the cost of a polymer adhesive is high compared to other

applications. For example, it is not unusual for an adhesive to cost on the order of

$1.00 or more per ounce while general use polymers of the same type might cost

less than $1.00 per pound (see Table 3.1). For this and other reasons, the world

market for adhesives is in excess of 40 billion dollars per year. As mentioned

earlier, adhesives often contain elastomeric particles to enhance their fracture

toughness. In addition, many adhesives contain alumina or other metallic parti-

cles for increased tensile and shear strength and in such cases are in reality

particulate composites.

64 Polymer Engineering Science and Viscoelasticity: An Introduction



Insulation Applications One of the earliest uses for polymeric materials was

for the insulation of electrical cables for power lines, etc. due to their low

conductivity. In addition, polymers are now being used as thermal insulation

in buildings, automobiles, etc. A few polymers (e.g., polybenzimidazole) have

such high thermal resistance that they are used as fabrics for clothing of

firefighters who must deal with very intense heat such as that in fires in buildings

and oil wells.

The relative insulation characteristics of polyurethane foam and polystyrene

foam as compared to brick and wood is given in Fig. 3.3. Thermal conductivity

coefficients, thermal expansion coefficients and dielectric constants for various

polymers and other materials are given in Table 3.3.

Optical Application Typically, amorphous polymers are transparent unless

fillers or other additives are used that cause them to be opaque, while crystalline

polymers are translucent or opaque. For this reason, amorphous thermoplastic

polymers are often used in optical applications, the most prominent of which is

lenses to enhance vision. Polymer lenses are lighter, tougher and have better

fracture resistance than regular glass or silicon oxide based lens. Further the

polymers used for lenses have a high refractive index and hence transmit more

light than ordinary glass in some cases. The refractive index, light transmission

and dispersive properties of several polymers are given in Table 3.4.
Amorphous polymers, notably, polycarbonate, are often used as windows

where enhanced fracture resistance is needed. (Parenthetically, those familiar

Fig. 3.3 Graphical comparison of the relative thermal insulation characteristics of

various materials
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with baseball in the 1960s may recall a TV commercial of Sandy Kofax

attempting unsuccessfully to break a substitute school window made of poly-

carbonate with a baseball). Polycarbonate and PET are often used as a glazing

material for high performance windows in automobiles, airplanes and elsewhere.

Table 3.3 Thermal and electrical properties of polymers

Material

Conductivity

(W/m-K)

Coefficient

of thermal expansion

(10�6/K av. @RT)

Dielectric

constant

(average)

ABS 0.33 – 2.8

Epoxy 0.20 – 3.5

Phenolic 0.20 – –

Polypropylene 0.22 160 2.3

Polyethylene 0.33 150 2.3

Polycarbonate 0.20 – 3.0

Polystyrene 0.19 130

Teflon 0.20 170 2.1

Polyurethane foam 0.020 – –

Polystyrene foam 0.037 – –

Aluminium 216 24 –

Copper 394 – –

Steel 67 12 –

Brick 0.70 – –

Concrete 1.1 10 –

Oak 0.19 – –

Pine 0.16 – –

Glass 0.80 8 9.0

Air 0.03 – 1.0

Table 3.4 Typical optical properties

Material Refractive index Light transmission (%)

Acrylic 1.49 92

Polycarbonate 1.59 89

Polystyrene 1.57 88

PMMA 1.49 92

Glass 1.5 90

66 Polymer Engineering Science and Viscoelasticity: An Introduction



Fibers
One of the major applications of polymers is for use as fibers in clothing, ropes,

rugs or tapestries and many other household or commercial purposes. Natural

fibers such as flax for garments date back to prehistoric times. Plant derived

natural fibers such as cotton, flax, and rayon are based on the polymer cellulose,

while animal based fibers such as wool and silk are polyamides. Synthetic fibers

such as polyesters and polyamides (including nylon and Kevlar) account for the

majority of the fiber market today and are used in textiles and in high perfor-

mance applications (e.g., space suits and reinforcements in polymer matrix

composites). Both natural and synthetic polymeric fibers are semi-crystalline,

with significant molecular orientation in both the crystalline and noncrystalline

domains. In typical manufacturing processes for fibers, this molecular orienta-

tion is achieved through spinning and drawing steps. Increasing the degree of

molecular orientation in polymeric fibers leads to superior strength and stiffness

characteristics.

A very important fiber used in high performance polymer matrix composites

is the carbon or graphite fiber. Carbon fibers were first made by a complicated

heat (or pyrolysis) treatment of rayon fibers but are now primarily made by

pyrolyzing either a PAN (polyacrylonitrile) or pitch based fiber. The resulting

fiber consists of layers of graphene sheets oriented predominantly along the

fiber axis and provides extremely high strength to weight ratios. Polymer

composites incorporating carbon fibers have excellent mechanical properties

and are used in aircraft/spacecraft structural components, sporting equipment

and now even as handles in builder’s tools. See Hyer (1998) for an excellent

description of various fiber types used in composites as well as their

microstructure.

The tensile modulus of a few fibers is given in Table 3.5.

Table 3.5 Tensile modulus of select fibers (Warner 1995)

Material Tensile modulus (GPa)

Cotton 8.1

Rayon 8.2

Nylon66 2.3

Kevlar49 125

Carbon (IM) 250
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3.3. Mechanical Properties of Polymers

The mechanical properties of polymers are most often obtained using a uniaxial

tensile test at a constant rate of strain or head motion similar to those used for

metals and other materials. Schematic stress-strain diagrams characteristic of

those found for the indicated types of solid polymers is shown in Fig. 3.4. Curve
1 represents a linear elastic and brittle material like an epoxy, polystyrene, etc.

Curve 2 is similar to that of a semi-ductile material like PMMA. Curve 3 is

similar to that of a ductile material like PET or polycarbonate. Curve 4 is similar

to that of a typical elastomer such as a flexible urethane. Elastic modulus,

Poisson’s ratio, failure stress and strain are defined as given in Chap. 2 but the

0.2 % offset method to determine yield stress cannot be used as strains in

polymers are quite large compared to structural metals such as steel and alumi-

num. The yield stress of a ductile material is often assumed to be equal to the

proportional limit stress or the first peak in the stress strain diagram (termed the

intrinsic yield point) as indicated in Fig. 3.5. It is to be noted that many

approaches to determining the yield point are used, although the intrinsic yield

point is the most common. One method due to Considere is shown in Fig. 3.5
(see Ward and Hadley (1993) for reference). With this method, the extrinsic

yield point is the point of tangency of a line drawn from a point on the strain

axis of �1.0 to the stress-strain diagram. Both true stress and true strain

are normally used but in Fig. 3.5 true stress and nominal or average strain is

used. A comparison of tensile modulus, strength and strain at break (yield), and

impact strength of a number of polymers developed using elementary test pro-

cedures is given in Table 3.6.

Fig. 3.4 Typical stress-strain (load-elongation) diagrams of various polymer types
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If tests are performed at different constant strain rates or temperatures, stress-

strain response similar to that shown in Fig. 3.6 is obtained for many polymers.

Notice that modulus and intrinsic yield point vary with both rate and tempera-

ture. Also, the stress-strain response appears to be nonlinear even at low stress

levels. However, caution on the interpretation of the information obtained from

such elementary tests is suggested, as it will be shown in a later section that

linearity as well as other essential mechanical properties should be deduced from

isochronous stress-strain diagrams.

Fig. 3.5 Considere’s definition of yielding for polymers (After Kinloch and Young 1983,

p. 108)

Fig. 3.6 Typical temperature and rate dependent stress-strain response. Intrinsic yield

points indicated by circles
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3.3.1. Examples of Stress-Strain Behavior of Various Polymers

From an engineering design standpoint, a fundamental question to ask about the

stress-strain diagrams found in the literature and from industry specification is:

how was the strain measured? Was it measured by,

• Machine head motion divided by the length of the specimen

• An extensometer

• An electrical strain gage

• Non-contacting optical techniques

Table 3.6 Comparison of mechanical properties of selected polymers (Except as noted,

data are average values taken form Billmeyer (1984, pp. 470–480))

Polymera

Tensile

modulus

Tensile

strength Elongation Impact strength

GPa (ksi) MPa (ksi) %

J/m (ft-lb/in)

(notched)

Cellulose acetate 1.59 (230) 37.6 (5.45) 38 150 (2.8)

Nylon 66 2.07 (300) 72.4 (10.5) 180 80 (1.5)

Polycarbonate 2.41 (350) 60.7 (8.8) 115 790 (14.8)

Polyethylene (LD) 0.39 (57) 20.1 (3.0) 570 260 (5.0)

Poly(ethylene

terephthalate)

3.55 (500) 65.5 (9.5) 175 24 (0.45)

Poly

(methylmethacrylate)

3.10 (450) 62.1 (9.0) 6.0 320 (0.4)

Polypropylene 1.38 (200) 33.8 (4.9) 450 70 (1.3)

Polysulfone 2.48 (360) 70.3 (10.2) 75 64 (1.2b)

Polyimide 3.10 (450) 72.4 (10.5) 6.0 59 (1.1)

Poly(vinylchloride)

(rigid)

3.31 (480) 48.2 (7.0) 21 545 (10.2)

Polyurethane (rigid) 3.55 (500c) 72.4 (10.5) 4.5 320 (0.4)

Epoxy (cast) 2.41 (350) 58.6 (8.5) 4.5 32 (0.6)

aNote: Property values such as those listed in this table vary widely and should not be used for

design purposes without validating by testing the exact polymer to be used. ASTM testing pro-

cedures offer reliable experimental protocols for such experiments. Mechanical properties of

polymers can also be found in reference handbooks such as The Polymer Handbook (2006) and

other textbooks such as Rodriguez, 1996 (pp. 696–710) as well as various online databases such as

plasticsusa.com or PolyInfo run by NIMS in Japan (polymer.nims.go.jp/en/). The ongoing advent

of large database efforts for materials science in the US should increase the ready availability of

polymer property data. Variability of polymer properties can be seen for example in Fig. 3.7, where

the true stress and strain at rupture for polycarbonate differ from the values tabulated here
bFrom Rodriguez (1996, p. 701)
cFrom plasticssusa.com
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or some other method? The reason for asking such a question is to know whether

the strain truly represents the behavior occurring at a material point and,

therefore, if stress-strain equations developed therefrom are accurate and justi-

fied. If not, the stress analysis used for design may only be approximate and not a

good predictor of actual service performance.

Because the accuracy of material properties is of major concern in engineering

design it is appropriate to give a brief description of some of the above approaches

and their limitations. Material properties for polymers are most often determined

using uniaxial tension tests though in many respects a pure shear test (such as

torsion) would be better.Most industry specifications for properties are determined

using standards provided by the American Society of Testing Materials (ASTM).

For example one manufacturer of PMMA (plexiglass) refers specifically to ASTM

Standard “Tensile Modulus, ASTM D638” which suggests that deformations

between gage marks on the specimen are to be measured during a constant

strain-rate test. On the other hand, properties found in published papers may or

may not follow ASTM guidelines. Data taken from publications where the test

procedures are not described should be used with caution.

The first strain measurement method given above is not very accurate due to

stress concentrations in the grip area and possible machine compliance issues.

However, if an effective gage length is determined for the particular specimen

being tested, properties may be reasonably accurate. Such a procedure is

described in the next section.

Extensometer measurements can be very accurate but care must be taken to

insure that the clamps do not slip or create stress concentrations at contact points.

Electrical resistance strain gages are the most accurate method of measuring

strains to be used for determining material properties but caution must be used

for possible thermal and/or reinforcement effects. Such limitations are discussed

in the next section with the use of electrical strain gages on polycarbonate.

A number of non-contacting optical methods are available such as the Moire

technique and other grid methods, digital imaging correlation methods (DIC)

and any optical method that allows the measure of distance between grid marks

or flags on the specimen. The latter are often referred to as laser extensometers or

video extensometers. These optical methods can be quite accurate but care must

be used to assess the resolution and accuracy of each approach. The DICMethod

was pioneered by researchers at the University of South Carolina and early

details can be found in Peters et al. (1982) and Sutton et al. (1983). Digital

imaging measurements using pixel count between surface flags can be found in

Brinson (1994) and recent developments to incorporate the DIC with scanning

electron microscope (SEM) studies can be found in Kammers et al. (2011).

3 Characteristics, Applications and Properties of Polymers 71



The latter SEM-DIC approach offers hope ofmaking accurate strainmeasurements

at the nano-scale and assist in detailing properties at a scale not possible until now.

However, DIC is not the only method available to measure deformations or

strains at the micron or submicron region. Bradley, et al. have developed pro-

cedures to use the electron beam of a scanning electron microscope in the spot

mode to create a square array of small dots at the tip of a crack. The distortion of

the dot map was monitored during loading and the local strain field was

determined. (For details see references Yongqi et al. (1996) and Corleto

et al. (1996)). In addition Davidson et al. (1981) used a stereo imaging technique

similar to that used in photogrammetry with a scanning electron microscope to

quantify deformations at the tip of a crack in a low carbon steel.

In the following discussion, details of strainmeasurement for polycarbonatewill

serve as an example of possible differences using different strain measurement

methods. In addition, experimental data for stress-strain response of polycarbonate,

polypropylene, and epoxy will serve to illustrate the differences in ductile and

brittle polymers, as well as to point out important factors affecting stress-strain

results for polymers (e.g., strain measure, strain rate, loading mode, temperature).

Stress-Strain Behavior of Polycarbonate Specimens of polycarbonate are

shown in Fig. 3.7 together with the stress-strain properties obtained by three

different methods: (1) electrical strain gages, (2) use of an effective gage length,

and (3) thickness changes measured in the necked region. In the first method,

strain was measured with electrical resistance strain gages attached to the

specimen with an adhesive and the change in resistance monitored with defor-

mation under load. The axial and transverse strains are directly related to the

changes in resistance resulting from deformations in the respective directions.

The second approach determined an average strain by dividing the machine head

motion by the total length of specimen between the grips. Due to the dogbone

shape of the specimen and because of stress concentration factors at the grips,

the average strain determined in this manner is not accurate. However, the

average strain obtained using the total length between grips can be corrected

through the use of a proportionality factor found by comparing the electrical

resistance strain gage measurements for very small strain levels to that obtained

by using machine head motion. In this manner, reasonably accurate strains can

be determined from the machine head motion prior to neck formation. The third

technique was used to determine strains after formation of the neck and involved

micrometer measurements of the thickness in the neck area as the neck propa-

gated and conversion to axial strain via assuming a Poisson’s ratio of 0.4.

It is appropriate to note that electrical resistance gages must be used with care as

polymers, in general, are poor conductors of heat. As a result, the electrical current

72 Polymer Engineering Science and Viscoelasticity: An Introduction



in the strain gage can cause local heating of the material under the gage and

thereby appreciably soften the material giving rise to erroneous measures of strain.

Further, as the strain gage (a metal) is much stiffer than the polymer, appreciable

reinforcement can occur for thin polymers. These effects can be minimized using

sufficiently thick specimens and by pulsing the current to minimize local heating.

Errors due to these sources were negligible for the data shown.

(a) (b)

(d)

(c)

Fig. 3.7 Example of stress-strain response of polycarbonate
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As the electrical strain gage is located outside of the neck, the strain mea-

surement given by curve 1 in Fig. 3.7d does not provide a useful measure of

strain beyond the point of Luder’s band formation. The average strain (effective

gage length) technique, curve 2, does account for the neck in the material, but is

inaccurate after neck formation since the proportionality factor used is strictly

applicable only in the small/linear deformation region. Only the third method,

curve 3, of directly measuring thickness changes in the specimen in the neck area

properly represents the local strain in the material after yielding. Note that the

first two methods should provide essentially equivalent strain measures prior to

yielding, and that either of them can be combined with the results of the third

method to provide an accurate picture of material response up to failure.

Both engineering and true stresses are given in Fig. 3.7d with engineering

(conventional) strain measurements. Curve 1 shows the results of the electrical

strain gage measurement from zero load to Luder’s band formation or the

initiation of yielding. The strain reaches only a maximum of about 5 % and

both strain and stress appear to decrease after this point. Curve 2 represents the

strain determined by the effective gage length method as described above and

the maximum strain reaches about 10 %. The strain does not reach a larger value

because the length of the neck is only a small portion of the total specimen length

between grips. The engineering stress decreases after the neck forms in both

1 and 2, and this decrease is not seen when true stress is used. Curve 3 is based on

true stress (using the cross sectional area of the necked region) and using

electrical resistance strain gage measurements up to ~5 % strain with thickness

measurements above this level. Note again that curves 1 and 2 provide mislead-

ing information on the stress-strain response of the material after yield and only

curve 3 is representative of local material response through the necking stage.

The left photograph, Fig. 3.7a, is prior to neck formation, the center photo-

graph Fig. 3.7b, is after the neck has formed and drawing begins and the right

photograph Fig. 3.7c is a close-up of a fully formed Luder’s band from a

different specimen. The Luder’s band begins to form near the point of maximum

stress and shortly thereafter a prominent slip band or neck appears similar to that

shown in Fig. 3.7c which is from a separate test of a thinner specimen. Note the

initial Luder’s band angle for a thin specimen is about 57.3� with the vertical

while the angle in Fig. 3.7c is more than 60�. The reason, of course, is that the
slip band angle gradually increases to 90� when the full neck is formed. A more

descriptive discussion of these results may be found in Brinson (1973) and

Brinson and Das Gupta (1975). It is to be noted that the stress-strain results for

polycarbonate given in Fig. 3.7d generally agree with the very careful optical

strain measurements of Brill (1965) using a very finely inscribed surface grid on a

thin 0.5 mm (0.02 in.) polycarbonate specimen. His specimen was designed with

a taper such that the transversely inscribed grid lines were contained within the

yielded region with the distance between grid lines measuring 0.5 mm (0.02 in.).
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As a result he could optically measure strains with a cathetometer from initial

loading to complete failure using photographic enlargements. His resulting stress

strain diagram was similar in shape and magnitude to the true stress-strain curve

given in Fig. 3.7d. It would indeed be interesting to reproduce Brill’s careful

measurements using current digital imaging technology and compare past and

current techniques.

Notice the similarity between the stress-strain behavior of polycarbonate

given by curve 2 and that for mild steel in Fig. 2.8. Both show an elastic-

plastic tensile instability point or a decrease of stress with increasing strain after

the first peak in the stress-strain diagram is reached. An upper and lower yield

point can be defined for polycarbonate as for mild steel providing the intrinsic

yield point, engineering stress and the approximate measure of strain after neck

formation are used. Although the similarity to mild steel is perhaps useful, such a

stress-strain diagram as given by curve 2 for polycarbonate is not truly indicative

of the local stress-strain response of the material through necking and to failure.

The stress-strain response of polycarbonate is a function of test rate as is

shown in Fig. 3.8. Little rate effect is observed for low stress levels but a very

significant effect is observed for higher levels. The intrinsic yield stress is clearly

rate dependent and should the tests have been carried to rupture a drawing

behavior similar to that shown in Fig. 3.7 would have occurred for each rate.

These results suggest the need to include rate and/or time in developing yield

criteria for polymers. This will be discussed more fully in Chap. 11.

Stress-Strain Behavior of Polypropylene Both tensile and compressive

stress-strain response of polypropylene is shown in Fig. 3.9. Quite obviously,

the behavior in tension and compression are quite different for stresses above

about 2,000 psi. This indicates that care must be used in analysis where the

behavior in tension and compression are assumed to be the same. (See Rybicky

and Kanninen (1973) for an example of the difference on the analysis of a beam

in 3-point bending).

Stress-Strain Response of Epoxy The constant strain-rate stress-strain

response as a function of temperature of an unmodified epoxy is given in

Fig. 3.10. The initial portion of each curve is linear and for room temperature

(not shown) the material was linear up to the fracture or rupture point. The data

presented suggests a brittle to ductile transition might be defined but the transi-

tion is merely the transition from glassy to rubbery behavior previously

discussed.

The behavior of a modified or rubber toughened epoxy is shown in Fig. 3.11
as a function of strain rate at room temperature. Comparison with Fig. 3.10
indicates the significance of adding rubber tougheners to dramatically alter the

ductility of the material.
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ε

Fig. 3.8 Constant strain-rate behavior of a thermoplastic polymer (polycarbonate)

(Data from Brinson 1973)

Fig. 3.9 Stress-strain behavior of polypropylene (Data from Rybicky and Kanninen

1973)

76 Polymer Engineering Science and Viscoelasticity: An Introduction



Fig. 3.10 Temperature dependent stress-strain response of a typical brittle epoxy (Data

from Hiel et al. 1983)

e

ε1 = 6.68 x 10−1 s−1

ε2 = 6.55 x 10−2 s−1

ε3 = 6.83 x 10−3 s−1

ε4 = 6.81 x 10−4 s−1

Fig. 3.11 Rate dependent stress-strain response of a rubber toughened epoxy, room

temperature (Data from Brinson et al. 1975)
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3.4. An Introduction to Polymer Viscoelastic
Properties and Characterization

The fact that the response of polymer based materials is time dependent and/or

viscoelastic has been mentioned in previous sections. Further, it has been

indicated that this time dependence is inherent to polymeric materials due to

their unique molecular structure and is quite different from time dependence

induced in other materials such as metals by fatigue, moisture, corrosion or other

environmental factors. In fact, these same environmental factors also affect

polymers but manifest themselves differently than in other materials due to the

intrinsic viscoelastic nature of the molecular structure.

For the above reason, unique tests and analysis approaches must be adopted

for polymer-based materials to determine the manner in which properties vary

with time. The following sections introduce the necessary terms, definitions and

general behavior which will be useful in the more advanced approaches in later

chapters.

3.4.1. Relaxation and Creep Tests

One of the fundamental methods used to characterize the viscoelastic time-

dependent behavior of a polymer is the relaxation test. In a relaxation test, a

constant strain is applied quasi-statically to a uniaxial tensile (or compression or

torsion) bar at zero time. That is, the bar is suddenly stretched to a new position

and rigidly fixed such that the strain remains constant for the duration of the test.

The sudden strain must not induce any dynamic or inertia effects (which

explains the term quasi-static, i.e., the loading motion is sufficiently slow that

inertia effects can be ignored).

In a relaxation test, it is also normal to assume that the material has no

previous stress or strain history or if one did exist, the effect has been nullified

in some way. One method to accomplish this for polymers is to anneal the

sample at a suitable temperature sufficient to remove any previous history and

then to cool very slowly. The nature of such a process will become obvious in

later sections.

If a polymer is loaded in the described manner, the stress needed to maintain

the constant strain will decrease with time. Eventually, the stress will go to zero

for an ideal thermoplastic polymer but will decrease to a constant value for a

crosslinked polymer. The strain input and the stress output for typical thermoset

and thermoplastic materials in a relaxation test is shown in Fig. 3.12.
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Obviously, if the stress is a function of time and the strain is constant, the

modulus will also vary with time. The modulus so obtained is defined as the

relaxation modulus of the polymer and is given by,

E tð Þ ¼ σ tð Þ
ε0

¼ Relaxation Modulus ð3:1Þ

or

σ tð Þ ¼ ε0E tð Þ ð3:2Þ

The latter equation is the uniaxial stress-strain relation for a polymer analogous

to Hooke’s law for a material that is time independent but is valid only for the

case of a constant input of strain. The relaxation test provides the defining

equation for the material property identified as the relaxation modulus. More

general differential and integral stress-strain relations for an arbitrary loading

will be developed in later Chapters.

The limiting moduli at t¼ 0 and at t¼1 for a crosslinked material are

defined as,

E t ¼ 0ð Þ ¼ σ t ¼ 0ð Þ
ε0

¼ E0 ¼ Initial Modulus ð3:3Þ

E t ¼ 1ð Þ ¼ σ t ¼ 1ð Þ
ε0

¼ E1 ¼ Equilibrium Modulus ð3:4Þ

In addition to the relaxation test, another fundamental characterization test

for viscoelastic materials is the creep test in which a uniaxial tensile
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Fig. 3.12 Relaxation test: strain input (left) and qualitative stress output (right)
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(or compression or torsion) bar is loaded with a constant stress at zero time as

shown in Fig. 3.13. Again, the load is applied quasi-statically or in such a

manner as to avoid inertia effects and the material is assumed to have no prior

history. In this case, the strain under the constant load increases with time and

the test defines a new quantity called the creep compliance,

D tð Þ ¼ ε tð Þ
σ0

¼ Creep Compliance ð3:5Þ

In this case,

ε tð Þ ¼ σ0D tð Þ ð3:6Þ

In a creep test, the strain will tend to a constant value after a long time for a

thermoset while the strain will increase without bound for a thermoplastic. Initial

and equilibrium compliances similar to initial and equilibrium modulus can also

be defined for thermosetting materials.
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Fig. 3.13 Creep and creep recovery tests: stress input (above) and qualitative material

strain response (below)
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An equally important facet of a constant stress test is to understand the resulting

strain variation if the stress is removed. This is referred to as a creep-recovery test

and is also shown in Fig. 3.13. For an ideal thermoset material, the strain will

decay to zero after a sufficient time interval which may be quite long compared

to the time of loading. For an ideal thermoplastic material, a residual deformation

or permanent strain will remain even after a very long (or infinite) time.

The deformationmechanisms associatedwith relaxation and creep are related to

the long chain molecular structure of the polymer. Continuous loading gradually

induces strain accumulation in creep as the polymer molecules rotate and unwind

to accommodate the load. Similarly, in relaxation at a constant strain, the initial

sudden strain occurs more rapidly than can be accommodated by the molecular

structure. However, with time the molecules will again rotate and unwind so that

less stress is needed tomaintain the same strain level. It is also clear from these tests

that polymers have some characteristics of a solid and some characteristics of a

fluid. In a relaxation test, the ratio of the initial stress and strain is,

E t ¼ 0ð Þ ¼ σ0
ε0

ð3:7Þ

and in a creep test,

D t ¼ 0ð Þ ¼ ε0
σ0

ð3:8Þ

which is analogous to the behavior of an elastic solid. On the other hand in a

creep test the rate of change of strain (or slope) for a thermoplastic material is,

dε t ¼ 1ð Þ
dt

¼ constant ð3:9Þ

after a sufficiently long period of time which is characteristic of a fluid. The flow

characteristics of a thermoplastic are due to the lack of primary bonds between

molecular chains and the solid characteristics of a thermoset are due to entangle-

ments and the primary bonds between individual chains. In both thermosets and

thermoplastics, creep (which is also viscous like), is related to the motion of

molecules between entanglements, while the mechanisms for creep are further

limited to motion between crosslinking sites for thermosets. The initial and equi-

librium moduli of a thermoset are solid like with the former being due to both

entanglements and crosslinks and the latter being principally due to crosslinks.
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3.4.2. Isochronous Modulus Versus Temperature Behavior

The variation of modulus with temperature can be determined from relaxation

tests conducted at different temperatures. In a relaxation test (Fig. 3.14)
conducted at a constant temperature, the ratio of stress to strain at a given instant

in the time of ten seconds, one minute, or another suitable time, is identified as

the ten seconds modulus, E(10), or one minute modulus, E(1), etc.

E10 ¼ E t ¼ 10 sec :ð Þ ¼ σ t ¼ 10 sec :ð Þ
ε0

¼ 10 sec : Relaxation Modulus ð3:10Þ

The variation of the 10 seconds relaxation modulus with temperature for amor-

phous, crystalline and crosslinked polystyrene is shown in Fig. 3.15 (after

Tobolsky 1962). Similar curves are shown for polyblends in Fig. 3.16. As may

be observed, there are five regions of viscoelastic behavior. These are the glassy,

transition (“leathery”), rubbery plateau, rubbery flow and liquid flow regions. In

some texts, only four regions are identified with the rubbery flow region not

being identified separately from the liquid flow region. Thermoset materials do

not show a liquid flow region though if the temperature is very high for a

prolonged period, degradation can take place and give the appearance of a

flow region. Also, the color of the polymer will darken and degradation will

be obvious. An example will be given later. The transition region is suppressed

in crystalline materials as shown in Fig. 3.15.

Two very important temperatures are indicated in Fig. 3.15 and are the melt

temperature (or first order transition temperature), Tm, and the glass transition

time, t10 sec.
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Fig. 3.14 Definition of the 10 seconds relaxation modulus for an isothermal test
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(or second order transition temperature) Tg. The Tm and Tg can only be

determined approximately from isochronous modulus-temperature data similar

to that given in Fig. 3.15. Often, manufacturers specifications will define a

softening temperature which is not clearly defined as either the Tm or the Tg

but is somewhere in between the two. The Tg is also frequently determined

approximately from DMA (dynamic mechanical analysis – see Chap. 5) but the

most accurate procedure to determine both Tm and Tg is through specific or

relative volume measurements as obtained from a dilatometer. Typically the

relative or specific volume of amorphous or crystalline polymers varies with

temperature as shown in Fig. 3.17. The Tm is identified as the temperature at

which a discontinuous change in relative volume takes place while the Tg is the

temperature at which a discontinuous change in the slope of the relative volume

takes place. These concepts are discussed in more detail in Chap. 4 for crystal-

line polymers and in Chap. 7 for concepts of polymer aging.

Fig. 3.15 E(10 sec.) for a crystalline polystyrene (A), a lightly cross-linked polystyrene

(B), and amorphous polystyrene (C)
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In Fig. 3.17, both occupied and free volume regions are indicated. The

occupied volume is the portion of polymer containing molecular mass and the

free volume represents the region within the polymer that is not occupied by

molecular mass. As a rule of thumb, the free volume at the Tg is approximately

2.5 % of the total volume. The variation of free volume gives an interpretation of
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Fig. 3.16 E(10 sec.) for polyblends as the phase fraction of the two polymers varies from

0 % to 100 % (Data from Tobolsky 1962)

Fig. 3.17 Relative volume vs. temperature
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the molecular mechanisms associated with the five regions of viscoelastic

behavior shown in Fig. 3.15. Below the Tg, the amount of free volume is

small and there is little room for molecular motion. The vibratory motion of

individual atoms is suppressed, bond angles are frozen, and the rotation of the

backbone bonds and relative motion between chains is inhibited when the

polymer is stressed. At the Tg, however, the amount of free volume begins to

increase dramatically as temperature is increased affording extra room for

change in mobility and hence viscoelastic or time dependent behavior. At the

Tm secondary bonds become ineffective and chains are able to move relative to

each other freely.

3.4.3. Isochronous Stress-Strain Behavior: Linearity

For many applications and analysis methods, it is very important to determine if

the polymer mechanical response under specific conditions is linear or

nonlinear. Linearity of the constitutive response of a material is defined by

being the modulus response (compliance response) being independent of strain

(stress). Thus linearity can only be determined by rigorously ascertaining if the

creep compliance (or relaxation modulus) is independent of stress (or strain).

One method to determine linearity is by conducting creep (or relaxation) tests at

different stress levels (at least three levels as shown in Fig. 3.18) and obtaining

the creep compliance (or relaxation modulus) at constant times as well as the

“isochronous” stress-strain diagram. If this isochronous variation of stress versus

strain at any given time is linear as shown in the lower diagram Fig. 3.18, the
material is linear. If the variation is nonlinear, the material is nonlinear. Linear-

ity of the isochronous stress-strain plot derives from the fact that the ratio of the

strain to stress at a given time, ti, from each stress level must be identical if the

material is to be linear. That is for time t1 we have,

D t ¼ t1ð Þ ¼ εa t ¼ t1ð Þ
σ0 aj ¼ εb t ¼ t1ð Þ

σ0 bj ¼ εc t ¼ t1ð Þ
σ0 cj ð3:11Þ

which means that the compliance D(t¼ t1) is independent of stress level.

Similarly,

D t ¼ t2ð Þ ¼ εa t ¼ t2ð Þ
σ0 aj ¼ εb t ¼ t2ð Þ

σ0 bj ¼ εc t ¼ t2ð Þ
σ0 cj ð3:12Þ
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and

D t ¼ t3ð Þ ¼ εa t ¼ t3ð Þ
σ0 aj ¼ εb t ¼ t3ð Þ

σ0 bj ¼ εc t ¼ t3ð Þ
σ0 cj ð3:13Þ

Note that the conditions above can be deduced from the requirement that the

creep compliance is only a function of time (D(t)), and not a function of stress

level (D(t,σ)), for a linear material:

Fig. 3.18 Linearity as indicated by isochronous stress-strain data at constant times from

independent creep tests
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D tð Þ ¼ εa tð Þ
σ0 aj ¼ εb tð Þ

σ0 bj ¼ εc tð Þ
σ0 cj ð3:14Þ

Relaxation tests may be used in the same manner to determine linearity. The

above discussion focuses on stress linearity. For viscoelastic materials there is

another important linearity which will be discussed at length in Chap. 6, that of

translational linearity with time.

Before discussing mechanical models or other mathematical representation of

viscoelastic behavior, it is very important to note that the preceding section deals

only with observed behavior or the experimental response of polymers under

laboratory conditions. That is, the viscoelastic properties are defined from

observations of real behavior and need not be defined by a particular mathemat-

ical model. Mathematical models are developed for the simple purpose of

understanding and describing observed behavior. Also, as will be evident later,

other loading modes such as constant strain rate and steady state oscillation, etc.

can be used to determine viscoelastic properties.

3.5. Phenomenological Mechanical Models

In this section, elementary mechanical models that can describe some aspects of

viscoelastic polymeric behavior are presented. Although these simple models

cannot represent the behavior of real polymers over their complete history of

use, they are very helpful to gain physical understanding of the phenomena of

creep, relaxation and other test procedures and to better understand the relation-

ship between stress and strain for a viscoelastic material. Undoubtedly, the first

models were developed on the basis of observations and not just as a mathemat-

ical exercise. Generalized mechanical models are presented later in Chap. 5.

The simplest mechanical models for viscoelastic behavior consist of two

elements: a spring for elastic behavior and a damper for viscous behavior.

First it is convenient to introduce the model of a linear spring to represent a

Hookean bar under uniaxial tension where the spring constant is the modulus of

elasticity. As indicated in Fig. 3.19 the spring constant can be replaced by

Young’s modulus if the stress replaces P/A and strain replaces δ/L.

Consider a semi-infinite fluid as shown in Fig. 3.20. If a flat plate at the top of
the fluid is moved with a velocity, V¼ du/dt, and if the fluid is Newtonian the

shear deformation varies linearly from top to bottom assuming a no slip bound-

ary condition between the fluid and the plate as well as between the fluid and the

container.
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The strain on a differential element of the fluid is given by du/dy. The

Newtonian law of viscosity for the shear process shown in Fig. 3.20 may thus

be expressed as,

τ ¼ μ
d

dt

du

dy

� �
¼ μ

dγ
dt

¼ μ _γ ð3:15Þ

where μ is viscosity. A linear viscous damper (or dashpot) also shown in

Fig. 3.20will be used to model a Newtonian fluid such that it can form a uniaxial

fluid analogue to a tensile bar. The housing of the damper contains a fluid with a

viscosity μ. The diaphragm is perforated and when it is pulled through the fluid

by an applied force, motion occurs according to the Newtonian law of viscosity

given above.

Spring and damper elements can be combined in a variety of arrangements to

produce a simulated viscoelastic response. Early models due to Maxwell and

Fig. 3.19 Linear elastic spring analog for a Hookean elastic tensile bar

Fig. 3.20 Linear viscous damper analog for a Newtonian viscous fluid
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Kelvin combine a linear spring in series or in parallel with a Newtonian damper

as shown in Fig. 3.21. Other basic arrangements include the three-parameter

solid and the four-parameter fluid as shown in Fig. 3.22.

These models are very useful in understanding the physical relation between

stress and strain that occurs in polymers and other viscoelastic materials. For

example, if suddenly a constant stress is applied as in a creep test, each model

with a free spring will have a sudden increase in strain. The Kelvin will not have

a sudden increase in strain as the damper will not allow a sudden jump in strain.

Under the condition of constant stress, each model with a free damper (Maxwell

and four parameter fluid) will have an ever-increasing creep strain and will be

similar to the response for a thermoplastic polymer described in Fig. 3.13. In a

creep test the both the Kelvin and the three parameter solid will creep to a

limiting strain because the damper in each is constrained by the spring and as a

result the response will be similar to that of a thermoset polymer described in

Fig. 3.13. In relaxation, the stress will decay to zero for those models with a free

damper (Maxwell and four parameter fluid) and the stress will decay to a

limiting value for those without a free damper (Kelvin and three parameter

solid) as shown in Fig. 3.12 for thermoplastic and thermosetting materials

respectively. Note that a simple stress relaxation test is not possible for a Kelvin

model as the damper will prohibit a sudden increase in strain.

Maxwell fluid model Kelvin solid model

Fig. 3.21 Spring and damper arrangements for Maxwell and Kelvin models

Three parameter solid model Four parameter fluid model

Fig. 3.22 Spring and damper arrangements for three and four element models
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3.5.1. Differential Stress-Strain Relations and Solutions
for a Maxwell Fluid

The models described in the preceding section are useful in developing mathe-

matical relations between stress and strain in viscoelastic polymers and in giving

insight to their response to creep, relaxation and other types of loading. Consider

again the Maxwell fluid from Fig. 3.21,

Maxwell fluid

An equation between stress and strain can be obtained for any mechanical

model by using equilibrium and kinematic equations for the system and consti-

tutive equations for the elements. For a Maxwell fluid, equilibrium gives,

σ ¼ σs ¼ σd ð3:16Þ

where σ is the applied stress, σs is the stress in the spring and σd is the stress in
the damper. The kinematic condition is,

ε ¼ εs þ εd ð3:17Þ

where ε is the total strain in the Maxwell element, εs is the strain in the spring

and εd is the strain in the damper. The constitutive equations are,

σs ¼ Eεs ¼ σ ð3:18Þ

and

σd ¼ μ
dεd
dt

¼ μ _εd ¼ σ ð3:19Þ

Differentiating Eq. 3.17 and replacing the strain rates of the spring and damper

using Eqs. 3.18 and 3.19 gives after rearrangement,

_σ þ E

μ
σ ¼ E _ε ð3:20Þ

The result indicates that the relation between stress and strain for a material that

is Maxwellian in behavior is a differential equation which must be solved for

particular cases of applied stresses or strains. In viscoelastic literature, it is usual
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to write the differential equation in a standard form with ascending derivatives

from right to left on both sides of the equation. Hence,

σþ μ
E
_σ ¼ μ _ε ð3:21Þ

or

σþ p1 _σ ¼ q1 _ε ð3:22Þ

Differential equations for all mechanical models can be found using the same

procedure. In this form the inverse of the coefficient of the stress rate is defined

as the relaxation time, i.e. τ¼μ/E.

To obtain the solution of Eq. 3.20 for the case of creep note the applied stress
is constant and can be written as,

σ tð Þ ¼ σ0H tð Þ ð3:23Þ

where H(t) is the Heavyside function and is defined as,

H tð Þ ¼ 1 for t > 0

H tð Þ ¼ 0 for t < 0
ð3:24Þ

In other words the stress is constant for time greater than zero. With this input the

solution of Eq. 3.20 is,

ε tð Þ ¼ σ0
1

E
þ t

μ

� �
ð3:25Þ

or

ε tð Þ ¼ σ0D tð Þ ð3:26Þ

where

D tð Þ ¼ 1

E
þ t

μ

� �
ð3:27Þ

is the creep compliance.

The creep and creep recovery behavior for a Maxwell fluid is shown in

Fig. 3.23a and agrees with the description of a thermoplastic materials given

in Fig. 3.13.
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The solution of Eq. 3.20 for relaxation is obtained using a step input in strain,

ε tð Þ ¼ ε0H tð Þ ð3:28Þ

with the resulting stress output of,

σ tð Þ ¼ ε0Ee�t=τ ð3:29Þ

where

E tð Þ ¼ Ee�t=τ ð3:30Þ

is the relaxation modulus. The relaxation behavior for a Maxwell fluid is shown

in Fig. 3.23b and agrees with the description of thermoplastic materials given in

Fig. 3.12.

From Eq. 3.29, the stress at a time equal to the relaxation time is,

σ t ¼ τð Þ ¼ σ0=e ð3:31Þ

(a) Creep and creep recovery (b) Relaxation

Fig. 3.23 Creep, creep recovery and relaxation response of a Maxwell fluid
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This result provides a general definition of the relaxation time of a polymer and

allows the relaxation time to be found easily from experimental data without

recourse to a mechanical model. It can be used as a material property to give an

indication of the time scale associated with viscoelastic response in a polymer

and is indicative of the intrinsic viscosity of the polymer. It should again be

noted that the relaxation time for a Maxwell model is related to the viscosity

through the equation, τ¼μ/E. In a sense, the Maxwell model provides a

defining relationship for the viscosity of a material. It will be shown later that

a polymer possesses a distribution of relaxation times and that an individual

chain can be thought of as having various relaxation times.

It is instructive to consider the response to a Maxwell fluid under a constant

strain rate loading as shown in Fig. 3.24a. For a constant strain-rate,

ε ¼ Rt and dε=dt ¼ R ¼ constant ð3:32Þ

The differential equation then becomes

σþ μ
E
_σ ¼ μR ð3:33Þ

and the solution can be shown to be,

σ tð Þ ¼ τER 1� e�t=τ
� �

ð3:34Þ

or, since t¼ ε/R

σ εð Þ ¼ τER 1� e�ε=τR
� �

ð3:35Þ

For various constant strain rates, several results are plotted in Fig. 3.24b, c. Note
that the time scale and the strain scale in these two figures are related by the

constant rate of each test and obviously the abscissa can be interpreted as only

strain. While the stress versus time curves would be linear for a single spring

(a pure elastic material), the result for the Maxwell element appears nonlinear

since the damper continuously relaxes some of the stress as time increases. The

apparent stress-strain behavior (or plot of Eq. 3.35) is therefore as shown in

Fig. 3.24c. That is, the stress-strain response might be mistakenly interpreted as

nonlinear, even though the Maxwell model is composed only of linear elements.

The reason, of course, is due to the simple relationship between strain and time.

If isochronous stress-strain curves were constructed for a Maxwell model using
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creep or relaxation data or the constant strain rate data of Fig. 3.24, a linear

stress-strain response would be obtained. Also the construction of isochronous

stress-strain curves from constant strain rate tests as given in Fig. 3.24 would be
linear (see problem 3.5).

The results shown in Fig. 3.24c are very similar to those for the polymers

illustrated in Fig. 3.6. From this example, it is now clear that the apparent

nonlinear stress-strain response displayed in Fig. 3.6 may, in fact, be linear

prior to yielding. The point being that it is not possible to determine if a material

is linear just by looking at the shape of an experimentally determined response to

a constant strain rate test as generally conducted in the laboratory. Linearity can

only be assessed by carefully determining if the material response is independent

of stress regardless of loading type, e.g., by the isochronous stress-strain dia-

grams described earlier. The importance of this principle cannot be overstated.

Using Eq. 3.35 it is also possible to show that constant strain rate properties

vary with temperature for a Maxwell model and would be similar to the results

described earlier in Fig. 3.6 (see problem 3.6).

A constant strain rate test may be used to determine the relaxation modulus

and a constant stress-rate test may be used to find the creep compliance. Steady

state oscillation tests may also be used to determine the viscoelastic properties of

polymers. These details and the interrelation between various test approaches

are given in Chaps. 5 and 6.

(b) Stress vs time
R3>R2

(a) Strain vs time
>R1

(c) Apparent stress-
strain response

Fig. 3.24 Stress response of a Maxwell model in a constant strain-rate test

94 Polymer Engineering Science and Viscoelasticity: An Introduction

http://dx.doi.org/10.1007/978-1-4899-7485-3_5
http://dx.doi.org/10.1007/978-1-4899-7485-3_6


3.5.2. Differential Stress-Strain Relations and Solutions
for a Kelvin Solid

The Kelvin model is also frequently used to describe the phenomena of creep.

Recall the Kelvin solid from Fig. 3.21.

Kelvin solid

The equilibrium equation is,

σ ¼ σs þ σd ð3:36Þ

and the kinematic condition is,

ε ¼ εs ¼ εd ð3:37Þ

The constitutive equations are,

σs ¼ Eεs
σd ¼ μ _εd

ð3:38Þ

and the differential equation becomes,

σ ¼ Eεþ μ _ε ð3:39Þ

or

σ ¼ q0εþ q1 _ε

Under creep loading, the solution becomes,

ε tð Þ ¼ σ0
E

1� e�t=τ
� �

ð3:40Þ

and the creep compliance is,
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D tð Þ ¼ 1

E
1� e�t=τ

� �
ð3:41Þ

A schematic of the result is given in Fig. 3.25.

There is no initial elasticity as the damper only allows the spring to move

slowly with time. Also, the Kelvin model is not useful in understanding the

relaxation response of materials because the damper does not allow the spring to

move instantaneously.

Note, for a very large time, a constant strain state, ε1, is achieved

ε t ¼ 1ð Þ ¼ ε1 ¼ σ0=E ¼ σ0D1 ð3:42Þ

and 1/E is the corresponding equilibrium compliance.

The retardation time, τ, is defined as the time required for the strain to come

within 1/e of its asymptotic value. That is, Eq. 3.40 becomes,

ε t ¼ τð Þ ¼ σ0
E

1� e�1
� � ¼ ε1 1� 1

e

� �
ð3:43Þ

Again, the concept of a retardation time can be used as an indication of the

intrinsic viscosity of a polymer as the transient strain in a creep test occurs due to

viscosity of the assembly of molecular chains. The retardation time of a polymer

can be determined from a creep test by considering only the experimental data

according to the above definition.

Fig. 3.25 Creep of a Kelvin solid
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3.5.3. Creep of a Three Parameter Solid and a Four
Parameter Fluid

A single Maxwell element is not realistic for characterizing a polymer as no

transient response is shown in a creep test, i.e., the creep response is linear with

time. A single Kelvin element is also not accurate as no instantaneous elastic

response occurs in a creep test. A more realistic result for creep is obtained if a

Kevin solid is combined with a Maxwell fluid to obtain the four-parameter fluid

as in Fig. 3.22.

Four parameter fluid

The differential equation can be derived by following similar procedures as

previously given for the Maxwell and Kelvin elements (see problem 3.2). The

resulting equation can then be solved for the case of creep. However, the creep

response can also be obtained by superposition by adding the creep response of

Kelvin and Maxwell elements to obtain,

ε tð Þ ¼ σ0
1

E0|{z}
elastic

þ 1

E1

1� e�t=τ
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
delayed elastic

þ t

μ|{z}
flow

6666664

7777775 ð3:44Þ

The behavior shown here represents the most general type behavior possible for

a viscoelastic material, instantaneous elasticity, delayed elasticity and flow.

Some texts do not include the flow term as a viscoelastic component, preferring

instead to define viscoelastic behavior only for models with no free damper or

flow term.

The response of a four parameter fluid in a creep and creep recovery test is

given in Fig. 3.26 and is recognized as the response of a thermoplastic type

polymer as given earlier in Fig. 3.13.
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By eliminating various elements in the four-parameter model the response of

a Maxwell fluid, Kelvin solid, three-parameter solid (a Kelvin and a spring in

series) can be obtained and the model can be used to represent thermoplastic

and/or thermoset response as illustrated in Fig. 3.13. For example the creep

response of a three-parameter solid is obtained by eliminating the free damper in

Eq. 3.44 and gives the creep and creep recovery response shown in Fig. 3.13 for
a crosslinked polymer.

The four-parameter fluid can also be evaluated in relaxation but typically,

Maxwell elements in parallel are used for relaxation and Kelvin elements in

series are used for creep.

3.6. Review Questions

3.1. What are some advantages of using polymers as structural materials?

3.2. What are some disadvantages of using polymers as structural materials?

3.3. What is the difference between a thermoplastic and thermoset?

3.4. What is a coupling agent?

3.5. What is a plasticizer?

3.6. What is the correct name for ABS?

3.7. Describe vulcanization.

3.8. Give the complete names for LDPE, LLDPE, HDPE.

3.9. Sketch creep and creep recovery curves for a VE solid and a VE fluid. Label

all significant points. Also identify which curve would be expected to

represent a linear polymer. Which would represent a cross-linked polymer.

3.10. Sketch the response of a Maxwell fluid to a creep and a creep recovery

tests.

Fig. 3.26 Creep and creep recovery of a four-parameter fluid
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3.11. Sketch relaxation curves for a VE solid and a VE fluid. Label all signif-

icant points. Also identify which curve would be expected to represent a

linear polymer. Which would represent a cross-linked polymer.

3.12. Describe in detail how the “10 seconds” modulus is found. Give a sketch

of a typical “ten seconds” modulus curve for an amorphous polymer as a

function of temperature and label the five regions of VE response. Show

on your sketch curves for amorphous thermoplastic, crystalline thermo-

plastic and thermosetting polymers. Indicated the location of the Tg and

the Tm.

3.13. Give a proper definition for Tg and the Tm and discuss methods for

determining these quantities.

3.14. Sketch the variation of the specific volume vs. temperature for an amor-

phous polymer. Indicate regions of free volume, occupied volume, the Tg

and the Tm. Give the correct names for the Tg and the Tm.

3.15. Give an accurate description of how you would determine the linearity of a

VE material.

3.16. Indicate on a sketch how stress strain properties of polymers typically

depend on (a) strain-rate, (b) temperature. (Use separate sketches.)

3.17. Recalling class discussion and/or class notes, give the proper equation for

the creep compliance of a four-parameter fluid. Indicate the instantaneous

elasticity term, the delayed elasticity term, and the flow term.

3.7. Problems

3.1. Derive the differential equation for a three parameter solid.

3.2. Derive the differential equation for a four-parameter fluid.

3.3. The DE for a Maxwell model is, σ + μ/E dσ/dt¼ μ dε/dt. Determine the

stress output for a relaxation test by solving this DE and sketch the resulting

curve.

3.4. Given the relaxation data below. Determine the relaxation time. (The stress

remains constant after t¼ 35 minutes).
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3.5. A schematic of the constant strain-rate response of a Maxwell fluid is shown

below. Prove that the constant strain-rate behavior of a Maxwell fluid is

linear by constructing an isochronous stress-strain curve. (Note: Use the

known form of the analytical solution. Do not attempt to use the schematic

curves below as they are not to scale).

3.6. Prove that the generic (general shape) constant strain rate and temperature

properties for a polymer can be phenomenologically explained using a

Maxwell model. Hint: think of the parameters in the Maxwell model.

Which of these are affected by temperature?

3.7. Given the creep data shown below. Find the necessary parameters to

represent the data using a three-parameter solid. Plot your results on the

data given. (Clearly indicate your procedures).
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4. Polymerization and Classification

The discussion in previous chapters has provided a glimpse of the relationship

between the molecular structure of polymers and their mechanical behavior. In

this chapter the intent is to provide more detailed information about the molec-

ular structure of polymers and the relation of such structure to mechanical

performance. Typically materials courses taken by engineering students prior

to 1980 contained little, if any, information on the structure of polymers that

might be useful in the engineering design of polymer based structures. While

now most elementary books on materials do include a chapter or two on poly-

mers they are often omitted on the class syllabus due to the pressures of

schedules and/or time constraints. As a result, engineering students often do

not obtain a knowledge base that allows the safe design of polymeric structures.

All too frequently, the engineering design of structural polymers is based upon

principles that are best used for metals. The purpose of the present chapter is to

provide a framework for understanding the structure of polymers and hence the

structure–property relationships that give rise to their unique mechanical behav-

ior with time, temperature and other environmental parameters as discussed in

subsequent chapters. Due to the prevalence of polymers in industrial uses, a

general understanding of the concepts outlined in this chapter are essential for an

engineer to be able to make informed design decisions on polymeric components

and, importantly, to be able to discuss on common ground with synthesis people

the type of polymer needed to be produced for a given application.

4.1. Polymer Bonding

Atomic and molecular bonding of materials are discussed in elementary chem-

istry, physics and materials science courses. In general, the same bonds are

present in polymers but they need to be revisited with an emphasis on the

prevalent types found in polymers.

In general there are two types of bonds: (1) primary or chemical bonds and

(2) secondary or van der Waals bonds. Primary bonds are metallic, covalent, and

ionic. Metallic bonds are unique because all the atoms of a metal give up their
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valence electrons to share with all other atoms such that the electrons move

freely throughout the bulk of the material. Metallic bonds were not generally

important in polymers until the recent interest in conducting polymers using

metal oxides and the metallocenes. Covalent bonds are when two or more atoms

share electrons from their respective valence shells and constitute most of the

primary bonds found in polymers. A coordinate bond is a type of covalent bond

found in polymers in which the shared electrons come from only one atom

(Billmeyer 1984). Ionic bonds are those in which one atom donates an electron

to another atom, e.g. Na+Cl�. These bonds are not frequently encountered in

polymers but they do occur.

Unlike the case for metals, secondary bonds are of great importance in

polymers. These bonds are much weaker than covalent bonds, but for even

moderate chain length polymers these bonds have a significant impact on the

molecular and bulk properties of these materials. These intermolecular bonds are

based on electrostatic interactions and are due to either attractions between

permanent dipoles, quadrupoles, and other multipoles, or between a permanent

multipole and an induced charge on a second molecule (or moiety, in the case of

a polymer), or between transient multipoles. All such secondary bonds can be

considered van der Waals forces, but many texts use van der Waals to denote

induced and/or transient multipole interactions only. The induced interaction is

sometimes referred to as polarization, or sometimes induction bonding.

(Billmeyer (1984) indicates that induction bonds are controversial and the

term may no longer be in use). The transient interaction is very weak and is

known as dispersion or London dispersion forces, and arises from electrostatic

interactions between two molecules due to temporary inhomogeneous electron

density distributions in the outermost electron shells of these molecules.

Secondary bonding of the first type, that is, forces between multipoles, are the

strongest. This occurs when there is a permanent separation of two atoms with

strongly differing electronegativity, such as is found in an oxygen-hydrogen

(�OH) bond. Electronegativity can be thought of as the attraction that an atom

has for electrons in the outermost shell. Using the OH example, oxygen is

strongly electronegative (meaning it has a very strong attraction for an additional

electron), whereas hydrogen is very weakly electronegative (meaning that has

only a weak attraction for its single electron). This results in the oxygen side of

the OH bond having a partial negative charge. Water, consisting of two OH

bonds at an angle of 104.45 is strongly polar. Intermolecular forces due to the

electrostatic forces between these dipoles give water its special properties.

Dipolar van der Waals forces involving hydrogen are referred to as hydrogen
bonds, and many of the important properties of polymers and polymer side

chains are due to hydrogen bonding given the prevalence of hydrogen atoms

along most polymer chains.
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Using knowledge of the nature of attractive forces and energies between

atoms described in Chap. 2, bond lengths and energies of typical covalent

bonds found in polymers have been estimated and are shown in Table 4.1.

The disassociation energy (kJ/mole or k cal/mole) or cohesive energy density

(J/cm3) is the energy required to move a molecule far enough away from another

molecule so that the attractive force or energy between the two is negligible. The

cohesive energy densities to break the bond between mer units of a number of

linear polymers are shown in Table 4.2. In linear or thermoplastic polymers, it is

only the secondary bonding forces that hold the polymer together if entangle-

ments are neglected. Therefore the energies in Table 4.2 give only an estimate of

the breaking strength of a highly oriented samples of the various polymers listed.

Of even more interest is a comparison of bond lengths and energies given in

Table 4.3 for primary and secondary bonds which assists in understanding the

differences between linear and crosslinked polymers.

Table 4.1 Typical covalent bond lengths and energies found in polymers (Data from

Billmeyer 1984)

Bond Bond length (Å)
Dissociation energy

(kJ/mole)

C–C 1.54 347

C¼C 1.34 611

C–H 1.10 414

C–N 1.47 305

C¼N 1.15 891

C–O 1.46 360

C¼O 1.21 749

C–F 1.35 473

C–CI 1.77 339

N–H 1.01 389

O–H 0.96 464

O–O 1.32 146
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Except for the dispersion bond, all bonds are functions of temperature. As a

result, variations in temperature for the same polymer lead to different physical

states as represented by Fig. 4.1. The relation of these states to mechanical

properties will be discussed further in later sections and chapters. Notice that

both linear and cross-linked polymers are indicated and temperature can be used

to alter the state and or the chemistry of a polymer.

Table 4.3 Comparison of primary and secondary bond distances and energies (Data

from Rosen 1993)

Bond type Interatomic distance (nm)

Dissociation energy

(kcal/mole)

Primary covalent 0.1–0.2 50–200

Ionic 0.2–0.3 10–20

Hydrogen 0.2–0.3 3–7

Dipole 0.2–0.3 1.5–3

van der Waals 0.3–0.5 0.5–2

High

Low

T
em

pe
ra

tu
re

HighIntermolecular
Forces

Liquid

Solid Crystalline
Polymer

Fiber

Structural
Polymer

Thermoset
Elastomer

or
Flexible
Polymer

Low

Fig. 4.1 The interrelation of states in a bulk polymer (After Billmeyer 1984)

Table 4.2 Cohesive energies of linear polymers (Data from Billmeyer 1984)

Polymer Repeat unit

Cohesive energy

density (J/cm3)

Polyethylene –CH2CH2– 259

Polyisobutylene –CH2C(CH3)2– 272

Polyisoprene –CH2C(CH3)¼CHCH2– 280

Polystyrene –CH2C(C6H5)– 310

PMMA –CH2C(CH3)COOCH3– 348

PVC –CH2CHCL– 381

PET –CH2CH2OCOC6H4COO– 477

PAN –CH2CHCN– 992
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4.2. Polymerization

The polymerization process can be illustrated by the conversion of ethylene into

polyethylene which is one of the most widely produced polymers in the world.

The unsaturated ethylene molecule or monomer is shown in Fig. 4.2 below.

(In general, the term unsaturated refers to molecules with double or triple bonds

while those with only single bonds are termed saturated.)

Under appropriate conditions of heat and pressure in the presence of a

catalyst, the double bond between the two carbon atoms can be “opened” or

broken and replaced by a single saturated bond with other similarly opened

monomeric units on either side to form a long replicated strand of mer units as

illustrated in Fig. 4.3.

In an actual polymer each individual chain may contain from several thou-

sand to hundreds of thousand repeating mers or units.

The resulting solid polyethylene will contain a great many chains but each

chain will vary in length. This leads to the need to have special methods to

quantify the molecular weight of polymers and these will be discussed in a

subsequent section. In the case of polyethylene, the molecular bonds between

carbon atoms along the length of the chain are all primary or covalent. However,

the bonds between individual chains are secondary. For this reason, under a

Fig. 4.2 The ethylene molecule

Fig. 4.3 Repeating mer units of polyethylene
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sufficient increase in temperature, the secondary bonds become ineffective or

broken and the various long chains can move or flow past each other with

relative ease. Therefore, polyethylene is called a thermoplastic polymer as it

can be melted and molded or reformed. Polyethylene and other polymers with

similar characteristics are also called linear polymers because the backbone

chain as shown in Fig. 4.3 appears to be one-dimensional or like a long string.

It is important to note here that the use of the term linear to describe a type of

polymer refers only to the geometry of the chain and/or the bonding state

between chains and should not be confused with the term linear used to describe

the relation between stress and strain in earlier sections.

The term linear is also somewhat misleading with respect to chain geometry

as even a fully extended PE chain has more of a “zig-zag” shape as shown in

Fig. 4.4 because the equilibrium angle between alternate carbon atoms is 109�

280. And in reality, the chains are neither linear or of a zig-zag shape as,

depending on the temperature, carbon atoms can rotate relatively easily about

adjacent carbon atoms as shown in Fig. 4.5. As a result, an individual chain

within a polymer will form in a random manner during polymerization and the

final shape of a chain will appear as given in Fig. 4.6. Each long chain molecule

will exist together with many, many other chains in a tangled mass which has

often been said to resemble a tangled ball of many pieces of individual strings of

different length. A more precise description of a tangle ball of very long worms

has been used as each atom is in a state of constant motion or vibration. Indeed,

this analogy has been used to develop a reptation model to explain the manner in

which one long molecule can move through a seemingly continuous mass of

other chains (Aklonis and McKnight 1983). The method of displaying the atoms

as bar-mass linkages in Figs. 4.3 and 4.4 is traditional. It is often used to

visualize bonding arrangements and many types of computations associated

with molecular geometry and motion.

Fig. 4.4 Zigzag shape of polyethylene molecule
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The mer units of a number of frequently used thermoplastic polymers are

given in Fig. 4.7. Thermosetting or “cross-linked” polymers are also formed

under catalytic conditions of heat and pressure (often pressure is not needed).

However, in this case covalent bonds do exist between individual chains. This

“cross-linking” may vary considerably from polymer to polymer but generally

leads to a solid material which cannot be melted. Examples of several chemical

units that lead to cross-linked polymers are shown Fig. 4.8.

Fig. 4.5 Random nature due to rotation of carbon molecules

Fig. 4.6 Shape of a 1,000 link polyethylene chain (Treolar (1975), reprinted by permis-

sion of Oxford University Press)
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Pheno-formaldehyde or Bakelite was one of the first polymers introduced in

the US by Leo Bakeland in 1907. Polyurethane can be polymerized with other

elements to give either elastomeric or rigid polymers. The epoxy precursor

shown can be reacted with several other compounds to give well known epoxy

resins.

Polymer Repeating (Mer) structure

Polyethylene (PE)

Polyvinyl Chloride (PVC)

Polytetrafluoroethylene (PTFE)

Polypropylene (PP)

Polystyrene (PS)

Polymethylmethacrylate (PMMA)

Polycarbonate

H H

HH

H

H

H

CC

C

C C

F F

FF

C

CI

H H

CH3H

CC

H CH3

CH3

CH3

C

C

O

O

OH

CC

OO

CH3
C

H H

H

CC

Fig. 4.7 Mer units of selected thermoplastic polymers
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4.3. Classification by Bonding Structure Between
Chains and Morphology of Chains

One simple classification scheme according to bonding structure is shown in

Fig. 4.9. Here it is appropriate to emphasize the distinction between thermo-

plastic and thermosetting polymers,

Linear or Thermoplastic Polymers: Intrachain bonds are primary

(covalent). Interchain bonds are secondary (hydrogen, van der Waal,

dipole, etc.).

Crosslinked or Thermosetting Polymers: Intrachain bonds are primary.

Interchain bonds are both secondary and covalent. Very heavily crosslinked

polymers are often called network polymers. Very lightly crosslinked poly-

mers are termed elastomers.

Phenol-formaldehyde (bakelite)

Polyurethane

Bisphenol-A epoxy based polymer

Fig. 4.8 Mer units of selected thermoset polymers

All Polymers

AmorphousCrystalline

Thermoplastics Thermosets

Fig. 4.9 A simple classification scheme for polymers
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It is noted that there are variations in each type and schematically these may

be represented as given in Fig. 4.10. The branches in branched polymers may

vary from very short to very long. Long branches may be further classified as

comb-like, random or star shaped as shown in Fig. 4.11.

Fig. 4.10 Variations in thermoplastic (top) and thermosetting polymers (bottom)

Fig. 4.11 Variations in branched polymers
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Crystalline regions of a linear polymer in Fig. 4.10 are shown schematically

as small parallel segments within a chain. This ordering of the structure will be

discussed in a later section on morphology. However, it is important to note here

the relative amount of ordering (crystallinity) for polyethylene and the effect on

density and mechanical properties. This information is given in the Table 4.4.

As mentioned in Chap. 3, the fundamental bonding differences between

thermoplastics and thermosets lead to very different physical responses. Ther-

moplastics melt with temperature (temperature effects are discussed in detail in

Chap. 7) and thus are easier to process than thermosets. The Characteristics and

applications of several linear polymers are given in Table 4.5.

Table 4.4 Effect of crystallinity on density and strength of polyethylene (Data from

Hertzberg 1989)

Density (g/cm3) % Crystallinity

Ultimate tensile strength

MPa ksi

0.920 65 13.8 2.0

0.935 75 17.8 2.5

0.950 85 27.6 4.0

0.960 87 31.0 4.5

0.965 95 37.9 5.5

Table 4.5 Characteristics of several linear polymers

Material Characteristics Applications

Low density

Polyethylene

Branched crystalline, inexpen-

sive, good insulator

Films, moldings, squeeze bottles,

cold water plumbing

Polypropylene Crystalline, corrosion and

fatigue resistance

Fibers, pipe, wire covering

Nylon 66 Crystalline, tough, resistance to

wear, high strength

Gears, bearings, rollers, pulleys,

fibers

PTFE (Teflon) Crystalline, corrosion resis-

tance, very low friction,

non-sticking.

Coatings, cookware, bearings,

gaskets, insulation tape, non-stick

linings

PVC Amorphous, inexpensive, good

processability

Film, water pipes, insulation

PMMA Amorphous, high transparency Signs, windows, decorative

products
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4.4. Molecular Configurations

The terms configuration and conformations are often used to describe the

arrangement of atoms in a polymer and sometimes it seems as if they can be

used interchangeably. However, herein the description for each given by

Billmeyer (1984) will be used. Configurations describe those arrangements of

atoms that cannot be altered except by breaking or reforming chemical bonds.

Conformations are arrangements of atoms that can be altered by rotating groups

of atoms about a single bond. Each will be discussed in the subsections below.

4.4.1. Isomers

Polymers that have the same composition but with different atomic arrange-

ments are called isomers. There are many types of isomers and official termi-

nology is determined by IUPAC (International Union of Pure and Applied

Chemistry). Note, however, that various terms are sometimes used with

conflicting meaning in different sources. We will describe only a few of the

most important types of isomers in polymers and use the current IUPAC

language. Two fundamental isomers in polymers are stereoisomers and cis-
trans isomers. Isomers occur because polymers may have more than one type

of side atom or side group bonded to the main chain (e.g. PVC, see Fig. 4.7) such
that a mer unit would appear as in Fig. 4.12a in which R represents an atom or

side group other than hydrogen. Polymers with only one extra side group are

called “vinyl” polymers. A “head-to-head” arrangement of mers occurs when

the R groups are adjacent to each other, and a “head-to-tail” arrangement occurs

when the R groups bond to alternate carbon atoms in the chain as shown in

Fig. 4.12. The head-to-tail configuration predominates as polar repulsion occurs

between R groups in head-to-head configurations. Isomers where the line for-

mula differs, while the molecular formula is identical, such as those in

Fig. 4.12b, c, are referred to as constitutional isomers.

(a) Basic mer unit (b) Head to head config. (c) Head to tail config.

Fig. 4.12 Sequences for isomers
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For a polymer chain with a given sequence of mer groups, i.e., same consti-

tution, stereoisomers can then be distinguished. The three types of stereoisomers

(isotactic, syndiotactic and atactic) for a head-to-tail sequence are shown in

Fig. 4.13 and the two cis-trans isomers for a mer unit containing a double bond

are shown in Fig. 4.15. In stereoisomerism, the atoms are linked together in the

same order (e.g., head-to-tail) but their spatial arrangement is different.

The isotactic configuration (a) is when the R groups are all on the same side of

the chain. The syndiotactic configuration (b) is when the R group is on alternate

sides of the chain and the atactic configuration (c) is when the R group alternates

from one side to the other in a random pattern. Examples of stereoisomers for

polypropylene are given in Fig. 4.14.

Conversion from one type to another is only possible by breaking a carbon to

carbon bond, rotating and reattaching. This constraint can be seen best by use of

molecular models or three dimensional chain representations (e.g., Fig. 4.20). A
specific polymer may contain more than one type of stereoisomer but one may

predominate depending only on the synthesis procedure used. The type and

degree of tacticity is typically reported for polymers and is an important guide to

the physical properties, including melting point, crystallinity and flexibility.

(a) Isotactic (b) Syndiotactic

(c) Atactic

Fig. 4.13 Stereoisomers

4 Polymerization and Classification 113



Cis-trans isomerism is a special case of stereoisomerism in olefins, surround-

ing the carbon-carbon double bond. An example of cis-trans isomerism is given

by the isoprene mer and is shown in Fig. 4.15. In cis-isoprene the structure is

such that the CH2 groups are on the same side of the carbon to carbon double

bond and in trans-isoprene the CH2 groups are on the opposite side of the carbon

to carbon double bond. Conversion between the two configurations is not

possible by a simple rotation as the double bond is rotationally rigid. The cis

form is the basis of natural rubber, also known as cis-1,4-polyisprene, while the

trans form is the basis of gutta percha, trans-1,4-polyisoprene. There are signif-

icant physical differences between these isomeric forms as the trans configura-

tion allows crystallization and is a hard and rigid polymer in contrast to the

amorphous soft natural rubber.

(a)

(b)

(c)

Fig. 4.14 Atactic (a), isotactic (b) and syndiotactic (c) polypropylene

(a) Cis-isoprene (b) Trans-isoprene

Fig. 4.15 Cis-trans isomers for isoprene
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With these various molecular characteristics, it is now possible to have a more

precise classification scheme of polymers as is illustrated in Fig. 4.16.

4.4.2. Copolymers

The polymers described previously are generally referred to as homopolymers

because the mer units along the backbone chains are identical. However, it is

possible to form copolymers such that the mer units along the backbone chain

may vary. Depending on the process of polymerization, various sequences of

mers may occur along the backbone chain in random, alternating, block or graft

arrangement as shown in Fig. 4.17a.

Block copolymers are of particular interest in many technical applications

due to the ability of the block domains to phase segregate when the miscibility

between the individual polymers is low (measured by Flory Huggins parameter).

Since the individual polymer blocks are covalently bonded to each other along the

length of the chains, the polymers are unable to phase separate on a large scale, and

instead form regular micro- or nano-scale domains. A styrene-butadiene

block copolymer is a common example in which polystyrene (PS) mers and

polybutadiene (PB) mers form block domains along each polymer chain.

Fig. 4.16 Classification of polymers by molecular characteristics
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The proportion of PS to PB and the arrangement of the blocks leads to different

overall structures and properties. A triblock SBS is a common rubber with glassy

polystyrene endblocks connected through a long rubbery polybutadienemidblock

on each chain, leading to spheroidal PS domains dispersed in a rubbery PBmatrix.

The dispersed glassy domains lead to higher durability of the rubber. In general, as

the volume fraction of the minority phase increases in the copolymer, the phase

morphology changes with the minority phase progressing from spheroidal inclu-

sions, to cylindrical inclusions, to a bicontinuous gyroidal structure to lamellae as

the phase fractions approach 50 %. See Fig. 4.17b.

Thermoplastic elastomers (TPEs) mentioned in Chap. 3 are also block copol-

ymers. These are often multiblock chains consisting of alternating low polarity

random

alternating

multiblock

graft

diblock

triblock

(a)

(b)

Spheres
0-21%

Gyroid
33-37%

Cylinders
21-33%

Lamellae
37-50%

Increasing volume fraction of green phase

Fig. 4.17 (a) Chain structure of types of copolymers: random, alternating, graft and

block. (b) Block copolymer self-assembled domain morphology with increas-

ing volume fraction of minority (green) phase
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and high polarity segments. The shorter low polarity segments not only phase

segregate but also form semi-crystalline domains. The network of the crystalline

domains provide a physical cross-link structure which lead to improved

thermomechanical properties. With heat, the crystalline domains disassociate

which allow the TPEs to be processed by simpler thermoplastic processing

techniques. Thermoplastic polyurethanes are a common TPE consisting of

multiblock chains where crystalline domains form from the polar blocks.

Some sources consider SBS rubbers to be classified as a TPE, since they are

elastomers and thermoplastic, however the styrene domains are not crystalline.

4.4.3. Molecular Conformations

In an earlier section, it was suggested that the shape of a polymer molecule could

change because of a rotation about the bond between carbon atoms. An example

of a possible rotation is given in Fig. 4.18 where two possible positions,

staggered and eclipsed, of hydrogen atoms attached to two adjacent carbon

atoms are shown for the ethane molecule.

A better understanding of the geometry is possible by looking along the

carbon to carbon bond as shown below in Fig. 4.19. The potential energy of

the staggered position is slightly less than the potential energy of the eclipsed

position as the hydrogen atoms are slightly further apart. For this reason, the

staggered position is more favored or more stable than the eclipsed position. The

energy varies with position as shown.

Fig. 4.18 Staggered and eclipsed conformations of ethane
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Rotation may be quite restricted in a molecule with larger side groups.

However, many jumps between staggered positions will occur per second but

the amount of time spent in the unstable eclipsed position is small (Alfrey and

Gurne 1967).

Recalling the zig-zag shape of a polyethylene chain from Fig. 4.4 and that the
shape of the chain can change dramatically by rotation about the C-C bonds as

described in Fig. 4.5, it is easy to see that the chain can take on many confor-

mations. Again, as rotation about the C-C bond occurs, the energy state between

atoms changes because the distance between atoms changes slightly. The

extended “trans” conformation of the chain is shown in Fig. 4.20, where here

the term “trans” indicates that the bonds are rotated such that the hydrogens on

neighboring carbon atoms are in the staggered position. Figure 4.21 shows a

kinked conformation including both the trans and the gauche positions, where

the gauche configuration is such that the hydrogens on neighboring carbon atoms

are in a position intermediate to the staggered and eclipsed positions. The

variation of the energy state from the maximum state (where hydrogen atoms

on adjacent carbons are in the eclipsed position, not shown) to the gauche then

trans and back to the maximum is shown in Fig. 4.22.

Fig. 4.19 Potential energy versus, angle for ethane (Eclipsed is maximum and staggered

is minimum)
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Clearly the trans state is still preferred but the gauche can be relatively stable

state as well. It is to be noted that two gauche states occur. One is obtained by

rotating a single bond 120� CW while the other is obtained by rotating

120� CCW.

Fig. 4.20 Zig-zag shape of polyethylene molecule in the extended trans position

Fig. 4.21 Kinked polyethylene molecule in the trans and gauche positions

Fig. 4.22 Energy level in polyethylene chain with rotation about the C–C bonds
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The fully extended polyethylene chain is shown in Fig. 4.23 along with a

chain with several bond rotations and a convoluted chain that might result from

many rotations. Notice the similarity between the convoluted chain and that

given in Fig. 4.6, which was calculated using the general procedures in the next

section. It is easy to now visualize many intermingled chains giving rise to the

analogy of a tangled ball of string, which is in a constant state of agitation.

Again, depending on the temperature, many changes from one state to another

may occur per second. In the glassy or solid state few will take place, while in

the liquid state many rotations will occur. Further, which state is preferred will

depend upon whether the molecule is in a crystalline close packed state or in the

more loosely packed amorphous state. As a result, it is clear that many factors

tend to determine the conformations of a polymer molecule. Effects of orienta-

tion and temperature will be discussed in later Sections and Chapters.

4.5. Random Walk Analysis of Chain End-to-End
Distance

From the preceding sections it is seen that a single polyethylene chain could

virtually have any shape depending only upon rotations about each C-C bond. As

shown in Fig. 4.23, the chain could be fully extended or a tightly coiled ball. If

fully extended, the end-to-end distance would be the length of the chain while in

a tightly coiled arrangement, the end-to-end distance would be nearly zero.

Assuming a polyethylene chain with 10,000 mer units, that the C-C bond

angle is fixed at approximately 109� and that each bond is restricted to the

three positions of one trans and two gauche gives rise to 104,771 possible

Fig. 4.23 Various stages of conformations
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conformations (Painter and Coleman 1994). Due to thermal agitation, a single

chain, if it were not confined by other chains, might see many conformations

from highly extended to tightly coiled over a long period of time. However, very

little time would be spent in the extreme positions and most of the time would be

spent in an average convoluted state. Obviously, if one could apply a force to the

opposite ends of a single chain, the extended chain would be more difficult to

deform than the highly convoluted one. Thus, it is possible to begin to see a

relation between the shape of a molecule and its mechanical properties. More of

this will be discussed in following sections but for now, it is important to note the

relationship between end-to-end distance and mechanical properties. In a solid

polymer each chain will interact physically through entanglements with other

chains and there will be additional parameters associated with the interaction.

The purpose here, however, is to give an introduction to methods to estimate the

end-to-end distance or the shape of a chain.

Each chain will have its own length (number of mer units or molecular

weight), shape and end-to-end distance. The ability to calculate the average

shape or end-to-end distance of each chain and the average for all chains in a

polymer can give insight to the relation between structure (conformations in this

case) and properties. Because of the large number of possible arrangements of

atoms in a chain, a statistical approach is necessary. A simple random walk or

random flight method gives the correct form for end-to-end distance of an ideal

polymer chain. The only objective here is to show that this can be done and a

more in depth study of the required statistical thermodynamics can be found in

Painter and Coleman (1994), Billmeyer (1984) and Flory (1953).

In a random walk, a person starts from an initial position and walks x distance

in a straight line. The person then turns an arbitrary angle and walks another x

distance in a different direction. After n such operations, the objective is to

compute the probability that he or she is a distance between R and R+dR from

the starting point. In a random flight, the same procedure is used except the

process is accomplished in three dimensions instead of two.

To utilize this procedure to find the correct form of the end-to-end distance of

a single polymer chain, a number of assumptions must be made. In addition to

free rotation about the C-C bonds, it is assumed that the chain valance angle is

free, i.e. for polyethylene the angle of ~109� is no longer fixed but may be any

value. Further, it is assumed that the chain can move through itself, i.e. no

entanglements result.

Consider the distance between two carbon atoms to be a vector and that a

chain can be represented by a series of vectors as shown in Fig. 4.24,
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After ri steps in three dimensions, the distance between the starting and

ending point will be the sum of the vectors,

R ¼
Xn
i¼1

ri ð4:1Þ

where both R and ri are vectors. To find the scalar distance between chain ends,
the dot product is used,

R ¼ R � R½ �1=2
Xn
i¼1

ri

 !
�
Xn
j¼1

rj

 !" #1=2
ð4:2Þ

The dot product of the vector sums can be expanded as

R � R ¼ r1 þ r2 þ r3 þ � � �ð Þ � r1 þ r2 þ r3 þ � � �ð Þ
¼ r21 þ r22 þ r23 þ � � �� �þ 2 r1r2 cos ϑ12 þ r1r3 cosϑ13 þ � � �ð Þ
¼
Xn
i¼1

r2i þ 2r2 cosϑ12 þ cos ϑ13 þ � � �ð Þ
ð4:3Þ

Since the vectors are all the same length, r1 ¼r2¼. . .¼rn¼r (r is the length of the

C–C bond), and since the chain is freely jointed, all angles are equally probable

and the average of cosθ12 + cosθ13, etc. will be zero. As a result, the average end
to end distance is,

R ¼
Xn
i¼1

r2i

 !1=2

ð4:4aÞ

and since all links are the same length and there are n links,

r1

r2
r3

r4

rn-2

rn-1

rn

R

Fig. 4.24 Vector representation of polymer chain

122 Polymer Engineering Science and Viscoelasticity: An Introduction



R ¼ r nð Þ1=2 ð4:4bÞ

Thus, the end-to-end distance of the idealized molecule, using the rather restric-

tive assumptions, is proportional to the number of mer units. For example, the

end-to-end distance for a chain with 10,000 units would be 100 bond lengths.

This procedure is the method used by Treloar to obtain the estimated convolu-

tion of a polyethylene chain shown in Fig. 4.6 which is reproduced again in

Fig. 4.25 for emphasis.

Equation 4.4, while not exact for a real chain in a solid polymer, is of the

correct form as the end-to-end distance found using more sophisticated pro-

cedures which is also proportional to the number of links or mer units (Painter

and Coleman 1994).

Fig. 4.25 A 1,000 link polyethylene chain created by fully random walk method using

LAMMPS molecular dynamics simulator (Image courtesy of Dr. Zhiwei Cui)
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4.6. Morphology

At one time it was thought that polymers could not be crystalline because of the

supposed tangled nature of the many long chains composing a bulk polymer.

That is, the concept of a tangled ball of strings seemed to preclude long range

order. However, it was found that some polymers do cause diffraction of x-rays

and exhibit diffraction patterns indicative of short range order. See Painter and

Coleman (1994) for a good discussion of the x-ray technique as applied to

crystals and to polymers. Figure 4.26 gives an example of an x-ray diffraction

pattern for Polyoxymethylene with unoriented and oriented polymer chains

(from Billmeyer 1984).

Now it is well accepted that some but not all polymers can be crystalline. The

amount of crystallinity may vary anywhere from a few percent to as high as 98 %

(Rosen 1993). Normally, however, polymer crystallinity is much less than 98 %

and is most often less than 50 %. Polymers containing chains with bulky side

groups or branches do not generally crystallize and cross-links prohibit crystal-

lization. In general, transparent polymers are completely amorphous while

opaque or translucent homopolymers are generally crystalline. On the other

hand polymers with fillers or a second phase may be opaque due to the added

constituents and not due to their crystallinity.

Fig. 4.26 X-ray diffraction pattern for unoriented (a) and oriented (b) polyoxymethylene

(Billmeyer (1984, p. 294), reprintedwith permission of JohnWiley and Sons, Inc.)
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Probably the best method to evaluate crystallinity is through density mea-

surements. If, for example, specific volume (the inverse of density or vol./g) is

measured as temperature is decreased, a sudden and nearly discontinuous change

occurs at the melting point (due to a phase change from a very viscous fluid to a

semi-solid) for a crystalline thermoplastic polymer as shown in Fig. 4.27,

The degree of crystallinity, c, in percent can be obtained from,

c ¼ va � v

va � vc
� 100 ð4:5Þ

where va is the specific volume of the amorphous phase, vc is the specific volume

of the crystalline phase and v is the specific volume of the total sample. In

Fig. 4.27, va is found by extrapolating the v-T curve from above the melt

temperature, Tm, to 20� C. In order to find the degree of crystallinity, c, a
measure of vc is needed which is normally obtained from x-ray diffraction

measurements (McCrum et al. 1997).

While much has been learned about the crystalline structure of polymers, the

exact shape and structure of crystalline regions is still under intense study as

increasing the degree of crystallinity leads to improved thermo-mechanical

properties (Table 4.4). Relations between crystalline structure and mechanical

Fig. 4.27 Specific volume versus temperature for semicrystalline polymer, such as

polyethylene
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response will be discussed in more detail later. The first interpretation of

crystalline structure was suggested by x-ray diffraction studies and is known

as the “fringed micelle model”. The Bragg diffraction patterns for polymers are

broad and diffuse as compared to those from the more perfect forms of metals

and other crystalline materials. As a result, it was inferred that the size of the

crystallites were very small, being on the order of few hundred Angstroms

(Billmeyer 1984). In this model, a schematic of which is shown in Fig. 4.28, a
single molecule would traverse a number of amorphous and crystalline regions

because a polymer chain is much longer than a few hundred Angstroms. The

regions at the end of the crystallite would be the “fringe” and the crystallite

would be the “micelle”.

Polymer crystallinity was later observed experimentally by growing single

crystals from a dilute solution by either cooling or evaporating the solvent. A

single crystal grown by such a procedure is given in Fig. 4.29. In this manner,

thin plate like structures can be obtained that are about 105 Å long and about 102

Å thick as shown in Fig. 4.30. X-ray measurements indicated that the chains

were perpendicular to the face of the lamellae and the only way a long polymer

chain could fit in such a small space was to be folded. It was not clear if a chain

was completely contained in the lamellae or if it exited and reentered.

Fig. 4.28 Fringed micelle model
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One school of thought was that the chain exited the lamellae smoothly and

reentered at adjacent lattice sites as shown on the left (regular reentry model) and

others (especially Flory) thought the portion outside of the lamellae was quite

chaotic as shown on the right (switchboard reentry model). The controversy

served a good cause as, to prove his point, Flory is reported to have returned

from a conference where the subject was intensely debated and began a research

program to understand the reentry model. His effort was, in fact, successful and

in the process he was a forerunner in the development of a major new field of

study of polymers based upon statistical thermodynamics (for a more complete

discussion, see Painter and Coleman 1994). For single crystals, it has subse-

quently been shown that an intermediate model is more correct, with virtually all

of the chains reentering the crystal within 3 lattice sites from their exit point. For

highly flexible polymers the number of adjacent reentry points can be as high as

80 %.

Fig. 4.29 Electron micrograph of a nylon 6 single crystal. The lamellae thickness are

50–100 Å. (Geil (1960), reprinted with permission of John Wiley and

Sons, Inc.)
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The folded chain model is now well accepted as also occurring in bulk

polymers crystallized from the melt but the lamellae may be as large as one

micron thickness. In addition, for bulk crystallization amorphous regions are

interspersed between crystalline lamellae and the degree of regular reentry of

chains into a given lamellae is small. A more accurate picture is given in

Fig. 4.31, where a significant number of “tie molecules” are shown connecting

the crystalline regions; these molecules are important in the improved mechan-

ical properties of crystalline polymers. According to Rosen (1993), recent data

indicates the existence of a third interfacial phase of significant volume fraction

between the lamellae and amorphous regions, but little is understood about this

interphase region at present.

Regular
Reentry
Model

Irregular or
Switchboard

Model

~ 10 A
o

~ 100 A
o

5

Fig. 4.30 Folded chain model for a crystalline lamellae in polymers

Fig. 4.31 Compromise model: folded chains tied together by amorphous regions as in

the fringed micelle model
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As a polymer is super-cooled below the melt temperature, Tm, the crystalline

regions nucleate at minute impurity sites, growing to form spherical domains

called spherulites. These spherulites grow radially until another spherulite is

encountered as shown in Fig. 4.32. The rate of cooling determines the degree of

crystallinity of the solid polymer and for many materials a totally amorphous

glass is possible by very rapid cooling rates. Lower cooling rates allow forma-

tion of spherulitic crystals and the number and size of spherulites can be

modified by choosing cooling rates and temperatures.

Examples of spherulites obtained using microscopy are shown in Figs. 4.33
and 4.34. Shown in Fig. 4.33a is a branched spherulite in polypropylene

observed via AFM while Figs. 4.33b and 4.34a, b show spherulites in polysty-

rene, polyethylene and poly(hydroxybutyrate) respectively. The latter figures are

optical micrographs taken of thin sections of polymers as seen under polarized

light (crossed polarizers). The dark areas are the characteristic “maltese cross”

created due to the birefringent properties of polymers indicating a crystalline

structure.

Birefringence occurs because polarized light passing through a crystal is

broken up into two components propagating along a plane perpendicular to the

principal axis of the crystal. Each component travels at a different velocity and

therefore one is retarded relative to the other. On emerging and passing through a

second polarizer, interference between the two waves gives rise to the dark

“fringes” and hence the maltese cross. Actually the maltese cross is indicative of

the directions of principal stress which are perpendicular to each other in the

t1 t2 t3 t4

Fig. 4.32 Stages in the growth of a spherulite
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plane of the section. The nature of birefringence in crystals has been known for

well over a century (as discussed in the Introduction) and is the basis for the well

known photoelastic stress analysis method. In this procedure, initially amor-

phous polymers become optically anisotropic due to the application of external

forces. That is, the external forces cause a slight realignment of the molecular

structure such that the polymer reacts to light as if it were a crystal. As a result,

the stress inside the material can be visualized and analyzed using the birefrin-

gence effect. The isochromatic fringes (lines of equal shear stress) in a sample of

polycarbonate containing a crack are shown in Fig. 4.35.

Cross-linked or thermosetting polymers are typically used for photoelastic

stress analysis. Thus, it is clear that a certain amount of crystallinity can be

induced by stresses in network polymers but the degree of crystallinity is

necessarily very small.

A schematic visualization of a spherulite is given in Fig. 4.36. Here the

spherical nature is apparent and it is to be noted that the individual fibrils/

lamellae grow radially. The individual fibrils have a folded chain structure and

the chain traverses both crystalline regions and amorphous regions as illustrated

in Fig. 4.31 of the folded chain model.

Fig. 4.33 Examples of spherulites: (a) branched spherulite in polypropylene from AFM

(Zhou et al. (2005), reprinted by permission from Elsevier). (b) Field of

growing spherulites in polystyrene (Reprinted by permission from Beers

et al. Copyright 2003, American Chemical Society)
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The application of large external loads to linear or thermoplastic polymers

can cause the material to yield and for plastic flow to occur. An example for the

plastic flow or the creation of a necked region in polycarbonate was given in

Fig. 3.7 in Chap. 3. Further application of the load can produce a severely drawn
material in which the molecular chains have become oriented due to the external

load. A schematic illustration of the progression of the drawn material is given in

Fig. 4.37 together with a description of how the fold chains move in order to

create the oriented structure in the drawn material. Orientation of the lamellae in

Fig. 4.34 Examples of spherulites: (a) spherulites in polyethylene (Armistead et al.)

(Reprinted by permission from Armistead et al. Copyright 2003, American

Chemical Society). (b) Ringed spherulites of poly(hydroxybutyrate) (Hobbs

et al. (2000), reprinted by permission of John Wiley and Sons, Inc.)

Fig. 4.35 Birefringence photograph of polycarbonate showing isochromatic fringes

surrounding a crack
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the direction of drawing along with deformation induced crystallinity in the

amorphous regions leads to an overall increase in crystallinity with drawing.

The cold drawing of thermoplastic polymers can drastically improve mechan-

ical properties and is often performed to create favorable properties for certain

applications. A case in point is the biaxial stretching of polycarbonate for use in

aircraft canopies. The ability to be drawn (either cold or hot) is of great use

commercially. For example, PET (polyethylene terephthalate), which is often

used for soft drink bottles, is first produced by injection molding as a small test

tube size object. Before filling with liquid, the material is heated and “blown” as

large as the standard 2 l soft drink container.

Fig. 4.36 Schematic diagram of a spherulite. Inset detail after Callister (1994)

132 Polymer Engineering Science and Viscoelasticity: An Introduction



4.7. Molecular Weight

The atoms in polymer chains, as in metals and all other materials, consist of

electrons orbiting a nucleus containing protons and neutrons. The atomic mass

(weight) of an element is the sum of the masses of the protons and neutrons in its

nucleus, since the mass of the electrons is several orders of magnitude smaller

and therefore negligible. Note that although atomic mass is the more appropriate

(and ISO standard) term, by common usage atomic weight is most often found in

polymer literature. The number of protons defines the element, but for some

elements several isotopes are possible, all having the same number of protons

but different numbers of neutrons. The atomic mass of such atoms is given in the

periodic table as the weighted average (according to abundance in nature) of the

atomic masses of the naturally occurring isotopes. A proton and a neutron have

the same mass to three significant digits and the atomic mass unit (amu) is

defined on the basis of Carbon-12, the most common isotope of Carbon

containing 6 protons and 6 neutrons, with an atomic mass of exactly 12.000

Fig. 4.37 Illustration of the transformation from a lamellar to a fibrillar structure by

drawing (After Painter and Coleman (1994), original from Peterlin (1965))
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amu. The atomic mass shown in the periodic table for Carbon is slightly higher

(12.011) as it accounts for small amounts of the isotope 13C.

Since one does not typically work with single atoms or molecules, quantities

of chemical substances are given in moles. A mole of an element is defined as

6.02214� 1023 (Avogadro’s number) atoms; a mole of a given type of mole-

cule is 6.02214� 1023 molecules. Avogadro’s number is defined to provide a

simple conversion to grams: 6.022� 1023 atoms (or molecules) have the mass in

grams of the atomic mass of a single atom (molecule). For example, 1 mole

(6.022� 1023 atoms) of 12C has a mass of exactly 12.0 g. The conversion is

therefore

6:02214 � 1023amu ¼ 1 gram

or 1 amu ¼ 1:66054 x 10�24g

As an example, consider a mole of water molecules (H2O) which contains

6.022� 1023 atoms of oxygen and 2� (6.022� 1023) atoms of hydrogen. The

atomic masses of oxygen and hydrogen are 15.9994 amu and 1.0079 amu

respectively. Therefore a mole of water has a mass of 2� (1.0079 g)

+ 15.9994 g¼ 18.015 g. This example also emphasizes that moles are the

necessary units to use for chemical reactions as the proper number of atoms

must be tracked: e.g., one mole of oxygen and two moles of hydrogen can be

combined to form 1 mol of water; 1 g of oxygen and 2 g of hydrogen are not in

the proper ratio to form a gram of water owing to the differing masses of the

elements.

Historically, the terms gram-atom and gram-molecule were originally coined

to refer to the mass in grams of Avogadro’s number of atoms or molecules,

respectively; with the introduction of the term mole, these early terms are less

used but can still be found in the literature. The term “molecular weight” is by

far the most common expression used to refer to the mass of a molecule. A 1992

ISO standard dictates that the term “relative molecular mass” should replace

“molecular weight” in all publications, but in practice adoption of the terminol-

ogy has been slow. The word “relative” is used in the expression to convey that

the mass is given relative to 1/12 the mass of an atom of Carbon-12. Since the

mass of 12C is exactly 12.00 amu, the relative molecular mass provides the mass

of a molecule in amu although technically the quantity is unitless. Another term

sometimes seen is “molar mass” or “relative molar mass”. Both of these latter

terms refer to the mass per mole of a substance and are expressed in grams/mole.

To give an example for a polymer, a single polyethylene chain with a degree

of polymerization of 104 (or 104 mer units) has a relative molecular mass

(molecular weight) of
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Mass of 1 PE chain: 104 2 � 12 þ 4 �1ð Þ ¼ 280, 000 amu

A mole of polyethylene chains, where each chain is 104 mer units long, has a

molar mass of

Mass of 1mole of PE chains: 280, 000 grams or grams=moleð Þ

neglecting chain end effects. Note that the molecular mass of a chain end (or at a

branch point) is not the same as the molecular mass of a mer unit but the

difference is neglected because the effect is small in terms of the total molecular

mass of a chain.

While “relative molecular mass” is the official and more correct terminology

for polymers (as used in McCrum 1997), in the following the term molecular

weight will be most often used as is common in many polymer texts.

A useful term to describe the extent of polymerization in polymers is the

“degree of polymerization” (DP) which is defined as the number of mer units per

chain or,

n ¼ M

Mr

¼ DP ð4:6Þ

where M is the molar mass (weight) of a chain and Mr is the molar mass

(weight) of a mer or repeat unit. (Number average and weight average degrees

of polymerization are also used as will be evident directly).

The degree of polymerization or the length of a polymer chain is an indicator

of the nature and mechanical characteristics of a polymer composed of similar

length chains. The following table illustrates the relationship between chain

length and the character of a polymer at 25 �C and a pressure of one atmosphere

(Table 4.6).

Table 4.6 Degree of polymerization – phase relationship (Data from Clegg and Collyer

1993, p. 11)

Number of –CH2–CH2

repeat units per chain

(degree of polymerization)

Molar mass

kg mol�1

Softening

temperature
�C

Character at

25�C and 1

at

1 28 �169 Gas

6 170 �12 Liquid

35 1,000 37 Grease

140 4000 93 Wax

430 12,000 104 Resin

1,350 38,000 112 Hard resin
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It is now clear how to calculate the molecular weight of a single chain or of a

mole of polymer chains of identical lengths. Unfortunately, however, the lengths

of chains in a polymer vary greatly and depend to a large degree on the

circumstances and the manner in which the polymerization reaction proceeds.

That is, a wide distribution of chain lengths (DP’s or chain molecular weights)

exist in a typical polymer as shown in Fig. 4.38. The distribution is seldom

symmetrical and the breath of distribution varies with the type of reaction. For

example, the distribution is often quite broad for polyethylene while the distri-

bution for polystyrene may be quite narrow (Fried 1995).

Because of the distributed nature of the lengths of chains in a polymer it is

necessary to define the molecular weight using an averaging process. The most

common averaging processes used are the number average, the weight average

and the z-average. Only the number and weight average methods will be

described here. Both discrete and continuous distributions are possible. For

example the continuous distribution in Fig. 4.38b is obtained by drawing a

smooth curve through the discrete distribution shown in Fig. 4.38a.

For a discrete distribution the number average molecular weight is defined as,

Mn ¼

Xk
i¼1

NiMi

Xk
i¼1

Ni

¼

Xk
i¼1

NiMi

N
ð4:7Þ

where Ni is the number of chains within an interval, Mi is the median (middle)

molecular weight in an interval, k is the total number of intervals and N is the

total number of chains. If a continuous curve is fit to the discrete data such that

Fig. 4.38 Typical molecular weight distribution of the number of chains in a polymer
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N is given as a function ofM, i.e.,N¼N(M), the summations can be replaced by

an integration to obtain (Kumar and Gupta 1998),

Mn ¼

ðM

0

N Mð Þ dM

ð
dN

¼

ðM

0

N Mð Þ dM

N
ð4:8Þ

The product of the number of chains in an interval, Ni, and the molecular weight

of an interval, Mi, equals the total weight of an interval. Exchanging Ni

in Eq. 4.7 by Ni Mi defines the weight average molecular weight and can be

written as,

Mw ¼

Xk
i¼1

NiM
2
i

Xk
i¼1

NiMi

¼

Xk
i¼1

NiM
2
i

M
ð4:9Þ

where M is the total molar mass of the sample. Some have likened the number

average and weight average molecular weights to the first and second moments

of masses (or areas) in elementary mechanics courses. Such an analogy is

appropriate if the number of chains, Ni, is replaced by a lever arm di with
units of length. One text incorrectly relates the weight average molecular weight

to a radius of gyration.

Consider the example where,

i Mi Ni

Interval no. g/mole of chains in interval No. of chains in interval

1 5,000 2

2 15,000 4

3 30,000 5

4 50,000 1

The number average molecular weight for this example from Eq. 4.7 will be,

Mn ¼

Xk
i¼1

NiMi

Xk
i¼1

Ni

ð4:10Þ
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Mn ¼ 2 5; 000ð Þ þ 4 15; 000ð Þ þ 5 30; 000ð Þ þ 1 50; 000ð Þ
12

¼ 22, 500 g=mole

while the weight average molecular weight from Eq. 4.9 is

Mw ¼ 2 5; 000ð Þ2 þ 4 15; 000ð Þ2 þ 5 30; 000ð Þ2 þ 1 50; 000ð Þ2
2 5; 000ð Þ þ 4 15; 000ð Þ þ 5 30; 000ð Þ þ 1 50; 000ð Þ

¼ 29, 444 g=mole

Some experimental approaches separate the chains in a polymer into discrete

number or weight fractions. The number fraction, xi, is defined as the ratio of the
number of chains in an interval to the total number of chains in the sample,

xi ¼ Ni

N
ð4:11Þ

and the weight fraction, wi, is the ratio of the total weight of the chains in an

interval to the total weight of the sample,

wi ¼ Mi

M
ð4:12Þ

An example illustrating this approach is shown in the hypothetical distribution

given below (Fig. 4.39),
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Fig. 4.39 Size distributions of a hypothetical polymer
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Using this definition, the number average molecular weight or weight average

molecular weight can be written as,

Mn ¼
Xk
i¼1

xiMi ð4:13Þ

Mw ¼
Xk
i¼1

wiMi ð4:14Þ

where all quantities are as previously defined and Eqs. 4.13 and 4.14 yield

identical results to Eqs. 4.7 and 4.9 respectively.

The number average emphasizes the importance of the smaller molecular

weight chains while the weight average emphasizes the higher molecular weight

chains. This is demonstrated in Fig. 4.40.

The ratio of the weight average molecular weight to the number average

molecular weight is defined as the polydispersity index,

PDI ¼ Mw

Mn

ð4:15Þ

which is often used as a measure of the breadth of the molecular weight

distribution. Typical ranges in the PDI for polymers are shown in Table 4.7.

Fig. 4.40 Distributions of molecular weight in a typical polymer
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When Mn is high and PDI is low there are more chance for entanglements

which in turn increases strength and rigidity because the strain is lower for a

given stress. When Mw or PDI is high, chains are likely longer and the

temperature resistance is increased. Molecular weight is an important indicator

of mechanical properties. For example the variation of tensile strength of a

lightly crosslinked rubber is shown in Fig. 4.41 and the variation of the elastic

modulus above the glass transition temperature is shown in Fig. 4.42. As may be

observed, above the Tg the modulus becomes very small when the molecular

weight is low but increases to a plateau when the molecular weight is very high.

This plateau extends to relatively high temperatures until sufficient energy is

input to begin to degrade cross-links and the backbone chain. This is often

indicated by a change in color of the polymer due to charring. The reason for

the different behavior as a function of molecular weight is due to increased

entanglements for higher molecular weights (Clegg and Collyer 1993).

Table 4.7 Typical ranges of Mw=Mn in synthetic polymers

(Data from Billmeyer 1984, p. 18)

Polymer Range

Hypothetical monodisperse polymer 1.0

Actual monodisperse living polymers 1.01–1.05

Addition polymer, termination by coupling 1.5

Addition polymer termination by disproportionation 2.0

High conversion vinyl polymers 2–5

Polymers made with autoacceleration 5–10

Addition polymers made by coordination polymerization 8–30

Branched polymers 20–50

Tg

Increasing
molecular

mass

E
la

st
ic

 M
od

ul
us

Temp.

Fig. 4.41 The effect of molecular weight on the elastic modulus of an amorphous

thermoplastic polymer above the Tg
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4.8. Methods for the Measurement of Molecular Weight

The preceding section illustrates the importance of molecular weight on

mechanical properties. Molecular weight also has a large influence on

manufacturing and processing. For example, a resin suitable for extrusion

must have a high viscosity at low shear rates while a resin suitable for injection

molding must have a low viscosity at high shear rates. Both of these require-

ments can be met for a polymer by the adjustment of the molecular weight

distribution. Molecular weight distribution also influences the extent of chain

entanglement and the amount of melt elasticity. For these and many other

reasons, it is necessary to measure the molecular weight and molecular weight

distribution. Indeed, as mentioned in the introduction, the lack of accurate

methods to measure high molecular weights impeded the initial development

and understanding of polymers.

Many of the methods used to measure molecular weight are listed in the

Table 4.8. The usual range of weights that can be found by each method is also

given. Note that the end group analysis and colligative property methods give

number average molecular weight while the light scattering method gives the

weight average molecular weight. The other methods give only a relative

measure of the molecular weight and one of the former methods must be used

to provide a calibration of the method and therefore it is possible to obtain either

quantity.

Fig. 4.42 Approximate tensile strength of a lightly crosslinked rubber as a function of

number average molecular weight (Data from Clegg and Collyer 1993)
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The intent here is not to give a complete description of each method including

the necessary equations needed to convert a particular measurement into a

molecular weight. Rather, the essential features of each technique will be

discussed briefly.

The end group analysis method relies on a knowledge of the nature and types

of end groups present. In this method the number of molecules are simply

counted. This is accomplished by using standard analytical techniques to deter-

mine the concentration of the end groups and thereby the number of polymer

molecules. See Rosen (1993) for a more complete description of this procedure.

When a material (solute) is dissolved in a liquid (solvent) the boiling point,

freezing point and vapor pressure are changed. As a result, if a small amount of a

solute (polymer) is dissolved in a solvent it is possible to use the thermodynam-

ics of solutions to calculate the change in the temperature at the boiling point

(ebulliometry) and freezing point (cryoscopy) which in turn can be related to the

number average molecular weight. It should be noted, however, that only small

changes in temperature occur and the precision of the method depends on the

accuracy of temperature measurement. See Billmeyer (1984) for a more com-

plete description of these methods.

The vapor pressure method uses two thermistor probes to measure the

temperature difference between a drop of solvent placed on one probe and a

drop of a solution of solute and solvent on the other probe. The difference in

rates of vaporization at the two probes leads to a difference in temperature at the

two probes. This difference in temperature can be related to the number average

molecular weight. For more insight into the method and the magnitude of the

temperature differences encountered (see Kumar and Gupta 1998).

Table 4.8 Average molecular weight measurement

End group analysis Mn < 10, 000

Colligative properties

Ebulliometry Mn < 100, 000

Cryoscopy Mn < 50, 000

Vapor pressure osmometry 40, 000 < Mn < 50, 000

Membrane osmometry 50, 000 < Mn < 1, 000, 000

Intrinsic viscosity � < Mn,Mw < �
Light scattering 10, 000 < Mw < 10, 000, 000

Size exclusion chromatography (SEC) Mw,Mn < 10, 000, 000

Ultracentrifuge Mw,Mn < 40, 000, 000
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The membrane osmometry method depends upon finding a suitable mem-

brane which will allow solvent to move through the membrane but not allow

motion of the solute in the reverse direction. That is, if a solute and solvent are

separated by a semipermeable membrane as shown below in Fig. 4.43, the
motion of the solvent will create an increase in pressure in the solute which

can be measured by the relative difference of the height of the two fluids in their

respective capillaries. This pressure differential can be related to the number

average molecular weight.

The viscosity of a dilute solution of a polymer and a solvent is obviously

larger than the viscosity of the solvent alone. As a result, measurement of the

viscosity of the two fluids will give a relative measure of the molecular weight of

the mixture. If varying concentrations of polymer are placed in solution, the

relative viscosity will vary. If the molecular weight fraction(s) of the same

polymer has been made by one of the other methods, then the molecular weight

through a relative viscosity measurement can be obtained by comparison. An

illustration of the relation between viscosity and molecular weight of

polyisobutylene in two solutions of cyclohexane and diisobutylene are shown

in Fig. 4.44.

Typical glassware viscometers which are used for viscosity measurement are

shown in Fig. 4.45. The flow times through the capillaries are measured and

converted to viscosity measurements using the concepts of Newtonian flow. It

should be remarked, however, that polymer solutions are normally

non-Newtonian but the error is small with properly designed equipment. For a

more complete discussion of this technique, see Rosen (1993).

Fig. 4.43 Osmosis through a semipermeable membrane
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Fig. 4.44 Intrinsic viscosity molecular weight distributions in two solvents (Data from

Flory 1953)

Ostwald
(a)

Ubbelohde
(b)

Fig. 4.45 Viscometers used to determine molecular weight
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One of the most popular techniques to determine molecular weight is through

gel permeation chromatography (GPC). Because a gel is no longer used some

prefer to call the technique size exclusion chromatography (SEC). A schematic

of a GPC is shown in Fig. 4.46.

In this procedure a column is packed with small porous beads. The beads may

be a porous gel (a low molecular weight polymer) or porous beads made of

polystyrene or glass. A solvent containing a polymer sample is pumped through

the column of beads at a very low rate. As shown in the schematic of the column,

the large molecular fractions cannot penetrate the beads and are retained in the

solvent which moves through the column at a faster rate than the lower molec-

ular weight fractions. The smaller molecular weight fractions pass through the

porous bead microstructure and therefore move through the column at a slower

rate. The mass concentration leaving the column, the effluent, passes through a

detector (a refractometer) which measures the refractive index of the emerging

volume. The refractive index will vary with molecular weight and again another

absolute molecular weight method must be used to calibrate the system. A

typical calibration curve is shown in Fig. 4.47.

solvent

pump
dectector

solvent
flow

sample
injection small

molecules

porous particles

large
molecules

effluent

Fig. 4.46 Schematic of a gel permeation chromatograph (GPC). Basic instrument design

(left) and separation column detail (right)
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The GPC method gives a continuous variation of the molecular fractions with

volume (or mass) and thus is well suited to yield a continuous curve such as the

one shown in Fig. 4.38b. For more details of the procedure, see

Rodriguez (1996).

Light passing through a medium other than a vacuum will interact with the

molecules of that medium. Light energy interacts with the normal oscillatory

nature of a molecule and induces additional oscillations. The amount of addi-

tional oscillation depends on the atomic nature and size of the molecule and is

measured by the polarizability of the molecule. The interaction also causes the

molecule to become a source of radiation. As a result, the light will be scattered

by the molecule (or will radiate from the molecule) such that it can be seen from

all directions. That is, consider light from a point source (such as a laser) being

directed at a container of a dilute polymer solution. It will be possible to see the

light from different sides of the container. It is possible to relate the intensity of

emanating light and the appropriate geometry of observation to the molecular

weight of the solution in the container. The molecular weight of a dilute polymer

can be obtained by measuring the intensity of light scattered from various

concentrations of the polymer solution and comparing with the intensity of

light scattered only by the solvent. It should be noted that the weight average

molecular weight is determined with this approach. For an excellent description

of this method, see Painter and Coleman (1994). Mechanical engineers who are

interested in the relation between the polarization of light and the relative

retardation of light in polymers will find the discussion provided by Painter

and Coleman very interesting. Further, this source will assist in understanding

the relationship between molecular parameters and birefringence parameters.

Fig. 4.47 Calibration curve for a GPC
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The invention of the ultracentrifuge was one of the milestones in development

of polymer science and technology. The basic principle of this device is illus-

trated by observing a small sphere moving through a Newtonian liquid under the

action of gravity as shown in the Fig. 4.48.

The sphere will reach a terminal velocity and, assuming the cylinder radius is

large compared to the sphere, equilibrium of the forces on the sphere (gravity,

buoyancy and drag) will give,

ρsVg� ρVg� kTv

D
¼ 0 ð4:16Þ

where ρs is the density of the sphere, ρ is the density of the fluid, V is the volume

of the sphere, g is the acceleration of gravity, k is Boltzman’s constant, T is the

absolute temperature, v is the terminal velocity and D is the sphere diffusion

coefficient. Solving for sphere volume and multiplying the result by the sphere

density gives the sphere mass,

m ¼ kTv

Dg 1� ρ
ρs

� �h i ð4:17Þ

If it is assumed that the sphere is a molecule, the molecular weight can be

found by multiplying both sides of the equation by Avogradro’s number and is

given as,

Fig. 4.48 Small sphere falling gravity through a viscous fluid
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M ¼ RTv

Dg 1� ρ
ρs

� �h i ð4:18Þ

where R is the universal gas constant.

In an ultracentrifuge a polymer sample (solute) in a pie shaped container is

rotated at a very high speed (70,000 rpm) in the horizontal plane. At such high

speeds the higher molecular weight polymer fractions will separate from the

solvent and will be forced to the outer wall of the container. Eq. 4.18 can be

modified by replacing the acceleration of gravity by the angular acceleration,

rω2. The sedimentation rates are measured by Schlieren optics or by UV

absorption. The procedure is used most often for biological materials and is

not used so much with synthetic polymers because of experimental difficulties

and other approaches give more reliable results. For more details on this

procedure, see Kumar and Gupta (1998) and Rodriguez (1996, p. 202).

4.9. Polymer Synthesis Methods

The two fundamental approaches to obtaining polymers used by Carothers in his

pioneering synthesis efforts in the 1920s were condensation and addition poly-

merization. In a condensation reaction water, ammonia or some other substance

is a byproduct and generally must be removed from the final polymer. An

example of a condensation reaction is given by the formation of nylon 6,6

from the combination of hexamethylene and adipic acid in Fig. 4.49.

The number of reactive sites in the monomer is known as the functionality of

the unit and will determine if a polymer can be formed and if the resulting

polymer will be a thermoplastic or a thermoset. A bifunctional monomer leads to

a thermoplastic while a trifunctional monomer is needed to produce a thermoset.

(hexamethylene diamine + adipic acid)

Fig. 4.49 Example of a condensation reaction
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Generally speaking the N–H bond of an amine, the O–H bond of an alcohol, and

the C–OH bond of an acid can be split to form another bond. Also, unsaturated

bonds such as those that exist between the two carbon elements in the ethylene

molecule shown in Fig. 4.2 can be broken to from bonds with other elements and

ring structures such as those shown in Fig. 4.50 can split to form other bonds.

It will be noted that both hexamethylene diamine and the adipic acid in the

above example are each bifunctional and the resulting molecule after combina-

tion of the two is bifunctional as well. That is, an active site exists on each end of

the original molecules and on each end of the product molecule. Therefore, the

reaction can continue by additional linking of the diamine and the acid with the

product molecule. The mer unit for nylon 6,6 can now be identified as given in

Fig. 4.51. Nylon is called a polyamide because it is formed by splitting the NH2

group and is given the notation 6,6 due to the number of carbon elements in each

mer. Other nylons can be made such that the notation would be 5,10, 6,10, etc.

An interesting procedure to form nylon 6,6 is by the so-called “nylon rope

trick” illustrated in Fig. 4.52. This is called interfacial condensation and occurs,
in this case, when solutions of acid chloride in chloroform and hexamethylene

diamine in water are combined. The two solutions do not mix and a skin is

formed at the interface between the two. It is possible to carefully withdraw the

skin from the interface and to form a thread or film as shown.

Benzine Ring Ring of an epoxide group

Fig. 4.50 Ring structures

Fig. 4.51 Nylon 6.6 monomer
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Examples of polymers formed by a condensation reaction are,

Polyamides (nylon)

Polyurethanes

Polycarbonates

Addition reactions take place by the combination of monomers with two

reaction sites such as the case for ethylene given in Fig. 4.3 and repeated below

Fig. 4.53 for emphasis. The unsaturated double bond of carbon is another

example of a bond that can be broken to from bonds with other elements.

With this process, chains grow in a sequential manner. That is, one monomer

unit reacts with another monomer unit to produce a sequence of two mer units or

“dimer”. The resulting dimer reacts with a monomer to produce a sequence of

three mer units or “trimer”. Trimers, dimers and monomers can react to produce

Adipoyl chloride
in chloroform

Nylon 6,6 formed
at the interface

diamine
in water

Nylon skin
drawn off

to form fiber

Fig. 4.52 Nylon rope trick

Fig. 4.53 Example of an addition reaction
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an “oligomer” or a chain composed of a small number of mer units (often

considered to be less than ten). In this way, the reaction continues

(or propagates) until eventually a chain stops growing or terminates. As a result,

an addition reaction is usually characterized by three stages,

Initiation

Propagation

Termination

Polyethylene and polypropylene are in a group of polymers called polyolefins

and their production constitutes one of the largest polymer markets in the world

(See Table 3.1).

Several important vinyl polymers (those in which a single hydrogen element

in the monomer in Fig. 4.53 is replaced another element) formed by addition

polymerization are,

Polyethylene

Polyvinylchloride

Polystyrene

Polymethylmethacrylate

There are a number of different types of addition polymerization methods.

Several of these are,

Free radical

Ionic

Coordination

Free radicals are intermediate compounds containing a free (unpaired) elec-

tron and are highly reactive. To initiate free radical polymerization, the unpaired

electron of a free radical steals an electron from a vulnerable bond in the

monomer (such as a double bond), leaving the monomer with an unpaired

electron to propagate the reaction. The most common free radicals used as

initiators are peroxides, which are easily broken down as

R� O� O� R ! 2RO�

where the dot indicates oxygen to have a free (unpaired) electron. This type of

polymerization has a natural chain termination step which occurs when two free

radicals collide.

Ionic polymerization follows a similar process for initiation and propagation

of the reaction, where instead of a free radical the reactive unit on the end of a

chain is either positively (cationic) or negatively (anionic) charged. Unlike free
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radical polymerization, termination occurs when the monomer is depleted. This

type of polymerization is often used to produce block copolymers.

Coordination polymerization is a type of addition reaction in which a frag-

ment of the catalyst is said to be inserted into a growing chain. Much of this type

of reaction is based upon the Noble prize winning efforts of Giullio Natta and

Karl Ziegler after whom the Ziegler-Natta catalyst is named.

It is to be noted that not all polymers made by the condensation method form

a condensate during the reaction. Polyurethanes which are formed by a reaction

of isocyanates and alcohols are such an example. Also, ring opening polymer-

ization reactions are considered to be of the addition type even though they form

polymers which can also be formed by a condensation reaction, e.g., the

polymerization of caprolactam to form nylon 6,6 (see Painter and Coleman

1994). As a result, most modern texts do not use the polymerization descriptions,

condensation and addition. Rather, the terms “step growth” and “chain” are used

in place of condensation and addition respectively.

Thermosetting polymers can be made using either step growth or chain

polymerization procedures. To obtain a crosslinked polymer, at least one of

the monomers used must be trifunctional. A condensation production process is

used to produce phenolic polymers which have the highest volume usage of all

thermosets. The reaction between phenol and formaldehyde to form a thermoset

phenolic polymer is shown in Fig. 4.54. Three CH2 bonds can be made per

phenol group, allowing formation of a crosslinked network structure.

Examples of important crosslinked polymers are,

Phenolics

Polyesters

Epoxies

Urethanes

Silicones

Fig. 4.54 First step in formation of a phenolic network polymer
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Polymerization processes are important in determining the molecular weight,

thermal and mechanical properties of a polymer. Usually either batch or contin-

uous processes are used. The former is normal for research laboratory operations

but to produce large quantities of polymer, the latter is preferred. However, step

growth or condensation reactions are often very slow and a batch process is

normally used. There are also single and multiple phase processes. Generally,

chain polymerization is not often performed in single (bulk) phase process

because of difficulties controlling the reaction. Reactions are often either endo-

thermic or exothermic. If the latter is the case, it is sometimes difficult to control

the temperature of the reaction and a “run away reaction” may occur.

There are other important polymerization processes such as those of the

suspension or emulsion type. Examples of these two types are given in

Figs. 4.55 and 4.56. For an excellent description of the synthesis and kinetics

of polymerization methods and processes the reader is referred to more detailed

texts focusing on polymer science, e.g., Painter and Coleman (1994) and

Billmeyer (1984).

Polymerization

Rapid
Stirring

Rapid
Stirring

Dispersed Monomer
and Initiator in Water

Suspended Beads of
Polymer

Fig. 4.55 Schematic representation of suspension polymerization. Polymerization

occurs by chain growth and the aqueous media serves to disperse the heat

of reaction (After Painter and Coleman 1994, p. 54)
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4.10. Spectrography

One might ask the question, “how is it possible to know the structure of a new

polymer that has been synthesized for the first time”? One answer to the question

is “through the use of spectrographic analysis of the resulting polymer.” For this

reason, many people involved in research and development of polymers are

specialists in spectrographic analysis of one type or the other. A list of many of

the various types of spectroscopy are given below,

UPS UV (ultraviolet) Photoelectron Spectroscopy

XPS X-ray Photoelectron Spectroscopy

ESCA Electron Spectroscopy for Chemical Analysis

(S)AES (Scanning) Auger Photoelectron Spectroscopy

ISS Ion Scattering Spectroscopy

LEIS Low Energy Ion Scattering (Spectroscopy)

SIMS Secondary Ion Mass Spectrometry

SNMS Secondary Neutral Mass Spectrometry

SSMS Scanning Secondary Ion Mass Spectrometry

FAB Fast Atom Bombardment (Spectroscopy)

Fig. 4.56 Schematic representation of emulsion polymerization. Large monomer drop-

lets are stabilized by surfactant molecules in water. Excess surfactant forms

micelles into which monomer molecules diffuse. Initiator molecules interact

predominantly with the numerous small micelles (larger surface area) where

the monomer polymerizes, resulting in a suspension of polymer beads in water
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(S)EXAFS (Surface) Extended X-ray Absorption Fine Structure

(Spectroscopy)

RBS, HEIS Rutherford Back Scattering, High Energy Ion Scattering

(Spectroscopy)

LAMMA Laser Micro Mass Analysis (Spectroscopy)

IETS Inelastic Electron Tunneling Spectroscopy

LEELS Low Energy Electron Tunneling Spectroscopy

ESD Electron Stimulated Desorption (Spectroscopy)

NMR Nuclear Magnetic Resonance Spectroscopy

IR Infrared Spectroscopy

Raman Raman Spectroscopy

Most of these procedures are limited to analyzing the surface of a material

and the area of specialization is often called “surface chemistry”. Persons with

this capability are often trained in chemistry, physics, or materials engineering

(science) departments. The equipment used is usually very expensive and is

often designed through a collaboration of one of the above groups with mechan-

ical and electrical engineers.

While these procedures are usually limited to the surface of a material, some

of the methods can be used on the interior of the material by actually atomically

drilling (sputtering) into the interior. A newer procedure involving infrared

spectroscopy and FFT (fast Fourier transform) techniques can examine fluoresc-

ing phenomenon of molecules on the interior of materials.

Generally spectroscopy is the study of the interaction of electromagnetic

radiation with matter. The wavelength (frequency) range for various types of

electromagnetic radiation is given in Fig. 4.57.

The essential features to measure the spectrum of a particular polymer is

given in Fig. 4.58. If, for example, a beam of light is focused on a material, it can

be reflected or transmitted. In either case, some of the energy may be absorbed or

scattered. The amount of absorption or scattering is related to the type of

molecules or atoms encountered by the radiation. With a proper detector, the

radiation transmitted or reflected from a material can be analyzed to determine

the amount absorbed. A schematic of the readout of absorbed light is given in

Fig. 4.58 and a typical spectra is shown in Fig. 4.59 and is an example of an

infrared absorption spectrum for isotactic polystyrene either annealed or

quenched from the melt. Differences between the spectra infer changes in the

molecular structure which occur during annealing.

A more complete list of instruments used in surface analysis can be found at

the following website: http://www.uksaf.org/tech/list.html.
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Fig. 4.57 Wave length ranges for various types of electromagnetic radiation

Fig. 4.58 Basic elements of a spectrometer
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4.11. Microscopes/Microscopy

Since their invention in the sixteenth century microscopes have been used to

understand the molecular and atomic nature of materials. There are many

different types of microscopes but today there are three types that are most

often used in polymer research and development: Light or Optical, Electron,

Tunneling and Atomic Force. It is interesting to note that Nobel Prizes have been

awarded for each as will be mentioned subsequently. However, it is noted that a

variety of microscopes not mentioned here are being or have been used for

studies related to polymer science such as the X-Ray, Acoustic, and more

recently the Quantum.

Optical Microscopes Until the twentieth century the light microscope was the

basic instrument used to understand the molecular nature of materials. For

example, the crystalline nature of polymers and other materials were studied

using the polarizing microscope as shown by Fig. 4.34. Indeed both chemists

and engineers have exploited the birefringence nature of polymers, the chemist

to explore crystallinity and engineers to explore stress induced crystallinity. For

many years it was thought that images smaller than the visible spectrum (wave-

lengths of ~400–700 nm) could not be viewed with an optical microscope.

However the ultra-microscope developed in 1902 by Richard Adolf Zsigmondy

using light scattering allowed the observation of colloidal particles with a size of

~ 10 μm for which he won the Nobel prize in 1925. While not smaller than the

Fig. 4.59 Infrared spectrum of polyvinyl chloride (PVC) showing pristine PVC, after

aging in acetic acid, and the difference between the two spectra
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visible spectrum, the ultra-microscope extended the limits of optical micro-

scopes of the day. More recently, the development of the near-field scanning

optical microscope (NSOM) does allow the visualization of particles smaller

than the visible spectrum. Resolutions of 1–20 nm have been reported (see,

Hecht et al. 2000). The technique involves drawing an optical fiber such that the

inner diameter of the tip is smaller than the wavelength of visible light usually on

the order of 50 nm. A schematic showing the basic details of an NOSM is shown

in Fig. 4.60a as well as an image from an NSOM where fluorescence emission

intensity was superimposed on an F8:PMMA blend film (details for the former

may be found in Muller et al. (2008) and for the latter in Chappell et al. (2003).

That light can be emitted from a nanometer size optical fiber is due to total

internal reflection that produces an evanescent wave (see Wikipedia: Evanescent

Waves). One major advantage of the NOSMMicroscope is that living tissue can

be studied at the atomic level but there are many other uses as well. The

efficiency of light passage drops significantly as the tip size is reduced but

with enhancement techniques objects as small as a few nanometers can be

viewed. Both transmission and reflection methods are possible in order to

view either transparent or opaque samples.

Fig. 4.60 NSOM images. (a) Schematic of a typical NOSM (Mueller et al. (2008),

reprinted by permission of The American Society of Pharmacology and

Experimental Therapeutics). Inset (b) NOSM image for a F8:PMMA Blend

(Used by courtesy and permission from Professor David Lidzey, University of

Sheffield Electronic and Photonic Materials Group, http://www.epmm.group.

shef.ac.uk/research/spm.php)
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Electron Microscopes Although the first electromagnetic lens was developed

by Hans Busch in 1926, the first electron microscope was constructed by Ernst

Ruska and Max Knoll in 1931 for which Ruska shared the Nobel Prize for

Physics in 1986 with the inventors of the scanning tunneling microscope (STM)

Heinrich Rohrer and Gerd Binnig. In the electron microscope an electron beam

is used to illuminate and view a specimen using electromagnetic lenses. There

are two basic types of electron microscopes, the TEM or transmission electron

microscope and the SEM or the scanning electron microscope. In the TEM very

thin specimens are used and the electron beam passes through the specimen

while in a SEM specimens are mounted on an aluminum or carbon stub and

coated with gold such that the electrons are reflected to give the shape of the

specimen. There is also a scanning transmission electron microscope (STEM)

which allows a focused beam to scan over an area and is often used in conjunc-

tion with spectrographic procedures discussed in the previous section. One

disadvantage of electron microscopes is that living cells cannot be analyzed as

samples are contained in a vacuum chamber (See Michler 1993 for more details

relative to uses in polymer science). The electron beam can also be damaging to

polymers and in fact can be used to create patterned samples of PMMA and

certain other polymers by electron beam lithography. In this technique uncoated

polymer samples are subjected high intensity beam which is turned on and off

during rastering to create a desired pattern. Where the sample is exposed to the

electron beam, the polymer undergoes chain scission and the exposed areas are

washed away with solvent after processing. An example of an image of a nylon

6 single crystal imaged by SEM is shown in Fig. 4.29, while Fig. 4.61 shows a

pattern of PMMA pillars created through e-beam lithography.
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Tunneling Microscopes As mentioned above, the scanning tunneling micro-

scope (STM) was invented in 1981 by Heinrich Rohrer and Gerd Binnig for

which they won the Nobel Prize in 1986. The STM is based upon the phenom-

enon of quantum tunneling that occurs when a conducting tip is placed very

close to a surface to be examined. A voltage difference applied to the tip and the

surface cause electrons to tunnel through the vacuum between the two. As the tip

is scanned over the surface information about the surface is obtained and can be

related to the surface topography, surface chemistry or even stress states. The

discovery of the STM led to the development of the atomic force microscope

(AFM), the atomic probe microscope (APM) and several other variants. An

image produced with APM is shown in Fig. 4.62.

Fig. 4.61 PMMA micropillars created through electron beam lithography (Image cour-

tesy of Dr. Xu Cheng)
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Atomic ForceMicroscopy AFM is an outgrowth of the STM and is generically

used to refer to a number of high resolution scanning probe techniques which

provide sub-nanometer scale resolution of a sample surface. In the most general

case, a cantilever with a pyramidal shaped tip is scanned along the surface in

either contact or non-contact mode to record data. The cantilever is microns in

dimension, but the radius of the tip in proximity to the sample is on the order of

nanometers. The deflections of the cantilever and changes in those deflections as

the tip scans across the surface are measured and quantified using piezoelectric

sensing elements. In full contact mode, the tip can cause damage to some

samples on the order of the scale of the measurement, thus often a tapping or

non-contact mode is used. Measurements can be made on the topography of the

surface, changes in local modulus, adhesion forces, and, with various instru-

mentation, local magnetic forces or dielectric properties. AFMs are increasingly

used in quantifying small-scale properties of materials and are used to map

structure of polymers (e.g., block co-polymer domains or crystalline domains,

(Fig. 4.33) or local properties of polymers due to microstructure or interaction

with surfaces. For local mechanical property measurements, models describing

the interaction between the tip and the sample have been developed over many

years, most based on the classic elasticity Hertz contact problem. Oliver and

Pharr (1992, 2004) wrote a landmark paper allowing the modulus to be calcu-

lated without measuring the contact area directly. Many subsequent models have

provided various improvements on this basic model. When using an AFM for

local polymer property measurement, it is important to understand the model

Fig. 4.62 Image of a cyclopentene molecule (Guisinger, et al.; image used by permission

Copyright (2005) National Academy of Sciences USA)
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equations used by the software of the AFM and, often, to take additional

corrections into account for adhesion effects, time dependent effects, contact

area, and others.

The chart below gives a description of various types of microscopes as well as

details about each. The resolution, uses and constraints for each should be noted

(Table 4.9).
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4.12. Review Questions

4.1. Give the chemical formula for the mer units of PVC, PTFE, PP, PS

and PMMA.

4.2. Explain the meaning of configuration and conformation when applied to a

polymer chain.

4.3. Give an examples of different types of configurations.

4.4. What are chemical bonds?

4.5. Name three primary bonds and describe each.

4.6. Name four types of secondary bonds. By what other name are secondary

bonds known?

4.7. Give approximate energies (kcal/mole) for covalent bonds. Hydrogen

bond. Secondary bonds.

4.8. Outline (i.e., give a schematic diagram) a simple classification scheme

based on bonds within chains and between chains and based on their

morphology.

4.9. Describe a branched polymer. Name different types of branched polymers.

4.10. Name three types of stereoisomers and describe each.

4.11. Describe (i.e., give a schematic diagram) a classification system based on

molecular characteristics, structure and isomeric states.

4.12. Name four types of copolymers and describe each.

4.13. What are two possible conformations of the ethane molecule? Draw the

variation of energy with angular rotation and explain the reason for the

variation.

4.14. Explain the trans and gauche positions along the backbone chain of a

polyethylene molecule.

4.15. Derive (and explain all assumptions) an approximate relationship for the

end-to-end distance of a single molecular chain.

4.16. Explain the folded chain model for crystallinity. The fringed micelle

model.

4.17. Describe a spherulite. How might they be formed.

4.18. What method (or instrument) is generally used to provide evidence of a

spherulite?

4.19. What method(s) is used to evaluate crystallinity? Explain.

4.20. Give approximate characteristics of a molecular chain containing the

number of mer units shown in the following table.
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No.

Softening

temperature

Character

at 25�C

1

6

35

140

430

1,350

4.21. Name six methods to measure molecular weight.

4.22. Briefly describe ebulliometry. Cryoscopy. Vapor pressure osmometry.

Membrane osmometry.

4.23. Briefly describe SEC (GPC).

4.24. Explain the chemistry example of a condensation polymerization reaction

given in the text.

4.25. Explain the chemistry example for an addition polymerization reaction

given in the text.

4.26. What is a dimer? A trimer? An Oligomer?

4.27. What is the meaning of monofunctional? Bifunctional? Trifunctional?

Which leads to thermoplastic polymers? Which leads to a thermoset?

Can a monofunctional molecule be polymerized?

4.28. What does the term 6,6 in Nylon 6,6 mean?

4.29. What is interfacial condensation? Give an example.

4.30. What are the three features of most addition type polymerizations?

4.31. What is a polyolefin? Name two.

4.32. What are some of the difficulties associated with making polymers on a

large scale?

4.33. What do the terms batch and continuous processes mean?

4.34. Would you recommend a step-growth polymerization for automotive

assembly lines?

4.35. What are single and multiphase processes?

4.36. What is suspension polymerization? Emulsion polymerization?

4.13. Problems

4.1. Calculate the number average and the weight average molecular weights for

the data shown below,
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i Mi Ni

Interval

No.

g/mole of chains

in interval

No. of chains

in interval

1 2,000 2

2 5,000 4

3 15,000 5

4 30,000 3

5 50,000 2

6 60,000 1

4.2. Consider the cis-trans isomers illustrated in Fig. 4.15. There are actually

four possible isomers for isoprene. Draw the two additional isomers, and

describe why the two additional configurations are constitutional isomers.
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5. Differential Constitutive Equations

A review of the basic definitions of stress and strain was given in Chap. 2. It was

noted that a linear elastic solid in uniaxial tension or pure shear is governed by

Hooke’s law given by,

σ ¼ Eε (5:1)

τ ¼ Gγ (5:2)

where σ (or τ) is the applied stress, ε (or γ) is the resulting strain, and E (or G) is

the elastic modulus and is applicable for many materials under certain circum-

stances of environment for small stresses and small strains.

For polymers, the torsion test is often the test of choice because, as discussed

in Chap. 2, the time dependent (viscoelastic) behavior of polymers is principally

due to the deviatoric (shear or shape change) stress components rather than the

dilatoric (volume change) stress components. Typically, constant strain rate tests

are often used for either tension, compression or torsion as discussed in Chap. 3.

If the material is linear elastic, the stress rate is proportional to the strain rate as

the modulus is time independent. That is,

dσ
dt

¼ E
dε
dt

(5:3)

On the other hand, if the modulus is time dependent a term must be added for the

time derivative of the modulus. In fact, in Chap. 3 it was found that the

differential equation for the elementary Maxwell model (where μ is viscosity)

was given by

σþ μ
E
_σ ¼ μ _ε (5:4)

in which both stress rate and strain rate appear.

© Springer Science+Business Media New York 2015
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Elementary creep and relaxation tests as a means to experimentally charac-

terize polymers were discussed in Chap. 3. Further, elementary mechanical

models and the related differential equations were discussed as a means to

phenomenologically understand creep, relaxation and constant strain rate tests.

Virtually no material exactly obeys these simple models. As a result, more

general approaches are needed to adequately model the time dependent behavior

of polymers. This chapter develops the methodology by which the governing

differential equations for general mechanical models can be developed. The

differential equations are used to obtain modulus and compliance functions

under quasi-static and dynamic response conditions. The following chapter

develops an integral equation approach to constitutive modeling.

5.1. Methods for the Development of Differential
Equations for Mechanical Models

The Maxwell and Kelvin elements introduced in Chap. 3, while typically not

able to represent real polymer behavior alone, can however be used as the

building blocks of more general models. Any number of mechanical models

can be created by assembling Maxwell and Kelvin elements together with free

springs and dampers in series and/or parallel. One motivation to proceed in this

manner is provided by relaxation/retardation times. Recall that the relaxation/

retardation time of a Maxwell or Kelvin element is defined by the ratio of μ/E
and that therefore there is a single relaxation/retardation time associated with a

Maxwell or Kelvin element. From the discussion of polymers in Chap. 4,

however, it is clear that entangled networks of polymer chains will exhibit

more complicated time behavior to mechanical load and that in fact different

segments of chain lengths and different side groups will offer a wider spectrum

of relaxation times. The concept of relaxation spectra is discussed in more detail

in Chaps. 6 and 7. Assembling mechanical models from multiple Maxwell

and/or Kelvin units will therefore enable the models to better mimic polymer

behavior by providing multiple relaxation/retardation times.

As with the simple models from Chap. 3, each different mechanical model

can be described by a differential equation. The differential equation governing

the response for any mechanical model may be obtained by considering the

constitutive equations for each element as well as the overall equilibrium and

kinematic constraints of the network. Once the differential equation is obtained,

the response of the model to any desired loading can be examined by solving the

differential equation for that particular loading. The solution for simple creep or

relaxation loading will provide the creep compliance or the relaxation modulus
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for the given model. In this section, we provide by way of example a general

method to obtain the governing differential equation for any mechanical model.

As a first example, consider the three-parameter model (sometimes known as

the Voigt-Kelvin model) shown in Fig. 5.1. This model is best approached as a

combination of a spring and a Kelvin model acting in series. The three sets of

equations then become, where the subscripts 0 or s indicate the value of

quantities in the free spring, the subscripts 1 or k indicate the value of quantities

in the Kelvin element, and unsubscripted σ and ε are the remote values of stress

and strain (the total stress and strain carried by the three-parameter solid).

Spring Kelvin model
Three-parameter
model

Equilibrium equations σ0¼σS σ1¼ σs1 + σd1¼ σk σ¼ σs¼ σk
Kinematic equations ε0¼ εs ε1¼ εs1¼ εd1¼ εk ε¼ εs¼ εk
Constitutive equations σs¼E0εs σk ¼ E1εkþμ1 _εk To be determined

The objective is to find the constitutive equation (governing differential

equation) for the three-parameter model. The kinematic equation for the three-

parameter solid is,

ε ¼ εs þ εk (5:5)

From equilibrium, the stress in the free spring, σs, and the stress in the Kelvin
element, σk, are the same as the remote stress, σ. To find the differential equation
it is convenient to write the Kelvin constitutive equation as,

σk ¼ E1εk þ μ1
dεk
dt

¼ E1εk þ μ1Dεk (5:6)

where D ¼ d
dt
is a differential operator. Note that D2, D3, . . . indicate the second,

third, . . ., derivatives with respect to time. Since differential operators obey the

Fig. 5.1 Three-parameter (or Voigt-Kelvin) solid
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fundamental rules of algebra, they may be manipulated as algebraic terms in

polynomial expressions by factorization, multiplication, etc. Eq. 5.6 can now be

solved for the Kelvin strain,

εk ¼ σk
E1 þ μ1D

(5:7)

Recognizing that σk¼ σs¼ σ, and substituting Eq. 5.7 and the constitutive law

for the spring into Eq. 5.5, after simplification one obtains,

σþ p1 _σ ¼ q0εþ q1 _ε (5:8)

where,

p0 ¼ 1 p1 ¼
μ1

E0 þ E1

q0 ¼
E0E1

E0 þ E1

q1 ¼
μ1E0

E0 þ E1

Differential equations for viscoelastic polymers are often given in the standard

form as shown in Eq. 5.8. The first stress term is not differentiated and the

coefficient is taken as one.

The differential equation governing the relationship between stress and strain

for a given mechanical model is quite valuable, but needs to be solved in order to

determine the model response to specific loading conditions. Fundamental

viscoelastic properties such as the creep compliance or relaxation modulus can

be found by solution of the differential equation to the appropriate loading. For

example, the creep compliance can be determined using the conditions for a

creep test of constant stress, as shown in Fig. 5.2.

The determination of the initial conditions is best accomplished by inspection

of the physical model. Since the input stress is constant for the creep test, the

Fig. 5.2 Creep test
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stress rate is zero, _σ ¼ 0 and the differential equation for the three-parameter

solid, Eq. 5.8, becomes,

_ε þ q0
q1
ε ¼ 1

q1
σ0H tð Þ (5:9)

The quantityH(t) is the Heavyside or unit step function (See Appendix A) and is
defined to be,

H tð Þ ¼ 1, t � 0

0, t < 0

� �
(5:10)

Equation 5.9 is a nonhomogeneous equation whose solution is the sum of the

homogeneous and particular solutions given by,

ε tð Þ ¼ σ0
1

E0

þ 1

E1

1� e�t=τ
� �� �

(5:11a)

where τ ¼ μ1
E1

is the retardation time of the Kelvin element. The creep compli-

ance of the Three-Parameter solid is therefore

D tð Þ ¼ 1

E0

þ 1

E1

1� e�t=τ
� �

(5:11b)

Referring to the solution under creep for a Kelvin material given in Chap. 3,

quite obviously the solution of the three-parameter model for the case of creep is

simply the superposition of the solution for creep of a spring and creep of a

Kelvin solid.

Solutions of the differential equation for the conditions of relaxation, constant

strain or stress rate and other conditions can be obtained in a similar manner to

that followed above.

Using the procedure presented for the Three-Parameter Solid, the differential

equation for a four-parameter fluid model (Fig. 5.3) can be shown to be,

σþ p1 _σ þ p2€σ ¼ q1 _ε þ q2€ε (5:12)
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Note that this Four-Parameter Fluid model is composed of a Kelvin element

(subscripts 1) and a Maxwell element (subscripts 0). Thus, the constitutive laws

(differential equations) for the Kelvin and Maxwell elements need to be used in

conjunction with the kinematic and equilibrium constraints of the system to

provide the governing differential equation. Again, treating the time derivatives

as differential operators will allow the simplest derivation of Eq. 5.12. The
derivation is left as an exercise for the reader as well as the determination of the

relations between the pi and qi coefficients and the spring moduli and damper

viscosities (see problem 5.1).

The solution of Eq. 5.12 for the Four-Parameter Fluid for the case of creep

can be shown to be,

ε tð Þ ¼ σ0
1

E0

þ 1

E1

1� e�t=τ
� �

þ t

μ0

� �
" " "

Inst: Elastic Delayed Elastic Flow

Term Term Term

(5:13)

Again, the solution is left as an exercise for the reader (see problem 5.4).

However, it should be noted that the solution of the differential equation for a

four-parameter fluid in the case of creep is the superposition of creep of a

Maxwell fluid and creep of a Kelvin solid (refer to Chap. 3).

The creep and creep recovery behavior of a four-parameter fluid is shown in

Fig. 5.4 and is recognized as the response of a thermoplastic type polymer as

given earlier in Fig. 3.14. The three stages of instantaneous elasticity, delayed

elasticity and flow represent the most general type behavior possible for a linear

viscoelastic material. Note: Some texts do not include the flow term as a
viscoelastic component, preferring instead to define viscoelastic behavior
only for models with no free damper or flow term.

Fig. 5.3 Four-parameter fluid
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By eliminating various elements in the four-parameter model, the response of a

Maxwell fluid, Kelvin solid, three-parameter solid (a Kelvin and a spring in series)

can be obtained and the model can be used to represent thermoplastic and/or

thermoset response as illustrated in Fig. 3.13. For example, the creep response of

a three-parameter solid is obtained by eliminating the free damper in Eq. 5.13 and
gives the creep and creep recovery response shown in Fig. 3.13 for a crosslinked

polymer. The four-parameter fluid can also be evaluated in relaxation or other

loading conditions again by solving the differential equation for each case.

5.2. A Note on Realistic Creep and Relaxation Testing

The testing of polymers requires unique understanding of the viscoelastic nature

of polymers. For example in a creep test it is required to suddenly apply a

constant tensile, compression, or torsion stress to a bar of material. The most

common description of a uniaxial tensile creep test is shown in Fig. 5.5a. Several
questions may arise one of which is: How is the load to be applied suddenly

without causing dynamic effects. One answer is for the load to be applied as

ramp input as shown in Fig. 5.5b. Obviously, the latter case is not a correct creep
test. How big an error is involved? A solution of the differential equation

representative of the material for the ramp input of Fig. 5.5b can be obtained

and it can be shown that the error in the strain output is negligible if the loading

time, t0, is small compared to the retardation time of the material, τ.

Similarly, the same difficulty occurs in a relaxation test. That is an ideal

relaxation test is one where a sudden input of strain is required as shown in

Fig. 5.5c. Again, however, to avoid dynamic effects it is usual to use a ramp

input of strain as shown in Fig. 5.5d and it can be shown that the error is

negligible if the ramp time, t0, is small compared to the relaxation time of the

material, τ (see homework problem 5.5).

Fig. 5.4 Creep and creep recovery of a four-parameter fluid
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(a) Ideal creep test

(b) Realistic creep test

(c) Ideal relaxation test

(d) Realistic relaxation test

Fig. 5.5 Comparison of ideal and realistic creep and relaxation tests
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A further concern for creep and relaxation occurs due to the stiffness of the

polymer tested. If a very soft material is tested in creep, the cross-sectional

dimensions or area may change as the material creeps and, therefore, the test

may not be a true creep test. For this case, the load must be changed with time

such that the amount of load divided by the changing area remains a constant.

Before the advent of modern testing machines a number of ingenious methods

were developed by which the load would vary in proportion to the area such that

the input stress would remain constant. Using a closed loop servo-hydraulic

testing system similar to the one shown in Fig. 5.6, it is easy to monitor the

change in area and use the new area in the computer load control so that the

stress remains a constant.

In relaxation testing, the stiffness of the specimenmust be small compared to the

stiffness of the load cell and testing machine. Of necessity the specimen is in series

with both the load cell and testing machine and, therefore, the deformation in the

specimen, the load cell and the testing machine are additive. As the load in the

specimen decreases or relaxes, even in a fixed grip circumstance, the load also

decreases in the load cell and/or the testmachine. The deformationwill then actually

increase in the specimen to allow adecrease in the deformation (and load) in the load

Fig. 5.6 Closed-loop servo-controlled hydraulic testing system
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cell. For a very stiff specimen (such as a fiber reinforced composite), the change in

load (or stress) recorded may reflect a redistribution of deformation from the load

cell and testing machine to the specimen resulting in a non-constant deformation or

strain in the specimen.Again, a computer-controlledmachine such as the one shown

in Fig. 5.6 can be programmed to sense the change in strain in the specimen and to

have the “stroke” or displacement of the testmachine altered to keep the strain in the

specimen constant. Another example where care must be taken in the interpretation

of the relaxation stress response to a constant deformation input to the specimen is in

adhesive testing such as often obtained using a lap joint specimen. See Sancaktar

(1980, 1990) to observe data indicating both stress relaxation and creep occurring

simultaneously in the adhesive when a typical lap specimen is tested with constant

deformation input. These examples suggest that the relaxation response of any

multiphase system must be analyzed with caution.

5.3. Generalized Maxwell and Kelvin Models

As indicated earlier, single Maxwell or Kelvin elements are of limited utility in

representing the actual stress–strain response of polymers. A more realistic

mathematical model can be developed, however, by considering a series of

Maxwell elements in parallel. Consider, first just two Maxwell elements in

parallel as in Fig. 5.7.

The equilibrium and kinematic equations are,

σ ¼ σ1 þ σ2
ε ¼ ε1 ¼ ε2

(5:14)

The constitutive equations for each Maxwell element are,

Fig. 5.7 Two Maxwell elements in parallel
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σ1 þ μ1
E1

Dσ1 ¼ μ1Dε1

σ2 þ μ2
E2

Dσ2 ¼ μ2Dε2
(5:15)

where D¼ d/dt is again the differential operator. Solving each equation in

Eq. 5.15 for the stress, substituting into Eq. 5.14, recognizing that the strain in

each element is the same as for the system, and rearranging gives the following

differential relation between the applied stress and strain.

σþ τ1 þ τ2ð Þ _σ þ τ1τ2€σ ¼ μ1 þ μ2ð Þ _ε þ μ1τ2 þ τ1μ2ð Þ€ε (5:16a)

The standard form of Eq. 5.16a is

σþ p1 _σ þ p2€σ ¼ q1 _ε þ q2€ε (5:16b)

Since the Maxwell elements are connected in parallel, if strain ε(t) is given, one
can either solve the pair of linear first order (Eq. 5.15) or the single second order
equation (Eq. 5.16b) to find the solution for σ(t). As an example, consider the

case of stress relaxation in which a constant strain history is applied, ε(t)¼ ε0H
(t). Due to the kinematic constraint, each Maxwell element sees the same global

strain history and the solution for σ1(t) and σ2(t) from Eq. 5.15 are as given

earlier in Eq. 3.29.

σ1 tð Þ ¼ ε0E1e
�t=τ1

σ2 tð Þ ¼ ε0E2e
�t=τ2 (5:17a)

From the equilibrium constraint, the solution for the overall stress in the system

is a simple superposition of the stresses in each element

σ tð Þ ¼ ε0 E1e
�t=τ1 þ E2e

�t=τ2
� �

(5:17b)

The second order differential equation (Eq. 5.16b) can also be solved to obtain

the same solution as Eq. 5.17b.

Three Maxwell elements in parallel would give a differential relation between

stress and strain that contains first, second and third derivatives (see homework

problem 5.7) as given below,

σþ p1 _σ þ p2€σþ p3 €_σ ¼ q1 _ε þ q2€εþ q3 €_ε (5:18)

Obviously, as the number of elements increase, the order of the highest derivative

increases. After obtaining the differential equation for three Maxwell elements,
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it is possible to develop a recursion relation to obtain the appropriate coefficients

(in terms of Ei’s and μi’s, as in Eq. 5.6) for any number of elements so desired.

It is usually not possible to represent the behavior of a polymer under the

condition of relaxation with only one or two Maxwell elements in parallel.

Rather, as many as 5–15 or more elements may be necessary. A model with

many elements is called a Generalized Maxwell Model and is shown in Fig. 5.8.
The differential equation for a generalized Maxwell model may be expressed as,

σþ p1 _σ þ p2€σþ � � � pn σ
n� ¼ q1 _ε þ q2€εþ � � � qn εn

�
(5:19)

where σn
� � Dnσ, p0 is taken to be unity and n is the number of parallel Maxwell

elements in the particular model. Mechanical models constructed from springs,

dampers and Maxwell and Kelvin elements can in general be represented by a

differential equation of the standard form

Xn
k¼0

pk
dkσ
dtk

¼
Xm
k¼0

qk
dkε
dtk

(5:20)

where n¼m and q0¼ 0 for the generalized Maxwell model. As will be men-

tioned subsequently, the number of derivatives of stress and strain is not the

same for a series of Kelvin elements which provides the rationale for the

different indices n and m on the summation in Eq. 5.20. Some might be tempted

to avoid using Ei’s and μi’s and instead develop a generalized model by choosing

p’s and q’s. However, as discussed in the next section, the p’s and q’s for a

differential equation of a particular order may not be chosen arbitrarily and still

represent physically meaningful behavior.

Fig. 5.8 Generalized Maxwell fluid
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As with the two-element example, the solution of a Generalized Maxwell

Model for a given strain input, ε(t), can be found either by superposition of n first
order differential equation solutions or by solution of the single nth order

differential equation. The n first order equations are all of the form of Eqs. 5.15,

σi þ τiDσi ¼ μiDεi tð Þ (5:21a)

where i ranges from 1 to n. The kinematic constraint again provides that the

strain in each element is the same as the global strain, εi tð Þ ¼ ε tð Þ. And the

equilibrium constraint provides that the solution for the global stress is simply a

sum of the individual stresses, σ tð Þ ¼ σ1 tð Þ þ σ2 tð Þ þ � � � þ σn tð Þ. For the con-
dition of stress relaxation, ε(t)¼ ε0H(t), the solution of these linear differential

equations can again easily be found by superposition to be,

σ tð Þ ¼ ε0
Xn
i¼1

E1e
�t=τi

(5:21b)

Therefore the relaxation modulus of a Generalized Maxwell Model is given by

E tð Þ ¼
Xn
i¼1

Eie
�t=τi (5:21c)

This type of representation is sometimes called a Prony series and such an

exponential expansion is often used to describe the relaxation modulus of a

viscoelastic material even without reference to a mechanical model.

The generalized model given above can only be used to represent a thermo-

plastic if all of the μi values are nonzero. In order to represent a thermoset a free

spring is sometimes included with the result known as the Wiechert model

shown in Fig. 5.9.
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The solution for stress relaxation and the relaxation modulus then become,

σ tð Þ ¼ ε0
Xn
i¼1

Eie
�t=τi þ E1

 !

E tð Þ ¼
Xn
i¼1

Eie
�t=τi þ E1

(5:22)

where E1 is the equilibrium modulus.

For a Generalized Maxwell Model, whether a solution for a given problem is

found by solving the nth order differential equation or the system of n first order

equations depends on the particular loading history applied. For the case of

stress relaxation, the superposition of solutions of the first order equations is

certainly the simpler route. For more complicated strain histories, the method of

choice may also depend on whether the solution is to be obtained numerically or

analytically. Also, if a variable stress history is applied and the strain distribu-

tion is to be found, use of the single higher order differential equation will likely

be more straightforward, since each of the σi(t) needed in the first order

equations are unknown at the outset. Finally, since the relaxation modulus for

a Generalized Maxwell Model (Eq. 5.22) is known, solutions may also be

obtained for given stress or strain histories via an integral constitutive equation

approach (instead of solving differential equations), as is shown in the next

chapter.

Fig. 5.9 Wiechert model
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A Generalized Kelvin Solid is composed of a number of Kelvin elements in

series as shown in Fig. 5.10a.

However, this model still has no instantaneous elasticity and a free spring is

normally included in series with the generalized Kelvin solid with the result

(sometimes referred to as the Voigt-Kelvin model) (Fig. 5.10b).

A differential equation for either of the series of Kelvin elements can be found

using the same procedure described in developing the differential equation for a

series of Maxwell elements. The equilibrium constraint, kinematic constraint

and constitutive equations are given by

σ ¼ σ1 ¼ σ2 ¼ � � � ¼ σn
ε ¼ ε1 þ ε2 þ � � � þ εn
σi ¼ Eiεi þ μiDεi , i ¼ 1, 2, � � �n

(5:23a)

Proper combination of these equations will result in a governing differential

equation in the standard form,

Xn
k¼0

pk
dkσ
dtk

¼
Xm
k¼0

qk
dkε
dtk

(5:23b)

where n¼m�1 and p0¼ 1. Again, depending on the loading history applied,

either the system of n first order Eqs. 5.23a or the single nth order differential

Eq. 5.23b can be solved. For the case of simple creep loading,σ tð Þ ¼ σ0H tð Þ, the

(a)

(b)

Fig. 5.10 (a) Generalized Kelvin solid. (b) Generalized Voigt-Kelvin solid
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solution for the Generalized Kelvin Model can be easily found by superposition

of the solutions of the n first order equations to be,

ε tð Þ ¼ σ0
1

E0

þ
Xn
i¼1

1

Ei

1� e�t=τi
� �" #

(5:24a)

where the creep compliance is therefore defined to be

D tð Þ ¼ 1

E0

þ
Xn
i¼1

1

Ei

1� e�t=τi
� �

(5:24b)

These equations can be used to represent a cross-linked material. Although the

Generalized Kelvin Model can be solved for the case of relaxation, due to the

forms of the differential equations and ease of solution, Maxwell elements in

parallel are typically used for relaxation while Kelvin elements in series are used

for creep.

A free damper as well as a free spring can be placed in series with a number of

Kelvin elements as given in Fig. 5.11,

The creep compliance will then become,

D tð Þ ¼ 1

E0

þ
Xn
i¼1

1

Ei

1� e�t=τi
� �

þ t

μ0

" #
(5:24c)

and can be used to represent a thermoplastic material. As with the Generalized

Maxwell Model, the creep compliance found for the Generalized Kelvin Model

can be used to characterize a viscoelastic material and then can be used in

integral constitutive laws (Chap. 6) to determine the response of the material

to any type of stress or strain loading history without solving the differential

equations for that given loading history.

Fig. 5.11 Generalized Voigt-Kelvin solid with a free damper
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An example of creep deflection in a tensile bar for an epoxy at different

temperatures is shown in Fig. 5.12. It will be noticed that the creep response for a
temperature of 155 �C still has a positive slope after seven hours. Without

knowing the type of material, one might expect the response to be that of a

viscoelastic fluid. The creep response for 165 �C and 170 �C clearly have

reached a limit and has the character of a thermoset. Because of the nature of

the response, the epoxy could be best characterized by a viscoelastic fluid model

such as the four-parameter fluid for both the 155 �C and 160 �C data. On the

other hand, the epoxy could best be characterized by a viscoelastic solid model

such as the three-parameter solid for temperatures above 160 �C. To characterize
the material over all time and temperature ranges would require a generalized

model with a large number of elements. Methods to accomplish this will be

discussed in subsequent sections.

The glass transition temperature for this material was not measured, but is

likely above 155 �C. Assuming such is the case, the material at 155 �C is in the

glassy region while the material above 170 �C is in the rubbery region. In fact, if

the load could be applied instantaneously (without inertia effects), the initial

elastic strain would be nearly the same for each. The major difference would be

the time to reach the limit strain. At 155 �C, the time required to reach a strain

equivalent to the limiting rubbery value would be very long, perhaps days,

weeks or even months. But at 170 �C the limiting rubbery strain is reached in

a few minutes or less.

Fig. 5.12 Creep of an araldite epoxy

5 Differential Constitutive Equations 185



Also, it should be noted that the deflection (or strain) reaches a higher limiting

value at 165 �C than at 170 �C. This might be considered an artifact of the

experiment at first. However, in reality this is confirmation of the Joule effect

mentioned in Chap. 1. More evidence of this phenomenon will be given later.

5.3.1. A Caution on the Use of Generalized Differential
Equations

Sometimes in numerical studies it is tempting to attempt to understand how a

particular boundary value problem might be affected by the order of the differ-

ential equation representing the relationship between stress and strain. For

example, the general equation,

Xn
k¼0

pk
dkσ
dtk

¼
Xm
k¼0

qk
dkε
dtk

(5:25a)

or

σþ p1 _σ þ p2€σþ � � �pn σn
� ¼ q1 _ε þ q2€εþ � � �qn εm

�
(5:25b)

might be truncated after the first, second derivative or higher derivative to obtain

a workable equation. Care must be taken when generating arbitrary differential

constitutive equations in this manner. For example, consider truncation after the

first derivative to obtain,

σþ p1 _σ ¼ q0εþ q1 _ε (5:25c)

This equation, is in fact the same as the equation for the three-parameter solid

and may be written as,

σþ μ1
E0 þ E1

_σ ¼ E0E1

E0 þ E1

εþ μ1E0

E0 þ E1

_ε (5:25d)

Now consider the relationship between the coefficients p1, q0, and q1 in the

form,
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q1
p1

� q0 ¼
μ1E0

E0þE1

μ1
E0þE1

� E0E1

E0 þ E1

¼ E2
0

E0 þ E1

> 0 ¼ positive quantity (5:25e)

As a result,

q1
p1

� q0 > 0 ¼ positive quantity and, q0 <
q1
p1

Obviously, in this case the coefficients of the differential equation cannot be

selected arbitrarily and must satisfy the above inequality in order to be physi-

cally meaningful.

Refer to Flugge (1974) for additional discussion on this subject and other

inequalities.

5.3.2. Description of Parameters for Various Elementary
Mechanical Models

The methods previously discussed in this chapter can be used to determine the

differential equations, solutions and parameters for a number of mechanical

models using a variety of combinations of springs and damper elements.

Table 5.1 is a tabulation of the differential equation, parameter inequalities,

creep compliances and relaxation moduli for frequently discussed basic models.

Note that the equations are given in terms of the pi and qi coefficients of the
appropriate differential equation in standard format. The reader is encouraged to

verify the validity of the equations given and is also referred to Flugge (1974) for

a more complete tabulation.
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5.4. Alfrey’s Correspondence Principle

It is possible using transformmethods to convert viscoelastic problems into elastic

problems in the transformed domain, allowing the wealth of elasticity solutions to

be utilized to solve viscoelastic boundary value problems. Although there are

restrictions on the applicability of this technique for certain types of boundary

conditions (discussed further in Chap. 9), the method is quite powerful and can be

introduced here by building on the framework provided by mechanical models.

Recall the differential equation for a generalized Maxwell or Kelvin model,

Xn
k¼0

qk
dkσ
dtk

¼
Xm
k¼0

qk
dkε
dtk

(5:26)

which can also be written compactly in terms of differential operators, P andQ as

Pσ ¼ Qε (5:27)

The Laplace transform represented by,

£ f tð Þgf ¼ f sð Þ ¼
ð1
0

e�stf tð Þdt (5:28)

can be used to convert differential equations into algebraic equations. Taking the

Laplace transform of Eq. 5.26 changes the differential equation to an algebraic

expression in the transform parameter s and, due to the simple form of Eq. 5.26,
may be expressed as,1

Xn
k¼0

pks
kσ sð Þ ¼

Xm
k¼0

qks
kε sð Þ (5:29)

or

P sð Þσ sð Þ ¼ Q sð Þε sð Þ (5:30)

See the Appendix B for fundamentals on the Laplace transform. Since the

transformed stress and transformed strain are no longer part of the summations,

the expression may be further rewritten as

1 The reader is cautioned that Eq. 5.29 must be used with care in order to include all initial

conditions properly. Significant differences arise depending upon whether the time begins at 0+ or

0�. In most circumstances used herein, f(t)¼ 0 for t< 0 but in creep or relaxation the jump

discontinuity at t¼ 0 must be included.
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σ sð Þ ¼

Xm
k¼0

qks
k

Xn
k¼0

pks
k

0
BBBB@

1
CCCCAε sð Þ ¼ Q sð Þ

P sð Þ ε sð Þ (5:31)

The quotient of operators can be thought of as an elastic modulus in transform

space and the above equation can be written as,

σ sð Þ ¼ E
∗
sð Þε sð Þ (5:32)

This result is in the same form as Hooke’s law for a linear elastic material under

uniaxial load and is sometimes called Alfrey’s Correspondence Principle.2 The

quantity,E
	
sð Þ, in transform space is analogous to the usual Young’s modulus for a

linear elastic materials. Here, the linear differential relation between stress and

strain for a viscoelastic polymer has been transformed into a linear elastic relation

between stress and strain in the transform space. It will be shown in the next chapter

that the same result can be obtained from integral expressions of viscoelasticity

without recourse to mechanical models, so that the result is general and not limited

to use of a particular mechanical model. Therefore, the simple transform operation

allows for the solution of many viscoelastic boundary value problems using results

from elementary solidmechanics and frommore advanced elasticity approaches to

solids such as two and three dimensional problems as well as plates, shells, etc. See

Chaps. 8 and 9 for more details on solving problems in the transform domain.

5.5. Dynamic Properties: Steady State Oscillation
Testing

Viscoelastic properties are often determined with steady state oscillation or

vibratory tests using small tensile (compressive) bars, thin cylinders or flat strips

in torsion, beams in bending, etc. The approach is usually referred to as dynamic

mechanical analysis (DMA) testing or sometimes dynamic mechanical thermal

analysis (DMTA). The latter term is more appropriate as properties are often

determined and expressed in terms of temperature as well as frequency. Here,

2 What is now known as the correspondence principle for converting viscoelastic problems in the

time domain into elastic problems in the transform domain was first discussed by Turner Alfrey in

1944. As a result, the principle is sometimes referred to as Alfrey’s correspondence principle. Later

in 1950 and in 1955 the principle was generalized and discussed by W.T. Read and E. H. Lee

respectively. (See bibliography for references.)
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sinusoidal tensile testing of a uniaxial bar will be used as an example. However,

the results will apply, in general, to all types of dynamic testing. As with the

Laplace transform approach for the correspondence principle above, the differ-

ential equation obtained from general mechanical models will be used to moti-

vate and describe the dynamic properties here, but we will also see in the next

chapter that again the results are general (not dependent upon use of a mechan-

ical model) and can be obtained from integral equation methods.

Assume a small uniaxial sample is loaded with a strain input,

ε tð Þ ¼ ε0eiωt (5:33)

In practice only the real (or imaginary) part, a cosine (or sine) wave, will be input

but the algebra associated with the exponential function is easier to manipulate

and will be used for a general derivation. Note also that the discussion here only

considers the steady-state dynamic response. Transient terms associated with

starting up an oscillatory loading have decayed and are neglected as are inertial

terms. Given the form of the differential Eq. 5.26 for a general mechanical

model of a viscoelastic material, an exponential input as in Eq. 5.33will result in
a stress output also of exponential form

σ tð Þ ¼ σ∗eiωt (5:34)

where ω is the frequency and σ* is a complex quantity. The σ* can be further

defined

σ∗ ¼ ε0E∗ iωð Þ (5:35)

such that the stress can be written as

σ tð Þ ¼ ε0E∗ iωð Þeiωt (5:36)

HereE∗ iωð Þ is defined as the complex modulus and can be decomposed into real

and imaginary parts as

E∗ iωð Þ ¼ E
0
ωð Þ þ iE

00
ωð Þ (5:37)

The real part is defined as the storage modulus, E0(ω), and the imaginary part is

defined as the loss modulus, E00(ω). It will be shown later that these respective

quantities can be related to the energy stored and dissipated in a loading cycle.
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Note that by combining Eqs. 5.33 and 5.36, the complex modulus directly

relates the time dependent stress to time dependent strain for the case of

oscillatory loading

σ tð Þ ¼ E∗ iωð Þε tð Þ (5:38)

If the input strain and output stress from Eqs. 5.33 and 5.36 are inserted into the
differential equation for a general mechanical model, Eq. 5.26, after simplifica-

tion an expression very similar to Eq. 5.31 results and the complex modulus is

found to be

E∗ iωð Þ ¼

Xm
k¼0

qk iωð Þk

Xn
k¼0

pk iωð Þk
(5:39)

Similarly, considering the case of an oscillatory stress as input with a corres-

ponding complex output of strain, the complex compliance can be derived as

D∗ iωð Þ ¼

Xn
k¼0

pk iωð Þk

Xm
k¼0

qk iωð Þk
(5:40)

which can be decomposed as

D∗ iωð Þ ¼ D
0
ωð Þ þ iD

00
ωð Þ (5:41)

where the real part is the storage compliance, D0(ω), and the imaginary part is

the loss compliance, D00(ω). As before, the relationship between stress and strain
is given by the complex compliance as

ε tð Þ ¼ D∗ iωð Þσ tð Þ (5:42)

from which one sees that the complex compliance is simply the inverse of the

complex modulus. To further understand the response of a viscoelastic polymer

to oscillatory loading, consider a simple Kelvin element (Fig. 5.13) with the

associated differential equation,
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σ ¼ q0εþ q1 _ε (5:43)

Application of Eq. 5.39 can be used to find the complex modulus,

E∗ iωð Þ ¼ q0 þ iq1ω
p0

¼ Eþ iμω ¼ E 1þ iτωð Þ (5:44)

with the storage and loss moduli,

E
0
ωð Þ ¼ E E

00
ωð Þ ¼ μω (5:45)

Using complex conjugates to invert Eq. 5.44, the complex compliance can be

found,

D∗ iωð Þ ¼ 1

E∗ iωð Þ ¼
p0

q0 þ iq1ω
¼ p0 q0 � iq1ωð Þ

q20 þ q21ω2
¼ E� iμω

E2 þ μ2ω2
(5:46)

with the storage and loss compliances given by,

D
0
ωð Þ ¼ E

E2 þ μ2ω2
D

00
ωð Þ ¼ �μω

E2 þ μ2ω2
(5:47)

These results could also be obtained by solving the differential equation for the

Kelvin model using an input condition of, ε0[cos(ωt)]. However, for higher

order differential equations, use of Eqs. 5.39 and 5.40 would obviously be

advantageous. Note that the above storage and loss compliances are also given

in Table 5.1, using pi and qi coefficients, along with creep and relaxation

properties. The reader is urged to use the methods given above to verify the

accuracy of the quantities given.

To obtain a physical understanding of polymer response to oscillatory loading

and the complex, storage and loss moduli, reconsider input and output stresses

and only use the real part of each quantity,

Fig. 5.13 Kelvin solid
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ε tð Þ ¼ ℜ ε0eiωt
� 	 ¼ ε0 cos ωtð Þ (5:48)

σ tð Þ ¼ ℜ ε0E∗ iωð Þeiωt� �
¼ ℜ ε0 E

0 ωð Þ þ iE
00 ωð Þ� �

cos ωtð Þ þ i sin ωtð Þ½ 
� �
¼ ε0 E

0 ωð Þ cos ωtð Þ � E
00 ωð Þ sin ωtð Þ� � (5:49)

These conditions then represent subjecting a polymer to an oscillatory (cosine)

strain input. The stress output is also oscillatory, but is out of phase with the

strain input. To visualize, see the input and output results shown in Fig. 5.14 at a
single frequency. The total input and total output are plotted, as well as the in

phase and out of phase portions of the stress output.

If stress data is obtained for a real polymer subjected to a cosine strain input,

analysis of the resulting plots similar to Fig. 5.14 will allow the determination of

complex modulus, storage modulus and loss modulus. Comparing the ampli-

tudes of the in phase and out of phase outputs to the amplitude of the strain input

gives the storage, E0(ω), and loss, E00(ω), moduli respectively and the complex

moduli, E*(iω), can then be obtained using Eq. 5.37. Note however that what is
obtained from analysis of Fig. 5.14 is the value of the moduli at a single

frequency; in order to obtain the moduli as a function of frequency a series of

such plots must be analyzed. In practice, the DMA testing machines therefore

perform a frequency sweep to obtain moduli within a bounded frequency range

(limited by the equipment), usually several decades. Chapter 7 will discuss use

of tests at different temperatures to extend the range of moduli functions so that a

more complete picture of the behavior of the polymer from glassy (high fre-

quency) to rubbery (low frequency) response can be obtained.
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The origin of the phase lag seen in Fig. 5.14 can also be understood by

expressing the complex moduli with a magnitude and phase angle in the

complex plane as shown in Fig. 5.15.

E	 iωð Þ ¼ E
0
ωð Þ þ i E

00
ωð Þ ¼ E	 iωð Þj jeiδ ωð Þ (5:50a)

where

E	 iωð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

0 ωð Þ� 	2 þ E
00 ωð Þ� 	2q

(5:50b)

Fig. 5.14 Input and output for a steady state vibration test of a polymer simulated with

Kelvin model
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and

tan δ ωð Þ ¼ E
00 ωð Þ

E
0 ωð Þ (5:50c)

The output stress for a strain input ε(t)¼ ε0cosωt can therefore also be written in
the form,

σ tð Þ ¼ ℜ ε0 E	 iωð Þj jei ωtþδ ωð Þð Þ� �
¼ ε0 E	 iωð Þj j cos ωtþ δ ωð Þð Þ (5:51)

where the stress clearly lags the strain input by the material parameter δ(ω),
which is referred to by one of several common names in the literature as the “loss

angle”, “loss coefficient”, “tan delta” or “damping ratio”.

As mentioned at the beginning of this section, special dynamic mechanical

analysis (DMA) testing systems are commercially available for the rapid eval-

uation of complex, storage and loss modulus as well as phase angle or damping

ratio. Given in Fig. 5.16a–c are photographs of portions of a typical DMA

system showing a polymer specimen, the linear actuator loading mechanism

and specimen grips as well as the housing for the electromagnetic coils. Also

shown is the monitor of the computer used to control the testing and on which

typical damping and storage modulus data are displayed. It is interesting to note

that early DMA designs used eccentric cam mechanical loading devices instead

of magnetic coils and the harmonic input and output data was often displayed on

a dual pen strip-chart recorder as illustrated by the schematic in Fig. 5.16d. The
phase shift was easily visualized by noting the amount the input and output

curves were shifted. Data found with the current electro-magnetic digital sys-

tems is much more accurate than with earlier mechanical systems but there is not

the same easy visualization of the nature of the phase lag as demonstrated

analytically in Fig. 5.14 as the live harmonic data is not typically displayed in

the accompanying software.

Fig. 5.15 Storage and loss moduli as components of the complex modulus
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Another method to visualize the phase lag in older test methods was to feed

both input and output into an oscilloscope to obtain a hysteresis loop also shown

schematically in Fig. 5.16d. The amount of energy loss per cycle is the area

within the stress–strain loop and is called the dissipation. How the hysteresis

loop is obtained is best visualized by plotting the stress versus the strain at

corresponding times on the input and output curves as shown Fig. 5.17. As the
peak input strain, ε, at A begins to decrease, the lagging output stress is still less

than the peak output stress. In other words it is the time lag between input strain

and output stress that gives rise to the hysteresis loop.

Fig. 5.16 A typical dynamic mechanical analysis (DMA) testing system
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Determining hysteresis plots manually by plotting strain versus time input

and the stress vs. time output on mutually perpendicular axis and combining

respective points in time as shown in Fig. 5.17 is tedious and is rarely done.

However, the concept gives a good physical understanding of how the phase lag

in a steady-state vibration test leads to the hysteresis loops routinely obtained

with the aid of an oscilloscope. Some use rotating vectors to explain the relation

between phase lag and energy loss (e.g., see Flugge 1974 or Aklonis and

McKnight 1983).

A plot of the data for a Kelvin model in Fig. 5.14 at common times will yield

a hysteresis loop for the chosen frequency just as illustrated in Fig. 5.17. Note
that if stress and strain are completely in phase with one another (as is the case

for an elastic material), a straight line is obtained as indicated by the dashed

diagonal line in Fig. 5.17. For a given viscoelastic material, the degree of phase

lag and the breadth of the hysteresis loop will depend greatly on the frequency

(and temperature) at which the test is performed. For example, at a frequency/

temperature where the material behaves in a glassy, elastic manner, phase lag,

hysteresis or loss of energy will be small to nonexistent.

Using the DMA (Fig. 5.16), steady state viscoelastic response over a wide

range of temperatures and frequencies can be found by “sweeping” a range of

frequencies at a single temperature or “sweeping” a range of temperatures at a

single frequency to generate master curves using the time-temperature superpo-

sition principle (TTSP) that will be discussed at length in Chap. 7.

Fig. 5.17 Formation of the hysteresis loop for a polymer as visualized by graphical

combination of the stress and strain values parametrically. The dashed line

inside the hysteresis loop represents purely elastic response
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As mentioned, the area inside the hysteresis loop represents the energy lost

or dissipated during cyclic deformation. The dissipation can be shown to be

proportional to the loss modulus using the basic relationships between work

and energy. Recall that the work per unit volume of a stressed material is

given by

W ¼
ð
σdε ¼

ðt
0

σ _εdt (5:52)

If a material behaves in a perfectly elastic manner, the deformation energy

supplied to the material during loading is stored in the stretching of the molec-

ular/atomistic configuration changes and subsequently recovered completely

upon unloading: there is no energy dissipated. Therefore for a single complete

cycle of oscillatory loading of any material (elastic or not), the net energy stored

is zero, as the material is loaded and unloaded symmetrically. The amount of

energy dissipated in a single cycle of oscillatory loading can thus be calculated

by integrating Eq. 5.52 over a complete cycle:

D ¼
I

σdε ¼
ð2π=ω
0

σ _εdt (5:53)

For a perfectly elastic material, Hooke’s law is obeyed, σ¼E ε. This implies

that the width of the hysteresis loop is zero (the dashed line in Fig. 5.17)
and evaluation of the integral in Eq. 5.53 is identically zero. For a viscoelas-

tic material, we can write the stress as a function of the strain via the

complex modulus (Eq. 5.38) and then rearrange in terms of the storage and

loss moduli

σ tð Þ ¼ E	 ωð Þε tð Þ
¼ E

0
ωð Þε tð Þ þ E

00
ωð Þ
ω

iωε tð Þ

¼ E
0
ωð Þε tð Þ þ E

00
ωð Þ
ω

_ε tð Þ
(5:54)

To calculate the energy dissipated over a cycle, Eq. 5.54 can be substituted in

Eq. 5.53. Using a sinusoidal strain (ε(t)¼ ε0sin ωt), it can be shown:
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D ¼
ð2π=ω
0

σ _εdt

¼
ð2π=ω
0

E
0
ωð Þε tð Þ þ E

00 ωð Þ
ω

_ε tð Þ
� 


_εdt

¼ ε20ωπE
00

(5:55)

So we see that the dissipated energy is indeed proportional to the loss modulus.

In the glassy or rubbery regions where the loss modulus is infinitesimal, the

dissipation is therefore minimal.

5.5.1. Examples of Storage and Loss Moduli and Damping
Ratios

If the storage and loss moduli and damping ratios are found for aMaxwell model,

the result will be as shown in Figs. 5.18 and 5.19. This result can be found

algebraically and then plotted using a spread-sheet or graphics program. The

behavior of real polymers is sometimes similar to the results for a Maxwell fluid

as is the case for polycarbonate as given Fig. 5.20. Notice the characteristic “S”
shape of the storage modulus and characteristic “bell” shape of the loss in the

experimental data. Note that the Maxwell Fluid shows a loss tangent (damping

ratio) unrealistic for a solid polymer as there is no peak (the loss tangent grows

without bound at low frequencies). Including a free spring ensures a bell-shaped

loss tangent similar to the experimental data. Results for a simple 2 element

Wiechert model (a solid containing two Maxwell elements connected in parallel

with a spring) is shown in Fig. 5.21 where the loss tangent peak can be clearly

seen. With respect to the transition region, note that the decay in the storage

modulus is relatively rapid for a single Maxwell element, limited to about a

decade in frequency around the inverse of the single relaxation time, τ. By
moving to a model with two Maxwell elements (Fig. 5.21), the transition region
of the storage and loss moduli are expanded, becoming more like a real polymer,

extending around the inverse of the two relaxation times. Not all polymers have

such simple shaped moduli functions and the reader is referred to excellent

texts such as (Ferry 1980; Tobolsky 1962) for further examples.

In Fig. 5.19 results are given versus the inverse of frequency, as this would

correspond roughly to the time scale. The modulus, E(t), is also plotted in this

figure for comparison, where the values for time along the bottom axis for this

curve are identical to the inverse frequency values given. The glassy modulus,
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E0, is located at short times for E(t) and at high frequencies for E1(ω). Note that
the time dependent modulus is quite similar in form to the storage modulus

plotted versus inverse frequency. Dynamic results found in the literature are

sometimes plotted versus frequency and sometimes versus inverse frequency.

Fig. 5.18 Variation of storage and loss moduli for a Maxwell fluid with frequency

Fig. 5.19 Variation of storage and loss moduli for a Maxwell fluid with inverse fre-

quency; Variation of modulus, E(t), where the time scale on the horizontal

axis is numerically identical to the inverse frequency scale shown
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Fig. 5.21 Variation of storage and loss moduli for a 2 element Wiechert model (a solid)

with frequency

Fig. 5.20 Variation of storage and loss moduli with frequency for polycarbonate
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In addition to frequency dependent mechanical properties, as mentioned

earlier, a DMTA can also be used at constant frequency to determine temper-

ature dependence of properties. In this manner, one can probe the glass-

transition temperature (Tg), assess changes in molecular structure due to

additional curing upon heating, the effect of crystallinity on properties etc.

The variation of storage and loss moduli and tan δ with temperature for a

typical polymer is shown in Fig. 5.22. The glass-transition temperature is

indicated as the temperature where the peak in tan δ occurs. Notice the

similarity of property changes in temperature to changes with frequency in

Fig. 5.20. Shown in Fig. 5.23 is a depiction of the variation of tan δ of a

polymer over a wide range in temperature with not only the α transition (Tg)

indicated but also the β, γ and δ transitions. (The δ transition should not be

confused with the larger α transition or tan δ. Perhaps to avoid confusion a

different terminology should be adopted but the tradition for the names of the

various transitions are well established and a change would likely lead to even

more confusion.)

Fig. 5.22 Variation of storage and loss moduli and Tan δwith temperature as determined

with a DMTA for polycarbonate. The Tg is located at the peak of the Tan δ
curve
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While all polymers have characteristics similar to the above examples, there

is considerable variation among different classes of polymers. To observe this

diversity, the reader is referred to the extensive study of the steady state response

of many polymer types given by Ferry (1980). In particular, he gives an

excellent description of the results for eight categories including dilute polymer

solutions, low and high molecular weight amorphous polymers and lightly and

highly cross-linked systems as well as highly crystalline polymers.

5.5.2. Molecular Mechanisms Associated with Dynamic
Properties

The behavior given in the above examples for polymer response variation with

time and temperature under steady-state dynamic loading is directly related to

the deformation mechanisms associated with the long chain nature of polymer

molecules. As illustrated in Fig. 5.23, low frequency response is similar to high

temperature (rubbery) response, and high frequency response is similar to low

Fig. 5.23 Variation of Tan δ with temperature for polystyrene as determined with a

DMTA. Here α, β, Y and δ transitions are shown (Data from Arridge (1975)

by permission of Oxford University Press)

5 Differential Constitutive Equations 205



temperature (glassy) response. The basic mechanical responses therefore relate

across the time and temperature scales, as do the underlying molecular mecha-

nisms. A brief description of these mechanisms follows. (For more detailed

information the reader is referred to (Lazan 1968; Menard 1999).

As described in Chap. 4 the long molecular chains form a tangled mass that

might be analogous to a similarly tangledmass of long earthworms. This illustration

is especially appropriate due to the constant motion of individual atoms and

segments of chains even at a very low temperature. It is especially important to

note that the entanglement points between individual chains in thermoplastic poly-

mers act very much like the covalent cross-linked sites in thermosets at low

temperatures. Therefore, the behavior of thermoplastics and thermosets are often

very similar for temperatures well below the glass-transition temperature. As a

result, for low temperatures near the delta and gamma transitions (see Fig. 5.23),
local motions or bending and stretching of primary valence bonds are the primary

mechanisms that contribute tomacroscopic deformations in all classes of polymers.

At somewhat higher temperatures near the beta transition, but still below the glass

transition temperature Tg, side group motions occur and coupled with the bending

and stretching of primary bonds leads to larger deformations but the polymer is still

glassy and quite brittle. Damping in this regime is small and hysteresis negligible.

The delta, gamma and beta transitions are often identified as secondary transitions

and depend on the character of the monomeric structure of the polymer. Near the

glass transition temperature damping and stiffness properties are governed by the

chain segments between entanglement sites in thermoplastics and chain segments

between cross-links in a thermoset. These chain segments aremuch smaller than the

macromolecule but are large compared to the chain length of the monomer group.

The coiling and uncoiling of these segments are quite slow just below the glass

transition temperature and are quite rapid as the rubbery range is approached. In this

transition range, damping is quite pronounced and hysteresis in stress–strain is

prominent. Crystallinity tends to reduce the intensity of the glass-transition as

compared to an amorphous polymer as illustrated inFig. 5.23. In the rubbery region
(Tg<T<Tm), polymer-damping properties are insensitive to temperature and

damping is again negligible. In fact formacromolecules having a three-dimensional

cross-linked structure the stiffness may actually increase slightly in the rubbery

range. Near the melt temperature of thermoplastic polymers entire chains begin to

slip past one another and the polymer properties are similar to those of other highly

viscous liquids. On the other hand, thermosets are prevented from such gross chain

motions by the cross-links between chains. At very high temperature well above the

glass-transition temperature, thermosets tend to char and properties will substan-

tially decrease due to molecular degradation. Cross-linked sites may be broken and

then reformed to give the appearance of flow. (See Tobolsky (1962) for a discussion

of these mechanisms). Examples of mechanical properties of thermosets that

demonstrate these characteristics will be given in Chap. 7.
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The recognition of the roles of the various micromechanisms discussed above

are important for the development of damping properties that are needed for a

specific engineering application. Such design typically begins with the selection

of an appropriate monomeric species to control the glass transition temperature

Tg, crystalline melt temperature Tm, and secondary transition properties. By

controlling the polymerization process the same polymer can be produced in

different forms and with different properties. Side group configuration and their

influence on crystallinity, the degree of chain branching, crosslinking, etc. are

well understood and together with blending, plasticization and the addition of

fillers allow a high degree of flexibility in producing a polymer “tailored” for

specific engineering requirements.

5.5.3. Other Instruments to Determine Dynamic Properties

There are many types of tests from which steady state (or dynamic) properties

can be obtained including the vibrating reed, steady state torsion among others.

A relatively simple and easy to build free or unforced vibration test of a flat strip

in torsion (torsional pendulum) shown in Fig. 5.24 is sometimes used to obtain

storage and loss moduli and damping rations. The damping factor (or phase

angle) can be found from the logarithmic decrement which is related the

decrease in amplitude oscillations and the shear modulus can be determined

from the period of oscillation. An example of data obtained using a torsional

pendulum is given in Fig. 5.25. For a more extensive discussion of this test

method see (Nielsen 1965 or Nielsen and Landel 1994).

Fig. 5.24 Torsional pendulum for free vibration test (A amplitude, P period, logarithmic

decrement = ln A1/A2 = ln A2/A3 = ln A3/A4, etc.)
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5.6. Review Questions

5.1. Describe realistic creep and relaxation tests. Illustrate your answer with

sketches of the input and output curves.

5.2. Assuming the input stress (strain) in a creep (relaxation) test is a ramp

followed by a constant stress (strain), describe under what conditions the

test will approximate an ideal creep (relaxation) test.

5.3. Discuss a proper testing procedure to insure that a constant stress and not a

constant load is applied in a creep test.

5.4. Discuss a proper testing procedure to insure that a constant strain is

applied in a relaxation test.

5.5. Give sketches for generalized Maxwell and Kelvin models. Label all

elements.

5.6. Give an equation that would represent the relaxation response for a

generalized Maxwell Fluid.

5.7. Give an equation that would represent the creep response for a generalized

Kelvin Solid.
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Fig. 5.25 Shear data for a styrene/butadiene copolymer developed using a torsional

pendulum. (Data from Nielsen 1965)
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5.8. Describe how one would find the storage modulus, loss modulus and tan δ
from experimental data.

5.9. Explain, describe and/or derive the rationale behind Alfrey’s correspon-

dence principle.

5.10. Describe the molecular mechanisms associated with the regions of

response in a steady state oscillation test.

5.11. Name four transition temperatures that can be found using a DMTA. In

which region is aging likely to occur?

5.7. Problems

5.1. Develop the differential equation for a four-parameter fluid.

5.2. Obtain the solution for creep of a three-parameter solid by solving the

differential equation.

5.3. Obtain the solution for relaxation of a three-parameter solid by solving the

differential equation.

5.4. Obtain the solution for creep of a four-parameter fluid by solving the

differential equation.

5.5. Show that the effect of the initial ramp loading in a realistic relaxation test

as given in Fig. 5.5d of a material that can be represented by a Maxwell

fluid is negligible if the time of the ramp load t0 is small compared to the

relaxation time, τ.
5.6. Develop the differential equation for two Maxwell elements in parallel.

5.7. Develop the differential equation for three Maxwell elements in parallel.

5.8. Develop the differential equation for two Kelvin elements in series.

5.9. Develop the differential equation for three Kelvin elements in series.

5.10. Obtain the solution for relaxation of two Maxwell elements in parallel by

solving the differential equation.

5.11. Find all the parameters necessary to fit the behavior of the 160 �C curve

given in Fig. 5.13 with a three-parameter solid. Give results on a graph

comparing the analytical curve fit to the given data. Discuss the quality of

fit using this simple model.

5.12. Find all the parameters necessary to fit the behavior of the 155 �C curve

given in Fig. 5.13 with a four-parameter fluid. Give results on a graph

comparing the analytical curve fit to the given data. Discuss the quality of

fit using this simple model.

5.13. Under steady state vibration test conditions:

(a) Prove that the phase shift is zero for a Hookean elastic material.

(b) Prove that the phase shift for a Newtonian fluid is π/2.

5.14. Develop expressions for E*(iω), E0(ω), E00(ω) for a Maxwell model and

plot results as a function of 1/ω.
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6. Hereditary Integral Representations
of Stress and Strain

As discussed previously, the relation between stress and strain for linear viscoelastic

materials involves time and higher derivatives of both stress and strain. While

the differential equation method can be quite general, a hereditary integral

method has proved to be appealing in many situations. This hereditary integral

equation approach is attributed to Boltzmann and was only one of his many

accomplishments. In the late nineteenth century, when the method was first

introduced, considerable controversy arose over the procedure. Now, it is the

method of choice for the mathematical expression of viscoelastic constitutive

(stress-strain) equations. For an excellent discussion of these efforts of

Boltzmann, see Markovitz (1977).

6.1. Boltzmann Superposition Principle

In previous chapters, relaxation and creep testing were introduced and the

relaxation modulus and creep compliance were defined as the stress output for

a constant strain input (relaxation) and the strain output for a constant stress

input (creep). A question naturally arises as how the output could be found if a

variable input of either strain or stress were to occur. One could, of course,

attempt to solve a general differential equation if the variation is specified but

such an approach could, in some cases, be quite tedious.

The Boltzmann superposition principle (or integral) is applicable to stress

analysis problems in two and three-dimensions where the stress or strain input

varies with time, but first the approach will be introduced in this section only

for one-dimensional or a uniaxial representation of the stress-strain (constitu-

tive) relation. The superposition integral is also sometimes referred to as

Duhamel’s integral (see W.T. Thompson, Laplace Transforms, Prentice

Hall, 1960).

Consider a variable stress input as shown in Fig. 6.1 with the thought of

seeking a method to find the strain output. First assume that the variable input

© Springer Science+Business Media New York 2015
H.F. Brinson, L.C. Brinson, Polymer Engineering Science
and Viscoelasticity, DOI 10.1007/978-1-4899-7485-3_6
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can be represented by a series of step inputs each of which begins at different

time as shown. Thus

σ tð Þ ¼ σ0H tð Þ þ σ1 � σ0ð ÞH t� t1ð Þ þ � � � þ σn � σn�1ð ÞH t� tnð Þ (6:1)

Obviously, if sufficiently small steps are selected over corresponding small time

intervals, the curve can be fitted to any degree of accuracy desired.

Recall from Chap. 3 that the creep response can be represented by a creep

compliance due to a step input at time zero as,

ε tð Þ ¼ σ0D tð Þ for σ tð Þ ¼ σ0H tð Þ (6:2)

Similarly, creep response for any single step input shifted from the origin can be

written as,

ε tð Þ ¼ σ1D t� t1ð Þ for σ tð Þ ¼ σ1H t� t1ð Þ (6:3)

Because it is assumed that the material is linear viscoelastic, the strain output for

a general varying stress input can be represented as a sum of the output for each

individual step in the following manner (see Appendix A for a discussion of the

unit step function),

ε tð Þ ¼ σ0D tð ÞH tð Þ þ σ1 � σ0ð ÞD t� t1ð ÞH t� t1ð Þ
þ σ2 � σ1ð ÞD t� t2ð ÞH t� t2ð Þ
þ σ3 � σ2ð ÞD t� t3ð ÞH t� t3ð Þ
þ� � � þ σn � σn�1ð ÞD t� tnð ÞH t� tnð Þ

(6:4)

or in series form,

Fig. 6.1 Variable stress input
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ε tð Þ ¼ σ0D tð ÞH tð Þ þ
X

σn � σn�1ð ÞD t� tnð ÞH t� tnð Þ (6:5)

Upon multiplying and dividing by the time increment between each step, Δτ,
and taking the limit as n approaches infinity and Δτ approaches zero, one

obtains,

ε tð Þ ¼ σ0D tð ÞH tð Þ þ lim
n ! 1
Δτ ! 0

X σn � σn�1ð Þ
Δτ

D t� tnð ÞH t� tnð ÞΔτ (6:6)

or

ε tð Þ ¼ σ0D tð ÞH tð Þ þ
ðt
0þ

D t� τð Þ dσ τð Þ
dτ

dτ (6:7)

The integral equation is most often written as

ε tð Þ ¼
ðt
0

D t� τð Þ dσ τð Þ
dτ

dτ (6:8)

where it is understood that the lower limit is from t ¼ 0� or includes the jump

discontinuity in stress at the origin and the stress is understood to be expressed as

σ(t)¼σ(t)H(t). That is,

ε tð Þ ¼
ðt
0�

D t� τð Þ d σ τð ÞH τð Þ½ �
dτ

dτ (6:9)

Differentiation of the product of the stress and the Heavyside function gives,

d σ τð ÞH τð Þ½ �
dτ

¼ d σ τð Þ½ �
dτ

H τð Þ þ σ τð Þ d H τð Þ½ �
dτ

¼ d σ τð Þ½ �
dτ

H τð Þ þ σ τð Þδ τð Þ
(6:10)

or

ε tð Þ ¼
ðt
0�

D t� τð Þ d σ τð Þ½ �
dτ

H τð Þ þ σ τð Þδ τð Þ
� �

dτ (6:11)
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Due to the sifting property of the Dirac Delta function, δ(t), (see Appendix),

Eq. 6.11 reduces to Eq. 6.7.

Using this approach, the output for a more complicated variable stress input

as given in Fig. 6.2 (with σ(t) specified) can be found by integration. Note that

one must take care in the expression of σ(t) and its differentiation in Eq. 6.7 so

that the jump discontinuities at t¼ t1 and t¼ t2 are explicitly included as is the

jump discontinuity at t¼ 0. Examples with simple fi(t) functions are provided in
homework problems 6.4–6.6.

An analogous derivation of the stress output for a variable strain input yields

the equation,

σ tð Þ ¼
ðt
0

E t� τð Þ dε τð Þ
dτ

dτ (6:12)

Because all events over the history of a viscoelastic material contribute to the

current state of stress and strain, the lower limit of the hereditary integral is most

often taken to be �1 and Eqs. 6.8 and 6.12 therefore become,

ε tð Þ ¼
ðt

�1
D t� τð Þ dσ τð Þ

dτ
dτ σ tð Þ ¼

ðt
�1

E t� τð Þ dε τð Þ
dτ

dτ (6:13)

Some might suggest that no need exists for a lower limit of negative infinity as

the instant of first loading is known for most structures. However, in the case of

Fig. 6.2 Example of a variable stress input
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polymer structures, it is especially necessary to carefully consider all previous

events including polymerization and production processes. Further, the previous

history may include temperature or other environmental changes which could

lead to residual stresses that would create changes to the molecular structure and

hence need to be included in any realistic stress analysis. Indeed, most structural

polymers used in industry are quenched which not only gives rise to residual

stresses, but also creates excess free volume at the molecular level that signif-

icantly influences the viscoelastic properties of a material. Two such important

effects that occur as a result of excess free volume are physical and chemical

aging. Such concepts will be discussed at greater length in a later chapter.

Several examples are in order to demonstrate the utility of the Boltzmann

superposition principle.

Example 1: Assume it is desirable to find the strain output in a creep and

creep recovery test shown in Fig. 6.3a. First note that the stress can be

easily represented by two step inputs as illustrated schematically in

Fig. 6.3b and given by

σ tð Þ ¼ σ0H tð Þ � σ0H t� t1ð Þ (6:14)

As a result, the response can be written as,

ε tð Þ ¼ σ0D tð ÞH tð Þ � σ0D t� t1ð ÞH t� t1ð Þ (6:15)

Applying this example to a material which is well represented by a Kelvin solid

mechanical models, where,

σ0

0

-σ0

st
re

ss
, 

σ

st
re

ss
, 

σ

time, t

σ0

(a) Input

t1

(b) Input

time, t

Fig. 6.3 Creep-recovery stress input (a) can be represented by superposition of two step

inputs (b)
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D tð Þ ¼ 1

E
1� e�t=τ

� �
; (6:16)

and substitution in Eq. 6.15 gives,

ε tð Þ ¼ σ0
E

1� e�t=τ
� �

H tð Þ � σ0
E

1� e� t�t1ð Þ=τ
� �

H t� t1ð Þ (6:17)

For t < t1 : ε tð Þ ¼ σ0
E

1� e�t=τ
� �

(6:18)

and for t > t1 : ε tð Þ ¼ σ0
E
e�t=τ et1=τ � 1

� �
(6:19)

The resulting output is represented graphically as (Fig. 6.4),

which agrees with physical intuition for a Kelvin solid. To accomplish the same

result by solving the differential equation for a Kelvin solid would be somewhat

more cumbersome. This is left as an exercise for the reader (see problem 6.1).

Example 2: Another useful example is to consider a Maxwell Fluid

mechanical models subjected to a constant strain rate input as in

Fig. 6.5a, and determine the stress output.

Output

t1

st
ra

in
, ε

time, t

Fig. 6.4 Output for the two step stress input given in Fig. 6.3
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Because the strain is given as, ε(t)¼Rt, the strain rate is constant, dε
dt
¼ R, and

Eq. 6.12 gives,

σ tð Þ ¼ R

ðt
0

E t� τð Þdτ (6:20)

Differentiating and rearranging will give,

E tð Þ ¼ 1

R

dσ
dt

(6:21)

From this result it is apparent that the relaxation modulus can be found from

a constant strain-rate test by dividing the slope of the stress output by the

strain-rate. Similarly, the creep compliance can be found from a constant

stress-rate test by dividing the strain output by the stress-rate,

D tð Þ ¼ 1

R

dε
dt

(6:22)

To obtain the output for a Maxwell fluid in a constant strain rate test, the

relaxation modulus, E tð Þ ¼ Ee�t=τ must be inserted as E t� ψð Þ ¼ Ee� t�ψð Þ=τ

and Eq. 6.20 becomes after changing the dummy variable to ψ,

σ tð Þ ¼ RE

ðt
0

e� t�ψð Þ=τdψ (6:23)

Fig. 6.5 (a) Constant strain-rate input for a Maxwell fluid
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Upon evaluation, Eq. 6.23 reduces to,

σ tð Þ ¼ τRE 1� e�t=τ
� �

(6:24)

and is the same result obtained by solving the differential equation for a Maxwell

fluid and given in Chap. 3 and is plotted in Fig. 6.5b. Thus, the same conclusions

are reached concerning linearity for a constant strain rate test as discussed in the

previous chapter.

6.2. Linearity

It is important to note that the condition of linear viscoelasticity requires both

superposition and proportionality. It is necessary for the responses to stresses

applied at any time to be superposable (as described in Fig. 6.1 (and Eq. 6.4)) and
for responses to different stress levels to be proportional as was illustrated using

isochronous stress-strain curves from creep or relaxation tests discussed in Chap. 3

(e.g. Fig. 3.18) for an arbitrary constant time t¼ t1. These are often referred to as
separate conditions of linearity with superposition referring to the former and

proportionality referring to the latter. However, the constitutive equations

resulting from Boltzmann’s superposition principle (Eq. 6.13) are quite general

and satisfy both conditions for linearity, as can be easily proven. For a more

detailed explanation of the mathematical nature of the integral representation of

viscoelastic constitutive equations see (Christensen 1982). Also, the need for time-

wise superposition is clearly indicated in Chap. 10 in the development of the

Schapery single integral representation for non-linear materials.

Fig. 6.5 (b) Constant strain-rate output for a Maxwell fluid
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6.3. Spectral Representation of Viscoelastic Materials

In the solution of practical boundary value problems it is necessary to have

knowledge of the actual creep or relaxation properties of the material. Some-

times experimental data in discrete form can be used in numerical solutions but

most often measured values of E(t) or D(t) need to be represented mathemati-

cally. The most frequent mathematical approach to represent data is with

exponential (Prony) series. The use of exponential series was well understood

by early polymer scientist and polymer physicists who considered the need to

mathematically represent data. However, as their focus was to develop under-

standing between macroscopic properties and molecular structure, they sought

other general approaches that could be applied in a relatively simple fashion.

While the resulting spectral approach may not appear simple, it has been widely

used in polymer literature. See Gross (1953) for reference to efforts as early as

the 1890s to develop and use distribution functions analogous to the spectra

discussed herein. Indeed, as explained by Gross, much of the early impetus came

from the field of dielectrics since the dielectric tensor and the stress tensor are

mathematical counterparts. The development given below generally follows that

given his 1953 book. Those who wish to learn more about the interrelations

between spectra and other viscoelastic functions and their approximations

should refer to this reference.

To introduce the spectral approach, consider the relaxation modulus for a

generalized Maxwell model,

E tð Þ ¼
Xn
i¼1

Eie
�t=τi (6:25)

where τi is the relaxation time. In Eq. 6.25, we can visualize discrete values of

relaxation times, τi, being superposed on the time scale. If the number of

elements in the generalized Maxwell model become infinite in the limit, i.e.,

E tð Þ ¼ Lim
n!1

Xn
i¼1

Eie
�t=τi (6:26)

then each point on the time scale is also represented by a relaxation time.

Therefore, multiplying and dividing the argument of Eq. 6.26 by an increment

of τi or Δτi will give,
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E tð Þ ¼ Lim
n!1
Δτi!0

Xn
i¼1

Ei

Δτi
e�t=τiΔτi (6:27)

The quantity Ei/Δτi is similar to a Dirac delta function or singularity function

(see Appendix for a discussion) and is defined as H(τi). Taking the limit,

Eq. 6.27 becomes,

E tð Þ ¼
ð1
0

H τð Þe�t=τdτ (6:28)

As noted by Gross (1953),

ð1
0

H τð Þdτ ¼ 1

The quantity H(τ) is a continuous function defined as the relaxation spectrum
and is often used in polymer literature. (Note this term should not be confused

with the Heavyside step function used earlier to represent a step input).

If for example, the relaxation spectrum is assumed to be,

H τð Þ ¼ E0δ τ� τ0ð Þ (6:29)

the relaxation modulus will become upon evaluating Eq. 6.28,

E tð Þ ¼ E0e
�t=τ0 (6:30)

Equation 6.30 is, of course, the equation for a single Maxwell model and would

only provide a very simple approximation of material behavior. The relaxation

spectrum for a generalized Maxwell model for which

E tð Þ ¼
X
i

Eie
�t=τi (6:31)

is simply

H τð Þ ¼
X
i

Eiδ τ� τið Þ (6:32)
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and for a sufficient number of elements can represent a real polymer. If H(τ) is
thought of as many delta functions continuously distributed along the time scale

there are essentially an infinity of relaxation times and hence the integration over

relaxation time in Eq. 6.28.

Comparison with a Fourier or Laplace transform (see Appendix) suggest that

H(τ) can be found using the inversion integral,

H τð Þ ¼ 1

2π i

ðcþi1

c�i1
E tð Þeλtdt (6:33)

where t is complex. It should be noted that Eq. 6.33, while correct is not very

useful in practice. As a result, many approximate approaches have been devel-

oped some of which are detailed in Chap. 7. Again, see Gross (1953) and others

for a more complete discussion of approximation methods. The relaxation

spectrum H(τ) is also referred to as a function for the distribution of relaxation

times. Note that the units of H(τ) are psi (or MPa) and can be thought of as a

density function of the relaxation modulus over time.

A distribution of retardation times based on a generalized Kelvin model leads

to a retardation spectrum, L(τ), defined by,

D tð Þ ¼
ð1
0

L τð Þ 1� e�λt� �
dτ (6:34)

or

L τð Þ ¼ 1

2πi

ðcþi1

c�i1
D tð Þeλtdt (6:35)

The relaxation and creep spectra are widely used in the polymer literature where

molecular mechanisms are related to macroscopic properties. It is noted that a

number of variations in the exact formulation for spectra relations are used and

care should be taken in comparing between sources.

Most often the relaxation or retardation times involved in the viscoelastic

spectral representations shown in Eqs. 6.28 and 6.34 are spread over many

decades of time and for this reason the equations are often written in terms of

a logarithmic time scale such that,
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E ln tð Þ ¼
ð1

�1
H ln τð Þe�t=τd ln τð Þ (6:36)

and

D ln tð Þ ¼
ð1

�1
L ln τð Þ 1� e�t=τ

� �
d ln τð Þ (6:37)

Experimental data is most often represented using base 10 logarithms instead of

natural logarithms.

An example of spectra for a given polymer is shown at the end of this chapter.

Calculation of spectra is revisited in Chap. 7 along with experimental data. For a

more comprehensive discussion of viscoelastic spectra, see for example

Christensen (1982), Tschoegl (1989), Tobolsky (1962), Ferry (1980) and Knauss

et al. (2008). The last reference has a particularly good discussion with an

example of the use of a gamma function that leads to a broad band power law

approximation.

6.4. Interrelations Among Various Viscoelastic
Properties

Relationship Between E(t) and D(t) The Laplace transform of Eqs. 6.8 and

6.12 are,

ε sð Þ ¼ sD sð Þσ sð Þ (6:38)

and

σ sð Þ ¼ sE sð Þε sð Þ (6:39)

Substituting ε sð Þ from Eq. 6.38 into Eq. 6.39 gives,

E sð ÞD sð Þ ¼ 1

s2
(6:40)

which upon using the convolution theorem yields,

222 Polymer Engineering Science and Viscoelasticity: An Introduction

http://dx.doi.org/10.1007/978-1-4899-7485-3_7


ðt
0

E tð ÞD t� τð Þdτ ¼ t (6:41)

This result clearly shows that (unlike an elastic material) the relaxation modulus

and the creep compliance are not reciprocals. That is,

D tð Þ 6¼ 1

E tð Þ (6:42)

In cases where the rate of change of strain or stress is very small, the creep

compliance and relaxation modulus may be approximately the inverse of each

other. Consideration of simple Maxwell and Kelvin models confirm the condi-

tion given by Eq. 6.42 as in Homework problem 6.7.

Relationship BetweenE
�
sð Þ andE sð Þ and BetweenD

�
sð Þ andD sð Þ In Chap. 5,

using Alfrey’s correspondence principal for a generalized mechanical model it

was found that the stress and strain could be related in Laplace transform

space as

σ sð Þ ¼ E
�
sð Þε sð Þ

ε sð Þ ¼ D
�
sð Þσ sð Þ (6:43)

where E
�
sð Þ and D

�
sð Þ are found from the coefficients of the differential

equations describing the system. Comparing Eq. 6.43 with Eqs. 6.38 and 6.39,
it is clear that the correspondence principle holds generally for a viscoelastic

material, not just one represented by a mechanical model. It is also seen that the

transformed modulus, E
�
sð Þ (compliance, D

�
sð Þ), is obtained from the Laplace

transform of the modulus (compliance), multiplied simply by the transform

variable s:

E
�
sð Þ ¼ sE sð Þ

D
�
sð Þ ¼ sD sð Þ (6:44)

Note also that while reciprocity of the modulus/compliance is not valid in the

time domain (Eq. 6.42), it is valid in the transform domain

D
�
sð Þ ¼ 1

E
�
sð Þ (6:45)
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Relationship Between E
�
iωð Þ and E(t) and Between D

�
iωð Þ and D(t) Expres-

sions analogous to Eq. 6.43 were developed in Chap. 5 using a strain (or stress)

input of the form ε� ¼ ε tð Þ ¼ ε0eiωt (or σ*¼σ(t)¼σ0eiωt)

σ� ¼ E� iωð Þε�
ε� ¼ D� iωð Þσ� (6:46)

where then E*(iω) and D*(iω) are termed the complex moduli of the material.

To elucidate the relationship between the time dependent modulus and the

complex modulus, substitute ε tð Þ ¼ ε0eiωt into the hereditary integral of

Eq. 6.13, to obtain

σ tð Þ ¼ iωε0
ðt

�1
E t� τð Þeiωτdτ (6:47)

Changing variables by letting, u¼ t� τ or τ¼ t�u and noting that if τ¼�1,

u¼1, and if τ¼ t, u¼ 0, we obtain

σ tð Þ ¼ ε0eiωt
� �

iω
ð1
0

E uð Þe�iωudu

0
@

1
A (6:48)

Examining the terms in brackets on the right hand side, we recognize the applied

strain ε* and the half-sided Fourier transform of the relaxation modulus. Com-

paring to Eq. 6.46 and replacing u by t the complex modulus is defined as

E� iωð Þ ¼ iω
ð1
0

E tð Þe�iωtdt (6:49)

Similarly, the complex creep compliance can be found to be

D� iωð Þ ¼ iω
ð1
0

D tð Þe�iωtdt (6:50)

Thus, if the time dependent creep or relaxation properties of a material are

known, the complex moduli and compliances can be calculated simply via
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Fourier transforms (Eqs. 6.49 and 6.50). Comparison back to the Laplace trans-

forms (Eq. 6.44), we see that s or iω times the Laplace or Fourier transform,

respectively, of the time dependent properties provide the transformed proper-

ties which can be used in the correspondence principle forms Eqs. 6.43 and 6.46.

If the time dependent modulus of the material, E(t), is expressed in a Prony

series (generalized Maxwell model) representation (Eq. 6.31 or Eq. 5.22), then
the simple algebraic form of the function leads to explicit expressions for the

storage and loss moduli from solution to Eq. 6.49.

E� iωð Þ ¼ E
0 ωð Þ þ iE

00 ωð Þ

¼ E0 E1 þ
X
j

Ejω2

1

τ2j
þ ω2

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E
0

þ i
X
j

Ejω=τj
1

τ2j
þ ω2

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
E
00

(6:51)

Naturally, corresponding forms can be found for the complex compliance

function for a generalized Kelvin model. Verification of these expressions is

left as an exercise for the reader.

Often integral Eqs. 6.49 and 6.50 are given in a different form. For example,

separating the relaxation modulus into two components,

E tð Þ ¼ E1 þ Ê tð Þ (6:52)

where E1 is the equilibrium modulus and Ê tð Þ is the transient modulus. Using

these expressions and separating Eq. 6.52 into real and imaginary will give the

form,

E
0
ωð Þ ¼ E1 þ ω

ð1
0

Ê tð Þ sinωtdt (6:53)

and

E
00
ωð Þ ¼ ω

ð1
0

Ê tð Þ cosωtdt (6:54)

suggested by Christensen (1982) (see homework problem 6.9).
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In using Eqs. 6.53 and 6.54, it is to be noted that E1 for a viscoelastic solid

(e.g. a three parameter solid) is a non-zero quantity and the equilibrium modulus

for viscoelastic fluid (e.g. a Maxwell fluid) is E1 ¼ 0. For discussions of the

advantages of this approach see Christensen (1982), Tschoegl (1989), Tobolsky

(1962), Ferry (1980).

Similarly, the creep compliance can be separated into an instantaneous

component and a transient component such that,

D tð Þ ¼ D0 þ D̂ tð Þ (6:55)

and equations for the storage and loss compliance analogous to using Eqs. 6.53
and 6.54 can be developed (see problem 6.11).

Using Fourier transforms (see Appendix B), it can be shown that the relax-

ation modulus and creep compliance can be found from the complex modulus

and the complex compliance respectively, by the equations,

E tð Þ ¼ 1

2π i

ðcþi1

c�i1

E iωð Þ
iω

	 

eiωtd iωð Þ (6:56)

D tð Þ ¼ 1

2π i

ðcþi1

c�i1

D iωð Þ
iω

	 

eiωtd iωð Þ (6:57)

A new expression for E*(iω) can be found by substituting E(t) from Eq. 6.28
into Eq. 6.49 to obtain,

E� iωð Þ ¼ iω
ð1
0

e�iωt
ð1
0

H τð Þe�λtdτdt (6:58)

A similar relation can be found for D*(iω). Development of these relationships

is left as an exercise for the reader. A schematic representation of the relation-

ship between various viscoelastic properties is given in Fig. 6.6 (Gross 1953).

An example of measured relaxation data for polyisobutylene is shown in

Fig. 6.7a. The corresponding calculated relaxation spectrum is shown in

Fig. 6.7b. The relaxation data for polyisobutylene shown in Fig. 6.7 is spread

over about sixteen decades of time in seconds. If a single test were performed to

obtain this data, the collection of data would have begun in less than a picosec-

ond and the test would have continued for approximately 12 days. To obtain
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similar curves for other temperatures would require a large number of tests.

Instead, a time-temperature-superposition procedure is used to produce a master

curve by performing short-term tests at different temperatures and shifting the

measured curves on the time scale to produce a long-time master curve for any

one temperature. The master curve can then be shifted to determine the response

for any temperature within the given data set. This procedure will be discussed in

the next chapter.

Spectra

Fig. 6.6 Interrelations among viscoelastic functions (After Gross 1953)
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(b)

Fig. 6.7 (b) Associated relaxation spectra for polyisobutylene. Detail on the original

data and the Prony series fit is contained in Chap. 7

(a)

Fig. 6.7 (a) Measured relaxation function for polyisobutylene (Original data from

Tobolsky (1962) and Catsiff and Tobolsky (1955)) and the series expansion fit
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6.5. Review Questions

6.1. Discuss the difference between superposition linearity and proportional

linearity and the relation of each to the Boltzmann superposition principle.

6.2. Describe the spectral approach to representing viscoelastic behavior of

polymers.

6.3. What is the relationship between the creep compliance and the relaxation

modulus.

6.4. Describe the difference between D
�
sð Þ and D sð Þ.

6.5. Why would one wish to calculate the complex modulus from the relaxation

modulus?

6.6. Problems

6.1. Verify the strain output for a two-step stress input given in Fig. 6.3 by

solution of the differential equation for a Kelvin model.

6.2. The relaxation modulus of a Maxwell model is; E(t)¼Ee� t/τ. Using the

Boltzmann superposition principle, find an equation for the stress vs. time

in a constant strain rate test.

6.3. The creep compliance of a Kelvin element is D tð Þ ¼ 1
E
1� e�t=τ� �

. Using

the Boltzmann superposition principle, find an equation for the strain

vs. time in a constant stress rate test. Sketch your results, i.e., ε vs. t.
6.4. Given the stress input shown below. Give correct expressions of strain for

each time interval.
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6.5. Using the Boltzmann superposition integral, find the strain output for the

following stress input for a Maxwell fluid.

6.6. Using Boltzmann’s superposition integral, find the strain output for a

Kelvin solid for the given stress input given in problem 6.5.

6.7. Using the relation between compliance and modulus in the Laplace trans-

form space (Eq. 6.40), find the compliance, D(t), for a Maxwell element,

given its modulus of E tð Þ ¼ Eet=τ. Plot D(t) and the inverse of E(t) to

illustrate the validity of Eq. 6.42.
6.8. Develop equations for the complex compliance from the creep compliance

for a Kelvin model.

6.9. Show that Eqs. 6.53 and 6.54 can be obtained from using Eq. 6.49.
6.10. Show that the complex moduli, E 0 and E 00, can be represented as indicated

in Eq. 6.51 in the case where the time dependent modulus, E(t) is given by
a generalized Maxwell model.

6.11. Develop equations relating the storage and loss compliances to the instan-

taneous and transient compliances analogous to Eqs. 6.53 and 6.54.
6.12. Develop equations for the complex modulus from the relaxation modulus

for a three parameter model using the integral relationship between the

two functions.

6.13. Develop equations for the complex compliance from the creep compliance

for a three parameter model using the integral relationship between the

two functions.
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7. Time and Temperature Behavior of Polymers

One of the most important functions of engineering design is to be able to predict

the performance of a structure over its design lifetime. Necessarily the mechan-

ical behavior of materials used in a structure must also be known over the

intended life of the structure. For engineering design based upon linear elastic-

ity, it is assumed that no intrinsic change in mechanical properties occurs over

time.1 However, the molecular structure of polymers gives rise to mechanical

properties that do change over time.

As engineering structures are often designed to last as long as 20–50 years,

there is a compelling reason to develop experimental and analytical approaches

for polymer based materials that will allow the prediction of long term properties

from relatively short term test data. The motivation is even higher when one

considers that part of the design process is often that of developing and/or

comparing candidate polymeric material systems. Long term testing on the

order of years to determine fundamental polymer properties such as the relax-

ation modulus, E(t), or creep compliance, D(t), are quite impractical. Fortu-

nately, the relationship between property changes of a polymer with time and

property changes of a polymer with temperature can be utilized to develop

accelerated test methods. The methods discussed in this chapter can assist the

design engineer in the difficult task of estimating long-term properties of

polymer-based materials from short-term tests. The procedure by which such

estimates can be made is known as the time-temperature-superposition principle

(TTSP) and is introduced in the following sections.

1 Of course, environmental factors as well as fatigue do influence mechanical properties as a

function of time but this degradation of properties due to accumulated damage is quite separate

from the inherent time dependence of viscoelasticity considered here.
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7.1. Effect of Temperature on Viscoelastic Properties
of Amorphous Polymers

In Chap. 3 creep and relaxation testing was discussed as well as a definition of

the 10-seconds modulus. Further, the variation of the 10-seconds modulus as a

function of temperature for various types of polymers was illustrated in Fig. 3.15
and five regions of viscoelastic behavior were identified as the glassy, transition,

rubbery, rubbery flow and liquid flow regions. It was noted that linear polymers

exhibit all five regions while the thermoset polymers typically only show the first

three regions. However, it was noted that at sufficiently high temperatures

thermoset polymers degrade and this can lead to significant changes in proper-

ties. These facets will be illustrated later in this chapter.

The general character of the five regions of behavior of thermoset and

thermoplastic polymers as a function of temperature, given again in Fig. 7.1,
is most often shown in the literature using 10-seconds modulus data. However,

the various regions can also be observed using 30-seconds data, 5-minutes data

or even 1-hour data depending only on the mechanical characteristics of the

polymer being tested and the length that tests are performed. The various regions

of behavior can also be observed using creep compliance data such as that shown

in Fig. 7.2. The data in Fig. 7.2 is given as the reciprocal of compliance in order

for easy comparison to the schematic results for modulus vs. temperature given

in Figs. 3.16 and 7.1. It is to be carefully noted as stated in Chap. 6 that, in

general, the relaxation modulus and creep compliance functions are not recip-

rocals of each other except for regions in which the rate of change of properties

is very small. Therefore, data in the glassy and rubbery regions of Fig. 7.2 can

reasonably be interpreted as modulus but those in the transition region may

significantly vary from data that would be found in a relaxation test.
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As may be seen in Fig. 7.1 the modulus of a polymer varies considerably with

temperature and a polymer of reasonably high molecular weight will be glass-

like below the glass transition temperature, Tg. Above the Tg a polymer will

have the character of leather in the transition zone, or that of a rubber in the

rubbery region, etc. While one polymer may be glass-like at room temperature

and another may be rubbery at room temperature their basic behavior relative to

the Tg is the same. To illustrate this point glassy (25� C) and rubbery (130� C)
moduli values for the epoxy shown in Fig. 7.2with a Tg ~ 120

� C (Brinson 1965)

are included in Fig. 7.1. Also included in Fig. 7.1 are the glassy (~ �60� C) and
rubbery (~25� C) moduli values for a polyurethane with a Tg ~�30� C
(Williams and Arentz 1964). Note that the mechanical property response vs.

temperature of each are very similar providing the two materials are compared at

the same point relative to their respective glass-transition temperatures.

Fig. 7.1 Five regions of viscoelastic behavior of a polymer. Curves are generic in form,

but glassy and rubbery data given are for epoxy and urethane (Brinson 1965,

1968, 1976)2. For urethane also see Williams and Arentz (1964)

2 The exact point of the beginning of the rubbery region may be somewhat less than the 25� C

indicated in Fig. 7.1. See Williams and Arentz for details.
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The schematic behavior of an epoxy as shown schematically in Fig. 7.1 is

verified by the creep data given in Fig. 7.2 for an epoxy used in photoelastic

investigations, Brinson (1965). It is to be noted that the two polymers identified

in Fig. 7.1 do not have a Tm but they each will exhibit degradation of properties

for temperatures sufficiently above the Tg as will be demonstrated later in this

chapter. Also, the transition region is very sharp in the epoxy as shown in

Fig. 7.2 with a variation of the modulus (compliance) by a factor of 10 for

each one degree centigrade change in temperature. Other polymers may display

a more moderate variation in the transition region. Indeed the polyurethane

discussed by Williams and Arentz (1964) shows a more gradual variation of

modulus with temperature. In this context, it is important to realize that the Tg is

actually a narrow temperature range as opposed to a precise single value. Indeed

the various methods to measure Tg in polymers (see Chap. 3) typically provide

similar, but different, numbers from one another. Note also that the modulus

(compliance) of the epoxy increases (decreases) slightly with temperature in the

rubbery region as shown in Fig. 7.2. The latter is evidence of rubber-like

behavior or Joule effect and will be discussed further subsequently for both

the epoxy and the urethane.
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Fig. 7.2 Reciprocal of compliance D(t¼ 30 sec.)�1 vs. temperature for an epoxy,

Tg¼ 120� C (Data from Brinson 1965, 1968)
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7.2. Development of Time Temperature-Superposition-
Principle (TTSP) Master Curves

To illustrate the Time-Temperature-Superposition-Principle consider the short-

term creep data for different temperatures shown in Fig. 7.3 for an epoxy. Data

collection for each creep test began at 30 seconds after the initial load was fully

applied and the test was terminated after 10 minutes. Each curve for tempera-

tures below 120� C has been shifted to the left so as to form a continuation to

shorter times for the 120� C creep compliance curve. Each curve above 120� C
has been shifted to the right to form a continuation to longer times for the 120� C
compliance curve. The theoretical origin justifying such a shifting procedure

will be developed in the next few sections. At present, simply consider that data

collected above 120� C must be shifted to the right to represent the longer time

needed at 120� C to achieve the same level of creep in the test time frame.

Similarly lower temperatures are shifted to the left to represent the shorter time

scale for that amount of creep that would be observed at 120� C, providing such
measurement could be made. The total curve for 120� C is the “master compli-

ance curve” for that temperature. The master curve data stretches over more than

eight decades of time starting at approximately 10�4 (0.0001) minutes and

ending at close to 10+4 (10,000) minutes or nearly a week (6.9 days).

While data was collected from room temperature (~25� C) to 130� C, only the
data above 90� C is shown as it was not possible to shift data below this

temperature to form a realistic extension to the data shown. Note that the

TTSP method is an outgrowth of the kinetic theory of polymers which is only

strictly valid above the Tg. While the TTSP is thought to be valid for temper-

atures below the Tg, the exact lower limit is not well defined. A guiding rule of

thumb is that TTSP may be used below the Tg as long as data is shiftable to form

a smooth master curve.

The 120� C master curve can now be shifted to determine a new master curve

for any temperature between 90� C and 130� C. If shifted to the right to form a

master curve for 90� C, the data would span the time from about 0.5 minutes to

10+8 minutes (or nearly 200 years). On the other hand, if the data were shifted to

the left to form a master curve for 130� C, the data would span the time from

about 10�8 minutes to 10 minutes. In other words, complete creep (or relaxation)

of the epoxy for 90� C would take a very long time while complete creep

(or relaxation) would occur very quickly at 130� C. From a practical standpoint

obtaining the long time creep data at 90� C would be impractical while at 130� C
obtaining the short time creep data would be difficult due to the short timescale.

Thus, the power of the TTSP is in the ability to trade off temperature for time and

perform mechanical tests of short duration at multiple temperatures to determine

compliance (modulus) as a function of time spanning many decades in time.
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Plotting the reciprocal of creep compliance for a time of 0.5 minutes from

each of the curves in Fig. 7.3 with temperature results in the data previously

discussed and given in Fig. 7.2. This curve verifies the various stages for a

polymer as described by Fig. 3.15 in Chap. 3 and Fig. 7.1 in this chapter. Here,

however, as mentioned earlier no rubbery flow or liquid flow region is observed

as the polymer is of the thermosetting type. Further, the “so called” rubbery

region in Fig. 7.2 is not a horizontal rubbery plateau as in Fig. 7.1 and as often

seen in the literature. This is due to the nature of rubber elasticity whose

explanation evolved from the kinetic theory of polymers discussed in the next

section (Treloar 1975).

Fig. 7.3 Creep compliance master curve for an epoxy at 120� C (Data from

Brinson 1965)
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Another example of the application of the TSSP is given in Fig. 7.4 for a

modified (rubber toughened) epoxy adhesive (Renieri 1976; Cartner and Brinson

1978; Brinson 1999). Here short time relaxation tests of about 10 minutes

duration were used for temperatures from 70� C to 120� C to produce a

relaxation modulus master curve for 90� C spanning 12 decades of log time

from 10�6 minutes to 2 years. The resulting curve, if TTSP is valid, can be

shifted to the right by one decade to become the master curve for 87� and the

resulting master curve would provide data over 20 years. An additional decade

of shifting to be roughly equivalent to a master curve for 78� would provide data
over approximately 200 years. Clearly with this method a prediction of behavior

over a design lifetime of 40 or 50 years is possible though no experimental data

has ever been collected for such an extended period providing proof that the

approach is valid.
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A final example of data that is shiftable to form master curves at different

temperature is given in Fig. 7.5. Here data for polyisobutylene for various

temperatures is given with a projection of the master curve for each temperature.

While still not a definitive “proof of principle” for the use of the TTSP for

reasonable long or short extrapolations, collectively the data provides significant

evidence.

7.2.1. Kinetic Theory of Polymers

An examination of Figs. 7.1, 7.2, 7.3, 7.4, and 7.5 indicates the similarity

between the variation of relaxation modulus (creep compliance) with time and

temperature. It is not clear who was first to note the significance of the relation

between time and temperature for polymeric materials. Indeed, Leaderman in

his landmark studies (Leaderman 1941, 1943) states “. . .it is known from

experience that time and temperature (and in some cases relative humidity)

play an important part. . .” on mechanical properties. He discussed creep and

creep recovery studies performed by Weber (1835, 1841) that clearly demon-

strated the viscoelastic nature of polymers. He further discusses the creep of a

rubber at different temperatures by Kohlrausch (1876) that led him to conclude

Fig. 7.5 Master curves for polyisobutylene (After Aklonis and McKnight (1983), orig-

inal data from Tolbolsky (1972) and Catsiff and Tobolsky (1955))
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“. . .it is not unreasonable to suppose that the creep curves are identical in shape

but displaced relative to each other along an axis of logarithmic time; the effect

of increases in temperature would then be to contract the time scale.” Leaderman

redrew the 1937 creep-temperature studies of Kobeko (1937) on hard rubber and

the 1938 creep-temperature studies of Hetenyi (1938, 1939) on Bakelite using a

logarithmic scale that further confirms his statement “. . .an increase in temper-

ature has the effect of contracting the time scale. . ..” It is interesting to note that
the logarithmic curves of Kobeko and Hetenyi are very similar to the short-term

creep curves shown for an epoxy in Fig. 7.3. Leaderman does not, however,

demonstrate that data collected over a short time for various temperatures can be

shifted to form a master curve. He does demonstrate that the shape of the creep

function (creep compliance) at any one temperature is sigmoidal when both

short term and long term data are connected on a logarithmic scale. Plazak

(1996) states, “It was Tobolksy with Rodney D. Andrews that produced and

presented the first reduced curve which they called a master curve of actual data

to the literature.” (See Toblosky and Andrews 1945). Markovitz (1975) inter-

pretation is similar to that of Plazak but gives more information about the

involvement of Hetenyi and Kobeko.3 Rouse, Zimm, Bueche and others later

verified the TTSP using the “kinetic theory of polymers”. The method has been

extensively studied and extended for many applications by Tobolsky (1962),

Ferry (1980), Nielsen (1965), Nielsen and Landel (1994) and many others where

extensive references to earlier literature may be found.

The theories of Rouse and Zimm were developed for dilute solutions of

polymers above the Tg but Ferry and coworkers essentially extended these to

bulk polymers in the rubbery state. In doing so, a number of assumptions were

made among which were:

• A bar-mass linkage was used to represent a segment (mer) of a polymer

molecule.

• Each polymer segment has a relaxation time and, therefore, the polymer has a

very large spectrum of many relaxation times

• It is not possible to calculate an average relaxation time for a polymer based

on the molecular structure but it is possible to calculate the relaxation time of

the pth segment of a polymer molecule in a dilute solution and then extrap-

olate to the case for a polymer molecule moving through a viscous medium of

its own kind.

3 More information about the application of the TTSP as well as about Leaderman and his

accomplishments are given in Appendices C and D.
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The Rouse equation for the relaxation time of an pth (arbitrary) segment is,

(see Nielsen (1965), Nielsen and Landel (1994) as well as an article by

E. Passaglia and J.R. Knox in Baer (1964)),

τp ¼ 6ηM
π2p2ρRT

(7:1)

where η is the viscosity of the of the dilute solution, M is the molecular weight

of the segment, p is the number of segments per molecule, ρ is the density of the

solution, R is the gas constant and T is the absolute temperature. Rearranging

gives,

τpρT
η

¼ 6M

π2p2R
¼ constant (7:2)

and therefore,

τp Tð Þ
τp T0ð Þ ¼

η
η0

ρpT0

ρT

� �
(7:3)

or the ratio of the relaxation time at one temperature to that at a reference

temperature, T0, is given by Eq. 7.3. If the temperature dependence of the

relaxation time is the same for all segments, the ratio of relaxation times may

be extrapolated to the case of a molecule moving through a medium of its own

kind or that of a bulk polymer and the ratio can be equated to a shift factor aT,

aT ¼ τ Tð Þ
τ T0ð Þ ¼

η
η0

ρ0T0

ρT

� �
(7:4)

That is, the relaxation times of the bulk polymer at one temperature can be found

from that at another temperature by multiplying each relaxation time by the shift

factor or,

τi Tð Þ ¼ aTτi T0ð Þ (7:5)

Thus, the shifting of the data demonstrated in Fig. 7.3 should be represented by

Eq. 7.4. The term thermorheologically simple refers to the key caveat that all

relaxation times of the polymer must be affected by temperature in the same

way. This assumption has been found to hold for a vast array of homogeneous

polymer systems. Typically shift factors are found experimentally or by the

WLF equation discussed in the next section.
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7.2.2. WLF Equation for the Shift Factor

Williams et al. (1955; see also Ferry 1980) applied the TTSP to a large number

of polymers and found empirically the following expression for the shift factor,

log10aT ¼ log10
τ Tð Þ
τ T0ð Þ ¼

�C1 T� T0ð Þ
C2 þ T� T0ð Þ (7:6)

where the constants C1 and C2 had the values of 17.44 and 51.6 respectively if

the glass transition temperature Tg is used as the reference temperature T0.

The development of the above equation has been shown to be of great

importance and has become widely used. It is commonly known as the WLF

equation and must be one of the most referenced equations ever in the polymer

literature. Equation 7.6 was thought to be a universal equation for the shift

factor for all amorphous glass-forming polymers above the glass-transition

temperature. However, further testing proved that different classes of polymers

have different constants.

Equation 7.6 can be developed from Doolittle’s concept of free volume of a

liquid. In Chap. 4 it was noted that the specific volume varies with temperature

during quenching as shown in Fig. 4.27 and can be used to identify the degree of
crystallinity as well as the melt temperature, Tm.

The variation of specific volume with temperature is shown again in Fig. 7.6
where the amount of free volume increases with increasing temperature above

the Tg. Free volume can be thought of as the space within a material that is

“unoccupied” by atoms and their quantum shells. (Actually, this theory has

recently received criticism for not being a good representation of the state of

matter. However, the concept of free volume is a useful model to assist in the

explanation of the molecular motion of polymers associated with viscoelastic

behavior.) The slope of the specific volume curve shown in Fig. 7.4 is the

coefficient of thermal expansion, αCTE, and, in fact, one definition of the Tg is

the point at which the coefficient of thermal expansion suffers a discontinuity.

The variation in free volume allows for greater mobility of the molecular chains

and gives rise to greater time or viscoelastic effects as temperature increases.

Sufficiently far above the Tg the polymer can be considered to be a fluid (for

thermoplastic polymers). As the polymer is cooled slowly to the Tg it can be

considered to be a super-cooled fluid. (Continued slow cooling can suppress the

Tg but the times required for molecular equilibrium are quite long. See Ferry

(1980) for a more complete discussion.) For example the Tg is near the upper

portion of the transition region for the epoxy shown in Fig. 7.1 and the free

volume is relatively small below the Tg and little viscoelastic response occurs as
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is illustrated in Fig. 7.3. On the other hand, above the Tg free volume is much

larger and increases dramatically as temperature increases with resulting

increasing viscoelastic effects with temperature again as illustrated in Fig. 7.3.
When the rubbery region is reached the free volume is so great that time effects

occur almost instantaneously in a creep or relaxation test. See also Fig. 5.12
to visualize the effects of temperature on time effects and hence on the free

volume.

Doolittle’s equation for the viscosity of a liquid is,

ln η ¼ ln Aþ B
V� Vf

Vf

� �
(7:7)

where V is the total volume and Vf is the free volume. Defining the fractional

free volume as,

f ¼ Vf

V
(7:8)

Doolittle’s equation becomes,

ln η ¼ ln Aþ B
1

f
� 1

� �
(7:9)

Above the Tg the fractional free volume can be expressed as (see Aklonis and

McKnight 1983),
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Fig. 7.6 Specific or relative volume vs. temperature for an amorphous polymer
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f ¼ fg þ α T� Tg

� �
(7:10)

where fg is the free volume at Tg. Substituting Eq. 7.10 into Eq. 7.9 yields,

ln η Tð Þ ¼ ln Aþ B
1

fg þ α T� Tg

� �� 1

$ %
(7:11)

The ratio of the natural log of viscosity at any temperature to that at the Tg will

give after simplification,

ln
η Tð Þ
η Tg

� � ¼ B
1

fg þ α T� Tg

� �� 1

fg

$ %
(7:12)

Converting to base 10 logarithms gives,

log10
η Tð Þ
η Tg

� � ¼ B

2:303 fg

T� Tg

fg
αf þ T� Tg

$ %
(7:13)

or

log10aT ¼ �C1 T� Tg

� �
C2 þ T� Tg

� � (7:14)

The kinetic theory of polymers and the TTSP are only valid above the glass

transition temperature. However, many feel that the procedure, in a modified

form, is valid below the glass-transition temperature but exactly how far below

is uncertain. The WLF equation, on the other hand is known to be only valid

above the Tg because below this temperature the material can no longer be

considered a super cooled liquid. In fact, Ferry (1980) notes that the slope of the

shift factor curve should be discontinuous at the Tg for the same reason that the

coefficient of thermal expansion suffers a discontinuity at the Tg.

A shift factor below the Tg can be developed using the Arrhenius activation

energy equation,

τ Tð Þ ¼ Ae�Ea=RT (7:15)

where τ is the relaxation time, Ea is the activation energy, R is the gas constant

and T is the absolute temperature. Rewriting in logarithmic form,

ln τ Tð Þ ¼ lnA� Ea

RT
(7:16)
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and taking the ratio at an arbitrary temperature and the glass transition temper-

ature will give after converting to base 10 logarithms,

log10aT ¼ log10
τ Tð Þ
τ Tg

� � ¼ Ea

2:303R

1

T
� 1

Tg

� �
(7:17)

Obviously, the shift factor based on activation energy is quite different than the

shift factor given by the WLF equation (see HW problem 7.2 and 7.3).

The glass-transition temperature for the epoxy represented in Figs. 7.2 and

7.3 as determined from relative volume measurements (i.e., by measuring the

change in dimensions of a small unstressed specimen at different temperatures)

is given in Fig. 7.7. As may be observed, the Tg¼ 120� C. For the above reasons,
the master curve of Fig. 7.3 is given for a temperature of 120� C.

The shift factors necessary to obtain the master curve of Fig. 7.3 are given in

Fig. 7.8 and compared to the WLF equation. The measured shift factor data for

compliance agrees well with the WLF equation for temperatures above the Tg if

the constants are taken to be C1¼ 17.44 and C2¼ 51.6. Also shown is a best fit

of the WLF equation to the shift factor above Tg via a least squares algorithm

and the associated constants in Eq. 7.14. For the limited data points given, the

result is relatively insensitive to modest changes in the constants. Below the Tg

the measured data diverges drastically from the WLF equation and the character

of the curve changes at the Tg. It is interesting to note, as Ferry (1980) indicated,

that the slope of the shift factor vs. temperature curve does suffer a discontinuity

of slope at the Tg.

Fig. 7.7 Relative volume vs. temperature for epoxy of Figs. 7.2 and 7.3 (Data from

Brinson 1965, 1968)
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7.2.3. Mathematical Development of the TTSP

An equation to explain the TTSP procedure can be found using an extension to

the relaxation spectra definition given by Eq. 6.28,

E tð Þ ¼
ð1
0

H τð Þe�t=τdτ (7:18)

Obviously, the relaxation spectra H(τ) is a function of temperature as is the

relaxation modulus E(t) and Eq. 7.18 should be written as,

E τ;Tð Þ ¼
ð1
0

H τ Tð Þ, T½ �e�t=τdτ (7:19)

Actually, H(τ) is more strongly dependent upon the temperature implicitly

through the relaxation time rather than explicitly through temperature. In fact,

the explicit dependence of H(τ) on temperature is very weak and can be

neglected (Passaglia 1964). The Rouse theory suggests the temperature depen-

dence of the relaxation spectra is such that (see again Passaglia et al. 1964),

Fig. 7.8 Shift factor from Fig. 7.3 compared with the WLF equation (Data from

Brinson 1965, 1968)
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E t;Tð Þ ¼ ρT
ð1
0

h τð Þe�t=τdτ (7:20)

where h(τ) has no explicit temperature dependence. Multiplying by the factor

(ρ0T0)/(ρT) gives,

ρ0T0

ρT

� �
E t;Tð Þ ¼ ρ0T0

ð1
0

h τð Þe�t=τdτ (7:21)

Equation 7.20 must be valid for any temperature and therefore can be rewritten

for the temperature T0 as,

E t;T0ð Þ ¼ ρ0T0

ð1
0

h τ0ð Þe�t=τ0dτ0 (7:22)

Since the relaxation times are all identically affected by temperature in the same

way and the relationship can be expressed as

aT ¼ τ
τ0

or τ0 ¼ τ
aT

(7:23)

Equation 7.22 can be written alternatively using a new time scale as,

E t0;T0ð Þ ¼ ρ0T0

ð1
0

h τð Þe�t0=τdτ (7:24a)

where the new time scale, t0, is associated with temperature T0 and

t0 ¼ t=aT (7:24b)

Comparing Eqs. 7.24a and 7.21 indicates that the right hand side of each are the
same providing the time scale in Eq. 7.21 is replaced by t0.

In turn the left hand sides are equal under the same condition and

E t00;T0ð Þ ¼ ρ0T0

ρT

� �
E t ¼ aTt

0, Tð Þ (7:25a)

or equivalently
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E t;Tð Þ ¼ ρT
ρ0T0

� �
E t0 ¼ t=aT, T0ð Þ (7:25b)

Equation 7.25 is a formal statement of the TTSP and shows that the modulus at

one temperature is identical to that at another temperature after modifying the

timescale by a multiplicative factor (and the modulus scale by a small temper-

ature factor). On a logarithmic scale, this multiplicative time factor results in a

horizontal shift as demonstrated below and in Fig. 7.9. A similar expression can

be developed for the creep compliance. Equation 7.25 can be used in the process
of creating a master curve, in which tests are performed at many temperatures

and shifted to the chosen reference T0 temperature. Equation 7.25 can also be

used to shift the master curve from its reference temperature to provide the

modulus master curve at another temperature.

An alternative approach to develop the TTSP expression (Eq. 7.25) is to

consider an expression of the viscoelastic modulus as a Prony series as given by

Eq. 5.21b or Eq. 6.25 with the temperature dependence now included on the

basis of the theories of Rouse and Zimm.

E T0; tð Þ ¼ ρ0T0

X
i

Eie
�t=τi T0ð Þ (7:26)

where the relaxation times at the reference temperature T0 can be related to those

at any other temperature via the shift factor

τi Tð Þ ¼ aTτi T0ð Þ (7:27)

The modulus at another temperature T can thus be expressed

E T; tð Þ ¼ ρT
X
i

Eie
�t=τi Tð Þ

¼ ρT
X
i

Eie
�t=aTτi T0ð Þ

¼ ρT
X
i

Eie
� t=aTð Þ=τi T0ð Þ

¼ ρT
X
i

Eie
� t0ð Þ=τi T0ð Þ

ρ0T0

ρT
ET tð Þ ¼ ρ0T0

X
i

Eie
� t0ð Þ=τi T0ð Þ

(7:28)

and thus comparing Eq. 7.28 with Eq. 7.26, one obtains
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ρ0T0

ρT
ET tð Þ ¼ E T0, t

0 ¼ t=aTð Þ (7:29)

which is equivalent to Eq. 7.25b.

Use of Eq. 7.25 is demonstrated in Fig. 7.9. The shift factor is given by

Eq. 7.24b which upon taking logarithms becomes,

log10t ¼ log10aT þ log10t
0 (7:30)

and therefore,

log10t
0 ¼ log10t� log10aT (7:31)

For a reference temperature lower than the test temperature, T0<T, the WLF

equation will give a shift factor on a log scale less than zero, i.e.,

log10aT ¼ �C1 T� T0ð Þ
C2 þ T� T0ð Þ < 0 (7:32)

As a result, E(t0,T0) is found from E(t,T) by shifting the data down and to the

right as shown in Fig. 7.9.

The change in density is usually very small and much less than the change in

temperature. As a result, density changes are often neglected and the TTSP

equation is usually written as,

Fig. 7.9 Example for shifting relaxation modulus data for T0<T (Vertical shift exag-

gerated for clarity)
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E t0;T0ð Þ ¼ T0

T

� �
E t ¼ aTt

0, Tð Þ (7:33)

In fact in many cases the amount of change due to temperature is also small and

the TTSP equation is simply expressed as,

E t0;T0ð Þ ¼ E t ¼ aTt
0, Tð Þ (7:34)

For example the data of Fig. 7.3 includes only a maximum vertical shift of about

10 % due to temperature differences.

The TTSP method is sometimes referred to the “method of reduced variables”

because of the necessity of a vertical and horizontal shift due to temperature

differences in the collected data.

Equation 7.20 or 7.33 can be used to confirm mathematically the Joule

effect or the increase of modulus with temperature in the rubbery range (see

problem 7.5). The elastic (or 30 seconds) modulus for the epoxy of Fig. 7.3 in

the rubbery range is shown plotted vs. absolute temperature in Fig. 7.10. Obvi-
ously, the rubbery modulus does increase linearly with increasing temperature.

Even though the extrapolated data does not go through the origin it does serve as

confirmation of the Joule effect mentioned in Chap. 1.
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Fig. 7.10 Variation of modulus for the epoxy of Fig. 7.3 in the rubbery range. Stress

fringe value, fσ, is given in units of psi/fr/in (Data from Brinson 1965, 1968)
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Data for a crosslinked polyurethane rubber is shown plotted vs. absolute

temperature Fig. 7.11. The data shown is for temperatures between T¼ 300� K
(~25� C) to T¼ 425� K(~150� C) and is well above the Tg of about �25� C.
Up to T¼ 375� K the material is quite rubbery. However, beyond this temper-

ature, the transparent (orange color) polymer begins to darken and noticeable

creep occurs. In essence this is a rubbery flow region even though cross-linked

polymers are not supposed to have such a region. Actually, the temperature is so

high that the material begins to physically degrade by compromising some of the

primary cross-link bonds which begin to break and reattach leading to a creep

mechanism. For example, consider the three chains in Fig. 7.12. For a suffi-

ciently high temperature, the crosslink bonds of chain 1 break at site A and

reattach at site B of chain 2. This process leads to a permanent deformation

which cannot be recovered upon reheating as is normally the case for a

thermoset.

Creep of the polyurethane of Fig. 7.11 for a temperature of 150� C is shown in

Fig. 7.13. The strain varies linearly with time similar to that expected for a

Maxwell fluid and reaches nearly 20 %. While the strain is increasing, the

birefringence remains constant. Since birefringence is caused by the interaction

of light with the molecular structure, the latter is an indication that the molecular

network is not seeing additional strain. These results then suggest a deformation

mechanism as described by Fig. 7.12.
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Fig. 7.11 Modulus vs. temperature for a cross-linked polyurethane in the rubbery range

(Data from Brinson 1965, 1976)
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Since the various methods of representing viscoelastic data including relax-

ation modulus, creep compliance, relaxation spectra, creep spectra, complex

modulus, complex compliance storage and loss moduli and storage and loss

compliance are all related as discussed in Chap. 6 and shown schematically in

Fig. 6.6, the TTSP principle is valid for each. Data of each kind is often

generated using the TTSP principle as is illustrated by the storage and loss

moduli given in Fig. 5.20 for polycarbonate.

Fig. 7.12 Illustration of creep of a thermoset polymer due to thermally induced

degradation

Fig. 7.13 Creep of a polyurethane T¼ 150� C. Stress fringe value, fσ, is given in units of
psi/fr/in (Data from Brinson 1965, 1976)
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7.2.4. Potential Error for Lack of Vertical Shift

As noted in the preceding section, often no vertical shift is used when master

curves are formed using the TTSP method. However, the lack of inclusion of a

vertical shift, even if small, can lead to substantial errors in the prediction of

properties over a long time. For example, assume the true master curve for the

compliance of a polymer is known and is as given in Fig. 7.14 for a temperature

of T0. Next assume the original data for a temperature T1>T0 is as given in

Fig. 7.14 and must be shifted both horizontally and vertically to fit the true

master curve. Obviously if the data is only shifted horizontally and not verti-

cally, an error in both the time scale and the compliance will result. Not only is

the error compounded due to the error in both the time scale and the compliance

but also the error is cumulative. As a result, large errors may occur even if the

temperature ratio is small. Also, as will be noted in the section on nonlinear

behavior, vertical shifts may be necessary for reasons other than the differences

in the temperatures for the collected data.

7.3. Exponential Series Representation
of Master Curves

In the solution of boundary value problems it is often desirable to have a

mathematical representation for master curve data for a given polymer over

many decades of logarithmic time. A relatively straightforward approach is to

use either a generalized Maxwell or Kelvin model with sufficient elements

Fig. 7.14 Potential error for lack of a vertical shift (exaggerated for clarity)
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to span the spectrum of relaxation times represented by the transition behavior of

the data. Before proceeding, it is instructive to consider again the shape of creep

and relaxation representations for a Maxwell model as a simple function of time

or logarithmic time. As introduced in Chap. 3, the relaxation modulus for a

Maxwell model is given by

E tð Þ ¼ Ee�t=τ (7:35)

while the creep response for a Maxwell model is,

D tð Þ ¼ 1

E
þ t

μ
(7:36a)

or

D tð Þ ¼ 1

E
1þ t

τ

� �
(7:36b)

where and E and μ are the spring stiffness and damper viscosity, respectively,

and τ¼μ/E.

Variation of the relaxation modulus and creep compliance of a Maxwell

model on linear-linear (left) and log-log (right) scales are shown in Figs. 7.15
and 7.16. Notice the rapid decay of the modulus as the time approaches the

selected relaxation time and the flow at long times due to the fluid nature of the

Maxwell model. The behavior of the modulus and compliance for a simple

Maxwell element is similar to that for many polymers in the glassy and transition

region.

Fig. 7.15 Relaxation modulus of a Maxwell model on linear (left) and loglog (right)
scale
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If several Maxwell models are used in series to represent polymer response,

as in the generalized Maxwell model (see Chap. 6), and if the spring moduli and

relaxation times are judiciously chosen, the transition region broadens as shown

in Fig. 7.17. The parameters used for the curves in Fig. 7.17 are shown in

Table 7.1. Notice that as the number of elements spanning a time period

increases, the transition behavior can be smoothly represented (the two element

versus the 5 element case shown here). When a free spring is included, in each

case the material model goes from viscoelastic fluid to viscoelastic solid at long

times. Clearly, the location of the relaxation times and magnitude of the asso-

ciated modulus value can be manipulated to produce master curves which

represent all five regions of viscoelastic behavior as needed. The two element

model shown displays a long rubbery plateau before the flow region, while the

five element model suppresses the rubbery plateau for the fluid case.

Fig. 7.16 Creep compliance of a Maxwell model on linear and loglog scales
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While the above description suggests that various master curve shapes can be

represented by generalized Maxwell or Kelvin models, it does not mean that

the determination of the proper values of the spring moduli or relaxation times to

obtain a precise fit is trivial.

Fig. 7.17 Master curve representation using one, two and fiveMaxwell elements. Curves

without E1 decay rapidly at larger times, while curves with the E1 term are

constant at long time as indicated. Parameters in Table 7.1

Table 7.1 Parameters used in generalized Maxwell models for Fig. 7.17. Spring con-

stants in Pa, relaxation times in s

One element Two elements Five elements

τi Ei τi Ei τi Ei

100 2e9 100 2e9 100 2e9

5,000 2e6 500 4e8

1,000 3e7

5,000 2e6

10,000 4e5
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Examination of the relaxation modulus of a generalized Maxwell model

demonstrates the complexity. That is,

E tð Þ ¼ E1e
�t=τ1 þ E2e

�t=τ2 þ . . .þ Ene
�t=τn (7:37)

and

E t ¼ 0ð Þ ¼ E1 þ E2 þ . . .þ En (7:38)

Obviously, there are 2n unknowns inEq. 7.37, i.e., nmoduli andn relaxation times.

Therefore, at a minimum, 2n equations are needed to solve for the unknowns. For

five Maxwell elements as in Fig. 7.17, ten data points would need to be selected in
order towrite a set of 10 equations. Further, an approach simply fitting to 10 discrete

data points from an extensive master curve would not produce a smooth curve that

fit the entire data set over time well. In order to obtain a mathematical expression

that provides a good fit for an entire master curve from experimental data, a

different approach is required. While a number of techniques can be found in the

literature, one method will be briefly described in the next section.

7.3.1. Numerical Approach to Prony Series Representation

A general issue in working with viscoelastic materials is representing the mea-

sured material properties by an appropriate mathematical function. As indicated

earlier, a closed mathematical form facilitates solution of boundary value prob-

lems, as well as ease of manipulation of data.While viscoelastic properties can be

represented by a number of functional forms, the exponential Prony series

E tð Þ ¼ E1 þ
XN
i¼1

Eie
�t=τi (7:39)

or

D tð Þ ¼ 1

E0

þ
Xn
i¼1

1

Ei

1� e�t=τi
� �

(7:40)

is particularly attractive for a number of reasons. First, the coefficients can be

related to simple spring and damper coefficients in a mechanical model (see

Chap. 5), facilitating interpretation. Second, a series of simple exponentials is

easy to store and manipulate mathematically, as the derivatives and integration

of the terms are trivial. Third, in the case where numerical solutions of a
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boundary value problem are desired, use of the Prony series form for the material

modulus enables use of a recursive algorithm for fast and easy solution of the

convolution integral constitutive law (Taylor et al. 1970). This fact is extremely

important for calculation of viscoelastic response at long times, as integrating

over the long time history requires only retaining terms at the previous time step.

Experimental data for a given material will produce modulus or compliance

functions for a polymer as a function of time (for relaxation or creep data) or

frequency (for steady state dynamic data from aDMA). As described earlier in the

chapter, given the time scale of polymeric response, it is usually necessary to

perform separate tests at multiple temperatures in order to obtain the full spectrum

of polymer response from glassy to rubbery behavior. The TTSP can then be used

to construct a master curve of the data as illustrated in the time domain in Fig. 7.3
or in the frequency domain in Fig. 5.20. Given such a master curve over time or

frequency space, the challenge is to find the parameters τi, Ei to provide a good fit

over all time of the data. This problem has been addressed by a number ofmethods

in the literature including Procedure X (due to Tobolsky and Murakami and

discussed by Tschoegl (1989)), the collocation method by Schapery (1962), the

multidata method (Cost and Becker 1970) and the windowing method (Emri and

Tschoegl 1993). An interesting procedure using fractional calculus is discussed by

Bagley (1989). Here we describe briefly a sign control method developed by

Bradshaw and Brinson (1997) which is based on the multidata method.

In the sign control method, as in several approaches, the first step is to select

the relaxation times in a reasonable manner based on the time scale of the data.

In such a process, the relaxation times are not chosen based on any known

polymer structure or derived timescales, but are chosen for mathematical con-

venience. As real polymers contain a continuous distribution of relaxation times,

in this approach a sufficient discrete subset of these relaxations are chosen in

order to provide a mathematical function that will fit the material data. For a

typical data set, such as that in Fig. 7.3, choosing the relaxation times evenly

spaced in log time over the data range is reasonable. The number of relaxation

times required varies depending on the smoothness of the data, but 10–20

relaxation times over 10 decades of time is a good rule of thumb. To facilitate

fitting non-constant values at either end of the data set, one or two relaxation

times can be added to lie beyond the time domain data.

Once the relaxation times are selected, the problem reduces to finding the

coefficients Ei such that the Prony series function optimally matches the pro-

vided time domain data. An obvious procedure to use is a generalized least

squares approach, which was done in the multidata method (Cost and Becker

1970). In this approach, coefficients are found that minimize the χ2 error

between the modulus data (given as P data pairs (Ep,tp)) and the calculated

function, E(t),
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χ2 ¼
XP
p¼1

E tp
� �� Ep

σp

� �2

(7:41)

where E(tp) is the value of the Prony series function (Eq. 7.39) evaluated at time

tp and σp is the standard deviation of the pth data point. However, this method

will typically provide values for Ei that are both positive and negative in value.

Given the physical relationship between the Ei coefficients and springs in a

mechanical model, it is desired for these coefficients to remain positive. In

addition, it can be shown that a sufficient condition for the viscoelastic modulus

to satisfy all physical and thermodynamic principles for a material is that the

Prony coefficients Ei be positive.

Consequently, the sign control method (Bradshaw and Brinson 1997), mod-

ifies the use of the least squares algorithm to ensure that the Prony coefficients be

positive. This is accomplished via an iterative Levenberg-Marquadt method

based on the first derivatives relative to each unknown coefficient (Press

et al. 1992). The method is provided with an initial guess for the coefficients

(all positive), uses these to predict a new set of values and then calculate χ2. If

the new set decreases the error, it becomes the current step; otherwise the

previous values are used to take a smaller step. The additional constraint that

Ei> 0 is enforced by setting Ei¼ |Ei| before calculating the χ2 error; only those

cases that lead a reduction in the χ2 error are kept. From this procedure, optimal

Ei values are found such that the Prony series fits the entire data range.

To illustrate the ability of a generalized Maxwell Model (Prony Series) to fit

long term data, consider the master curve data from Fig. 7.5 for polyisobutylene.
A complete data set at 25� C was constructed as shown in Fig. 7.18. Thirty
relaxation times evenly spaced in log time between 10�11 and 107 were chosen

and the sign control method used to calculate the Prony series coefficients seen

in Fig. 7.19. The modulus E(t) calculated from the Prony terms in Fig. 7.19 is

overlaid on the experimental data in Fig. 7.18. It is clear that the Prony series has
captured the data well. In addition, with the large number of coefficients taken,

the discrete Ei spectrum is approaching a continuous spectra. In the next section,

we will compare these coefficients with the spectra found via another method.

Note also that the Prony series as a well-behaved mathematical function will

provide values for modulus for any time inserted into Eq. 7.39. However, as the
coefficient values were obtained for data only in a specific range, care should be

taken when using these functions to ensure that predictions are made only within

the bounds of the known experimental data. As seen in Fig. 7.18, the Prony

series will predict a value for the modulus at times beyond 106 and less than

10�11, however these values are fictitious as they do not correspond to measured

experimental data.
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Fig. 7.18 Master curve for tensile modulus of polyisobutylene at 25� C (Original data

from Tolbolsky (1972) and Catsiff and Tobolsky (1955)). Fit is made using the

Prony series coefficients shown in Fig. 7.19

Fig. 7.19 Prony series coefficients used to obtain tensile modulus for polyisobutylene fit

to data shown in Fig. 7.18
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The sign control method can also be used to fit frequency domain data,

which is useful given the prevalence use of DMAs to measure storage and loss

moduli for polymers. In this case, the storage and loss moduli as functions of

frequency are used as the data to be fit, and the relationship between the Prony

coefficients and these functions (Eq. 6.51) are used as the functional form. An

example of this application is shown in Fig. 7.20 for polycarbonate. The

storage and loss moduli obtained from DMA data and shifted to form a master

curve is shown in Fig. 7.20 (the temperature data was also shown in Fig. 5.20).
A 28 element Prony series was used to fit the data and the coefficients are

shown in Fig. 7.21, while the fit to the experimental data is overlaid on

Fig. 7.20. Again it is seen that the mathematical representation of a Prony

series provides an excellent form to represent measured experimental data for a

polymer. Given the Prony series that fits the frequency based data, the time

domain modulus can be readily produced using Eq. 7.39. Note that the large

oscillation of the Prony coefficients between relaxation times of 1 and 100 is

not indicative of an oscillating spectra and these oscillations can be eliminated

by refining the chosen relaxation times while still maintaining the quality of the

fit to the experimental data.

Fig. 7.20 Experimental data from a DMA for polycarbonate shifted to form a

master curve. Lines showing the fit of the Prony series from Fig. 7.21 are

overlaid on the plot
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Further details on the application of the sign control method can be found in

the original paper (Bradshaw and Brinson 1997). A software code in C

(dynamfit.c) written to perform these calculations is available on the authors’

websites at University of Louisville and Northwestern University respectively.

This code has been written to perform the calculations described above to find

the moduli or compliances of time domain or frequency domain data. In

addition, the mathematical fitting procedure described can be extended to

perform interconversions between viscoelastic properties as discussed in

Chap. 6 (e.g. between modulus and compliance) and the existing code allows

for such calculations as well.

7.3.2. Determination of the Relaxation Modulus
from a Relaxation Spectrum

Recall from Chap. 6 that the spectrum of relaxation times is defined by the

equation,

E tð Þ ¼
ð1
0

H τð Þe�t=τdτ (7:42)

Fig. 7.21 Prony coefficients used to fit the data for Polycarbonate in the frequency

domain in Fig. 7.20
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One can think of the spring moduli as having been replaced by the spectrum of

relaxation times, H(τ). As a result, Fig. 7.19 can also be thought of as a discrete
representation of H(τ) as a function of τ.

Sometimes H τð Þ ¼ τH τð Þ is defined such that,

E tð Þ ¼
ð1
0

H τð Þ
τ

e�t=τdτ ¼
ðlnτ¼þ1

lnτ¼�1
H τð Þe�t=τdln τ (7:43)

Tobolosky and his students have used this approach extensively and suggest

certain forms for H τð Þ. Aklonis and McKnight (1983) (Aklonis was a former

student of Tolbolsky) suggests the following data forH τð Þ for a viscoelastic fluid
with a simple transition region as shown by the curve in Fig. 7.22,

Using these values in Eq. 7.43 results in,

E tð Þ ¼ k

t
e�t=10 � e�t

� �
(7:44)

Figure 7.22 illustrates the relationship between the wedge distribution, H τð Þ,
given in Table 7.2 and the exponential series given by Eq. 7.44.

Using this approach, it is possible to obtain relatively simple function that can

represent a complete master curve. For example, Tolbolsky has suggested that

the master curve for polyisobutylene given in Fig. 7.18 can be found from the

“wedge” and “box” distribution shown in Fig. 7.23, where the wedge represents
the transition region and the box the rubbery plateau and flow regions. Note the

similarity in form to the Prony coefficients found via the sign control method for

the same data as shown in Fig. 7.19.

Table 7.2 Wedge approximation ofH τð Þ for Fig. 7.22
H τð Þ ¼ 0 log10τ< 0 or τ< 1

H τð Þ ¼ k

τ
0< log10τ< 1 or 1< τ< 10

H τð Þ ¼ 0 log10τ> 1 or τ> 10
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Alternatively, one can use various approximations (see Ferry 1980) to deter-

mine the relaxation spectra directly from modulus data or a mathematical

function fit to the data. A method that works well is known as Alfrey’s rule, in

which the exponential function in the integral in Eq. 7.42 is 0 at small τ’s and
1 at large τ’s and is thus replaced by a step function H(t-τ). With this simpli-

fication, Eq. 7.42 can be differentiated to obtain
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Fig. 7.22 Continuous (wedge) distribution of relaxation times and corresponding relax-

ation modulus (After Aklonis and McKnight 1983, p. 155)
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Fig. 7.23 Wedge and box distributions of H τð Þ needed to fit the Master Curve for

Polyisobutylene; here H(τ) in dynes/cm2; to convert to Pa, divide by 10; the

magnitude and form match the discrete spectra in Fig. 7.19 (After Aklonis and

McKnight 1983, p. 156)
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H τð Þ ffi � dE tð Þ
dt

����
t¼τ

(7:45)

A similar expression can sometimes be found taking the derivative in natural

logarithm time (see e.g. Eq. 7.43). It is noted however that spectra is typically

plotted on normal log scales in figures (see also end of Sect. 6.3).

With substitution of the Prony series for E(t) into Eq. 7.45, one obtains the

relaxation spectra as

H τð Þ ffi
XN
j¼1

τ
τj
Eje

τ
τj (7:46)

Application of Alfrey’s rule to the polycarbonate data of Fig. 7.20 results in a

continuous and smooth relaxation spectra as shown in Fig. 7.24. The shape and
magnitude of the spectra obtained in this fashion corresponds to the discrete

Prony elements of Fig. 7.21 when smoothed so as to eliminate the oscillations

obtained in the least squares fitting process. While the spectrum in Fig. 7.24 still
exhibits slight non-smoothness, manipulation of the Prony elements and/or use

of a more accurate method to determine H(τ) could provide a smoother curve.

For most purposes, the spectra shown is adequately smooth.

Fig. 7.24 Relaxation spectra of polycarbonate calculated from the Prony series elements

in Fig. 7.21 via Alfrey’s rule
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7.4. Constitutive Law with Effective Time

Recall from Chap. 6 that the constitutive law describing the stress and strain

relation of a viscoelastic material can be written as

ε tð Þ ¼
ðt
0�

D t� τð Þ dσ τð Þ
dτ

dτ or σ tð Þ ¼
ðt
0�

E t� τð Þ dε τð Þ
dτ

dτ (7:47)

If temperature changes during the loading history, clearly the material property

inside the integral must change accordingly. In order to be able to account for

general thermomechanical loading including spatial and temporal variations in

temperature, the relationship between time and temperature developed in this

chapter can be utilized. Returning to the TTSP Eq. 7.25b and taking the vertical

shift to be negligible, we can relate the material modulus at one temperature to

the modulus at a reference temperature T0 by the shift factor, aT

ET tð Þ ¼ ET0
ξ ¼ t=aTð Þ (7:48)

Thus, one can consider the modulus at temperature T and time t to be the same as

the modulus at a reference temperature T0 at a reduced time ξ. At a small time

increment later, dt, the modulus at temperature T has changed to a new value

correspondingly dξ later in reduced time at the reference temperature

ET tþ dtð Þ ¼ ET0
ξþ dξð Þ (7:49)

where

dξ ¼ dt

a T tð Þð Þ (7:50)

Physically, this expression represents that all relaxation times in a time incre-

ment at temperature T are 1/a times slower/faster than those occurring in the

reduced time increment at the reference temperature. Integrating one obtains an

expression for reduced time, or “effective time” as it is often called, as

ξ tð Þ ¼
ðt
0

dζ
a T ζð Þð Þ (7:51)

Note that the shift factor is a function of time according to the temperature

history: as the temperature changes, so does the shift factor. To account for a
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temperature history, the constitutive law can thus be written in effective time

space as

σ ξð Þ ¼
ðξ
0�

ET0
ξ� ξ

0
� �dε

dξ0dξ
0

(7:52)

Mapping this constitutive law to the real time domain results in

σ tð Þ ¼
ðt
0�

ET0
ξ tð Þ � ξ t0ð Þð Þdε

dt0
dt0 (7:53)

where

ξ tð Þ ¼
ðt
0

dζ
a T ζð Þð Þ and ξ t0ð Þ ¼

ðt0
0

dζ
a T ζð Þð Þ (7:54)

Equation 7.53 is straightforward to apply for a problem with both temperature

and strain known as functions of time. The effective time is determined via

Eq. 7.54 for the given temperature history. The modulus function is then

evaluated at the effective time and used with the differentiated strain function

to determine the stress response history. However, Eq. 7.53 is no longer a

convolution integral and as such can be difficult to solve. Thus, often problems

are solved in the effective time domain (Eq. 7.52). The constitutive law can be

written to find the strain response as a function of stress history analogously as

ε tð Þ ¼
ðt
0�

DT0
ξ tð Þð Þ � ξ t0ð Þð Þdσ

dt0
dt0 (7:55)

where the effective time is as given in Eq. 7.54.

The effects of a number of environmental factors on viscoelastic material

properties can be represented by a time shift and thus a shift factor. In Chap. 10, a

time shift associated with stress nonlinearities, or a time-stress-superposition-

principle (TSSP), is discussed in detail both from an analytical and an

experimental point of view. A time scale shift associated with moisture (or a

time-moisture-superposition-principle) is also discussed briefly in Chap. 10.

Further, a time scale shift associated with several environmental variables

simultaneously leading to a time scale shift surface is briefly mentioned.
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Other examples of possible time scale shifts associated with physical and

chemical aging are discussed in a later section in this chapter. These cases

where the shift factor relationships are known enables the constitutive law to

be written similar to Eq. 7.53 with effective times defined as in Eq. 7.54 but

with new shift factor functions. This approach is quite powerful and enables

long-term predictions of viscoelastic response in changing environments.

7.5. Molecular Mechanisms Associated
with Viscoelastic Response

As discussed in Chap. 4, the forces holding polymer molecules together are

primary (covalent) or secondary bonds though even metallic-like and ionic types

bonds can be found in certain polymers. However, in general, the bonds between

mer units along the backbone chain are covalent as are those within side groups

and those connecting side groups to the main chain. In thermoset polymers both

covalent and secondary (e.g., dipole, Van der Waal) connect individual chains to

each other, while in thermoplastic polymers only secondary bonds connect

individual chains to each other. These distinctions between the molecular

character of thermoplastic and thermoset polymers dictate the differences seen

in behavior throughout the five regions of viscoelastic behavior depicted in

Figs. 3.15 and 7.1. However, it should be noted that entanglements in thermo-

plastic polymers, especially where the chains have extensive side groups, often

demonstrate behavior very similar to thermosets especially below the Tg.

Many factors are important in understanding the molecular mechanisms

associated with the macroscopic behavior of a polymer. A few of these are the

degree of polymerization (see Table 4.6), the degree of crystallization (see

Table 4.4), the relative extent of cross-linking and/or entanglements, complexity

of side groups, deformability of bonds and bond angles, the amount of thermal

energy with chains or chain segments associated with a particular environment

(such as temperature or moisture content). Clearly, the most important single

parameter to define the state of a polymer is the temperature, especially the glass

transition temperature, Tg, and possibly other transition temperatures such as

those for the β, γ and δ transitions as well as the melt temperature, Tm. As stated

earlier in the discussion of a particular epoxy and a particular polyurethane (see

Fig. 7.1), one polymer may be glassy at a temperature where another may be

rubbery. Below the Tg, polymers are glass-like solids with only a small amount

of viscoelasticity (creep or relaxation) within a short (minutes or hours) time

frame. Near the Tg increasing amounts of viscoelasticity are encountered as the

temperature is increased. These differences can be explained on the basis of
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thermal agitation or vibrations of individual chains, or perhaps more appropri-

ately chain segments, in the presence of free volume. Obviously, free volume

increases with increasing temperature above the Tg (see Figs. 3.17 and 7.6).
Below the Tg molecular agitation can only occur in very small local regions and

any amplitude of vibration must be correspondingly small. As the temperature is

raised above the Tg, free volume and chain vibrations increase, resulting in

translational and configurational motions of chains with respect to each other.

The frequency and amplitude of motion increases with increasing temperature

until a state of almost pure Brownian motion occurs.

In the glassy region, deformations associated with instantaneous elasticity are

the lengthening and shortening of bond distances and bond angles. If creep

occurs, it is often associated with motion of side groups. In the transition region,

the molecular motions involved are short range translational and configurational

changes due to rotations about bond angles and, to a lesser extent, the same

mechanisms encountered in the glassy region. Molecular segments are more

flexible as the temperature is increased in the transition region and, in time, are

able to slide past one another giving evidence of a fluid-like behavior. Molecular

mechanisms in the rubbery regions are much like the ones in the transition

region except the time scale is much shorter. That is, creep or relaxation is near

instantaneous and viscoelastic behavior can only be observed by dynamic tests

such as steady state oscillations and/or impact conditions. In the rubbery and

liquid flow regions, pronounced unrecoverable deformation occurs with the

mechanisms mostly associated with long range configurational changes. Mole-

cules slide past each other with relative ease and bonds (secondary and, in some

cases primary) may be broken and reformed.

It is descriptive here to quote from Aklonis and McKnight (1983). “It is

impossible to describe quantitatively the time ranges that give each type of

behavior, since the temperature variable causes all these ranges to be relative.

Accordingly . . . a plastic (a polymer in the glassy state) would have a modulus of

a rubber on a time scale of perhaps a thousand years while a rubber might behave

like a plastic on a nanosecond time scale.”

7.6. Entropy Effects and Rubber Elasticity

Early molecular theories were unable to describe the high deformation (as much

as 1,000 %) of natural rubber under an applied stress (Treloar 1975). An early

theory, similar to the theory still used today to describe inter-atomic forces (see

Chap. 11), suggesting deformations were associated with the stretching of inter-

atomic or intermolecular bonds could only account for a few percent of strain.
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One method considered to overcome this shortcoming was the two-phase

theory of Ostwald that attributed deformations to the molecular network being

embedded in a second highly viscous phase. Such a theory was used by

photoelasticians to explain the “frozen stress” effect which led to the “stress

freezing and slicing method” that was used successfully for many years to

experimentally determine the internal stress in three-dimensional bodies

(Hetenyi 1938). Another approach that could account for larger deformations

was the folded chain model that permitted strains up to 300 %. However, the

foregoing models could not explain the thermo-elastic or Joule effect inspiring

further model development that led to the forerunner of what is now called the

kinetic theory of polymers that stated that deformations in the rubbery state are

directly proportional to the absolute temperature. (See Treloar (1975) for a

complete discussion of the history of the relation between the development of

the kinetic theory and the thermo-elastic effect).

As noted in the previous section, deformations below the Tg are associated

with stretching and shortening of bond distances and bond angles while in the

rubbery region deformations are associated with rotation about bond angles (see

Fig. 4.5). The former mechanisms are associated with changes in internal

mechanical energy and the latter are associated with changes in internal entropy.

Indeed, as stated by Rosen (1993), “. . . to exhibit significant entropy elasticity,

the material must be above its glass transition temperature and cannot have

appreciable crystallinity”.

A tensile force applied to a linear elastic bar does a certain amount of work as

the bar is stretched defined by the relation,

dW ¼ f dl (7:56)

where f is the force and dl is the amount of axial deformation. The work (or input

energy) is transferred to the bar as internal energy. Typically it is normal to

assume that the internal energy is only mechanical energy that can be recovered

as that in an ideal spring. In fact, part of the input work causes a change in the

temperature of the bar and just as with a perfect gas the temperature increases if

the bar is compressed and decreases if the bar is stretched. A tensile bar tested

adiabatically (no heat flow into or out of the bar) will show a small decrease in

temperature that, in turn, will cause the elastic modulus to change slightly.

Timoshenko and Goodier (1970), note that the difference between the adiabatic

and isothermal (constant temperature) modulus of iron is only about 0.26 % and

reference experimental work performed by Kelvin in 1855 to support this small

difference.
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One method to approximate adiabatic testing is to perform the test rapidly

enough that no heat is lost from the sample but not so rapid that dynamic or

inertia effects occur. Mueller (1969) gives experimental results obtained by

cyclic testing of 2.5 cm diameter steel bars in tension, compression and torsion

with a loading-unloading cycle of about one minute in duration. In a tensile test

he shows a decrease in temperature of approximately one degree centigrade on

loading and a similar increase on unloading. In a compression test he shows a

similar temperature increase in loading and decrease in unloading. That is, the

thermal effect is reversible in either tension or compression as is the mechan-

ical effect. Mueller also shows that in torsion there is no change in temperature

on loading and unloading as is expected because torsion or pure shear can be

thought of as a combination of equal tension and compression on a differential

element as shown in Fig. 2.18. On testing a 2.0 cm PVC bar in compression

Mueller shows a more significant 6.5� C temperature rise but does not show a

reversible thermal effect upon unloading. That is the thermal processes in the

PVC were irreversible and can be attributed to viscoelastic and/or flow pro-

cesses. Further insight to the mathematics of irreversible thermodynamic

processes of polymers and other materials can be found in the many papers

of Schapery (1964, 1966, 1969), the book by Lubliner (1990) or the book by

Fung (1965). A discussion of the thermodynamics of irreversible processes is

beyond the scope of this text but the results of Schapery’s early irreversible

thermodynamic approach for nonlinear viscoelastic materials is presented

in Chap. 10.

The study of the amount of heat energy absorbed or released by a polymer as

it is heated or cooled is most often accomplished with a calorimeter. For

example the differential scanning calorimeter (DSC) is often used to measure

the melting point temperature and the heat of melting, the glass transition

temperature, curing and crystallization processes. Mueller (1969) describes the

development, design and use of a special differential deformation calorimeter

that allows the measurement of the amount of heat absorbed or released when a

specimen is loaded in simple tension. For the greatest sensitivity he suggests

testing only samples with small cross-sectional dimensions such as fibers, wires

or films.
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A schematic of the Mueller’s deformation calorimeter is given in Fig. 7.25 and
consists of two parallel cylinders immersed in a thermostatic bath. The sample to

be tested is centrally located in one cylinder between two polyamide or Teflon

clamps with low heat capacities. The top clamp is attached to a thin invar wire

through which a load is applied that is resisted by the specimen through a lower

clamp attached to the bottom of the cylinder. The second cylinder contains a

heating coil and both cylinders are connected to a differential manometer. If the

sample gains heat on deformation in tension (as with a rubber) an excess pressure

occurs and causes a feedbackmechanism attached to the differentialmanometer to

provide heat to the comparison cylinder. Knowing the balancing heat as a function

of time allows the determination of the total change in enthalpy. Endothermic

effects can be determined by preheating the cylinder that would then be cooled by

a sample tested in tension (for samples tested at temperatures below the rubbery

range). Also, more recent efforts on the measurement of entropy effects using a

deformation calorimeter similar to the one designed by Mueller can be found in

papers by Farris and Adams (1989) and Kishore and Lessor (2005).

To convert measurements of heat changes in a sample to information about

the distribution of input work (energy) into either internal mechanical energy or

thermal energy requires the use of basic thermodynamic relationships. The

following gives only a small glimpse into the relationships between energy,

entropy and temperature and the reader is advised to consult the more elaborate

sources found in Mueller (1969), Treloar (1975), Lubliner (1990), and other

texts for a more thorough treatment of the mathematics of the thermodynamic

effects related to either reversible or irreversible processes of deformed solids.

Fig. 7.25 Deformation calorimeter (After Mueller 1969)
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The relationship between energy, entropy and temperature for reversible

processes is best described using the first and second law of thermodynamics.

The first law relates the change in internal mechanical energy, dU, and the

change in internal thermal energy (heat), dQ, to the work done on the system by

external forces, dW, and is given as,

dW ¼ dU� dQ (7:57)

The second law of thermodynamics defines the entropy change, dS, in a revers-

ible process such that,

TdS ¼ dQ (7:58)

Combing Eqs. 7.57 and 7.58 gives,

dW ¼ dU� TdS (7:59)

If the Helmholtz free energy4 is defined as A¼U�TS then changes in the

Helmholtz free energy at constant temperature are given by,

dA ¼ dU� TdS ¼ dW (7:60)

and states that the Helmholtz free energy is equivalent to the external work done

on the system or the difference between the internal mechanical energy and

internal heat energy.

For the circumstance where a tensile bar is under a constant hydrostatic

pressure (e.g. atmospheric pressure) as well as a tensile load, the total input

work would be (Treloar 1975),

dW� ¼ dW� pdV ¼ fdl� pdV (7:61)

and Eq. 7.57 could be written as,

dW� pdV ¼ dU� TdS� pdV ¼ dG (7:62)

where dG is the change in Gibbs free energy.4 Hence, the Gibbs free energy is

also equivalent to the external work on the specimen but the external work

4 Assuming the existence of a strain energy potential, the Helmholtz free energy, (under constant

temperature and volume) and the Gibbs free energy, (under constant temperature and pressure) can

be written in terms of stress and strain as (see Gittus 1975),

σij ¼ ∂A
∂εij

� �
σij ¼ ∂G

∂εij

� �
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includes a portion associated with the hydrostatic pressure. In terms of

enthalpy, H¼U� pV, and for a constant temperature and pressure Eq. 7.62
becomes,

dG ¼ dW� ¼ dH� TdS (7:63)

For polymers in the rubbery range the volume change dV is small and if the

pressure is only the atmospheric pressure the pdV term is so small as to be

negligible. The negative sign for the pV term in the enthalpy definition here is

due to the fact that the work of atmospheric pressure is in opposition to the

positive work of a tensile force on a uniaxial specimen.

Assuming a constant volume Eq. 7.59 (or Eq. 7.62) can be written as,

fdl ¼ dU� TdS (7:64)

Using Eq. 7.64 and recognizing that the derivatives are total derivatives

Rosen (1993) obtains the following equation for the change in length for a

change in temperature for tensile specimen under a constant load and constant

volume,

∂l
∂T

� �
f,V

¼ 1

f

∂U
∂T

� �
f,V

� T

f

∂S
∂T

� �
f,V

(7:65)

This equation defines the change in length for a change of temperature for the

aforementioned conditions and provides an explanation for the classic experi-

ment of Joule for a tensile specimen of rubber heated while hanging under a

constant tensile load. The first term on the right represents the change in internal

energy and corresponds to the usual effect of positive change in length for an

increase in temperature. The second negative term represents the change in

entropy for an increase in temperature. For rubber the entropy effect completely

dominates the energy effect and, therefore, the length of the rubber specimen

contracts when heated under a constant load.

The change in the Helmholtz free energy may be written for non-constant

temperature as,

dA ¼ dU� TdS� SdT (7:66)
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Using Eqs. 7.66 and 7.64 Treloar (1975) obtains the following relations,

∂S
∂l

� �
T

¼ � ∂f
∂T

� �
l

∂U
∂l

� �
T

¼ f � ∂f
∂T

� �
l

(7:67)

The first equation provides a definitive method to determine the entropy change

per unit extension and the second equation provides a definitive method to

determine the associated energy change per unit extension. Treloar further

explains that if a rubber specimen is stretched and held at constant length

while the temperature is varied both the entropy and internal energy can be

determined. Specifically, if the force temperature diagram found from such a test

is linear then both the internal energy and entropy are independent of tempera-

ture. If the linear force temperature plot passes through the origin, the internal

energy is zero and the elastic modulus of the rubber is only related to the change

in entropy. If the force temperature plot intercepts the positive force axis, the

departure from the origin represents the contribution of the internal energy to the

elastic modulus. A similar analysis to experimentally determine the distribution

of external work energy into internal entropy and internal mechanical energy is

given by Mueller (1969).

In the test just described the stress can be determined from the force and the

strain is a constant. As a result the modulus versus temperature would vary in

the same manner as the force versus time. Therefore, the fact that the modulus

of the polyurethane shown in Fig. 7.11 increases linearly with absolute temper-

ature and goes through the origin is indicative that the associated deformation

processes were only related to changes in the internal entropy and not to changes

in internal energy.

Another approach to verifying that the modulus varies linearly with absolute

temperature uses statistics to relate the entropy changes under loading to con-

figurational changes of the molecular chains. This information combined with

the second of Eq. 7.62 (with the change in energy term taken as zero) yields the

following result (Rosen 1993),

E initialð Þ ¼ 3ρRT
Mc

(7:68)

where ρ is the density,Mc is the number average molecular weight, R is the gas

constant and T is the absolute temperature.
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7.7. Physical and Chemical Aging

Even with no applied stress, the mechanical properties of polymers may vary

with time due to changes occurring in the molecular structure. Variations due to

changes in molecular packing are called physical aging and changes due to

modification of the inter/intra-molecular bonding are referred to as chemical

aging. Physical aging effects are thermoreversible while chemical aging effects

are not.

Physical aging effects can be best explained through an understanding of the

molecular packing or free volume changes that take place during cooling after

the polymerization processing steps are completed. As discussed in Chap. 3 and

shown in Fig. 3.17, the specific or relative volume decreases linearly with

temperature until the glass transition temperature is reached. At the Tg the rate

of change of specific volume decreases as shown again in Fig. 7.26. The exact
location of the Tg depends upon the rate of cooling. If the rate of cooling is very

slow, the Tg will be decreased or if the rate of cooling is very fast, the Tg will be

increased as shown in Fig. 7.26. Manufacturing processes often involve rapid

cooling and thus can lead to significant increased Tg and an excess of free

volume below the Tg. Such a state suggests the material can experience

increased viscoelastic response to a stress or deformation input, as well as

increased physical aging effects.

quenched

Occupied Volume

Free volume

unquenched

Temp.

Vr

Tg T’g

Fig. 7.26 Specific or relative volume vs. temperature for a quenched or unquenched

polymer
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In general, as the temperature is decreased, molecular motions decrease and

the molecular structure becomes more tightly packed as indicated by the amount

of free volume. Above the Tg, molecular reconfigurations to attain the equilib-

rium volume are accomplished in the experimental time scale of the temperature

change. However, below the Tg decreased chain mobility and the small amount

of free volume result in a non-equilibrium thermodynamic state. The polymer

chains are unable to rearrange to attain their equilibrium volume during the

timescale of the temperature change and thus there is continued, slow

rearrangement of molecules long after the temperature change as thermody-

namic equilibrium is sought. During this approach to equilibrium volume and

structure, mechanical and other properties of the polymer change with time in a

process called physical aging. In general, as polymers age modulus increases and

they become more brittle. The temperature range for physical aging is between

the Tg and the first highest secondary transition temperature, Tβ (see Figs. 5.24
and 7.6).

An excellent discourse on the subject of physical aging may be found in

Struik (1969). With very careful measurements, Struik demonstrated that the

effect of aging is to continuously decrease the compliance of the material and

that the short term aging curves are related to each other by a shift factor along

the time axis. Thus, master curves can be constructed that give the effects of

physical aging over extended times frommeasurements of aged compliance over

shorter times, very similar to the previously discussed TTSP (time-temperature-

superposition-principle). This process is referred to as a time-aging-time-super-

position-principle and it is illustrated in Fig. 7.27 with data for PMMA.

Notice that data at each aging time is related via a simple shift in log space.

This shift factor is typically denoted as ate. The aging shift factor takes a

particularly simple analytical form

ate ¼ teref

te

� �μ

(7:69)

where teref is the reference aging time (aging time the curves are shifted to), te is

the aging time and μ is the shift rate, defined by the slope of the shift factor –

aging time curve.
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Because the material ages continuously, the creep tests performed as in

Fig. 7.27 must be of short duration at each aging time so that the compliance

result is representative of viscoelastic properties at that aging time. The individ-

ual creep curves and the shifted master curve (also called the momentary master

curve) is typically well fit by a Kohlrausch stretched exponential function

D tð Þ ¼ D0e
t=τð Þβ (7:70)

where β is the stretch parameter which has the effect of creating a spectrum of

relaxation times even though only a single parameter τ is used. If a long term

creep test is performed, the continued aging during the application of the load

leads to a continued stiffening of the material and a roll-over in the compliance

function as is illustrated in Fig. 7.28. It is possible to define an effective time, ξ,
based upon the aging shift factor similar to the effective time defined for

temperature shift factor in Eq. 7.51

Fig. 7.27 Illustration of the concept of physical aging for PMMA. Material is first

rejuvenated above Tg then quenched to 15� C below Tg for isothermal

aging. Creep compliance curves are obtained at each aging time and these

can be shifted as shown to provide a momentary master curve. A Kohlrausch

fitting function is also shown through the shifted data (Data fromWang 2007)
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ξ tð Þ ¼
ðt
0

ate ζð Þdζ (7:71)

where the shift factor evolves with the time of loading as

ate ¼ teref

te

� �μ

¼ teref

te0 þ t

� �μ

(7:72)

and te0 is the aging time at t¼ 0. By doing so, long term response accounting for

accumulating aging can be predicted using expressions similar toEqs. 7.48 and 7.52.

Dlongterm tð Þ ¼ D ξ tð Þð Þ (7:73)

where D(t) is the momentary master curve at te¼ teref. Such a prediction is

shown compared to the data in Fig. 7.28.

Fig. 7.28 Long term data for PEEK and effective time theory prediction based on

momentary master curve (based on short term creep experiments) (Data

courtesy of R. D. Bradshaw, University of Louisville; long term prediction

using shift rate from Guo and Bradshaw 2007)
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The aging superposition process can be combined with the TTSP provide

more extensive information of the material response as a function of time, aging

time and temperature. In the last two decades many have studied physical aging

extensively. Representative references include Wong et al. (1981), McKenna

(1989, 1994), and Crissman et al. (1990). A discussion of viscoelasticity and

physical aging concepts together with an extensive list of references can be

found in Brinson and Gates (2000).

As demonstrated in Fig. 5.23 four transitions are indicated by DMTA mea-

surement. The α or Tg is the largest but smaller β, γ, and δ transitions are found at
temperatures below the Tg. Associated increases of free volume as the temper-

ature decreases below the Tg are small and barely detectible in plots such as that

given in Figs. 7.6 and 7.26 but do exist and thereby suggests the β transition to be
the lower limit of physical aging. An interesting study by Adamson (1983)

demonstrates a unique aging process for temperatures below the beta transition.

With very careful moisture absorption measures for a Hercules 3501-5 epoxy

resin system used as a matrix material for graphite/epoxy composites, he dem-

onstrated that additional water can be “pumped” into the resin and/or the

composite by changes in the operating temperature of the material. It was

demonstrated that if the epoxy was moved from a 74� C bath after more than

100 days to a 25� C bath that approximately 25 % more moisture would be

absorbed in the next 50–60 days. Further it was shown that if the sample was

returned to the 74� C bath, the sample desorbed moisture to return to the

previous moisture content within a few days. This phenomenon is referred to

as the reverse thermal spike mechanism and demonstrates that moisture absorp-

tion mechanisms can be quite different than expected in both resins and

polymer-matrix composites and lead to damage that might be unanticipated.

Struik (1969) defines chemical aging as “thermal degradation, photo-

oxidation, etc.” It can safely be said that chemical aging is not as mature a

subject as physical aging and fewer recent references exist specifically related to

chemical aging. Indeed, the authors are not aware of any compendium on

chemical aging similar to the outstanding study compiled by Struik (1969) for

physical aging. That having been said, it is possible to find a considerable

amount about the degradation of polymers beginning with the classic book by

Tobolsky (1962) wherein is found a long chapter on “chemical relaxation”. This

chapter includes a description of vulcanized rubber exhibiting a rather rapid

decay to zero stress in a relaxation experiment in the temperature range of 100–

150� C. Tobolsky argues that because in a network polymer a relaxation to a

non-zero stress is expected the phenomenon can be attributed to a rupture of the

rubber network and is due to the presence of molecular oxygen. His text contains

numerous experimental results to substantiate this claim. He also indicates that

some rubbers in the temperature range of 100–150� C show a softening or
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modulus reduction while others show a hardening or modulus increase. The

former is similar to the behavior of a polyurethane rubber discussed herein in an

earlier section of this chapter. The softening process is due to chain scission or

the breaking of a chain resulting in two chains (Rodriguez 1996) and the

hardening process is due to the occurrence of additional cross-linking taking

place at the higher temperatures. Tobolsky (1962) describes the process of

cleavage (scission) at cross-link cites as well as along a chain. He further

describes the process of chemical permanent set and chemical creep under

constant load that would explain the results given in Fig. 7.13. More recent

results on the response of rubbers at elevated temperatures, accounting for chain

scission and oxygen depletion can be found in papers by Shaw et al. (2005).

Epoxy specimens used in the creep experiments resulting in Figs. 7.2, 7.3 and
7.10 and urethane specimens used in the creep experiments resulting Figs. 7.11
and 7.13 are shown in Fig. 7.29. The two specimens on the left are epoxy and

third specimen is polyurethane with the final rectilinear strip being an untested

polyurethane sample. The first epoxy specimen was used in the creep tests with

temperatures not exceeding 130� C (see Figs. 7.2 and 7.3) while the second

epoxy was use in the creep tests between 130� C and 200� C (see Figs. 7.2 and

7.10). The change in color between the two indicates some degree of degradation

though any change in the room temperature modulus was undetectable. The

polyurethane specimen before testing was the same color as the untested strip

and had the same dimensions as the epoxy specimens. Clearly, the color changed

significantly during the creep test at 150� C and significant unrecoverable

deformation remained. The room temperature modulus was also significantly

lowered for the polyurethane due to chemical aging at the elevated temperatures.

These tests and specimens reinforce the information given by Tobolsky.

Fig. 7.29 Epoxy (left two) and urethane (right two) specimens showing degradation

when tested at high temperatures
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While physical aging occurs between the beta- and glass-transition tempera-

tures, chemical aging effects are most often observed at temperatures signifi-

cantly above the glass-transition temperature or for other extreme environmental

conditions. For example, radiation can lead to additional cross-linking or even to

the cross-linking of a linear polymer (Sullivan 1969). The effect of atomic

oxygen (AO) has been studied extensively for spacecraft applications (Pippin

(1995) and http://setas-www.larc.nasa.gov/LDEF/ATOMIC_OXYGEN/ao_

intro.html). Atomic oxygen can lead to the erosion of polymers in space appli-

cations and can lead to a breakdown of the chemical structure.

A common occurrence related to resins used in the manufacture of compos-

ites is the slow continued crosslinking at high operating temperatures leading to

increased brittleness and micro-cracking. An interesting study by Kuhn

et al. (1995), uses a modification of an equation first proposed by Debenedetto

(see Kuhn, et al. for reference) to predict changes in the glass-transition tem-

perature due to additional cross-linking for a high-temperature carbon fiber-

reinforced polyimide composite. The effects of both physical and chemical

aging related to changes in the glass-transition temperature and dimensional

changes were documented experimentally.

More information on polymer degradation mechanisms can be found in

Rodriguez (1996), Kumar and Gupta (1998), Kumar et al. (2009) and other

texts. The various degradation mechanisms discussed include chain scission,

depolymerization, side group changes, antioxidants, radiation, moisture. While

not all of the included information would be classified as chemical aging, it is a

good start to understand many similar mechanisms.

As a final note it is appropriate to point out that not all aging effects can be

classified as either physical or chemical. For example, in many polymer-

processing operations for consumer items such as art objects, kitchen utensils,

souvenir items, or auto parts, plasticizers are used to make parts more pliable

during processing and/or to speed up processing time. Often some of the

plasticizing agent remains after the process is complete and, over time, the

plasticizer desorbs leaving voids or cracks leading to diminished mechanical

properties. For transparent objects, the resulting small surface crazes or cracks

are clearly visible. Sometimes even very large cracks result and they can be

observed even it the object is not transparent. Most reputable manufactures are

aware of these problems and adjust their processing operations so as to minimize

such concerns.

The subject of physical and chemical aging received a great deal of attention

for applications related to the aerospace industry in the late twentieth century

and deserves more attention by other industries that manufacture structural

systems from polymer based materials.
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7.8. Review Questions

7.1. Name the five regions of viscoelastic behavior of a polymer and give a

sketch of the 10 seconds modulus vs. temperature for thermoplastic

(amorphous and crystalline) and thermoset polymers.

7.2. Describe how the 10 seconds modulus is determined experimentally using

sketches and equations as necessary.

7.3. Define and describe the time-temperature-superposition principle.

7.4. What is a master curve? How is one produced?

7.5. Who was the person that first introduced the use of master curves.

7.6. Describe the kinetic theory of polymers.

7.7. Discuss the meaning of the term “dilute solution” and describe how this is

important in the development of the TTSP.

7.8. Under what conditions is the WLF equation valid?

7.9. Define specific volume and how is it measured? What is the fractional free

volume?

7.10. What is a relaxation spectrum and how is it related to a relaxation

modulus?

7.11. Describe the molecular mechanisms associated with viscoelastic response

in the glassy, transition and rubbery regions of behavior.

7.12. Describe the process of physical and chemical aging.

7.13. Describe the thermal spike mechanism associated with moisture

absorption.

7.9. Problems

7.1. Given the data below, develop a master curve using TSSP.

Time (min) D(t), 90C D(t), 100C D(t), 110C D(t), 115C

0.5 2.700E-06 2.990E-06 3.330E-06 4.260E-06

1 2.820E-06 3.080E-06 3.570E-06 4.650E-06

2 2.900E-06 3.170E-06 3.700E-06 5.130E-06

5 3.130E-06 3.390E-06 4.080E-06 6.060E-06

10 3.230E-06 3.640E-06 4.440E-06 7.410E-06
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Short term compliance data at eight temperatures for a polymer

7.2. Determine the shift factors needed to obtain the master curve found in

problem 1. Plot your results (Log10 aT vs. temperature) and compare with a

plot of the WLF equation.

Time (min) D(t), 120C D(t), 122C D(t), 125C D(t), 130C

0.5 7.690E-06 1.282E-05 3.030E-05 1.786E-04

1 9.260E-06 1.587E-05 4.651E-05 2.632E-04

2 1.163E-05 2.128E-05 7.143E-05 3.333E-04

5 1.667E-05 3.571E-05 1.351E-04 3.636E-04

10 2.222E-05 4.762E-05 2.000E-04 3.704E-04
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7.3. Calculate the shift factors for the data of problem 2 using the activation

energy approach and compare with the experimentally determined shift

factors found below the Tg.

7.4. The creep data for an epoxy is given in Fig. 5.12. Using the TTSP equations

(7.25) determine the maximum (asymptotic) value you would expect the

deflection, δ, to be for the temperatures, T¼ 155� C, 160� C and 165� C.
7.5. Using the TTSP prove that modulus should increase with increasing tem-

perature (the Joule effect) in the rubbery range.

7.6. A master curve for a polymer for a temperature of 100� C is given in the

figure below. Assuming the TTSP and the WLF equation is valid, estimate

the short and long time response for temperatures of 120� C and 90� C.

Sketch the expected master curves for each temperature on the given graph.

Master curve for a polymer at 100� C

7.7. A master curve and data are given below for a polymer at Tg¼ 100� C.

Construct an E(0.1 min) vs. temperature curve from the data. (You may

neglect a vertical shift for this problem).
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Master curve at 100� C for a polymer associated with tabulated values in problem 7.7

Time (min) Modulus (GPa)

0.01 2

0.1 1.6

1 0.8

3.5 0.4

10 0.12

35 0.025

100 0.01

1,000 0.006

1.0E + 04 0.005

1.0E + 05 0.005
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8. Elementary Viscoelastic Stress Analysis
for Bars and Beams

The study of polymer engineering science and viscoelasticity is not complete

unless attention is given to the stress (or strain) analysis of important structural

problems. These include sets of problems related to viscoelastic materials (e.g.,

polymers) analogous to those in the first course in solid mechanics (often called

strength of materials), courses on structural mechanics (including energy

methods, Castigliano’s theorems, etc.), the theory of linear elasticity (stress

functions, three dimensional problems, etc.), the theory of linear elastic plates

and shells, elastic stability and others. While it is not possible to cover all these

topics, it is possible to cover selected problems in several areas to demonstrate

common methods of approach such that individuals can continue to explore

problems unique to their own area of interest. Hopefully, the brief introduction

given here can assist one in solving structural analysis problems for viscoelastic

materials provided the necessary background to solve a similar structural anal-

ysis problem for an elastic material has been mastered.

8.1. Fundamental Concepts

Generally viscoelastic problems can be solved using relations between internal

stresses and external loads subject to the geometry of the structure in a similar

manner as for elastic materials in the subject areas mentioned above. For both

elastic and viscoelastic materials, the “state of the material” or equations of state

must be included. Here elastic and viscoelastic materials are different in that the

former does not include memory (or time dependent) effects while the latter does

include memory effects. Because of this difference, stress, strain and displace-

ment distributions in polymeric structures are also usually time dependent and

may be very different from these quantities in elastic structures under the same

conditions.

© Springer Science+Business Media New York 2015
H.F. Brinson, L.C. Brinson, Polymer Engineering Science
and Viscoelasticity, DOI 10.1007/978-1-4899-7485-3_8
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In Chap. 6, it was shown that the Boltzman superposition principle could be

used to derive an integral constitutive law for a linear viscoelastic material as

σ tð Þ ¼
ðt

0

E t� τð Þ dε τð Þ
dτ

dτ (8:1)

Taking the Laplace transform of this convolution integral yields

σ sð Þ ¼ sE sð Þε sð Þ (8:2)

which can also be written as

σ sð Þ ¼ E
∗
sð Þε sð Þ (8:3)

where E
∗
sð Þ is s times the Laplace transform of the time dependent modulus of

the material, E(t). In Chap. 5 it was also shown that for representation of

viscoelastic materials by mechanical models and differential equations, E
∗
sð Þ

is the ratio of the transform of the strain and stress differential operators.

Equation 8.3 is equivalent, in transform space, to Hooke’s law for an axially

loaded elastic bar or,

σ ¼ Eε (8:4)

The stress and strain in an elastic structure may vary with time providing

external loads vary with time. Therefore, it is possible to transform time depen-

dent stresses and strains for elastic structures to give,

σ sð Þ ¼ Eε sð Þ (8:5)

but since the modulus is time independent, the resulting equation is quite

different than Eq. 8.3, i.e., E in Eq. 8.5 is a constant but E
∗
sð Þ in Eq. 8.3 is

the Laplace transform of time dependent functions.

The fact that Eq. 8.3 can be considered as the equivalent of Hooke’s law in

the transform domain leads to a general method to solve many practical visco-

elastic boundary value problems in a simple manner. This procedure is often

attributed to Turner Alfrey and is sometimes referred to as Alfrey’s correspon-
dence principle. Simply stated the procedure is as follows:
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• Find a previously solved linear elasticity boundary value problem with
the same geometry, loading, and boundary conditions as the linear
viscoelastic boundary problem for which a solution is needed.

• Replace all variables in the elastic solution (stresses, strains, displace-
ments, etc.) and the applied loads by their Laplace transform.

• Replace all elastic constants by s times the transform of the time
dependent moduli (or the ratio of the transform of the analogous
differential operators). That is:

E ! E
∗
sð Þ ¼ sE sð Þ

D ! D
∗
sð Þ ¼ sD sð Þ

G ! G
∗
sð Þ ¼ sG sð Þ

ν ! ν∗ sð Þ ¼ sν sð Þ

(8:6)

• The resulting expressions are the solution in the transform domain to
the viscoelastic boundary value problem. The solution in the time
domain can be found upon inversion.

In this chapter the correspondence principle will be used to solve elementary

viscoelastic problems for bars and beams. In the following chapter the principle

will be used to solve problems in two-dimensional elasticity. This procedure can

only be used for a certain class of problems. In general, the procedure can be

used on any problem in which the load functions (including boundary condi-

tions) can be separated into a product function of space and time. These

restrictions will be discussed more fully in the following chapter on two and

three-dimensional problems. It is also appropriate to note that in addition to the

correspondence principle there are, in general, two additional methods that may

be used to solve viscoelastic boundary value problems. These are: formulate and

solve the problem in the time domain or formulate and solve the problem in the

transform domain. The latter two techniques will be discussed and demonstrated

in detail in Chap. 9. The reason for mentioning these methods here is that they

can best be demonstrated at an elementary level using the derivation of the beam

deflection equation for pure bending as discussed later in this chapter.

8.2. Analysis of Axially Loaded Bars

Consider an elastic and a viscoelastic bar in uniaxial tension as shown in Fig. 8.1
where the axial load may be time dependent.
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As noted for an elastic bar in Chap. 2, the average or engineering stress, the

average or engineering strain and Hooke’s law are given by,

σ tð Þ ¼ P tð Þ
A

, ε tð Þ ¼ δ tð Þ
L

, σ tð Þ ¼ Eε tð Þ (8:7)

where P(t) is the applied load, L is the original length, A is the original cross-

sectional area and E is Young’s modulus and is a constant. Obviously, the only

reason for the variation of stress and strain with time is due to the variation of

load with time. The stress-strain equation can be written as,

P tð Þ
A

¼ E
δ tð Þ
L

(8:8)

and the axial deformation would be,

δ tð Þ ¼ P tð ÞL
AE

(8:9)

Again, the deformation varies with time only because the load varies with time.

Note the cross sectional area used is still the original area and is constant. If true

stress were used, the cross section would change but for many polymers under

practical loads the variation would be small and can be neglected.

For a viscoelastic bar, a solution for stresses, strains and displacements can

be obtained using the correspondence principle by replacing all variables in

Eqs. 8.7 and 8.9 by their Laplace transforms and the moduli by s times their

Laplace transform,

σ sð Þ ¼ P sð Þ
A

, ε sð Þ ¼ δ sð Þ
L

, ε sð Þ ¼ D
∗σ sð Þ, δ sð Þ ¼ P sð ÞL

A
D

∗
(8:10)

where Hooke’s law and the deformation have been written in terms of compli-

ance instead of modulus. The solution for stress in the time domain can be found

by finding the inverse Laplace transform and would be,

(a) (b)

Fig. 8.1 Loads and deformation in elastic (a) and viscoelastic (b) bars

290 Polymer Engineering Science and Viscoelasticity: An Introduction

http://dx.doi.org/10.1007/978-1-4899-7485-3_2


σ tð Þ ¼ P tð Þ
A

(8:11)

Comparing Eq. 8.11with the first in Eq. 8.7 it is seen that the stress is exactly the
same as in an elastic beam with a time dependent axial load.

In fact, from this result it is clear that any elastic problem in which no
elastic constants appear in the solution will have a counterpart viscoelastic
solution that will be identical to the elastic solution.

Solutions for deformations where tractions are prescribed always have mate-

rial properties included and therefore, displacements in elastic and viscoelastic

bodies will be quite different. Noting that,

D
∗
sð Þ ¼ sD sð Þ (8:12)

the displacement of the viscoelastic bar given by the last equation in Eq. 8.10 is
rewritten as,

δ sð Þ ¼ P sð ÞL
A

� sD sð Þ (8:13)

Equation 8.13 can be inverted using the convolution integral and is,

δ tð Þ ¼ L

A

ðt

0

D t� ξð Þ dP ξð Þ
dξ

dξ (8:14)

For uniaxial loading, either Eq. 8.13 or 8.14 can be used to solve for the

displacement in a viscoelastic bar over time given an explicit loading function,

P(t) and material compliance, D(t). It is sometimes useful to manipulate the

expressions algebraically in the Laplace domain, Eq. 8.13, and then simply

invert the final expression to the time domain.

In the simple case that the axial load is a constant step input given by,

P tð Þ ¼ P0H tð Þ and P sð Þ ¼ P0

s
(8:15)

the stress in the bar (elastic or viscoelastic) will be,

σ ¼ P0

A
(8:16)
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The displacement for a viscoelastic bar can be rewritten as in Eq. 8.14,

δ tð Þ ¼ L

A

ðt

0

D t� ξð Þ d P0H ξð Þ½ �
dξ

dξ (8:17)

or

δ tð Þ ¼ P0L

A

ðt

0

D t� ξð Þδ ξð Þdξ (8:18)

where, due to unfortunate conventional notation the δ(t) on the left hand side is

the axial deformation, while the δ(ξ) on the right hand side is the Dirac delta

function. Equation 8.18 becomes (upon using the result in Appendix A for

integrating Dirac delta functions),

δ tð Þ ¼ P0L

A
D tð Þ (8:19)

or as mentioned above, Eq. 8.13 can be rewritten using Eq. 8.15 to obtain,

δ sð Þ ¼ P0L

A
� D sð Þ (8:20)

and inverted to obtain Eq. 8.19 without recourse to integral equations.

Thus, for the constant load input of Eq. 8.15, the resulting displacement for an

elastic bar is a constant, PL/AE, while the viscoelastic bar exhibits creep and

increasing displacements with time.

Note that the result for the case of a step load is quite simple and provides

displacements in Eq. 8.19 that are identical in form to the elastic displacements

in Eq. 8.9 with 1/E replaced by the elastic compliance D. However, for any
non-constant load, the integration of Eq. 8.14 becomes non-trivial, cannot be

solved without explicitly stating a form for compliance D(t) and yields a very

different displacement field in the viscoelastic material over time.

To provide an example of a non-trivial case, consider a bar in uniaxial tension

where the load is given by

P tð Þ ¼ p0t and P sð Þ ¼ p0=s
2 (8:21)
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In this case, the stress field for both elastic and viscoelastic bars is

σ tð Þ ¼ p0
A
t (8:22)

and the displacement field for the elastic bar from Eq. 8.9 is given by

δ tð Þ ¼ p0L

AE
t (8:23)

For a viscoelastic bar, Eq. 8.13 can be used in the Laplace domain, simplified

and inverted, or Eq. 8.14 can be used directly in the time domain as illustrated

here. In either case, the time dependent compliance of the material must be

chosen to determine the solution. Here, choose a simple Kelvin solid such that

D tð Þ ¼ 1

E
1� e�t=τ

� �
(8:24)

Using Eqs. 8.21 and 8.24 in Eq. 8.14 yields

δ tð Þ ¼ L

A

ðt

0

1

E
1� e� t�ξð Þ=τ

� �
p0dξ

¼ Lp0
AE

t� τ 1� e�t=τ
� �� � (8:25)

which is clearly different in form from the elastic solution Eq 8.23. The resulting
time dependent displacements can be plotted as shown in Fig. 8.2, where it is

seen that the displacements in the viscoelastic bar lag the elastic solution due to

the delay in the viscous term.
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8.3. Analysis of Circular Cylinder Bars in Torsion

A viscoelastic bar in torsion can be analyzed in a similar manner as the axial bar

in tension or compression. Assume a time dependent end torque is applied to a

circular cylindrical bar as shown in Fig. 8.3,

The stress and angular deformation for an elastic bar is given by,

τ tð Þ ¼ T tð Þr
Ip

and θ tð Þ ¼ T tð ÞL
IpG

(8:26)

where Ip is the polar moment of inertia (second moment of area), r is the radius
to the location in the cross section where the stress is to be determined,T(t) is the
time dependent input torque, L is the length and G is the shear modulus.

Fig. 8.2 Displacement with time for uniaxial loading with P(t)¼ p0t. Note difference in

elastic and viscoelastic response. Simple Kelvin model used for viscoelastic bar

Fig. 8.3 Torsion of elastic and viscoelastic bars
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For a viscoelastic bar in the transform domain, the solution is found by

replacing all variables in elastic solution by their Laplace transform (and moduli

by s times their Laplace transform) such that,

τ sð Þ ¼ T sð Þr
Ip

and θ sð Þ ¼ T sð ÞL
Ip

� sJ sð Þ (8:27)

where J sð Þ is the transform of the shear creep compliance and J
∗
sð Þ ¼ sJ sð Þ.

Inversion of the equation for the transform of shear stress will give the

solution for shear stress in the time domain,

τ tð Þ ¼ T tð Þr
Ip

(8:28)

which is identical to the elastic solution given in Eq. 8.26. Inversion of the

transform of the angular displacement provides (using the same procedure as

previously for a bar in tension or compression),

θ tð Þ ¼ L

Ip

ðt

0

J t� ξð Þ dT ξð Þ
dξ

dξ (8:29)

For a simple step input in torque,

T tð Þ ¼ T0H tð Þ and T sð Þ ¼ T0

s
(8:30)

the solution for stress and angular displacement will become,

τ ¼ T0r

Ip
and θ tð Þ ¼ T0L

Ip
J tð Þ (8:31)

As for the uniaxial tension case, while the elastic solution for angular displace-

ment is constant in time for a constant torque input, the viscoelastic bar exhibits

increasing displacement from creep over time. Note again that the expression

Eq. 8.31 is quite simple in the step input case and analogous in form to the

elastic solution Eq. 8.26. For time varying loading, the integration of Eq. 8.29 is
nontrivial and results in a more complex form.
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8.4. Analysis of Prismatic Beams in Pure Bending

In general, developing appropriate stress and deformation analysis solutions for

the design of complex structures made with viscoelastic polymer-based mate-

rials can be very difficult and challenging. However, as discussed in this section,

the various analytical approaches mentioned earlier can be illustrated using the

elementary analysis associated with beams in pure bending.

8.4.1. Stress Analysis of Beams in Bending

A viscoelastic bar in pure bending can be analyzed in a similar manner as the

axial bar in tension or compression and the circular cylindrical bar in torsion.

Assume a time dependent bending moment is applied to a bar (with a vertical

axis of symmetry) as shown in Fig. 8.4,

The bending stress and deformation for an elastic bar is given by,

σx y; tð Þ ¼ Mz tð Þy
Iz

; (8:32a)

d2δ x; tð Þ
dx2

¼ Mz tð Þ
EIz

(8:32b)

where Iz is the moment of inertia (second moment of area) of the cross-section,

y is the vertical distance from the neutral axis to the location in the cross section

where the stress is to be determined, Mz(t) is the time dependent input bending

moment, L is the length and E is Young’s modulus.

Fig. 8.4 Pure bending of elastic and viscoelastic bars
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For a viscoelastic bar in the transform domain, the solution is found by

replacing all variables in the elastic solution by their Laplace transform (and

all moduli by s times their Laplace transform) such that,

σx y; sð Þ ¼ Mz sð Þy
Iz

(8:33)

Inversion of the Eq. 8.33 will give the solution for axial stress in the time

domain,

σx y; tð Þ ¼ Mz tð Þy
Iz

(8:34)

which is identical to the elastic solution given in Eq. 8.32a. Displacements, on

the other hand, will be quite different for elastic and viscoelastic beams in

bending as is illustrated in the following sections.

8.4.2. Deformation Analysis of Beams in Bending

Three methods of solving viscoelastic boundary value problems were given

early in the Fundamental Concepts section of this chapter. The development of

the beam equation serves as a simple method to illustrate these various tech-

niques. Before proceeding with this section, the reader is advised to review the

procedure for developing the deflection equation for linear elastic prismatic

beams given in elementary texts on solid mechanics.

It may be well to note that while the deflection derivations shown in this

section are for pure bending, the equations developed are valid for general

loadings (i.e., point, distributed, etc.) as long as shear deformations are negligi-

ble as in elastic beams.

(1) Development of beam deflection equation using the correspondence
principle: Development of an appropriate equation for the deformation of any

viscoelastic beam can be developed using the correspondence principle. That is,

the viscoelastic equivalent to the deflection equation given by Eq. 8.32b can be

developed in the transform domain by replacing the appropriate variables by

their Laplace transform,

d2δ x; sð Þ
dx2

¼ Mz sð Þ
Iz

D
∗
sð Þ (8:35)
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or

d2δ x; sð Þ
dx2

¼ Mz sð Þ
Iz

� sD sð Þ (8:36)

Inversion yields,

d2δ x; tð Þ
dx2

¼ 1

Iz

ðt

0

D t� ξð Þ dMz ξð Þ
dξ

dξ (8:37)

If a step bending moment is input such that,

Mz tð Þ ¼ M0H tð Þ and Mz sð Þ ¼ M0

s
(8:38)

integration of Eq. 8.37 yields,

d2δ x; tð Þ
dx2

¼ M0

Iz
D tð Þ (8:39)

(2) Derivation of viscoelastic beam deflection equation in the time domain: It
is instructive to derive the deflection equation for a viscoelastic beam without

resorting to Laplace transforms. Consider the undeformed and deformed beam

shown in Fig. 8.5. Making the assumptions (the same as in elementary solid

mechanics) of small deformations, linear behavior, and a non-warping cross-

sections (plane sections remain plane) will give the relations,

Fig. 8.5 Deformation of a viscoelastic beam in pure bending
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dx ¼ ρ tð Þdθ tð Þ du y; tð Þ ¼ ydθ tð Þ du y; tð Þ
dx

¼ y

ρ tð Þ ¼ εx y; tð Þ (8:40)

where ρ(t) is the radius of curvature, θ(t) is the angular rotation of adjacent

cross-sectional plane sections and u(t) is the deformation in the x direction of a

point y distance from the neutral axis (NA). The length of the beam at the neutral

axis does not change with time but the radius of curvature, ρ(t), decreases with
time as the angular deformation increases with time. The relation between axial

stress and strain at any point on the cross-section is given by,

εx y; tð Þ ¼
ðt

0

D t� ξð Þ∂σx y; ξð Þ
∂ξ

∂ξ ¼ y

ρ tð Þ ¼ yκ tð Þ (8:41)

where κ(t) is the curvature. Alternatively, writing with stress as the dependent

variable gives,

σx y; tð Þ ¼ y

ðt

0

E t� ξð Þ∂κ ξð Þ
∂ξ

∂ξ (8:42)

Equilibrium of forces in the axial direction on any cross-section gives,

ΣFx ¼ 0 ¼
ð
A

y

ðt

0

E t� ξð Þ dκ ξð Þ
dξ

dξ

2
4

3
5dA

0 ¼
ðt

0

E t� ξð Þ dκ ξð Þ
dξ

dξ

2
4

3
5ð
A

ydA

(8:43)

and indicates that the neutral axis is at the centroid of the cross-section as in

elementary beam theory. Equilibrium of moments about the z-axis gives,

ΣMz ¼ 0 ¼ Mz tð Þ �
ð
A

y2
ðt

0

E t� ξð Þ dκ ξð Þ
dξ

dξ

2
4

3
5dA (8:44)

or
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Mz tð Þ ¼
ð
A

y2
ðt

0

E t� ξð Þ dκ ξð Þ
dξ

dξ

2
4

3
5dA (8:45)

From Eqs. 8.40,

εx x; tð Þ ¼ y

ρ tð Þ ¼ yκ tð Þ (8:46)

and noting that,

κ tð Þ ¼ d2v=dx2

1þ dv=dxð Þ2
h i3=2 ffi d2v

dx2
¼ d2δ

dx2
(8:47)

where v is the displacement in the y direction, one obtains,

Mz tð Þ ¼
ð
A

y2
ðt

0

E t� ξð Þ d
dξ

d2δ
dx2

� �
dξ

2
4

3
5dA (8:48)

or

d2δ tð Þ
dx2

¼ 1

Iz

ðt

0

D t� ξð Þ dMz ξð Þ
dξ

dξ

2
4

3
5 (8:49)

which is the same result obtained by the correspondence principle given by

Eq. 8.37. The proof that Eq. 8.49 follows from Eq. 8.48 is left as an exercise for
the reader (See homework problem 8.5).

(3) Derivation of viscoelastic beam deflection equation in the transform
domain: The beam loaded as shown in Fig. 8.5 can be converted to an associ-

ated problem in the transform domain by transforming all time dependent

parameters and the boundary conditions. Obviously, the deflection equation in

the transform plane can be developed following the derivation steps as used in

elementary solid mechanics and a result equivalent to Eqs. 8.35, 8.36, and 8.37.
This proof is left as an exercise for the reader (see homework problem 8.6).
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8.5. Stresses and Deformation in Beams for Conditions
Other Than Pure Bending

The equations for bending stress and deflection developed in the previous

sections may be used for beams with loading conditions other than pure bending.

In so doing, the same restrictions apply as in using their elastic counterparts for

conditions other than pure bending. A few examples will be given for beams

with distributed loads.

Example 1: Consider a simply supported rectangular viscoelastic beam with a

step input of a uniformly distributed load as given in Fig. 8.6a.

The solution for stresses, deformations and strains for an elastic beam of the

same geometry and loading is known. For example the maximum bending stress

occurs at the outer surface of the beam at mid-span and is given by,

σmax ¼ Mmaxy

I
¼ 3

2

q tð ÞL2

h3
¼ 3

2

q0L
2

h3
(8:50)

Replacing all variables by their Laplace transform gives,

σmax sð Þ ¼ 3

2

q sð ÞL2

h3
¼ 3

2

q0L
2

s h3
(8:51)

Inversion of this solution will provide the solution for the viscoelastic beam and

will be,

(a) (b)

Fig. 8.6 Uniformly loaded elastic and viscoelastic beams
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σmax tð Þ ¼ 3

2

q tð ÞL2

h3
(8:52)

or

σmax tð Þ ¼ 3

2

q0L
2

h3
H tð Þ (8:53)

Again, the viscoelastic solution for stress is exactly the same as the elastic

solution stress. As stated earlier, in general, if the linear elastic solution for

stresses for a given boundary value problem does not contain elastic constants,

the solution for stresses in a viscoelastic body with equivalent geometry and

equivalent loads is identical to that for the elastic body. This means that the

stress analysis of most problems considered in elementary solid mechanics such

as beams in bending, bars in torsion or axial load, pressure vessels, etc. will have

the same solution for stress in a linear viscoelastic material as in a linear elastic

material. Further, stress analysis of combined axial, bending, torsion and pres-

sure loads can be handled easily using superposition.

Solutions for beam deflections (or stresses induced by deflections such as a

sagging supports) will be quite different for elastic and viscoelastic materials.

This difference is due to the appearance of elastic constants in the mathematical

expressions for deflections and displacements and is demonstrated in the next

examples.

Example 2: The maximum elastic deflection for the beam in Fig. 8.6b will be,

δmax ¼ 5

384

q0L
4

I

1

E
¼ 5

384

q0L
4

I
D (8:54)

where D¼ 1/E is the elastic compliance. The viscoelastic solution in the trans-

form domain will be,

δmax sð Þ ¼ 5

384

q sð ÞL4

I
D

∗
sð Þ (8:55)

Recalling that D
∗
sð Þ ¼ sD sð Þ gives,

δmax sð Þ ¼ 5

384

q sð ÞL4

I
� sD sð Þ (8:56)

Knowing that the transform of q(t)¼ q0 H(t) is q0/s and substituting in Eq. 8.56
gives,
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δmax sð Þ ¼ 5

384

q0L
4

I
D sð Þ (8:57)

and the viscoelastic solution in the time domain will be,

δmax tð Þ ¼ 5

384

q0L
4

I
D tð Þ (8:58)

Assuming the material to be a thermoset polymer that can be represented by a

three parameter solid, the deflection at mid-span would become,

δmax tð Þ ¼ 5

384

q0L
4

I

1

E0

þ 1

E1

1� e�t=τ
� �� �

(8:59)

and the maximum deflection would vary with time. Again, note that the simple

inversion of Eq. 8.57 and the resulting elastic-like form of Eq. 8.58 is due to the
constant load applied in this example. For time varying loads, the inversion step

results in expressions that differ substantially in form from that of the elastic

solution. This case will be considered in Examples 4–5.

Example 3: Now consider the case of the simply supported viscoelastic beam

shown in Fig. 8.7 which is suddenly given a constant deformation at mid-span.

The objective is to find the amount of a center load needed for the beam

deformation to remain constant.

The deflection produced by a central constant force in the elastic beam will

be,

δ ¼ FL3

48EI
(8:60)

or

(a) (b)

Fig. 8.7 Elastic and viscoelastic beam
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F ¼ 48 I

L3
δ E (8:61)

and, of course, this force will remain constant for an elastic beam. For a

viscoelastic beam, the force corresponding to a central displacement can be

found using the correspondence principle,

F sð Þ ¼ 48 I

L3
δ sð ÞE∗

sð Þ (8:62)

For the goal of constant deformation, the deflection input is assumed to step to

the constant value, δ(t)¼ δ0 H(t), for which the Laplace transform will be

δ sð Þ¼δ0=s. Substituting this input condition into Eq. 8.62 as well as E
∗¼sE

sð Þ and inverting gives the viscoelastic solution,

F tð Þ ¼ 48 I

L3
δ0E tð Þ (8:63)

The force F(t) will vary with time as the relaxation modulus varies with time. If

the beam is made of a thermoplastic polymer and if representation by a Maxwell

model is appropriate, the solution will be,

F tð Þ ¼ 48 I

L3
δ0Ee�t=τ (8:64)

and the force will vary with time as shown in Fig. 8.8.

Fig. 8.8 Force needed to maintain a constant central deflection a thermoplastic

viscoelastic beam
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The force needed to hold the deflection constant will become zero for a time

large compared to the relaxation time. On the other hand if the beam is made of a

thermoset, the force would not decrease to zero regardless of the time duration.

This example further illustrates that the stresses are not the same in a

viscoelastic beam as in an elastic beam when displacements are prescribed. In

this case, the stresses in the beam approach zero as time approaches infinity for

the viscoelastic solution.

Determining deflections for circumstances when the load is both a function of

the spatial coordinates and time requires special attention. The following exam-

ple demonstrates the appropriate approach.

Example 4: Assume a beam is loaded as shown in Fig. 8.9 and that the

distributed load is both a function of distance and time. While a general loading,

p(x,t), can be accommodated with the correspondence principle, only a loading

which is a product of two separate functions as shown in Fig. 8.9, i.e., p(x, t)¼
p(x)f(t) will be discussed here.

The solution for an elastic beam with an equivalent load can be written as,

δ x; tð Þ ¼ p x; tð Þ
EI

g xð Þ ¼ p x; tð Þ
I

g xð ÞD ¼ p xð Þf tð Þ
I

g xð ÞD (8:65)

where D is the constant elastic compliance and g(x) contains the spatial distri-

bution of the deflection solution beyond p(x). To clarify the definition of g(x),
consider the deflection equation of an elastic beam with a uniformly varying

load, where p(x,t)¼ q0x, which can be found in elementary texts to be,

δ xð Þ ¼ 1

EI
� q0x

360L
7L4 � 10L2x2 þ 3x4
� 	

(8:66)

Using the notation from Eq. 8.65, for this case

Fig. 8.9 Viscoelastic beam with a spatially varying distributed load
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p xð Þ ¼ q0x

360L
g xð Þ ¼ 7L4 � 10L2x2 þ 3x4

� 	
(8:67)

Returning to the general expression Eq. 8.65, using the correspondence principle
for a polymer beam that is viscoelastic, the solution in the transform domain

will be,

δ x; sð Þ ¼ p xð Þ
I

g xð Þ � f sð ÞD∗
sð Þ ¼ p xð Þ

I
g xð Þ f sð Þ � sD sð Þ
 �

(8:68)

Using the definition of the convolution integral, the solution in the time domain

will be,

δ x; tð Þ ¼ δ
0
xð Þ

ðt

0�

D t� τð Þ df τð Þ
dτ

dτ (8:69)

where,

δ
0
xð Þ ¼ p xð Þ

I
g xð Þ (8:70)

In Eq. 8.70 δ0(x) is the deflection for an elastic beam loaded only with p(x) but
with the Young’s modulus removed. That is, Young’s modulus is replaced by the

compliance in the transform domain in Eq. 8.68 and also included as the

compliance in the integrand of Eq. 8.69. For the loading given in Fig. 8.9, it is
to be noted that the integral must include the jump discontinuity at the origin

by recognizing that the initial value of f(t) is f0H(t). Using the results of

Appendix A, the inverse of Eq. 8.68 can be written as,

δ x; tð Þ ¼ δ
0
xð Þ f0D tð Þ þ

ðt

0

D t� ξð Þ df ξð Þ
dξ

dξ

2
4

3
5 (8:71)

Example 5: To illustrate the use of the results of Example 4, consider a beam

under a uniformly varying distributed load as shown in Fig. 8.10 which has a

time dependency as given also in Fig. 8.10.
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The elastic solution for a uniformly loaded beam is,

δ x; tð Þ ¼ δ
0
xð Þf tð ÞD (8:72)

where

δ
0
xð Þ ¼ p0

24 I
x4 � 2Lx3 þ L3x

 �

(8:73)

The viscoelastic solution can be found using Eq. 8.69 noting that the time

dependent portion of the load function can be written as

f tð Þ ¼ f0

t1
tH tð Þ � f0

t1
t� t1ð ÞH t� t1ð Þ (8:74)

To perform the integration, it will be convenient to separate the integral and thus

the function into portions before and after t1. In this form, f(t) and its first

derivative may be written:

f tð Þ ¼ f0

t1
t,

df

dt
¼ f0

t1
, 0 � t � t1

f tð Þ ¼ f0,
df

dt
¼ 0, t > t1

8><
>: (8:75)

Using Eq. 8.71, the deflection is found to be given by,

δ x; tð Þ ¼
δ
0
xð Þf1
t1

ðt1
0

D t� ξð Þdξ, 0 � t � t1

δ
0
xð Þ f1

t1

ðt1
0

D t� ξð Þdξþ 0ð Þ
ðt

t1

D t� ξð Þdξ
2
4

3
5, t > t1

8>>>>>>><
>>>>>>>:

(8:76)

Fig. 8.10 Viscoelastic beam with a uniformly varying distributed load
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Assuming the beam can be represented as a Kelvin solid such that,

D t� ξð Þ ¼ 1

E
1� e� t�ξð Þ=τ
h i

(8:77)

the deflection will be,

δ x; tð Þ ¼
δ
0
xð Þ
E

f0

t1
t� τ 1� e�t=τ

� �h i
, 0 � t � t1

δ
0
xð Þ
E

f0

t1
t1 � τe�t=τ et1=τ � 1

� �h i
, t > t1

8>>><
>>>:

(8:78)

A non-dimensional plot of the center deflection given by Eqs. 8.77 and 8.78 are
shown plotted versus time in Fig. 8.11. For comparison the response of an elastic

material for the time t1 is also given. If the retardation time, τ, is much larger

than the time t1 as in the upper curve (t1¼ 10), the material behaves essentially

elastically during the loading up to t1 and there is a long transient response

before the asymptotic value is reached after the load is held constant. If the

retardation time is much less than the time t1 as in the lower curve (t1¼ 500),

there is an initial transient response of the polymer lagging the applied load, but

after the test time reaches the relaxation time (t¼ 100), the material responds

nearly linearly with the rising applied load. After the constant load is reached,

the remaining transient response occurs quickly and the asymptotic value is

reached after a short time relative to t1.

Fig. 8.11 Variation of deflection for the beam given in Fig. 8.10 Retardation time of

polymer is the same for all cases, but time where load becomes constant, t1,

varies (and is indicated by arrows on each curve). Elastic response also shown
for two cases
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8.6. Shear Stresses and Deflections in Beams

The vertical shear stress in an elastic beam is given by,

τxy x; tð Þ ¼ V x; tð ÞQ
Izb

(8:79)

where V(x,t) is the vertical shear force (and is a function of time if the loading is

a function of time) at a section x distant from the left end, Q is the first moment

of the cross-sectional area about the neutral axis for the area above the point on

the cross-section where the stress is desired (for further details, see an elemen-

tary solid mechanics text), Iz is the moment of inertia of the cross section about

the neutral axis and b is the thickness of the beam at the location in the cross-

section that the shear stress is desired. Since no properties are contained in the

elastic solution, the viscoelastic solution is identical to the elastic solution.

The above solution is only valid for beams whose cross-sectional dimensions

are small compared to the length. That is if bmax/L is approximately 10 or larger.

For beams that do not meet this condition, deflections developed using pure

bending theory must include a correction factor to account for the effects of

shear. Also, shear stresses need to be corrected as well. The reader is referred to

both elementary and advanced solid mechanics texts for the details regarding the

shear correction terms.

However, as long as the material is linear, the correspondence principle can

be used to obtain viscoelastic solutions from the appropriate elastic solution. It is

well to note that such shear corrections are more important for polymeric

materials than for metals as moduli are smaller and deformations are corre-

spondingly larger. Therefore, shear corrections are typically more important.

8.7. Review Questions

8.1. Who first introduced the concept of the correspondence principle?

8.2. Describe how to use the correspondence principle to solve stress analysis

problems.

8.3. Under what conditions are the solutions for stress identical for elastic and

viscoelastic structures?

8.4. Describe three analytical approaches for obtaining solutions viscoelastic

boundary value problems.
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8.8. Problems

8.1. Determine an expression for the maximum stress in a viscoelastic cantilever

beam made of a thermoplastic polymer that can be represented by a

Maxwell fluid. Assume the beam of square cross section and is uniformly

loaded with a step input.

8.2. Determine the maximum deflection in a cantilever beam made of a ther-

mosetting polymer that can be represented by a three parameter solid.

Assume the beam of square cross section and is uniformly loaded with a

step input.

8.3. Determine an equation for the deflection of a simply supported beam with a

uniform load varying in time similar to the one of Example 5. Assume the

material to be Maxwellian. Graphically show the resulting deflection in a

similar manner as in Fig. 8.11.
8.4. Prove that Eq. 8.49 follows from Eq. 8.48. Hint: use Laplace transforms.

8.5. Reformulate the beam in pure bending shown in Fig. 8.5 to a problem in the

transform domain and derive the appropriate deflection solution showing

that the result in the time domain is the same as given by the correspon-

dence principle and the derivation given in the time domain.

8.6. Given a beam loaded as shown. Determine an expression for the maximum

deflection as a function of time for loading condition in (a) assuming a

Kelvin model. Determine an expression for the maximum deflection as a

function of time for loading condition in (b) assuming a Kelvin model.
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9. Viscoelastic Stress Analysis in Two and Three
Dimensions

The various approaches to the solution of viscoelastic boundary value problems

discussed in the last chapter for bars and beams carry over to the solution of

problems in two and three dimensions. In particular, if the solution to a similar

problem for an elastic material already exists, the correspondence principle may

be invoked and with the use of Laplace or Fourier transforms a solution can be

found. Such solutions can be used with confidence but one must be cognizant of

the general equations of elasticity and the methods of solutions for elasticity

problems in two and three dimensions as well as any assumptions that might

often be applied. To provide all of the necessary information and background for

multidimensional elasticity theory is beyond the scope of this text but the pro-

cedures needed will be outlined in the following sections.

This chapter will focus on developing the equations, assumptions and pro-

cedures one must use to solve two and three dimensional viscoelastic boundary

value problems. The problem of an elastic thick walled cylinder will be used as a

vehicle to demonstrate how to obtain the solution of a more difficult reinforced

viscoelastic thick walled cylinder. In the process, we first demonstrate how the

elasticity solution is developed and then apply the correspondence principle to

transform the solution to the viscoelastic domain. Several extensions to this

problem will be discussed and additional practice is provided in the homework

problems at the end of the chapter.

9.1. Elastic Stress-Strain Equations

To this point the relations between stress and strain (constitutive equations) for

viscoelastic materials have been limited to one-dimension. To appreciate the

procedure for the extension to three-dimensions recall the generalized Hooke’s

law for homogeneous and isotropic materials given by Eqs. 2.28,
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εxx ¼ 1

E
σxx � ν σyy þ σzz

� �� �
, γxy ¼

τxy
G

εyy ¼ 1

E
σyy � ν σxx þ σzzð Þ� �

, γyz ¼
τyz
G

εzz ¼ 1

E
σzz � ν σxx þ σyy

� �� �
, γxz ¼

τxz
G

(9:1)

In general stresses, strains and mechanical properties E, G, and ν are time

dependent for a viscoelastic material. The relations between shear stress and

strain for a viscoelastic material are easy to formulate as they only contain a

single property, the shear modulus, G. Using the principles developed in pre-

ceding chapters, the integral equations and transform methods can be developed.

However, equations involving the relationship between normal stresses and

strains present a difficulty as two material properties are present and it is unclear

how to formulate proper relationships analogous to the one-dimensional differ-

ential or integral equations necessary for a viscoelastic material. This difficulty

can be overcome by using deviatoric and dilatational components of stress and

strain as given in Chap. 2 by Eqs. 2.58 and 2.62 which can be written for an

elastic material as,

sij ¼ σij � 1

3
σkkδij (9:2)

and

eij ¼ εij � 1

3
εkkδij (9:3)

Using these stresses and strains, the elastic stress-strain relations given by

Eq. 9.1 can be shown to be,

sij ¼ 2Geij
σkk ¼ 3Kεkk

(9:4)

which is the same as Eqs. 2.63 given in Chap. 2 and where,

σkk ¼ 3σm ¼ 3σ ¼ σ1 þ σ2 þ σ3
εkk ¼ 3εm ¼ 3ε ¼ ε1 þ ε2 þ ε3

(9:5)

and (from Table 2.1),
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G ¼ E

2 1þ νð Þ and K ¼ E

3 1� 2νð Þ (9:6)

By rewriting the constitutive equations as in Eq. 9.4, each equation contains

only one material property: the deviatoric stress and strain are related by the

shear modulus, G, while the dilatational stress and strain are related by the bulk

modulus, K.

9.2. Viscoelastic Stress-Strain Relations

In the elastic constitutive law in Eq. 9.4 G andK are constants, withG being the

elastic shear modulus and K being the elastic bulk modulus, again as defined in

Chap. 2. The first equation (three equations for the three independent compo-

nents s12, s13, s23) represents only shape changes while the second equation only
contains volume changes. Since only one material property is contained in each

equation, the derivations developing viscoelastic constitutive laws using integral

or differential equations in Chaps. 5 and 6, respectively, can be applied to each

equation individually. Thus, Boltzman’s superposition principle can be applied

to the shear and dilatational strains separately, adding up incremental contribu-

tions to the resulting stress components (as in development of Eqs. 6.13)
resulting in

sij tð Þ ¼ 2

ðt
-1

G t� τð Þ∂eij τð Þ
∂τ

dτ

σkk tð Þ ¼ 3

ðt
-1

K t� τð Þ∂εkk τð Þ
∂τ

dτ

(9:7)

where G(t) and K(t) are the shear and bulk relaxation moduli. Alternately, the

viscoelastic stress-strain relations in integral form can be written as,

eij tð Þ ¼ 1

2

ðt
�1

J t� τð Þ∂sij τð Þ
∂τ

dτ

εkk tð Þ ¼ 1

3

ðt
�1

B t� τð Þ∂σkk τð Þ
∂τ

dτ

(9:8)

where J(t) and B(t) are the shear and bulk creep compliances.
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Similarly, the differential operator equations for the shear and dilatational

responses of a viscoelastic material may be written analogous to the

one-dimensional case in Chap. 5 (Eq. 5.20 or 5.27) as,

P sij tð Þ
� � ¼ 2Q eij tð Þ

� �
eP σ tð Þ½ � ¼ 3eQ ε tð Þ½ �

(9:9)

where P, Q, eP and eQ are differential operators and include the moduli and

viscosity of each spring and damper in the mechanical models.

Considering Eqs. 9.7 and 9.9, Laplace transforms yield

sij sð Þ ¼ 2G
∗
sð Þeij sð Þ

σkk sð Þ ¼ 3K
∗
sð Þεkk sð Þ

(9:10)

where G
∗
sð Þ and K

∗
sð Þ are related to the transforms of the shear and bulk

relaxation moduli via (see also Eq. 6.44)

G
∗
sð Þ ¼ sG sð Þ

K
∗
sð Þ ¼ sK sð Þ

(9:11)

Alternately, the viscoelastic stress-strain relationships in the transform domain

may be written as,

eij sð Þ ¼ 1

2
J
∗
sð Þsij sð Þ

εkk sð Þ ¼ 1

3
B
∗
sð Þσkk sð Þ

(9:12)

where J
∗
sð Þ and B

∗
sð Þ are similarly related to the transforms of the shear and

bulk creep compliances

J
∗
sð Þ ¼ sJ sð Þ

B
∗
sð Þ ¼ sB sð Þ

(9:13)

The two Eq. 9.10 may be recombined in the transform domain to obtain an

expression relating the total stress and strain tensors, σij and εij. In doing so, the

relationship between Lame’s constant, λ∗ sð Þ, and bulk and shear moduli,K
∗
sð Þ

and G
∗
sð Þ, will be recovered, Further manipulations in the transform domain

result in the usual relationship between total strain and stress, analogous to

Eq. 2.36
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εij ¼ 1þ ν∗

E
∗ σij � ν∗

E
∗ σkkδij (9:14)

Note that with Eqs. 9.10, 9.12, and 9.14, we again have the viscoelastic

constitutive law represented in the transform domain in a form equivalent to

elasticity. These relationships will then allow us to utilize the correspondence

principle as in Chap. 8 to solve 2D and 3D viscoelastic boundary value problems

based on elasticity solutions.

9.3. Relationship Between Viscoelastic Moduli
(Compliances)

Equations 9.10 and 9.12 as well as Eqs. 9.7 and 9.8 are the viscoelastic

equivalent to the generalized Hooke’s law for elastic materials.

For isotropic elastic materials, there are only two independent elastic

constants and relations exist between various constants as given in Table 2.1
such as,

G ¼ E

2 1þ νð Þ, K ¼ E

3 1� 2νð Þ, E ¼ 9GK

3Kþ G
, ν ¼ 3K� 2G

6Kþ 2G
; (9:15)

For an isotropic viscoelastic material only two time dependent properties are

independent and it is clear from the correspondence principle that similar

relationships to Eq. 9.15 hold for the Laplace transformed moduli such that,

G
∗
sð Þ ¼ E

∗
sð Þ

2 1þ ν∗ sð Þð Þ K
∗
sð Þ ¼ E

∗
sð Þ

3 1� 2ν∗ sð Þð Þ

E
∗
sð Þ ¼ 9G

∗
sð ÞK∗

sð Þ
3K

∗
sð Þ þ G

∗
sð Þ

ν∗ sð Þ ¼ 3K
∗
sð Þ � 2G

∗
sð Þ

6K
∗
sð Þ þ 2G

∗
sð Þ

(9:16)

Using relations 9.11 will convert the Eq. 9.16 to relations between the Laplace

transform of the of relaxation moduli, creep compliances. For example,

E sð Þ ¼ 9G sð ÞK sð Þ
3K sð Þ þ G sð Þ (9:17)

or
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3E sð ÞK sð Þ þ E sð ÞG sð Þ ¼ 9G sð ÞK sð Þ (9:18)

By the convolution theorem (Appendix B) Eq. 9.18 becomes,

3

ðt
0

E t� τð ÞK τð Þdτþ
ðt
0

E t� τð ÞG τð Þdτ ¼ 9

ðt
0

G t� τð ÞK τð Þdτ (9:19)

Similar integral equations can be developed for each relationship given in

Eq. 9.16 or Table 2.1.

9.4. Frequently Encountered Assumptions
in Viscoelastic Stress Analysis

In solving viscoelastic stress analysis problems, assumptions on the material

properties are often essential as gathering accurate time dependent data for

viscoelastic properties is difficult and time consuming. Thus, one often only

has properties for shear modulus, G(t) or Young’s modulus, E(t), but not both.

Yet of course for even the simplest assumption of a homogeneous, isotropic

viscoelastic material, two independent material properties are required for

solution of two or three dimensional stress analysis problems. Consequently,

three assumptions relative to material properties are frequently encountered in

viscoelastic stress analysis. These are incompressibility, elastic behavior in

dilatation and synchronous shear and bulk moduli. Each of the common assump-

tions defines a particular value for either the bulk modulus or Poisson’s ratio as

follows.

1. Incompressibility: For small deformation linear elastic problems incompres-

sibility is assured if Poisson’s ratio is equal to 0.5, which also means that the

bulk modulus is infinite (see Eq. 9.6). Under this assumption then, ν¼ 0.5 and

K0¼1. Under the same conditions Poisson’s ratio for an incompressible

viscoelastic material is also a constant 0.5 and,

K tð Þ ¼ 1 (9:20a)

or

K sð Þ ¼ 1 (9:20b)
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Naturally, this assumption also implies that the dilatational strains are always

zero. For computer simulations of viscoelastic problems, this assumption can

sometimes cause numerical difficulties. Most standard finite element codes

have provisions or options to be used in this case to circumvent the numerical

difficulties. The assumption of incompressibility is most reasonable if the

polymer under consideration is being considered at temperatures such that it

is mostly within the rubbery regime.

2. Elastic in dilatation: In this case, K0¼ constant and,

K tð Þ ¼ K0H tð Þ (9:21a)

K sð Þ ¼ K0

s
(9:21b)

Since the viscoelastic bulk modulus changes much less with time and tem-

perature than the shear modulus, this assumption is often a good one in cases

where one only has characterization data for one viscoelastic property. Note

that with this assumption, the Poisson’s ratio retains its time dependence.

3. Synchronous shear and bulk moduli: In this case it is assumed that the ratio

of the bulk modulus to the shear modulus is a constant such that

K tð Þ ¼ C1G tð Þ (9:22)

where C1 is a constant. Thus this case assumes that the time dependence of the

two moduli is the same and that the magnitude of their changes through the

glass transition are proportional. As was mentioned above, typically the bulk

modulus values change significantly less in crossing the glass transition, so

the validity of this assumption should be carefully assessed depending on the

temperature and time ranges of the problem at hand.

Given assumption (9.22), clearly the transformed moduli are also related by

the same constant:

K
∗
sð Þ

G
∗
sð Þ

¼ K sð Þ
G sð Þ ¼ C1 (9:23)

And it can be shown that this assumption then leads to a constant Poisson ratio:

ν tð Þ ¼ ν0 ¼ constant (9:24)

The proof of this result is left as an exercise in Problem 9.1c.
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9.5. General Viscoelastic Correspondence Principle

In solving simple one-dimensional problems as in the previous chapter, one

could simply convert a known elasticity solution to the transform domain by

replacing appropriate terms with their Laplace transform, manipulating the

equations and inverting to obtain the viscoelastic solution in the time domain.

One could also use Laplace transforms to convert the boundary conditions and

time dependent parameters into the transform domain and derive the solution. In

two and three-dimensional elasticity, it is necessary to be more rigorous in the

complete set of governing equations, the application of boundary conditions and

their solution. The reader is referred to excellent classical books on elasticity

theory such as Timoshenko and Goodier (1970) for the developmental details.

Here we summarize the final set of governing equations and list a few solution

strategies for elasticity in two and three dimensions. Then we extend this

knowledge to solution of viscoelastic problems in two and three dimensions,

9.5.1. Governing Equations and Solutions for Linear Elasticity

The essential governing equations for a linear elastic body are given below. In

these equations the position variable, xk, is explicitly shown to emphasize that in

multidimensional problems the stress and strain fields vary spatially in the

material.

Equations of motion; σij, j xkð Þ þ Xi xkð Þ ¼ ρ
∂2

ui xkð Þ
∂t2

(9:25)

where, Xi are body forces and the right hand side is zero for static equilibrium

problems.

Strain-displacement equations; εij xk; tð Þ ¼ 1

2
ui, j xkð Þ þ uj, i xkð Þ� �

(9:26)

Stress-strain equations;
sij xkð Þ ¼ 2Geij xkð Þ
σkk xið Þ ¼ 3Kεkk xið Þ

�
(9:27)

Boundary conditions; σji xkð Þ � nj ¼ Ti xkð Þ (9:28a)

(in terms of known tractions, Tj) and/or displacement conditions

ui xkð Þ ¼ Li xkð Þ (9:28b)
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in terms of known displacements Li. The tractions, Ti, are applied surface forces,

and are related to the stress components at the surface by the Cauchy formula

Ti ¼ σijnj (9:28c)

where nj is the unit normal to the surface. Note the Ti and Li are applied to the

surfaces of the body and for two-dimensional problems there are two conditions

per surface, while for three-dimensional problems there are three conditions per

surface.

The governing Eqs. 9.25, 9.26, and 9.27 comprise 15 coupled partial differ-

ential equations in 15 unknowns which are to be solved based upon the boundary

conditions (Eq. 9.28). As can be seen from Eq. 9.28, there are several types of
boundary value problems that can be formed:

1. Traction BVPs: Loading is applied through prescribed surface tractions.

2. Displacement BVPs: Loading is applied through prescribed surface

displacements.

3. Mixed BVPs: Loading is applied through a combination of prescribed

tractions and prescribed displacements.

Full development of the methods to solve elasticity boundary value problems

in either two or three dimensions is beyond the scope of this text. Here we simply

outline the two major approaches.

The first approach is based upon direct solution involving the displacements.

In the most basic sense, a strategy can be found to solve the 15 coupled

differential equations directly. However, other approaches are more expedient.

The most classical approach is to develop the Navier equations by putting the

strain-displacement equations (Eq. 9.26) into the constitutive equations

(Eq. 9.27) to obtain the stresses, σij, in terms of the displacements, ui. The result
is then inserted into the equilibrium equations (Eq. 9.25), yielding three,

coupled, second order partial differential equations on the three displacements,

ui. These three equations can then be solved for the displacements. Upon

solution the stresses and strains can be found by substitution of the displace-

ments in to the appropriate expressions.

The second approach is based upon solution in terms of the stresses, specif-

ically without use of the displacements directly. While this approach is often

more intuitive, allowing calculations of only stresses and strains, caution must

be taken to ensure that physically meaningful displacements could be found.

Because the strains are calculated by differentiating the displacements, finding

displacements necessitates integrating the strain fields. Thus, in stress-based

solutions it is essential that the equations of compatibility also be satisfied.
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The equations of compatibility are equations derived from the strain-

displacement relations which relate the strain components to one another,

imposing conditions upon them. Of the six compatibility equations, only three

are independent expressions and these ensure integrability of the resulting strain

field to yield continuous displacements. A basic method of solution based on

stresses then involves rewriting the compatibility equations in terms of stresses

(the Beltrami Michell Equations) and subsequently solving three compatibility

equations together with the equations of motion for the six stress components,

σij. More details on the possible solution methods can be found in many

elasticity texts including a nice synopsis of classical methods in Durelli

et al. (1958, p. 99).

Another popular and useful approach for many practical engineering prob-

lems that can be reduced to two dimensional plane strain or plane stress
approximations involves an auxiliary stress potential. In this approach, a

bi-harmonic equation is developed based on the stresses (in terms of the poten-

tial) satisfying both the equilibrium equation and the compatibility equations.

The result is that stresses derived from potentials satisfying the biharmonic

equation automatically satisfy the necessary field equations and only the bound-

ary conditions must be verified for any given problem. A rich set of problems

may be solved in this manner and examples can be found in many classical texts

on elasticity. In conjunction with the use of the stress potential, the principle of

superposition is also often invoked to combine the solutions of several relatively

simple problems to solve quite complex problems.

9.5.2. Governing Equations and Solutions for Linear
Viscoelasticity

The governing equations for a viscoelastic material are the same as those for an

elastic material except all stresses, strains and displacements are time dependent

and the stress-strain equations are the integral equations given by Eq. 9.7 or

Eq. 9.8. The dependent variables xk and t are explicitly included to emphasize

that in multidimensional problems the stress and strain fields vary spatially in the

material and that for viscoelasticity the fields are also time dependent.

Equations of motion; σij, j xk; tð Þ þ Xi xk; tð Þ ¼ ρ
∂2

ui xk; tð Þ
∂t2

(9:29)
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Strain-displacement equations; εij xk; tð Þ ¼ 1

2
ui, j xk; tð Þ þ uj, i xk; tð Þ� �

(9:30)

Stress-strain equations;

sij xk; tð Þ ¼ 2

ðt
-1

G tð Þ∂eij xk; τð Þ
∂τ

dτ

σkk xi; tð Þ ¼ 3

ðt
-1

K tð Þ∂εkk xi; τð Þ
∂τ

dτ

8>>>>>><>>>>>>:
(9:31)

Boundary conditions; σji xk; tð Þ � nj ¼ Ti xk; tð Þ (9:32a)

(in terms of known tractions, Tj) and/or displacement conditions

ui xk; tð Þ ¼ Li xk; tð Þ (9:32b)

in terms of known displacements Li.

Taking the Laplace transform of the Eqs. 9.29, 9.30, 9.31, and 9.32 gives,

Equations of motion; σij, j xk; sð Þ þ Xi xk; sð Þ ¼ ρ
∂2

ui xk; sð Þ
∂t2

(9:33)

Strain-displacement equations; εij xk; sð Þ ¼ 1

2
ui, j xk; sð Þ þ uj, i xk; sð Þ� �

(9:34)

Stress-strain equations;
sij xk; sð Þ ¼ 2G

∗
sð Þeij xk; sð Þ

σkk xi; sð Þ ¼ 3K
∗
sð Þεkk xi, s

� �(
(9:35)

Boundary conditions; σji xk; sð Þ � nj ¼ Ti xk; sð Þ (9:36a)

ui xk; sð Þ ¼ Li xk; sð Þ (9:36b)

Obviously, the above transformed governing equations for a linear viscoelastic

material (Eqs. 9.33, 9.34, 9.35, and 9.36) are of the same form as the governing

equations for a linear elastic material (Eqs. 9.25, 9.26, 9.27, and 9.28) except
they are in the transform domain. This observation leads to the correspondence

principle for three dimensional stress analysis: For a given a viscoelastic bound-

ary value problem, replace all time dependent variables in all the governing

equations by their Laplace transform and replace all material properties by

s times their Laplace transform (recall, e.g.,G
∗
sð Þ ¼ sG sð Þ), thereby converting

the viscoelastic boundary value problem in the time domain into an associated

elastic boundary value problem in the transform domain.
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Methods for Solving Viscoelastic Problems: As mentioned in Chap. 8 on bars

and beams, three related methods can be used to solve linear viscoelastic

boundary value problems. These are:

Method 1: Solve the viscoelastic problem in the time domain using
Eqs. 9.29, 9.30, 9.31, and 9.32.

Method 2: Solve an associated elasticity problem in the transform
domain using Eqs. 9.33, 9.34, 9.35, and 9.36. Invert the solution to the
time domain.

Method 3: Convert an existing elasticity solution into a viscoelastic
solution as follows:

1. Find an elastic boundary value problem and solution with the
same geometry, loading and boundary conditions as the visco-
elastic boundary value problem or, if not available, solve an
elasticity problem with the same geometry, loading and bound-
ary conditions as the viscoelastic boundary value problem.

2. Convert the solution of the elastic problem to the solution of the
viscoelastic problem in the transform domain by replacing all
variables by their Laplace transform and all elastic constants by
their equivalent in the transform domain, i.e.,

σ ! σ sð Þ
ε ! ε sð Þ

u ! u sð Þ , v ! v sð Þ , w ! w sð Þ (9:37)

E ! E
∗
sð Þ , D ! D

∗
sð Þ , G ! G

∗
sð Þ, etc:

P ! P sð Þ, all loads, etc:

3. Invert the solution obtained in 2 to the time domain to obtain
the solution to the viscoelastic problem in the time domain.

Method 3 allows viscoelastic problems to be solved quite easily providing that

the analogous elastic solution exists or can be found. There are important
restrictions to this procedure such that the method cannot be used directly
on mixed boundary value problems (combination of applied displacements
and applied tractions) in which the boundary condition regions change with
time. Two notable examples where this restriction applies are the stress analysis

of bodies containing a crack (the Griffith problem) or contact problems (the

Hertz and associated problems). Although beyond the scope of this text, the
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reader should be aware that an extended correspondence principle was devel-

oped by Graham (1968) that allows such viscoelastic problems to be solved

using the elastic solution for the same problem. Note that this is still an active

field of research. Examples of recent problems associated with contact problems

are thin polymer films on substrates (eg, Sakai (2006)) and in the areas of

microelectronics, nanoindentation and MEMS processing. Such problems are

presently technologically important.

As stated in Chap. 8, the correspondence principle presented here will always

be valid when the boundary conditions are a product of separable functions of

space and time, e.g. Ti(xi, t)¼T
0
i(xi)f(t) and ui(xi, t)¼ u

0
i(xi)g(t).

9.6. Thick Wall Cylinder and Other Problems

While it is beyond the scope of this introductory text to fully develop and solve a

wide variety of multidimensional stress analysis problems in viscoelasticity, we

provide here a classic example to illustrate the use of the correspondence

principle to derive a viscoelastic solution from a practical problem in elasticity.

We choose here the problem of a Thick Walled Cylinder, often referred to as the

Lame Solution. In the following, we first generate the elasticity solution to the

classic Lame problem, then extend this elasticity solution to that for a reinforced

thick walled cylinder. Subsequently, we use the latter solution to develop the

viscoelastic solution via the correspondence principle.

9.6.1. Elasticity Solution of a Thick Wall Cylinder

The thick wall cylinder shown in Fig. 9.1 is a good example of a problem which

is solved using the stress function approach to the solution of two dimensional

plane stress or plane strain problems of engineering importance. In this

approach, stress fields are derived from a set of potentials, Φ, which satisfy

the biharmonic equation. Stresses found from such potentials automatically

satisfy the equilibrium and compatibility equations. Thus only the boundary

conditions for the problem of interest must be satisfied.
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All the elasticity equations given by Eqs. 9.29, 9.30, 9.31, and 9.32 as well as
the biharmonic stress function equation can be developed for cylindrical coor-

dinates (see, Timoshenko and Goodier (1970)). The biharmonic equation is

written as,

∇4ϕ ¼ 0 (9:38)

or in cartesian coordinates,

∂4ϕ
∂x4

þ 2
∂4ϕ

∂x2∂y2
þ ∂4ϕ

∂y4
¼ 0 (9:39)

which becomes in polar coordinates,

∂2

∂r2
þ 1

r

∂
∂r

þ 1

r2
∂2

∂θ2

 !
∂2ϕ
∂r2

þ 1

r

∂ϕ
∂r

þ 1

r2
∂2ϕ
∂θ2

 !
¼ 0 (9:40)

For axisymmetric problems there can be no dependence on the angle θ and

Eq. 9.40 becomes,

d4ϕ
dr4

þ 2

r

∂3ϕ
∂r3

� 1

r2
∂2ϕ
∂r2

þ 1

r3
∂ϕ
∂r

 !
¼ 0 (9:41)

Fig. 9.1 Thick wall cylinder (often known as the Lame problem)
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which is known as Cauchy’s equation or the equi-dimensional equation. The

solution for this equation is well known and is given by,

ϕ ¼ Alog rð Þ þ Br2log rð Þ þ Cr2 þ D (9:42)

where A, B, C, and D are constants that must be determined from the boundary

conditions for a particular boundary value problem such as the thick wall

cylinder shown in Fig. 9.1.

Using the definition of the relationship between the stress function and

stresses in polar coordinates, the stresses in any axisymmetric boundary value

problem can be found and are,

σrr ¼ 1

r

∂ϕ
∂r

þ 1

r2
∂2ϕ
∂r2

¼ A

r2
þ B 1þ 2log rð Þ½ � þ 2C

σθθ ¼ ∂2ϕ
∂r2

¼ �A

r2
þ B 3þ 2log rð Þ½ � þ 2C

τrθ ¼ 1

r2
∂ϕ
∂r

� 1

r

∂2ϕ
∂r∂θ

¼ 0

(9:43)

Note that the stress function ϕ¼D,whereD is a constant, leads to trivial stresses

and is thus subsequently omitted. If there is no hole at the origin, constantsA and

Bmust vanish to avoid singular stresses at the origin. In the solution for the thick

wall cylinder, B must be zero because although the corresponding stress fields

would be admissible in the absence of material at the origin, the resulting

displacements are multivalued and not admissible for this geometry. Thus,

solution to the Lame problem reduces to finding the constants A and C in

Eq. 9.43 from the boundary conditions,

σrr r ¼ að Þ ¼ �pi and σrr r ¼ bð Þ ¼ �po (9:44)

noting that the boundary conditions requiring σrθ to be zero on both surfaces

are automatically satisfied by Eq. 9.43. The general solution to the Lame

problem thus is,

σrr ¼ a2b2 p0 � pið Þ
b2 � a2

1

r2
þ a2pi � b2p0

b2 � a2

σθθ ¼ � a2b2 p0 � pið Þ
b2 � a2

1

r2
þ a2pi � b2p0

b2 � a2

(9:45)

where p0 is the pressure at the outer boundary and pi is the pressure at the inner
boundary. Note that the solution for stresses in an elastic cylinder do not contain

elastic constants. Therefore, the solution for stresses is the same in a viscoelastic
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and an elastic cylinder. The displacements, which can be derived from this

solution by using the stress-strain equations (Eq. 9.27) and then integration of

the strain-displacement equations (Eq. 9.26), do however contain the elastic

constants. A detailed solution for displacements in a viscoelastic thick wall

cylinder with pressure only on the inner surface is given in Flugge (1974).

9.6.2. Elasticity Solution for a Reinforced Thick Wall Cylinder
(Solid Propellant Rocket Problem)

Based upon the classic Lame solution above, many other useful problems can be

solved in elasticity by variations and extensions. Here we examine a reinforced

thick walled cylinder consisting of an inner cylinder of one material and an outer

cylinder of another material. The structural analysis of a reinforced thick wall

cylinder played an important role in the space program and, indeed, variations of

the problem are still important today. A solid propellant rocket can be approx-

imated by such a double cylinder geometry as shown in Fig. 9.2. Here the outer
shell is an elastic material such as aluminum and the inner cylinder is a polymer

composite, typically composed of polyurethane with particulate inclusions to aid

in developing maximum thrust during burning. Note that as with many engi-

neering analyses, that considered here is a simplification of a more complex

situation. For example, the geometry of an actual rocket propellant typically

contains a star shaped inner surface for optimum ablation and thrust. Further, it

is a dynamic problem with the rocket accelerating vertically and rotating and the

inner boundary moving due to ablation. Nevertheless the ability to obtain an

analytically exact solution for a simplified case is extremely valuable in provid-

ing checks upon more sophisticated numerical analyses.

r
θ

Fig. 9.2 Geometry of the reinforcedthick wall cylinder
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Since modulus of the outer metallic cylinder is much larger than that of the

inner polymer cylinder, it is reasonable to assume the outer shell is rigid. This

assumption provides a further simplification to the problem. In this section, we

develop the fully elastic solution based upon the classic Lame solution. Subse-

quently we will consider the viscoelasticity of the polymer and invoke the

correspondence principle to solve the viscoelastic problem,

The elasticity solution to the reinforced thick walled cylinder can be found

based upon the stress function given in Eq. 9.42 except now the constants must

be reevaluated. As before, the constant B must remain zero, but constants A and

C must be found from the new boundary conditions which for the case of a rigid

outer cylinder are

r ¼ a, σrr ¼ �p

r ¼ b, ur ¼ 0

�
(9:46)

noting again that the boundary conditions requiring σrθ to be zero on both

surfaces are automatically satisfied. Based on Eq. 9.42, the stresses are again

given by Eq. 9.43, omitting the terms with coefficients B and D:

σrr,θθ ¼ �A

r2
þ 2C{ (9:47)

Since one of the boundary conditions in Eq. 9.46 is now a displacement

boundary condition, we also require the expressions for the displacements in

terms of the constants A and C. These are found first by using the stress-strain-

displacement relations and then by integrating the strain components to deter-

mine the displacements. The stress-strain-displacement equations for the

condition of plane strain in cylindrical coordinates are,

εrr ¼ dur

dr
¼ 1

E
σrr � ν σθθ þ σzzð Þ½ �

εθθ ¼ ur

r
þ 1

r

duθ

dθ
¼ ur

r
¼ 1

E
σθθ � ν σrr þ σzzð Þ½ � (9:48)

εzz ¼ 1

E
σzz � ν σrr þ σθθð Þ½ � ¼ 0

{ Note that in this and the following equations the comma is used in the subscripts

on stress to be able to write both the radial and hoop stresses in one equation. Since

the form of these stresses differs only by a minus sign, it is preferred to emphasize

their similarity by this nonstandard notation rather than write the two equations

separately.
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From the last equation, σzz¼ ν(σrr + σθθ). Substituting this value for σz into

Eq. 9.48 and solving for the radial displacement gives,

ur ¼ 1þ ν
E

� A

r
þ 2Cr 1� 2νð Þ

� �
(9:49)

Note that because of the axisymmetry of the problem, uθ¼ 0 and thus the

second equation in Eq. 9.48 provides ur directly without need for integration.

Using the boundary conditions from Eq. 9.46 with Eqs. 9.47 and 9.49 to

obtain values for A and C results in expressions for stress and radial

displacement

σrr,θθ ¼ �p
1� b

r

� �2
1� 2νð Þ

1þ b
a

� �2
1� 2νð Þ

" #
(9:50)

ur ¼ 1þ ν
E

	 

pb 1� 2νð Þ

1þ b
a

� �2
1� 2νð Þ

" #
b

r
� r

b

� �
(9:51)

9.6.3. Viscoelasticity Solution for a Reinforced Thick Wall
Cylinder (Solid Propellant Rocket Problem)

Since we have the elasticity solution to the reinforced thick walled cylinder

problem, we can now find the solution to the viscoelastic problem by applying

the correspondence principle (Method 3 from earlier in this chapter). Replacing

the variables in Eqs. 9.50 and 9.51 by the appropriate transforms gives the

solution for stresses and displacements of the viscoelastic problem in the

transform domain,

σrr,θθ r; sð Þ ¼ �p sð Þ 1� b
r

� �2
1� 2ν∗ sð Þ½ �

1þ b
a

� �2
1� 2ν∗ sð Þ½ �

( )
(9:52)

ur r; sð Þ ¼ 1þ ν∗ sð Þ
E
∗

sð Þ
p sð Þb 1� 2ν∗ sð Þ½ �

1þ b
a

� �2
1� 2ν∗ sð Þ½ �

( )
b

r
� r

b

	 

(9:53)
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If it is assumed that the polymer is incompressible, ν∗ sð Þ ¼ 0:5, the solution is,

σrr,θθ r; tð Þ ¼ �p tð Þ
ur r; tð Þ ¼ 0

(9:54)

which is identical to the elasticity solution for an incompressible material.

If the material is not incompressible, the solution for stresses in Eq. 9.52 can

be used to obtain the stress field with time for the viscoelastic problem given the

material properties. In order to examine a particular loading and material, it is

convenient to use Eq. 9.16 to obtain the stress solution in terms of the shear and

bulk moduli in order to make reasonable assumptions about the material similar

to those outlined earlier in Eqs. 9.21, 9.22, 9.23, and 9.24. The term including

Poisson’s ratio can be rewritten as

1� 2ν∗ sð Þð Þ ¼ 3G
∗
sð Þ

3K
∗
sð Þ þ G

∗
sð Þ

¼ 3G sð Þ
3K sð Þ þ G sð Þ (9:55)

Substitution of Eq. 9.55 into Eq. 9.52 leads to

σrr,θθ r; sð Þ ¼ �p sð Þ
1� b

r

	 
2
3G sð Þ

3K sð Þ þ G sð Þ

	 

1þ β

3G sð Þ
3K sð Þ þ G sð Þ

	 

26664

37775

¼ �p sð Þ
3K sð Þ þ G sð Þ 1� 3 b

r

� �2� �
3K sð Þ þ G sð Þ 1þ 3βð Þ

24 35
(9:56a)

where

β ¼ b

a

	 
2

(9:56b)

The radial stress expression from Eq. 9.56a can also be written as

3K sð Þσrr r; sð Þ þ 1þ 3βð ÞG sð Þσrr r; sð Þ
¼ �p sð Þ3K sð Þ � 1þ 3 b

r

� �2� �
p sð ÞG sð Þ

(9:57)
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and the hoop stress expression (σθθ) can be written similarly with the appropriate

change of sign. These expressions can be simply inverted to convolution integral

expressions in the time domain using the properties of Laplace transforms

(see Appendix B). For example, the radial stress expression becomes

3

ðt
0

K t� ξð Þσrr r; ξð Þdξþ 1þ 3βð Þ
ðt
0

G t� ξð Þσrr r; ξð Þdξ

¼ �3

ðt
0

K t� ξð Þp ξð Þdξ� 1þ 3 b
r

� �2� �ðt
0

G t� ξð Þp ξð Þdξ
(9:58)

Provided that the loading function, p(t), and the moduli, G(t) and K(t), are
known, Eq. 9.56a can be solved for the stresses in the Laplace domain. These

may be inverted to obtain the stresses in the time domain. Alternatively, with

suitable numerical and computational skills integral Eq. 9.58 can be solved

numerically directly for the stresses as a function of time.

To illustrate the solution technique for a specific case, we make some simple

assumptions for the loading and the material properties. The internal pressure is

taken to be a step input in time and the bulk modulus of the polymer is not time

dependent (elastic in dilatation behavior) while the shear modulus of the poly-

mer is represented by a single Maxwell model (Maxwellian in shear). These

assumptions are summarized as:

p tð Þ ¼ p0H tð Þ or p sð Þ ¼ p0
s

K
∗
sð Þ ¼ K0 or K sð Þ ¼ K0

s

G tð Þ ¼ G0e
-t=τ or G sð Þ ¼ G0

1=τþ s

(9:59)

Substituting into Eq. 9.56a will give after simplification,

σrr,θθ r; sð Þ ¼ �p0
1

s
þ

B rð Þ�C

C
A
C
þ s

 !( )
(9:60a)
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where

A ¼ 3K0

1

τ
, B rð Þ ¼ 3K0 þ G0 1� 3

b

r

	 
2
 !

,

C ¼ 3K0 þ G0 1þ 3βð Þ
(9:60b)

Inversion of Eq. 9.60a gives the solution in the time domain as,

σrr,θθ r; tð Þ ¼ �p0 1þ B� C

C

	 

e�

A
C
t

� �
(9:61)

A number of features may be pointed out about this solution that are important.

First, note that at the inner boundary, r¼ a, B(r)¼C for the radial stress term

and thus the radial stress reduces to the applied pressure p0, satisfying the

applied boundary condition. Because of the negative sign in B(r) for the hoop

stress, σθθ is nonzero at the inner boundary.

The limit cases at long and short times are also of interest. At long times,

t!1, the exponential term vanishes, leaving both radial and hoop stresses at

all locations in the polymeric material identically equal to the applied pressure

p0. At t¼ 0, the exponential term is unity, the relaxation time of the polymer is

not involved and the solution is identical to an elastic material with elastic

constants K0 and G0. These limit cases are reasonable since a Maxwell model

is a viscoelastic fluid: at t¼ 0 only the elastic spring can respond, but at long

times it is a fluid response and thus yielding the incompressible behavior.

The radial and hoop stresses are plotted versus position in Fig. 9.3, where it is
easily seen that the boundary condition of σrr(r¼ a)¼� p0 is met on the inner

boundary and the limit case of uniform stresses at long time for incompressible

behavior is also apparent. The elastic solution is included, which overlays the

viscoelastic response at t¼ 0. While the internal pressure applied is compressive

leading to compressive radial stresses at all positions and all times, the hoop

stress at the inner surface is tensile due to the expansion of the cylinder. While

the hoop stress remains tensile for all time for an elastic cylinder, this tensile

stress relaxes in the viscoelastic cylinder, ultimately becoming compressive.
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Fig. 9.3 Variation of the radial stress and hoop stress with position in the viscoelastic

reinforced cylinder loaded with a step input of internal pressure. Parameters

used are K0/G0¼ 3, τ¼ 1,000, where the viscoelastic cylinder has an elastic

bulk modulus and is a single Maxwell element in shear modulus. Response

parameterized with time from the initial application of load at t¼ 0 to asymp-

totic response at long times
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The variation of the stresses with time at the inner surface is shown in

Fig. 9.4, where these effects can be clearly seen. The relaxation and inversion

of the hoop stress is particularly interesting because the load applied is a constant

stress, which might lead one to expect radial creep, which calculations of the

displacements would bear out. However, the interaction of the response in two

dimensions combined with the incompressible behavior at long times lead to a

pseudo-relaxation response in the hoop direction and ultimately approach to the

incompressible stress state.

It is interesting to note that even though the material was assumed to be

Maxwellian in shear or a fluid like material such as a thermoplastic, the form of

the solution for stresses is similar to what might be expected for a Kelvin solid.

The reason, of course, is the interaction of bulk and shear behavior together with

the boundary conditions.

Using the same assumptions of the example solved in the Laplace domain (step

input in pressure, elastic bulkmodulus andMaxwell behavior in shear), the solution

of the integral equation (Eq. 9.58) will yield the same results. (See homework

problem 9.4). Since polymers are such that many Maxwell or Kelvin elements are

needed to represent actual behavior, this example shown here is simplistic. How-

ever, such simple solutions can show trends in behavior andmay give insight to the

differences between thermosets and thermoplastics. The next section discusses

briefly use of broadband material response functions for more physically realistic

Fig. 9.4 Variation of the stresses at the inner boundary, r¼ a, for elastic and viscoelastic

reinforced cylinder. Parameters and conditions the same as described in Fig. 9.3
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polymer representation, as well as the difficulties associated with obtaining

properties such as the bulk modulus or Poisson’s ration over long time.

The reinforced thick wall cylinder problem with interior pressure has also

been solved for the case when the outer shell is assumed to be elastic rather

than rigid. (This case obtained byW.B. Woodward and J.R.M. Radok is reported

by E.H. Lee in Viscoelasticity: Phenomenological Aspects, J.T. Bergin, Ed.,
Wiley, 1960). The solution for the circumferential stress is,

σθθ r; sð Þ ¼ p sð Þ

α 1� ν∗ sð Þ2
� �

α 1þ ν∗ sð Þ2
� �

� E
∗
sð Þ

b2

r2
� 1

	 

� b2

r2
þ 1

	 

α 1� ν∗ sð Þ2
� �

α 1þ ν∗ sð Þ2
� �

� E
∗
sð Þ

b2

a2
� 1

	 

� b2

a2
þ 1

	 


266666664

377777775
(9:62)

where α is a constant prescribing the reinforcement of the outer shell. The

solution can be inverted to give the viscoelastic solution in the time domain

once the material parameters and loading are determined. Lee (1960) further

discusses how the solution of an elastically reinforced viscoelastic thick walled

cylinder can be found by numerically integrating integral equations such as

Eq. 9.58 using measured creep or relaxation functions.

From these examples, it is clear that known solutions in the theory of linear

elasticity for two and three dimensional problems including plates and shells can

be converted to viscoelastic solutions in the transform domain relatively easily

and the solution in the time domain can be found by inversion. Using this

method many problems of practical interest can be solved. It is appropriate to

note that buckling problems are a special case and the same approach, if not used

wisely, can lead to erroneous results.

9.7. Solutions Using Broadband Bulk, Shear
and Poisson’s Ratio Measured Functions

As discussed in Chap. 7 real material properties extend over many decades of

time and for realistic solutions of boundary value problems it is necessary to

have methods to incorporate these real measured properties. When material

properties can be represented by a Prony series composed of a number of

terms, it is possible to obtain solutions for more practical representation of

polymers. Examples of the use of Laplace transforms for such an approach

may be found in Christensen (1982). Additionally, methods to numerically
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integrate convolution integrals such as that given by Eq. 9.58 using Prony series
expansions for the properties were discussed in Chap. 7.

However, it is also necessary to discuss how broadband bulk, shear and

Poisson’s ratio are measured. The measurement of the broadband shear modulus

is easily accomplished using the time-temperature-superposition-principle

(TTSP) and a torsion test. See Kenner et al. (1982) for a description of a simple

torsiometer and the measurement of a master curve for a structural epoxy

adhesive, FM-73, at 20.5 �C.

The accurate measurement of broadband bulk modulus and Poisson’s ratio

presents greater difficulties. While the shear and tensile relaxation modulus vary

by several orders of magnitude over many decades of time, the bulk modulus and

Poisson’s ratio vary very little over the same number of decades. To complicate

matters more, in general, the variations of bulk relaxation modulus and Poisson’s

ratio are not synchronous with the shear and tensile relaxation modulus over the

same time scale. To visualize the dilemma, consider that Poisson’s ratio for most

polymers is approximately 1/3 in the glassy range and approximately 1/2 in the

rubbery range. Using the relation given in Chap. 2 for the bulk modulus in terms

of Young’s modulus and Poisson’s ratio,

K ¼ E

3 1� 2νð Þ (9:63)

the bulk modulus is equal to the Young’s modulus if ν¼ 1/3 and is infinite if

ν¼ 1/2. In the glassy range of a polymer, measured values of the bulk modulus

are nearly the same as measured values of extensional modulus (see, Arridge

1974). In the rubbery range, the bulk modulus is indeed large compared to the

extensional modulus but certainly not infinite and it is doubtful that Poisson’s

ratio ever becomes exactly 1/2. Experiments do tend to verify that variations in

bulk modulus from the glassy to rubbery range are small compared to either

extensional or shear moduli (see Ferry (1980) and Tschoegl et al. (2002)).

Methods to measure bulk modulus have been proposed by Arridge (1974),

Duran and McKenna (1990), Sane and Knauss (2001), and Park, et al. (2004).

Emri and Prodan (2006) have proposed a single apparatus to measure both the

bulk and shear modulus. However discussion of the optimal procedures and

accuracy required to attain true values of the bulk modulus or Poisson ratio’s

over time is still ongoing.

The contradictions posed by use of a viscoelastic Poisson’s ratio have been

discussed by Flugge (1974), Shames and Cozzarelli (1992), Lakes (1998) and

Tschoegl et al. (2002). Some issues that arise are non-physical values for

Poisson’s ratio when simple mechanical models are used (e.g. Maxwell or

Kelvin), and even the fundamental definition of a time-dependent Poisson
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ratio. Various definitions of Poisson’s ratio and its measurement are discussed in

depth by Tschoegl et al. (2002). Therein the suggestion is given that the ratio is

best measured in relaxation and that extreme four-digit accuracy is required

which is presently not found in the literature.

As a result, at the present time, use of one or more of the assumptions

provided earlier in the chapter, together with broadband data for shear or

extensional modulus, represent the most fruitful approach to the solution of

viscoelastic boundary value problems.

9.8. Review Questions

9.1. Investigate and discuss the peculiar nature of Poisson’s ratio for viscoelastic

materials. (Hint: See Flugge (1974), Shames and Cozzarelli (1992).

9.2. Why are viscoelastic constitutive equations normally written using bulk and

shear properties?

9.3. Describe three assumptions that are often made for viscoelastic stress

analysis.

9.4. Describe three methods for solving viscoelastic boundary value problems.

9.5. Describe the three types of boundary value problems encountered in solid

mechanics.

9.6. Which type of boundary value problem cannot be solved using the standard

(or Alfrey) correspondence principle?

9.7. Name two frequently encountered viscoelastic boundary value problems in

solid mechanics that cannot be solved with the standard correspondence

prionciple.

9.9. Problems

9.1a. Develop an expression for the shear relaxation modulus assuming the

tensile relaxation modulus can be represented by a Maxwell fluid. Hint:

Use Table 2.1.
9.1b. Starting from Eq. 9.10, derive a relationship between the total stress and

total strain tensors, σij and εij. In the process, find the expression for

Lame’s constant in the transform domain in terms of the transformed

shear and bulk moduli.

9.1c. Show that the synchronous moduli assumption, Eq. 9.22, results in a

Poisson’s ratio being constant.
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9.2. Find a solution for the radial displacement in a thin-wall cylindrical

pressure vessel with closed (spherical) ends. Assume a step input in

internal pressure, the cylinder is made of a polymer whose properties are

elastic in bulk and Maxwellian in shear.

9.3. Obtain the solution for a reinforced thick wall cylinder similar the one of

Fig. 9.2. Assume the shell is rigid and that the propellant can be

represented by a Kelvin Material.

9.4. Determine the stresses in a thick wall cylinder similar to the one of Fig. 9.1
using the integral equation solution given by Eq. 9.58. Use the assumption

of a step input in pressure as well as elastic response in bulk and Max-

wellian in shear as in the earlier example. Compare your solution to that

obtained using the correspondence principle.

9.5. Solve each of the problems below using the correspondence principle. The

elastic solutions can be found from elementary books on solid mechanics

(such as Timoshenko), an elasticity book (such as Timoshenko and

Goodier) or from fundamental principles of either.

(a) Find the solution of for the radial stress in a rotating disk. Assume

steady state conditions, i.e., the disk is rotating at a constant angular

velocity. Assume the disk is made of a polymer whose properties are

elastic in bulk and Maxwellian in shear.

(b) A polymer bar of circular cross section is compressed within a steel die

whose internal diameter is exactly the same as the rubber bar. Assume

that the axial compression load on the bar is P(t)¼ P0Ht) and the die to

be rigid. Also assume no friction and the properties of the polymer are

elastic in bulk and Maxwellian in shear. Determine an expression for

the pressure between the bar and the die (see Fig. below).

(c) A solution of a problem not listed above that can be obtained using one

of the methods of solutions discussed in class. (Here, it would be best

to verify with the instructor that the problem you select is of similar

level of difficulty as those above).

P(t)=P0H(t)

rigid plate

steel die

polymer bar

d

Schematic of polymer compressed in a rigid die for Problem 9.5b
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10. Nonlinear Viscoelasticity

Because Young’s modulus of most polymers is relatively low compared to other

structural materials such as metals, concrete, ceramics, etc., strains and defor-

mations may be relatively large. A casual glance at the stress-strain response of

polycarbonate given in Fig. 3.7 indicates that the strain at yield is about 5 % and

at failure is more than 60 %. Further, examination of the creep response of

polycarbonate (Brinson 1973) as discussed in Chap. 11 indicates nonlinear

behavior for strains larger than about 3 % and the material begins to neck or

yield (Luder’s bands form) for strains larger than about 5 %. Obviously, poly-

carbonate as well as other polymers with similar behavior cannot be considered

to be linear for such circumstances. For these reasons, it is appropriate to have

basic understanding of nonlinear processes in order to be able to design struc-

tures made of polymeric materials. The intent here is to give basic definitions

that will assist in identifying nonlinear effects when they occur and to review

several nonlinear approaches.

As many nonlinear approaches are beyond the intended level and scope of

this text, the focus will be on single integral mathematical models which are an

outgrowth of linear viscoelastic hereditary integrals and lead to an extended

superposition principle that can be used to evaluate nonlinear polymers. The

emphasis will be on one-dimensional methods but these can be readily extended

to three dimensions using deviatoric and dilatational stresses and strains as was

the case for linear viscoelastic stress analysis as discussed in Chaps. 2 and 9.

10.1. Types of Nonlinearities

The two types of nonlinearities that are most often encountered in practice and in

the literature are identified as being either material nonlinearities or geometric
nonlinearities. Material nonlinearities refer to nonlinear stress-strain response

that occurs due to the inherent constitutive response of the material, while

geometric nonlinearities refer to mathematical issues that arise when displace-

ments and strains become large and the linearized definitions of stress and

strain become inadequate. In this chapter we are concerned with material

© Springer Science+Business Media New York 2015
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nonlinearities. Two complications should be mentioned at the outset. First,

material nonlinearities typically become apparent in material response as the

strain level increases. However, only a few percent strain is often sufficient for

material nonlinearities to become important and at that level of strain, the

linearized definitions of the stress and strain tensors are mathematically suffi-

cient. Second, when dealing with metals, it is common to plot the stress-strain

curve for a constant strain rate test and regard any deviation of that curve from

linearity as an indication of the onset of material nonlinearity. As mentioned in

Chap. 3, because of the dependence of viscoelastic material response on time,

the stress-strain curve from a constant strain rate test for linear viscoelastic

materials is not linear. As time increases during a test, relaxation occurs simul-

taneously with increasing strains. Thus, one must examine other methods to

establish linearity for polymers, such as isochronous stress-strain plots at differ-

ent times or modulus plots at different stress levels.

Typical examples of tensile (isochronous) linear and nonlinear stress-strain

diagrams for elastic and viscoelastic materials are shown in Fig. 10.1. For elastic

materials, the response is time independent, so there is a single curve for

multiple times and the nonlinearity is apparent as a deviation of the stress-

strain response from linear. For linear viscoelastic materials, the isochronous

response is linear, but the effective modulus decreases with time so that the

stress-strain curves at different times are separated from one another. When a

viscoelastic material behaves nonlinearly, the isochronous stress-strain curves

begin to deviate from linearity at a certain stress level. Fig. 10.2 shows creep

compliance data for an epoxy adhesive as a function of stress level for various

time intervals after initial loading. Such a plot is sometimes more illuminating

than the usual isochronous plot. For linear viscoelasticity, the compliance is

Fig. 10.1 Typical isochronous stress-strain diagrams of elastic and viscoelastic materials

for two values of lapsed time
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independent of stress level and the isochronous compliance as a function of

stress must be constant at each time instant (a horizontal line on Fig. 10.2). As
the material enters the nonlinear range, the compliance begins to exhibit a

dependence on stress and the isochronous curve starts to deviate from horizontal.

For the material shown in Fig. 10.2, notice that the demarcation between linear

and nonlinear behavior appears to be a function of time after initial loading

(incubation time). The data suggests that if tests were conducted for a sufficient

length of time, the material might appear to be nonlinear from initial loading.

This result simply indicates that it is not always easy to tell from short time tests

if a material is linear or nonlinear over a longer time period.

For some rubbery materials, stress may be linearly related to strain for strains

as large as 20 % to 50 % or more. Such a case gives rise to “geometric” nonlinear

behavior in which strains of higher order must be included in analyses. Here it

should be noted that only odd order terms are considered in order to avoid

negative values of stored energy. Of course, for large strains both material and

geometric nonlinearities may occur simultaneously. Indeed for rubbers, where

strains can easily reach 500 %, a great deal of work has been devoted to

development of accurate nonlinear elasticity models where both material and
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Fig. 10.2 Isochronous creep compliance of an adhesive (FM-300) at 60�C (Data from

Hiel 1984; see also Brinson 1985)
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geometric nonlinearities are accommodated. See for example work by Arruda

and Boyce (1993) where an 8-chain model is developed to represent the macro-

molecular deformations, and interaction effects of non-uniaxial loading are

accounted for by limits on chain extension. Extension ratios are most often

used in cases of large strains or large deformations and can be found by

examining the basic uniaxial tensile strain definition as follows,

ε ¼ ‘� ‘0
‘0

¼ ‘

‘0
� 1 (10:1a)

or

λ ¼ ‘

‘0
¼ εþ 1 ¼ extension ratio (10:1b)

As nonlinear elasticity constitutive models must include higher order terms

the amount of error involved between linear and nonlinear formulations can

easily be seen by comparing λ2, λ3, etc. to λ. It is easy to see that for strains at

yield in most metals (0.2 % or 0.002 in/in) higher order terms (λ2, λ3, etc.) lead to
an absolute error of about 0.04 % and can most often be neglected. Even for

strains at yield for polycarbonate (~5 % or 0.05) higher order terms lead to only

an absolute error of about 0.25 % over linear theory.

Other less well-known types of nonlinearities include “interaction” and

“intermode”. In the former, stress-strain response for a fundamental load com-

ponent (e.g. shear) in a multi-axial stress state is not equivalent to the stress-

strain response in simple one component load test (e.g. simple shear). For

example, Fig. 10.3 shows that the stress-strain curve under pure shear loading

of a composite specimen varies considerably from the shear stress-strain curve

obtained from an off-axis specimen. In this type of test, a unidirectional laminate

is tested in uniaxial tension where the fiber axis runs 15� to the tensile loading

axis. A 90� strain gage rosette is applied to the specimen oriented to the fiber

direction and normal to the fiber direction and thus obtain the strain components

in the fiber coordinate system. Using simple coordinate transformations, the

shear response of the unidirectional composite can be found (Daniel and Ishai

2005; Hyer 1998). At small strains in the linear range, the shear response from

the two tests coincide. However, the difference observed at high strain levels is

postulated to be due to the effect of stress normal to the fiber in addition to the

shear stress along the fiber in the off-axis loading test. Similarly, tests of a neat

polymer in simple torsion (shear) or tension-torsion/compression-torsion (multi-
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axial load) in Fig. 10.4 also demonstrate that the shear compliance extracted

from the test data differs in each case. This data shows an interaction

nonlinearity and the authors postulate its origin lies in the coupling of dilatation

and free volume for the polymer. Schapery (1969) and Lou and Schapery (1971)

have shown that the invariant associated with the octahedral shear stress can be

used as a normalizing parameter to account for such differences in PVC and in

glass and carbon polymer matrix composites. A later paper by Knauss and Zsu

(2002) investigated the nonlinear behavior of polycarbonate under multi-axial

loading and concluded that the octahedral shear stress is nearly constant for all

combinations of shear and normal stress investigated.

Even less well known are intermode nonlinearities that occur when several

different mechanisms contribute to the deformation process simultaneously such

as yielding and buckling. In this text only material nonlinearities will be

considered with strains and deformations being small.

0 .005 .010 .015

Pure Shear Data

15° Coupon Data

Shear Strain

10

8

6

4

2

0

S
he

ar
 S

tr
es

s 
(K

si
)

.020 .025

Fig. 10.3 Extent of stress interaction in off-axis unidirectional boron-epoxy coupons

(After Cole and Pipes 1974; see Hiel et al. 1984)

10 Nonlinear Viscoelasticity 343



10.2. Approaches to Nonlinear Viscoelastic Behavior

As mentioned earlier, there have been many attempts to develop mathematical

models that would accurately represent the nonlinear stress-strain behavior of

viscoelastic materials. This section will review a few of these but it is appropri-

ate to note that those discussed are not all inclusive. For example, numerical

approaches are most often the method of choice for all nonlinear problems

involving viscoelastic materials but these are beyond the scope of this text.

Note that current versions of common software tools such as Abaqus for finite

element simulations include nonlinear viscoelasticity modules. In addition, this

chapter does not include circumstances of nonlinear behavior involving gross

yielding such as the Luder’s bands seen in polycarbonate in Fig. 3.7. An effort is

made in Chap. 11 to discuss such cases in connection with viscoelastic-plasticity

and/or viscoplasticity effects. The nonlinear models discussed here are restricted

to a subset of small strain approaches, with an emphasis on the single integral

approach developed by Schapery.
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Nonlinear Mechanical Models: It is possible to represent nonlinear behavior

by introducing nonlinear spring and damper elements into the derivation of

differential stress-strain relations. For example, for the four-parameter fluid

shown in Fig. 10.5, the spring moduli, damper viscosities and relaxation times

are functions of stress, i.e.,

Ei ¼ Ei σð Þ, μi ¼ μi σð Þ, τi ¼ τi σð Þ, i ¼ 1, 2, . . .

If only the spring moduli are nonlinear, a nonlinear generalized Kelvin model

can be represented by,

D tð Þ ¼
Xn
i¼1

fi σð Þ
Ei

1� e�t=τi
� �

(10:2)

where fi(σ) is a nonlinearizing function of stress. Obviously, three parameters

must now be determined for each Kelvin element one of which is nonlinear with

stress and if a large number of elements are needed the difficulty in determining

properties from experimental data is increased considerably over the use of a

linear model. If the nonlinearity can be modeled to affect all the springs in the

same manner, fi(σ) becomes simply f(σ) and the complexity is reduced.

Nonlinear Creep Power Law: It has been empirically observed that the creep

of metals and other materials can be approximated using a creep power law of

the form:

ε tð Þ ¼ ε0 þmtn (10:3)

For steady state (or secondary) creep of both metals and polymers it is often

assumed that n¼ 1.0. In this form ε0 is a fitting parameter and is found by

extrapolation of the linear (with time) secondary creep portion of the curve to

zero time (Dillard 1981). Another form used by Findley et al. (1976, 2011) is

Fig. 10.5 Nonlinear four parameter fluid
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ε tð Þ ¼ σ0D tð Þ ¼ σ0 Aþ Btnð Þ (10:4a)

or using standard viscoelastic notation

ε tð Þ ¼ σ0D tð Þ ¼ σ0 D0 þ D1t
nð Þ (10:4b)

Where A¼D0, B¼D1, and n are material constants.

Early stress dependent power law models were developed for the creep of

metals, mostly associated with the dependence of secondary or steady state creep

on stress level, i.e. dε/dt¼ kσp (Findley et al. 1976, 2011). The nonlinear form

given in Eq. 10.5 is sometimes called the Findley creep power law,

ε tð Þ ¼ ε0sinh
σ
σ0

� �
þmtnsinh

σ
σn

� �
(10:5)

where ε0, σ0, m, σn and are constants. However, many have contributed to the

various forms of these equations including Andrade, Ludwik, Nadai, and Prandtl

(see Findley et al. (1976, 2011), p. 8–21, for an excellent discussion and review

of early efforts; also, see Dillard (1981) for a thorough description of the use of

the power law as well as potential difficulties).

The fundamental idea behind the power law is to have a simple form, using

few parameters, that will give a broadband approximation to a master curve

rather than the more accurate generalized Maxwell or Kelvin models. The power

law sacrifices accuracy at any one time to obtain a reasonable representation

over the entire time scale from short-term (glassy) behavior to long time

(rubbery) behavior. For example, Fig. 10.6 shows the compliance data for an

epoxy from Chap. 7 along with several power law fits to the data. The first two

fits use only data points from the earlier times and thus under predict at long

times. When the longer time compliance slope is fit (the “fitlong” curve), the

quality of the fit at shorter times is sacrificed. In addition, note that the power law

is unable to fit the long time rubbery plateau of the material response as the

mathematical form ensures ever increasing compliance values with time. Note

that the Prony series fit, also shown, overlays the data exactly. Hiel et al. (1984)

shows that the parameter n is most sensitive to experimental error. An example

of the variation of n with the length of the creep tests used to collect data is

shown in Fig. 10.7 for an epoxy resin often used in composites. The exponent

n varies with the length of the test but becomes stable after relatively large creep

times. He also shows that the exponent n becomes stable in a shorter time if it

is determined from a creep recovery test as illustrated in Fig. 10.7, where
the stabilized value is obtained in tests an order of magnitude shorter in time.

(The creep recovery test will be covered in detail later when discussing

Schapery’s method.)
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Fig. 10.6 Power law fits to compliance data for epoxy (Hysol 4290). Symbols show

compliance data from Fig. 7.3

Fig. 10.7 Variation of power law exponent for an epoxy resin used in composites with

length of creep test and length of recovery test (Data from Hiel et al. 1984)
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Multiple-Integral Approaches: The two preceding methods of representing

nonlinear viscoelastic response and many others found in the literature were

developed for the purpose of fitting one step uniaxial creep or constant strain-

rate data. The major difficulty with nonlinear behavior is that superposition of the

effects of multiple step stresses, a continuously varying stress or multiaxial stresses

via the Boltzman superposition principle is no longer allowed. For this reason, the

multiple and single integral approaches discussed in this section include modified

superposition concepts that are necessary for successful stress analysis.

As noted by Robotnov (1980), the earliest description of a method to math-

ematically model nonlinear viscoelastic behavior was accomplished by Volterra

using an earlier representation developed by Frechet in the early 1900s. The

Volterra-Frechet equation for one dimension cited by Robotnov is,

ε tð Þ ¼
ðt

�1
D1 t� τ1ð Þdσ τ1ð Þ þ

ðt
�1

ðt
�1

D2 t� τ1, t� τ2ð Þdσ τ1; τ2ð Þþ . . . (10:6)

According to Robotnov, this method was forgotten until the procedure was

generalized to three dimensions by Green and Rivlin in 1954 (see Robotnov

for reference). The multiple integral approach has been explored by many and an

excellent description of various efforts are given by Robotnov (1980), Findley

et al. (1976, 2011) and Hiel et al. (1984). Findley has perhaps documented the

technique more fully than others both theoretically and experimentally in his

book and in numerous journal articles cited therein. The following third order

approximation is developed by Findley using a less rigorous approach than the

functional analysis method given by others (see Appendix B of his book for a

derivation involving functional analysis),

ε tð Þ ¼
ðt

�1
D1

�
t� τ1

� dσ τ1ð Þ
dt

dτ

þ
ðt

�1

ðt
�1

D2

�
t� τ1, t� τ2

� dσ τ1ð Þ
dt

dσ τ2ð Þ
dt

dτ1dτ2

þ
ðt

�1

ðt
�1

ðt
�1

D3

�
t� τ1, t� τ2, t� τ3

� dσ τ1ð Þ
dt

dσ τ2ð Þ
dt

dσ τ3ð Þ
dt

dτ1dτ2dτ3

(10:7)

where the three kernel functions must be found from a three-step creep test. In an

earlier paper, Onaran and Findley (1965) give a fourth order expansion that

requires the determination of 14 kernel functions. Because of the difficulty in
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experimentally evaluating a large number of functions and because of stability

problems Robotnov (1980) suggests limiting studies to only a third order

expansion. Both Findley and Robotnov give several approximate methods of

evaluating kernel functions as well as experimental data and analysis.

Single Integral Approaches: Leaderman (1943) recognized the nonlinear

nature of polymers and suggested an approach based on a linear hereditary

integral given by,

ε t; σð Þ ¼
ðt

�1
D t� τð Þ d

dτ
ψ τ; σð Þdτ (10:8)

where nonlinear effects are incorporated in the stress measure, ψ(t, σ). In his

1980 book Rabotnov* describes a similar equation for the one-dimensional

behavior of metals (from his 1948 paper) that may be written as (Hiel 1984),

ϕ t; εð Þ ¼
ðt

�1
D t� τð Þ dσ τð Þ

dτ
dτ (10:9)

except the nonlinearization was through the strain measure ϕ(t, ε). Hiel (1984)
also reports that Koltunov* used a combination of the equations proposed by

Leaderman and Rabotnov to obtain

ϕ t; εð Þ ¼
ðt

�1
D t� τð Þ d

dτ
ψ t; σð Þdτ (10:10)

which includes both a nonlinear strain and stress measure.

Two general methods for the development of single integral nonlinear con-

stitutive equations that have been used are the rational (functional) thermody-

namic approach and the state variable approach (or irreversible thermodynamic

approach), each of which are described in a well-documented survey by Hutter

(1977). In rational thermodynamics, the free energy is represented as a function

of strain (or stress), temperature, etc., and then constitutive equations are formed

by taking appropriate derivatives of the free energy. The state variable approach

includes certain internal variables in order to represent the internal state of a

* See Hiel for references. The 1948 Rabotnov paper and the Kotunov paper are in Russian journals

and are not available to the authors.
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material. Constitutive equations which describe the evolution of the internal

state variables are included as a part of the theory. Onsager introduced the

concept of internal variables in thermodynamics and this formalism was later

used by Biot in the derivation of constitutive equations of linear viscoelasticity.

Schapery (1964, 1966) used this method to develop a modified linear hereditary

integral approach to nonlinear viscoelastic materials. Knauss and Emri (1981)

also used a single integral method to associate the nonlinearizing parameters to

free volume and in this manner allowed the inclusion of stress-induced dilata-

tion, moisture or other diffusion parameters in the theory.

10.3. The Schapery Single-Integral Nonlinear Model

The Schapery single integral approach (1964, 1966) is an outgrowth of the

irreversible thermodynamic procedures developed by Biot and others and is

likely the most widely used technique to represent the nonlinear time-dependent

behavior of polymers. The thermodynamic derivation of the fundamental equa-

tions needed to represent data is beyond the scope of this text but an excellent

description of the original derivation is given by Hiel et al. (1984). Schapery

(1997) also provides an updated mathematical approach that includes

viscoplasticity effects. The model has been implemented in finite elements

codes, including development of a UMAT for ABAQUS (Haj-Ali and Muliana

2004). The purpose here is to introduce the method as a means of representing

polymer data and provide a basic understanding of how to obtain the necessary

material parameters from experiments. The development of equations here

closely follows the description of Schapery (1969) and Lou and Schapery (1971).

It is important to point out that the reason to develop a relatively simple and

easy to use single integral method is not only to determine the necessary material

parameters more easily, but to have a method that can be used with more ease

and confidence in solving nonlinear boundary value problems to obtain stress,

strain and displacement distributions for engineering design. This of necessity

entails having a modified superposition approach as well as use of the time-shift

principles discussed in Chap. 7.

10.3.1. Preliminary Considerations

In Chap. 6 it was shown that linear viscoelastic materials could be represented by

the hereditary convolution integrals,
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ε tð Þ ¼
ðt

�1
D t� τð Þ dσ τð Þ

dτ
dτ (10:11)

or

σ tð Þ ¼
ðt

�1
E t� τð Þ dε τð Þ

dτ
dτ (10:12)

where the lower limit is such that all previous history of loading is included. If

the material is initially “dead” or has no previous history prior to time zero, the

lower limit was t¼ 0� and the equations are,

ε tð Þ ¼
ðt
0�

D t� τð Þ dσ τð Þ
dτ

dτ (10:13)

or

σ tð Þ ¼
ðt
0�

E t� τð Þ dε τð Þ
dτ

dτ (10:14)

Also as explained in Chap. 6, Eqs. 10.13 and 10.14 can be written as,

ε tð Þ ¼ σ0D tð ÞH tð Þ þ
ðt
0þ

D t� τð Þ dσ τð Þ
dτ

dτ (10:15)

or

σ tð Þ ¼ σ0E tð ÞH tð Þ þ
ðt
0þ

E t� τð Þ dε τð Þ
dτ

dτ (10:16)

when a step input occurs at t¼ 0. An additional form can be obtained by

separating the creep compliance into instantaneous and transient terms such that,
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D tð Þ ¼ D0 þ eD tð Þ (10:17)

or the relaxation modulus into equilibrium and transient terms such that,

E tð Þ ¼ E1 þ eE tð Þ (10:18)

As an example the creep compliance of a three parameter solid may be written

as,

D tð Þ ¼ 1

E0

þ 1

E1

1� e�t=τ
� �� 	

¼ D0 þ eD tð Þ (10:19)

where

D0 ¼ 1

E0

and eD tð Þ ¼ 1

E1

1� e�t=τ
� �

(10:20)

Similarly, the relaxation modulus for a three parameter solid (from Table 5.1) is,

E tð Þ ¼ q0 þ
q1
p1

� q0

� �
e�t=p1 (10:21)

where the coefficients p1, q0, and q1 are given in Chap. 5 and,

E1 ¼ q0 ¼
E0E1

E0 þ E1

and eE tð Þ ¼ q1
p1

� q0

� �
e�t=p1 (10:22)

Using the separated forms of the creep compliance or relaxation modulus, the

linear viscoelastic constitutive laws Eqs. 10.13 and 10.14 may be rewritten as

ε tð Þ ¼ D0σ tð ÞH tð Þ þ
ðt
0-

eD t� τð Þ dσ τð Þ
dτ

dτ (10:23)

σ tð Þ ¼ E0σ tð ÞH tð Þ þ
ðt
0-

eE t� τð Þ dε τð Þ
dτ

dτ (10:24)

which are used as the base forms for the Schapery nonlinear model.
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10.3.2. The Schapery Equation

Using irreversible thermodynamic (or energy) descriptions of the state of a

viscoelastic material subjected to external loads, Schapery (1964, 1966) devel-

oped the following single-integral representation for strains due to a variable

stress input,

ε t; σð Þ ¼ g0D0σ tð ÞH tð Þ þ g1

ðt
0�

eD ψ� ψ
0

� � d g2 � σ τð ÞH τð Þ½ �
dτ


 �
dτ (10:25)

where g0, g1, g2, aσ are material parameters which are dependent on stress. The

parameter aσ is a shift factor which modulates the time scale much in the same

way that the temperature dependent shift factor, aT, modulates the time scale for

temperature effects. The shifted stress dependent time scale is given by,

ψ t; σð Þ ¼
ðt
0

dt

aσ tð Þ and ψ
0
τ; σð Þ ¼

ðτ
0

dτ
aσ τð Þ (10:26)

The Schapery method given by Eqs. 10.25 and 10.26 is a mathematical defini-

tion of a time-stress-superposition-principle or TSSP that is analogous to the

TTSP. Later it will be shown how to obtain stress dependent compliance and

modulus master curves from experimental data using TSSP much in the same

manner as temperature dependent master curves were determined from experi-

mental data using the TTSP.

An analogous equation for stress under a variable input of strain was also

developed by Schapery and is given by,

σ t; εð Þ ¼ h1E1σ tð ÞH tð Þ þ h1

ðt
0�

eE ψ� ψ
0

� � d h2 � ε τð ÞH τð Þ½ �
dτ


 �
dτ (10:27)

and

ψ t; εð Þ ¼
ðt
0

dt

aε tð Þ and ψ
0
τ; εð Þ ¼

ðτ
0

dτ
aε τð Þ (10:28)
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In Eqs. 10.25 and 10.27, the parameters g0, g1, g2 arise from third and higher

order dependence of stress on the Gibbs* free energy while h1, h1, h2 arise from
third and higher order dependence of the strain on the Hemholtz* free energy.

The Hemholtz and Gibbs free energies are given by the energy balance

equations,

Hemholtz free energy : A ¼ U � T � S
Gibbs free energy : G ¼ F ¼ Uþ PVð Þ � T � S (10:29)

where U is the internal energy, T is the temperature, S is the entropy, P is

the pressure (hydrostatic), V is the volume and H¼ (U +PV) is the enthalpy.

(See also Chap. 7, section on rubber elasticity for additional discussion of

thermodynamics.)

It should be noted that the Boltzman superposition integral for linear visco-

elasticity is recovered in Eq. 10.25 if the nonlinear parameters are each identi-

cally equal to one, i.e.,

g0 ¼ g1 ¼ g2 ¼ aσ ¼ 1 (ð10:30Þ)

Further, if all parameters except aσ are unity Knauss’s free volume model

(Knauss and Emri 1981) is recovered in which,

g0 ¼ g1 ¼ g2 ¼ 1 (10:31a)

aσ 6¼ 1 (10:31b)

aσ � Free Vol: fð Þ (10:31c)

f ¼ f0 þ αΔT þ BΔσþ γ ΔC (10:31d)

where α is the coefficient of thermal expansion, B is a parameter relating stress

to the amount of free volume and γ relates moisture concentration to free

volume.

The Schapery Equation for a Two Step Stress Input: Determination of the

material parameters necessary for the application of the Schapery Equation are

best done by using creep-recovery data and will be demonstrated in a later

section. Toward that end, we develop the specific form for the Schapery equation

with a simple two-step load. In this section, we assume a general two step stress

distribution such that,

σ tð Þ ¼ σaH tð Þ þ σb � σað ÞH t� tað Þ (10:32a)

or

* See Chap. 7 for a brief thermodynamic description of Gibbs and Helmholz free energies.
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σ tð Þ ¼ σa, 0 � t � ta
σb, t > ta



(10:32b)

also illustrated in graphical form in Fig. 10.8. To obtain the stress loading profile
for creep-recovery, the second step is simply negative of the first step and this

will be calculated explicitly in the next section.

Since stress is constant in each of the two time regions (below and above ta),

the nonlinear parameters are also constant in each of those regions. We refer to gi
and aσ for t� ta as g

a
i and aaσ; similarly for t> ta gi and aσ are referred to as gbi

and abσ. In application to Schapery’s Eq. 10.25, the superscript for the aσ and

the g1 coefficients correspond to the time interval of evaluation of the term.

The superscript for the g0 and g2 coefficients are affiliated with the stress value

that each coefficient modifies. Using these parameters, Schapery’s Eq. 10.25
becomes

ε tð Þ ¼ ga
0σaD0H tð Þ þ gb

0σb � ga
0σa

� �
D0H t� tað Þ

þg1

ðt
0�

eD ψ� ψ
0

� � d

dτ
ga
2σaH τð Þ þ gb

2σb � ga
2σa

� �
H τ� tað Þ� �

dτ

(10:33)

The integral can be broken up into two integrals, before and after ta and noting

the derivative of the step function as the dirac delta function

ta

σ(t)

σa

time, t

σb

Fig. 10.8 Two step creep load
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ε tð Þ ¼ ga
0σaD0H tð Þ þ gb

0σb � ga
0σa

� �
D0H t� tað Þ

þga
1

ðt�a
0�

eD ψ� ψ
0

� �
ga
2σaδ τð Þ þ gb

2σb � ga
2σa

� �
δ τ� tað Þ|fflfflfflfflffl{zfflfflfflfflffl}

zero

0
B@

1
CAdτ

þgb
1

ðt
t�a

eD ψ� ψ
0

� �
ga
2σa δ τð Þ|{z}

zero

þ gb
2σb � ga

2σa
� �

δ τ� tað Þ

0
B@

1
CAdτ

(10:34)

Note the superscript on the g1 term is now specified for the first integral

according to the time period of evaluation. The terms indicated with zero

provide no contribution to the integral in which they appear and thus, the

expression becomes

ε tð Þ ¼ ga
0σaD0H tð Þ þ gb

0σb � ga
0σa

� �
D0H t� tað Þ

þga
1

ðt-a
0�

eD ψ� ψ
0

� �
ga
2σaδ τð Þ� �

dτ

þgb
1

ðt
t-a

eD ψ� ψ
0

� �
gb
2σb � ga

2σa
� �

δ τ� tað Þ� �
dτ

(10:35)

For 0� t� ta, the expression simplifies to,

ε tð Þ ¼ ga
0D0σaH tð Þ þ ga

1

ðt
0�

eD ψ� ψ
0

� �
ga
2σaδ τð Þ� �

dτ (10:36)

where the integrand must be evaluated at τ¼ 0. As a result, the effective times

may be calculated as

ψ ¼
ðt
0�

dt

aaσ
¼ t

aaσ
(10:37)

and

ψ
0 ¼

ðt
0�

dt
0

aaσ
¼ τ

aaσ
¼ 0 (10:38)

356 Polymer Engineering Science and Viscoelasticity: An Introduction



With these considerations, Eq. 10.36 becomes,

ε tð Þ ¼ ga
0D0 þ ga

1g
a
2
eD t

aaσ

� �� 	
σaH tð Þ , 0 � t � ta (10:39)

For the interval, t> ta, the strain is given by,

ε tð Þ ¼ gb
0D0σbH t� tað Þ þ gb

1

ðt-a
0-

eD ψ� ψ
0

� �
ga
2σaδ τð Þ� �

dτ

þgb
1

ðt
t-a

eD ψ� ψ
0

� �
gb
2σb � ga

2σa
� �

δ τ� tað Þdτ
(10:40)

The first term is the effect of the step input of the stress, σb¼σa + (σb –σa), at
t¼ ta which includes the effect of the step stress of σa at t¼ 0. The second term

is the transient portion of the step input of stress, σa, at t¼ 0 whose effect

continues beyond t¼ ta and the third term is the transient portion of the step

input of the stress, σb –σa, at t¼ ta.

The first integral must be evaluated at τ¼ 0 and the second at τ¼ ta to

determine the effective times. For the first integral,

ψ ¼
ðt
0�

dt

aσ
¼

ðta
0�

dt

aaσ
þ
ðt
ta

dt

abσ
and ψ

0 ¼
ðτ
0-

dτ
aσ

(10:41)

or

ψ ¼ ta

aaσ
þ t� ta

abσ
and ψ

0 ¼ 0 (10:42)

For the second integral,

ψ ¼
ðt
ta

dt

abσ
ψ

0 ¼
ðτ
ta

dτ
abσ

(10:43)

or
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ψ ¼ t� ta

abσ
and ψ

0 ¼ 0 (10:44)

As a result, the final equation for creep strain for t> ta is,

ε tð Þ ¼ gb
0D0σb þ gb

1 g
a
2
eD ta

aaσ
þ t� ta

abσ

� �
σa þ gb

1 gb
2σb � ga

2σa
� �eD t� ta

abσ

� �� 	
(10:45)

Schapery Equation for a Creep and Creep Recovery Test: Schapery

suggested using a creep and creep recovery test (as shown in Fig. 10.9) to

determine the stress dependent parameters g0, g1, g2, aσ. This condition is a

special case of the two step loading of Eq. 10.32a in which stresses σa¼σ0 and
σb¼ 0 and thus

σ tð Þ ¼ σ0H tð Þ � σ0H t� t1ð Þ
or

σ tð Þ ¼ σ0, 0 � t � t1
0, t > t1


 (10:46)

and the parameters associated with σb are,

gb
0 ¼ gb

1 ¼ gb
2 ¼ abσ ¼ 1 (10:47)

It is necessary to specify eD tð Þ in order to evaluate the parameters and for that

Schapery suggested using a power law given by,

D tð Þ ¼ D0 þ D1t
n (10:48)

σ0

t1

σ(t)

ε(t)0

Fig. 10.9 Two-step creep load and creep recovery load
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where D0, D1 and n are constants and eD tð Þ is given by,

eD tð Þ ¼ D1t
n (10:49)

The creep strain for the interval 0< t< t1 from Eq. 10.39 becomes after

substituting the conditions given in Eqs. 10.46, 10.47, 10.48, and 10.49,

ε tð Þ ¼ g0D0 þ g1g2D1

t

aσ

� �n� 	
σ0H tð Þ , 0 � t � t1 (10:50)

The recovery strain for t> t1 is found from Eq. 10.45 after substituting the same

conditions given in Eqs. 10.44 and 10.46, 10.47, 10.48, and 10.49 is,

εr tð Þ ¼ D1

t1

aσ
þ t� t1

� �n
� D1 t� t1ð Þn

� 	
g2σ0 (10:51)

The constants D0, D1, and n as well as the stress dependent parameters g0, g1, g2,
and aσ in Eqs. 10.50 and 10.51 must be found or, in other words, seven material

properties are needed to represent nonlinear uniaxial creep and creep recovery

behavior. While this may seem excessive, it actually represents quite a large

economy over the multiple integral form represented by Eq. 10.6. (See Findley
et al. (1976, 2011) and Rabotnov (1980) for examples of the use of multiple

integrals.) For creep alone, only 5 parameters are needed if g1 and g2 are

combined with D1. However, the recovery strain is necessary to separate g1
and g2. Also, because of the sensitivity of n to the length of either a creep or

creep recovery test as presented in the previous section on the power law, Lou

and Schapery (1971) suggests using data from recovery to determine n. As will
be seen in the following, the values of the strain jumps at the initial load and

unloading arise naturally in determining the parameters. However, it is impor-

tant to note that when dealing with experimental data both ε(t¼ 0+) and ε(t¼ tþ1 )
are ill-defined quantities because, as noted in Chap. 5, creep or recovery stresses

(and hence strains) are not instantaneously applied in order to avoid dynamic

effects. It is also important to note that even if the jump stresses are instanta-

neous at t¼ 0+ and at t¼ t1, the theory indicates the instantaneous jump strains

are not equal in magnitude. For example, consider Eq. 10.51 rewritten as,

εr tð Þ ¼ g2D1

t1

aσ

� �n
1þ aσ

t1

� �
t� t1ð Þ

� 	n
� aσ

t1

� �n
t� t1ð Þn


 �
σ0 (10:52)

or
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εr tð Þ ¼ g2D1

t1

aσ

� �n
1þ aσλ½ �n � aσλð Þnf gσ0 (10:53)

where

λ ¼ t� t1

t1
(10:54)

The creep and creep recovery data will appear as shown in Fig. 10.10. The
magnitude of the instantaneous creep recovery, Δε(t1) is given by,

Δε t1ð Þ ¼ ε tþ1
� �� ε t�1

� �
(10:55)

From Eqs. 10.50 and 10.51,

ε t�1
� � ¼ g0D0 þ g1g2D1

t1

aσ

� �n� 	
σ0 (10:56)

and

εr tþ1
� � ¼ g2D1

t1

aσ

� �n
σ0 (10:57)

or

0 0

ε(t)

ε0

t1

σ(t)

t t1

εT(t1)

Δε(t1)

t

σ0

Fig. 10.10 Creep and creep recovery: applied stress (left) and material response (right).

Instantaneous strains at t¼ 0 and t¼ t1 are denoted as ε0 and Δε(t1). Tran-
sient strain refers to the time dependent strain and the magnitude of the

transient strain at t¼ t1 is depicted
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Δε t1ð Þ ¼ εr tþ1
� �� ε t�1

� � ¼ �g0D0σ0 þ g2D1

t1

aσ

� �n
1� g1ð Þσ0 (10:58)

Note that the jump in strain when the creep load is first applied at t¼ 0 is,

ε t ¼ 0ð Þ ¼ g0D0σ0 (10:59)

Comparison of Eqs. 10.58 and 10.59, shows that the strain jump discontinuity at

t¼ 0 and t¼ t1 are not the same, even though the stress change is identical in

magnitude. This dependence on load history is due to the nonlinearity of the

material. In particular, the parameter g1 can be identified as the source of this

difference, since for a linear material g1¼ 1 and Eq. 10.58 reduces to the

negative of Eq. 10.59 as is expected for a linear material.

10.3.3. Determining Material Parameters from a Creep
and Creep Recovery Test

Currently the approach most often found in the literature to determine the seven

material parameters to represent nonlinear viscoelastic behavior using the

Schapery procedure is via numerical fitting of experimental data both in the

linear range and in the nonlinear range at different stress levels. Examples of

such a numerical approach can be found in work by Peretz and Weitsman

(1982), Rochefort (1983), Tuttle (1985), or Haj-Ali and Muliana (2004). The

early references used a commercially available least-squares fitting program on a

main-frame computer. Now it is easy to do the numerical curve fitting to a power

law using a laptop and programs such as Math Cad or MatLab (for example see

Wing et al. 1995 or Haj-Ali and Muliana 2004). Schapery and co-workers have

also described a method to determine the parameters based on DMA testing

(Golden et al. 1999), where the strains are first separated into oscillatory and

transient components, then further dissected and the linear and nonlinear coef-

ficients are determined directly or by integration of several expressions. In this

section, however, we describe the approach originally set forth by Schapery

(1969) and Lou and Schapery (1971), which although a bit cumbersome in its

description, provides insight into the meaning and origin of the nonlinear

parameters. Using this original approach, determination of the seven material

parameters require creep and creep recovery tests to be performed at several

stress levels.

Finding the Material Constants D0, D1 and n: These linear material

constants need to be determined from the experimental data in the linear stress

range before the nonlinear parameters can be properly determined. For linear
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viscoelastic response, when the transient strain is large compared to the initial

step input, the strain versus time on a log-log plot is a straight line at long times

and the slope of the line is the power law exponent, n. (See Fig. 10.6). Addi-
tionally, the initial strain jump ε0 equals g0D0σ0, which could then provide the

value of D0, since g0 is unity in the linear range. However, these approaches to

determine n and ε0 are inaccurate due to the inability to apply a truly instanta-

neous stress jump as mentioned earlier. Therefore, in general, ε0 must be

considered a fitting parameter that must be found in addition to the seven

other parameters. The original approach set forth by Lou and Schapery (1971)

circumvents these difficulties and provides a semi-graphical approach that

allows all seven parameters to be found. Further, his approach is insightful in

relating the nonlinear parameters to various portions of the creep and creep

recovery process. Equally important, the approach allows for a convenient way

for students to demonstrate their understanding of the analysis and parameters

without recourse to numerical curve fitting packages – see Homework problem

10.6) This approach is outlined in the following discussion.

From Eq. 10.50 the transient creep strain at t¼ t1 (depicted in Fig. 10.10) is,

εT t1ð Þ ¼ g1g2D1

t1

aσ

� �n
σ0 (10:60)

The creep and creep recovery strain, Eqs. 10.56 and 10.53, can now be written as,

ε t�1
� � ¼ g0D0 þ εT t1ð Þ½ �σ0 (10:61)

εr tð Þ ¼ εT t1ð Þ
g1

1þ aσλ½ �n � aσλð Þnf g (10:62)

where

λ ¼ t� t1

t1
(10:63)

Equation 10.62 can be used to find n and εT(t1) for a creep and creep recovery

stress in the linear range by noting that all nonlinear terms are unity, i.e.,

go¼ g1¼ g2¼ aσ¼ 1, and thus

εr tð Þ
εT t1ð Þ ¼ 1þ λð Þn � λn½ � (10:64)

The numerator on the left hand side (LHS) of Eq. 10.64 represents data and the

right hand side (RHS) represents a mathematical representation of the data from

362 Polymer Engineering Science and Viscoelasticity: An Introduction



which n and εT(t1) can be found. The RHS can be plotted as parametric family of

curves with respect to n as shown on Fig. 10.11 by the solid lines. The numerator

on the LHS is known creep recovery data for a stress level in the linear range and

is shown by square symbols in Fig. 10.11. The denominator represents the

amount, εT(t1), the linear recovery data must be shifted downward on a log

scale to match the curve with the proper exponent and is equivalent to the

transient creep strain at t1 for the same stress level in the linear range. The

x symbol shows that the recovery data when shifted does not match the exponent

n¼ 0.25. The diamond symbol shows that the recovery strain when shifted

downward by the correct amount does fit the exponent n¼ 0.15. Thus the

power law exponent is found as well as the transient creep strain, εT(t1), for
the particular stress level used in the linear range.

Fig. 10.11 Procedure for finding n. See also Fig. 10.12 (Data on FM-73 from Rochfort

(1983) for a creep stress of 3.5 MPa (493 psi))
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Alternately, n and εT(t1) could be found by simply solving Eq. 10.64 with

data taken for two different values of λ. The value of n and εT(t1) so determined

for various values of λ should be the same but, due to experimental error, a small

variation may be obtained using different points and an average should be used.

At this point D1 could be found from Eq. 10.60 since the nonlinear parameters

are unity and εT(t1) and n have been determined. However the original approach

differs slightly as follows.

The equation for creep strain (Eq. 10.50) for a linear viscoelastic material can

be written as,

ε tð Þ ¼ D0 þ D1t
n½ �σ0 ¼ ε0 þ ε1tn (10:65)

where ε0 is the initial strain and ε1 is the transient strain coefficient. Selecting

two values of transient strain at two values of time for a stress level in the linear

range provides two equations from which ε0 and ε1 can be found and hence

the coefficients D0 and D1 can be found. Note that the strains selected should

be more than five times the amount of time required for the initial stress to be

applied (See Lou and Schapery 1971). Knowing ε0 and ε1 for a stress in the

linear range allows the determination of εT(t1) for the same stress level and this

should match the amount determined by shifting the linear data in Fig. 10.11.
However, due to experimental error a small difference may be found.

Finding the quantities g0 and
g1g2
a n
σ
: Using the creep strain Eq. 10.50,

ε tð Þ ¼ g0D0 þ g1g2D1

t

aσ

� �n� 	
σ0 (10:66)

and two values of measured strain for two time values (again more than five

times the initial loading time) will allow the determination of g0 and
g1g2
a n
σ
at each

nonlinear stress level. This also allows the determination of the initial strain, ε0,
ε1 and the transient strain, εΤ(t1), for each stress level in the nonlinear range.
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Determination of g1, g2 and aσ: Consider the recovery data shown in

Fig. 10.12 and the recovery strain given by Eq. 10.62 written as,

εr tð Þ
εT t1ð Þ=g1

¼ 1þ aσλ½ �n � aσλð Þn (10:67)

The data for all stress levels can be shifted to coincide with the linear viscoelas-

tic data represented in Fig. 10.11 by the power law exponent n¼ 0.15 by moving

each curve downward by the amount
εT t1ð Þ
g1

and to the left by the amount aσ as

shown in Fig. 10.12. This process forms a master curve as shown and is similar

to time-temperature master curves discussed in Chap. 7. As a result this

Fig. 10.12 Creep-recovery data and shifting process to form a master curve (Data from

Rochfort 1983)
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procedure is sometimes referred to as the analytical basis for the time-stress-

superposition-principle (TSSP), which is discussed in the next section. As

the transient strain, εT(t1), was previously determined for each stress level

in the nonlinear range, g1 can be determined. Thus, aσ and g1 are now

known. The parameter g2 can be found, as all other quantities in the expression

ε1 ¼ g1g2
anσ

D1σ0 are known.

All parameters are now known that are needed to predict the response of a

nonlinear viscoelastic material using the Schapery technique. Lou and Schapery

(1971) used this semi-graphical procedure to characterize a glass epoxy com-

posite and showed good correlation between creep and creep recovery experi-

mental data and their analytical representations using Eqs. 10.50 and 10.51.
Cartner (1978) used this approach to determine all the necessary Schapery

parameters for a chopped glass fiber composite, SMC-25, and a structural

adhesive, Metalbond 1113-2. He showed excellent correlation between creep

data and theory for the SMC. The comparison was very good for the adhesive at

low to moderate stress levels but diverged considerably at the higher stress level.

Peretz and Weitsman (1982) used a computer-aided numerical least squares

curve fitting approach to find all the parameters needed in the Schapery model to

represent the structural adhesive FM-73. They showed a good correlation

between data and theory. Rochefort (1983) used a similar computer-aided

numerical least squares curve fitting approach to find the necessary parameters

for FM-73 and his comparison between creep and creep recovery data is shown

in Fig. 10.13. It is interesting to note that parameters in the two separate studies

on FM-73 are similar even though performed in separate laboratories with

materials made by different groups. For example Peretz and Weitsman found

n¼ 0.12 and Rochefort found n¼ 0.15. Considerable differences were found in

some of the nonlinear parameters, however.
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Experimental Procedures: Obtaining good experimental data from any creep

and creep recovery testing program is difficult for high performance materials

such as fiber reinforced polymer matrix composites and thin film adhesives and a

few comments about procedures are necessary. Strain is often measured using

electrical resistance strain gages. As a result, it is important to recall the brief

comments given in Chap. 3 about the possible reinforcement effects of strain

gages and the possibility of strain gage heating effects. Indeed, Lou and

Schapery (1971) estimated the effect of strain gage reinforcement to be about

2 % for the glass-epoxy specimens they tested and considered this to be low

enough to be neglected. However, without careful consideration, the error could

be much larger especially for very thin specimens. Strain gage heating effects

should be evaluated and can be minimized by limiting the amount of current

used or by pulsing the current to gage only when a measurement is taken.

Fig. 10.13 Creep and recovery of FM-73 data and comparison to Schapery equation

representation (Data from Rochefort 1983)
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For materials such as the continuous fiber or chopped glass fiber composites

as well as film type adhesives, it may be necessary to mechanically condition

specimens prior to performing creep and creep recovery tests. The rationale is

that numerous small and unstable flaws are created during processing and that

when first tested these flaws grow by a small amount at relatively low stress and

strain levels to a stable configuration. Therefore without mechanical condition-

ing prior to a creep test, an unknown portion of the initial strain and transient

strain may be due to the accumulation of deformation associated with these

flaws. Lou and Schapery (1971) and Cartner (1978) used cyclic constant strain

rate tests to about 50 % of ultimate to condition each test specimen. In Cartner’s

case, no change was found after the 20th cycle. For SMC materials the fibers

flow in a random manner during the cure process and so it is necessary to take

specimen from the central portion of the panel in the same direction to minimize

potential scatter. Rochefort (1983) used a short creep and creep recovery test to

mechanical condition specimens of FM-73. The test was repeated to conver-

gence, where no change was found from the previous test.

Peretz and Weitsman (1982) describe an excellent test program to obtain the

best results for an epoxy film adhesive (FM-73). Each test was performed in

triplicate and each was repeated twice yielding six creep and creep recovery sets

of data for each stress level that was then averaged. In this manner experimental

scatter was minimized to be less than 2.5 %.

All the testing programs described were for relatively short periods (less than

one hour of creep and less than two hours of recovery). In reality, most structures

made from the material used are designed to last days, months or years. As a

result, a relative question to ask is: “how reliable would the use of predictive

equations whose parameters were obtained from such short-term tests be in the

design of structure for much longer periods of time”? In attempt to answer this

question, Tuttle (1985) performed short-term tests on 90� and 10� unidirectional
graphite epoxy specimens (creep of 480 minutes, recovery of 120 minutes) to

obtain the necessary seven parameters. He then used the data in the Schapery

model in conjunction with a lamination theory analysis to predict the long-term

creep response of a symmetric composite laminate in a matrix-dominated

direction. The result was compared with experimental data from independent

long-term creep tests on the appropriate laminate. The analysis under-predicted

the response at 105 minutes by about 8 %. However, for several years, the error

would be much greater. Upon performing a sensitivity analysis on all fitting

parameters he found that the power law exponent was the largest contributor to

error. As seen earlier, the power law does not provide the best fit to general

viscoelastic creep compliance data, likely leading to this result. Thus while the

small number of parameters makes the power law amenable to the semi-

graphical approach to finding the Schapery model parameters, the numerical
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methods mentioned earlier can be successfully applied using a Prony series

expansion for the creep compliance (Tuttle 1995) and may provide better results.

A TSSP recovery master curve such as the one shown in Fig. 10.12 is not very
useful for long-term predictions. However, creep data (or its analytical repre-

sentation) as shown in Fig. 10.13 can be converted into creep compliance data as

a function of time for various stress levels. The data can then be shifted to form a

master curve for any one of the individual stress levels similar to the process of

shifting data at different temperatures to achieve a TTSP master curve as

described in Chap. 7. By shifting data to the lowest stress level (analogous to

shifting to the lowest temperature), a master curve extending to the longest times

can be found. This approach to form a stress dependent master curve is discussed

and demonstrated in the next section.

Before closing this section it is important to point out that the Schapery

nonlinear characterization approach is best used for materials that do not have

residual permanent deformation when the stress is removed. Therefore, the

technique is best used for cross-linked or thermosetting polymers and not for

thermoplastics or those referred to as linear polymers. It has been demonstrated

that the Schapery technique may be used if the residual permanent deformation

is subtracted from the creep and creep recovery response. However, the amount

of permanent deformation needs to be small and a means to pro-rate the total

amount over the total time scale is necessary. Tuttle et al. (1995) and coworkers

(see also Pasricha et al. 1995 and Wing et al. 1995) have developed procedures

to include parameters in the Schapery method that allow permanent deformation

to be a part of the analysis. They use a nonlinear viscoplastic functional

employed by Zapas and Crissman together with the Shapery model to find all

material parameters for a graphite-bismaleimide composite and then use the

results to predict the response of a laminate using classical laminated plate

theory. Popelar et al. (1990) has developed a nonlinear model that incorporates

permanent deformation into the analysis and prediction of properties of poly-

ethylene pipe. In addition, in recent years analytical models have been devel-

oped for nonlinear viscoelastic materials including the growth of damage and

associated permanent deformation. For example see Weitsman (1988) and Ha

and Schapery (1998). Segard et al. (2002) have used a procedure similar to that

of Tuttle to model the behavior of a chopped glass fiber polypropylene compos-

ite with linear and nonlinear viscoelastic regions without damage and a

nonlinear viscoelastic region with damage.
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10.4. Empirical Approach To Time-Stress-
Superposition (TSSP)

The fundamental concept behind both the TTSP and the TSSP is that the

deformation mechanisms associated with time-dependent response at one tem-

perature or stress (strain) level are the same as those at another level except that

the time scale of the sequence of events is longer at a lower stress (strain) level or

the time scale is shorter for a higher stress (strain) level. Basically, this allows for

the deceleration or acceleration of the mechanisms of deformation and allows

for either decelerated or acceleratedSee superposition predictions of response.

Obviously, the latter is the most useful as by performing a test at a higher

temperature or higher stress level, the collection of essential material data

(parameters) can be shortened. For example, it is often necessary to design

engineering structures for a life of 20–50 years. It is impossible to run tests for

that duration to understand how polymer properties change over that time scale

prior to making material decisions and building a structure. As a result, it is

critical to have a process such as the TTSP and the TSSP to allow the determi-

nation of time dependent properties that may occur over a long time from tests

that take place only over a short time.

The development of master curves using a semi-empirical TTSP approach

was discussed in Chap. 7. A similar semi-empirical TSSP is can also be used to

obtain a master curve valid over a long time at one stress level by shifting and

superposing creep compliance (or relaxation modulus) data obtained at other

stress levels in a short term test. This principle is illustrated in Fig. 10.14.
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Fig. 10.14 TSSP master curve formation
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Hiel has used both the TSSP and the Schapery procedure to produce master

curves of the shear behavior of a carbon epoxy composite. An example of his

results is given in Fig. 10.15. The shear creep compliance of a carbon epoxy

composite is shown for various stress levels. The data were shifted horizontally

to form a smooth master curve for the lowest stress level as illustrated by the

open symbols. The Schapery procedure was also used independently on this data

set and the resulting master curve prediction is indicated by the solid line. For

more details, see the cited reference in Fig. 10.15.

The TTSP and the TSSP can be combined to produce a master curve that can

be shifted both as a function of temperature and stress. The shift factors are

therefore multiplicative to the time scale, or additive on a logarithmic time scale.

This process is shown in Fig. 10.16 where two paths are indicated to find the

final master curve. In both cases, creep curves at different stress and temperature

levels are found experimentally. Following the left path, the family of curves for

each stress level is assembled on one graph and TTSP used to obtain TTSP

master curves of the response at a reference temperature; one master curve for

Fig. 10.15 Shear compliance of a carbon/epoxy composite at 320 �F (Data from Hiel

et al. 1984). Master curve shown with open symbols shifted by aσ and

Schapery master curve fit (thicker solid line); Schapery parameters retrofitted

to the individual creep curves also shown
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each stress level is obtained. Subsequently, TSSP is performed on the master

curves in (c) to obtain the grand Time-Temperature-Stress-Superposition master

curve in (e). The right path is performed similarly, but starting with TSSP and

then applying TTSP to the stress based master curves in (d). The same grand

master curve should be obtained via either path. A detailed discussion of the

limitations of the process can be found in Griffith (1980). An example for the

formation of a master curve using TSSP is shown in Figs. 10.17 and 10.18 for the
shear compliance of a carbon epoxy composite at 320 �F. TTSP was also used to

form a master curve for the same material and the combined shift function

surface is shown in Fig. 10.19.

(a)

(e)

(b)

(c) (d)

Fig. 10.16 Combination of TTSP and TSSP to form a TTSSP master curve
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From this discussion as well as the information in Chap. 7 on time-

temperature relationships and time-aging time relationships, it is clear that

there are a variety of environmental factors that affect the long-term response

of polymers and their composites. These parameters include temperature, stress,

moisture,* physical aging, chemical aging, and others. In many of these cases, as

has been shown here and in Chap. 7 with temperature, physical aging and stress,

it is possible to consider the effects of the variables individually over short time

periods and to represent long time behavior via superposition principles. These

superposition principles are such that shifting experimental data on the log time

scale produces shift factors which are used as a multiplicative factor on the time

in expressions for material properties and in constitutive equations. And it is in

this manner that long-term predictions can be made for material response.

Ideally, it is desirable to find a convenient way by which all the relevant

environmental factors could be combined into a single procedure to make

lifetime predictions. This concept is expressed in the shift factor surface as

shown in Fig. 10.19 for the two parameters of stress and temperature, and can

in general be thought of as a multidimensional surface for all factors similar to

that proposed by Landel and Fedders (1964). However, in the examples shown

here, each effect is probed individually to produce the shift factors, while when

the environmental conditions occur simultaneously there are nonlinear interac-

tion effects that prevents application of such a simple concept universally. The

nonlinear model pioneered by Knauss and Emri (1981) mentioned earlier is one

approach to attempt to address these coupled effects theoretically in a single

complex shift factor function. Popelar and Leichti (2003) extended this approach

to incorporate distortional changes into the Knauss free volume model that is

largely related to dilatational effects. This area of long-term predictions of

polymer behavior considering multiple coupled environmental variables is still

an active area of research where continued effort is needed (See: Going to
Extremes: Meeting the Emerging Demand for Durable Polymer Matrix Com-
posites, by Committee on Durability and Life Prediction of Polymer Matrix

Composites in Extreme Environments, National Research Council, National

Academy Press, 2006).

* A time-moisture-superposition-principle is discussed, for example, by Crossman and Flaggs

(1978). See also, Flaggs and Crossman (1981).
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Fig. 10.17 Shear compliance of a carbon/epoxy composite at 320 �F at various stresses

(Data from Griffith et al. 1980)

Fig. 10.18 Shear compliance master curve of a 10� carbon/epoxy composite developed

from TSSP at 320�F (Data from Griffith et al. 1980)
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10.5. Review Questions

10.1 Name and describe the two types of nonlinearities most frequently used in

engineering analysis.

10.2 Name and briefly describe two other less well-known types of

nonlinearities.

10.3 Define extension ratio. In which type of nonlinearity is the extension ratio

typically used?

10.4 Why is creep recovery data often used to determine the exponent, n, in the

creep power law?

10.5 What is the TSSP? Describe the experimental process by which it is used.

10.6 What analytical approach is a mathematical statement of the TSSP?

10.7 Is it possible to combine TTSP and TSSP? If so describe the process.

10.8 Is there evidence of a time- moisture-superposition principle?

10.9 Why are concepts such as the TTSP and TSSP important? Give examples.

10.10 It is suggested that the reader perform additional reading on the subjects

of the theory of rubber elasticity with especial emphasis on the thermo-

dynamic approach to the theory.
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Fig. 10.19 Shift functions surface for a combined compliance master curve for the same

material given in Fig. 10.18 (From Griffith et al. 1980)
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10.6. Problems

10.1 Discuss the power law in its various forms and compare it to the use of a

Prony series to represent viscoelastic data.

10.2 Discuss various methods to find the creep exponent in the power law. Is it

ever a function of stress? Temperature? Explain.

10.3 Perform a literature search for various forms of the power law with special

attention to a modified form that allows a better representation of long time

behavior. The latter is sometimes referred to as the modified or generalized

power law. (Three sources are Hiel et al. (1984), Halpin (1967) and Landel

and Fedders (1964))

10.4 Determine the power law parameters for the following creep data.

σ0¼ 6.19 MPa (1 ksi)

(Hint: There are several methods used to find power law parameters but

sometimes the fastest is trail and error. However, the reader would benefit

from research for various possible procedures as suggested in problems

10.1–10.3.)

10.5 Consider a nonlinear viscoelastic material which is well modeled by the

Schapery approach.Would it be possible to determine all seven (7) material

parameters only using creep tests? That is, not using recovery (unloading)

data or a multiple steps in stress? Give a detailed explanation for your

answer.

10.6 Using the nonlinear creep and creep recovery data given below, find the

seven material parameters (D0, D1, n, g0, g1, g2 aσ) needed for representa-

tion by the Schapery equations.

Time (min) Strain (%)

1 0.324

5 0.335

10 0.340

20 0.348

30 0.352

40 0.355

50 0.359
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Creep

Stress 1 ksi 2 ksi 3 ksi 4 ksi 5 ksi

Time (min) ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in

0 3 6.3 9.9 13.8 18

0.5 3.63 7.84 12.48 17.71 23.46

1 3.75 8.13 12.96 18.44 24.5

2 3.89 8.48 13.54 19.32 25.73

5 4.12 9.04 14.48 20.75 27.72

10 4.33 9.55 15.35 22.06 29.56

20 4.59 10.17 16.38 23.62 31.74

30 4.76 10.58 17.07 24.67 33.2

Recovery

Stress 1 ksi 2 ksi 3 ksi 4 ksi 5 ksi

Time (min) ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in ε 10+2 μ in/in

30 1.52 3.38 5.44 7.94 10.72

30.5 1.13 2.55 4.14 6.11 8.35

31 1.02 2.3 3.76 5.57 7.65

32 0.89 2.02 3.32 4.95 6.85

35 0.7 1.61 2.67 4.02 5.62

40 0.55 1.28 2.13 3.25 4.6

50 0.41 0.95 1.61 2.48 3.56

60 0.33 0.78 1.33 2.06 2.98
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11. Rate and Time-Dependent Failure: Mechanisms
and Predictive Models

No text on polymer science and viscoelasticity is complete without a discussion

of time-dependent failure and just as with other structural materials, failure must

be defined. In this chapter, only failure by a creep to yield or a creep to rupture

(separation) will be considered. We will address both the mechanisms of defor-

mation that often precede these types of failures as well as modeling to describe

this behavior. The primary focus will be on one-dimensional models but many of

the models discussed have been or can be extended to three-dimensions. The

procedures to be discussed are not new and are relatively easy to use by the

design engineer to make estimates of the time for either yielding or rupture to

occur. While no discussion of either viscoelastic fracture mechanics or fatigue

crack growth will be given these are very important topics and the reader is

referred to Knauss (1973, 2003) for the former and to Kinloch and Young (1983)

for the latter for an in-depth discussion of these topics. Fracture based

approaches for prediction of time to failure work best when a crack of a

known size exists. The same is true for fatigue as a relation between crack

growth rates and time to failure can be established. Other approaches provided

by damage mechanics (Krajcinovic 1983) and viscoplasticity (Lubliner 1990)

provide a more rational but highly mathematical approach to damage and/or

failure evolution for three-dimensional stress states and are perhaps best suited

for numerical procedures such as the finite element method. Here we restrict

ourselves to simpler, analytic approaches to introduce the fundamental issues.

Failure is a defined quantity that must be established in the initial design

stages. Typically, structural failure is defined as excessive deflection, yielding,

or rupture. Excessive deflection may occur while materials of a structure are

linear elastic or viscoelastic without yielding and for such circumstances can be

predicted and prevented by elastic or viscoelastic stress, strain and deflection

analysis as described in earlier chapters. The focus in this chapter will be on

excessive deformation due to time-dependent yielding and/or progressive dam-

age accumulation leading to rupture.

For metals, concrete and other usual building materials various design criteria

have emerged to avoid failure by either yielding or rupture. These are often

called “theories of strength” and date back to discussions by Galileo in 1638 (see

Sandhu 1972). Three such strength theories discussed previously in Chap. 2 are
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the maximum normal stress theory, the maximum shear stress theory and the

maximum distortion energy theory. While these are the most used theories, in

reality there are hundreds more that have been proposed since the days of

Galileo. Sandu (1972) describes more than 30 theories of failure for isotropic

and anisotropic materials, most of which have been used for fiber-reinforced

laminated (polymer and metal matrix) composites but none include a creep to

yield or creep to rupture process. A review article by Yu (2002) entitled

“Advances in strength theories for materials under complex stress state in the

20th Century” cites more than a 1,000 references but only about ten are related to

polymers and these do not explicitly speak to a time dependent failure process.

A major difficulty with predicting any type of failure including those for time

dependent materials is that our analytical foundation for stress, strain and

deformation analysis is based upon continuum mechanics that assumes that the

material is continuous without flaws down to infinitesimal dimensions. Certainly

such an assumption is not true for any realistic structural material including

polymers. Therefore a method is needed to include a distribution of defects into

continuum models which is what time dependent versions of plasticity theories,

fracture mechanics and damage mechanics attempt to do. Herein some of the

earlier approaches for the prediction of time dependent failures will be

presented, several of which provide explicit elementary equations that can

be used to predict the onset of time dependent yield and/or rupture. Two of

these approaches (Nagdi and Murch 1963; Reiner and Weissenberg 1939, 1964)

are unique in that the viscoelastic constitutive model for the material is

contained in the failure law and for that reason are sometimes called “unified

models”. With these introductory approaches and accompanying data, we dem-

onstrate the fundamental issues of creep yielding and creep rupture in polymers

along with simple tools to describe such behavior. Armed with this knowledge,

the interested reader can delve into more advanced treatises on viscoelastic

fracture and damage accumulation mentioned earlier.

11.1. Failure Mechanisms in Polymers

Before entering into mathematical descriptions of creep yielding and rupture, it

is instructive to describe several of the physical deformation mechanisms most

often considered to lead to polymer failure. These mechanisms involve large-

scale irreversible molecular changes with the most common optically visible

result of shear banding or crazing as described below.
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11.1.1. Atomic Bond Separation Mechanisms

As discussed in Chap. 2, the rupture or fracture of materials must, at the atomic

and molecular scale, involve the separation of individual atoms and molecules.

A long-standing interpretation of interatomic forces and the resulting energy

necessary for equilibrium is as given in Fig. 2.22d, e. In order to break the bond
between two atoms the applied external force must generate internal forces

which exceed the maximum. Equivalently, the amount of energy created by

external forces must be larger than the bond energy, EB¼D, at the equilibrium
spacing r0. From Fig. 2.22 the addition of the attractive force and the repulsive

force gives total force and is,

F ¼ nα
rnþ1

� mβ
rmþ1

(11:1a)

and the total energy is,

E ¼ β
rm

� α
rn

(11:1b)

where the variables are all as defined in Chap. 2. These equations are for only

two atoms. However, expressions for groups of atoms are similar to the above

equations with summation over the group.

As discussed in Chap. 4, atoms are in a constant state of motion with the

frequency and amplitude being related to the temperature. In a polymer, the

motion is related to the amount of free volume and is small below the glass

transition temperature and increases dramatically as the temperature is increased

above the glass transition temperature. At the Tg the free volume in many

polymers is approximately 1/40 or 2.5 % of the total volume.

In thermoplastic polymers the bonds between individual chains are secondary

and the amount of free volume is sufficient for local chain motion. In thermo-

setting polymers interchain interactions between cross-linked sites are also

secondary bonds and motion of these segments is similar. A mechanism of

“switching” often used to describe the nature of motion in a viscous liquid

is sometimes used to describe these local atomic movements in polymers.

As illustrated in Fig. 11.1a, the atoms in a liquid can change positions through

a rotational jump. (See McClintock and Argon 1966; Courtney 1990; Shames

and Cozzarelli 1992 for more detailed discussion of this process).
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In a liquid with a low viscosity or in a gas, the switching can take place

spontaneously without the application of stress. For solid thermoplastic poly-

mers, a first approximation is to assume that the application of external forces

creates an internal shear stress sufficient to cause an atom to escape the energy

well shown in Figs. 2.22e and 11.1b (D is the disassociation energy) and thus

enable switching.

While many have used the above analogy for metals and for polymers, the

nature of the switching phenomena is quite different in a polymer than in a

simple liquid. In a polymer the beads in Fig. 11.1a must represent atoms along

the backbone chain and, hence, it is difficult to visualize how the switching

can take place without affecting the primary bonds along the backbone chain.

E

r

D

(a) Rotational jump in a liquid. (b) Atom at temperature T vibrating in an
energy well. 

(c) Schematic of polymer chain movement through its neighbors by reptation.

Fig. 11.1 Molecular mechanism for flow of liquids and creep of solids
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A newer approach that treats the motion of polymer molecules in terms of

reptation or a worm-like creeping motion of one polymer molecule through

the matrix formed by its neighbors is likely a better visualization for polymers

(Fig. 11.1c; see also Aklonis et al. 1983 for a brief description).

It is possible to show that the binding or disassociation energy that must be

overcome is (see Shames and Cozzarelli 1992),

D ¼ α
rn0

1� n

m

� �
(11:2)

Clearly the energy needed to escape the energy well varies with temperature and

since all properties of polymers are both time and temperature dependent, it is

reasonable to assume that the disassociation energy, D, for polymers is also a

function of time and temperature. Often this time and temperature dependence is

modeled by the Ahrrenius reaction rate equation,

Φ ¼ Ae�
Ea

kT (11:3)

where Φ is the rate of a process, A is a constant, Ea is the activation energy, k is

Boltzman’s constant and T is the absolute temperature. This equation was

developed by Ahrrenius for the purpose of explaining the rate of chemical

reactions but it is also widely used to model the rate of many processes.

Undoubtedly, Ahrrenius was strongly influenced by Boltzman (he was an asso-

ciate of Boltzman’s for a time) and his equation has a strong resemblance to the

well-known Maxwell-Boltzman equation. The Maxwell-Boltzman equation was

developed for the gaseous state and defines the probability that a molecule will

have a particular energy state among all the energy states of the total number of

molecules in the volume (for discussion, see Freudenthal 1950; Glasstone

et al. 1941; see also Wikipedia entry on Maxwell-Boltzmann distribution).

Iyring has suggested that the Ahrrenius equation is inadequate in many

instances and that an equation with two reaction rates is more appropriate. His

equation can be written as,

Φ ¼ Φ0e
nS ¼ aTwexp

�Ea

kT

� �
exp S cþ�Ea2

kT

� �� �
(11:4)

where a, c, w, Ea, Ea2 and k are constants. In Eq. 11.4 Ea, and Ea2 are the two

activation energies while S is a stress dependent function and n ¼ cþ �Ea2

kT
(for a

description of this approach, see: Carfagno and Gibson 1980; or Ward and

Hadley 1993). Others have also noted that the activation energy is not a constant
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and have suggested that the activation should be represented as a variable

function of temperature and stress.

The activation energy approach has been used to develop both time dependent

yield and time dependent rupture models, wherein a critical activation energy is

defined and the expressions can be used to determine the time to yield or rupture

under given static loading conditions. A few of these approaches will be

discussed briefly in later sections.

Before closing this section it should be mentioned that efforts have been made

to directly calculate the failure or fracture (separation) strength of a solid using

the atomic bonding model. It is relatively easy to show that, based on Fig. 2.22
and Eq. 11.1, the theoretical strength of a perfectly arrayed crystalline solid

should be on the order of the elastic modulus. For example, since the modulus of

mild steel is 206� 106 MPa (30� 106 psi) the strength should be of similar

magnitude. Since the tensile strength of mild steel is only 206� 103 MPa

(30� 103 psi) there is obviously something significant missing from the strict

atomic bond separation prediction for strength. A similar argument can be made

for any solid polymer. The answer is, of course, that both types of solids have

many inherent flaws due to production processes that drastically lower the

tensile strength. Some of these flaws and imperfections that lead to lower

strength in polymers will be discussed in succeeding sections as well as potential

mechanisms that lead to lower strength. It is known, however, that the strength

of ether metals or polymers can be drastically improved if the production process

is better controlled to avoid flaws and imperfections. Further, by creating more

perfect crystalline structures strength properties can be greatly improved.

11.1.2. Shear Bands

Shear bands develop in polymers due to large-scale movement of molecular

chains and usually initiate at a site of higher stress than the surrounding region or

a point of stress concentration. An example of a shear band formation in a

uniaxial tensile test of a thin specimen of polycarbonate is shown in Fig. 11.2.
The Luder’s band begins to form at a point of high stress (likely due to an edge

defect created during machining) such as that indicated by the high concentra-

tion of isochromatic fringes at the beginning of the tapered region of a tensile

specimen of polycarbonate shown in (a). The yield region grows into a V-shaped

band as shown in (b) where the photo is taken after removal of the load. The

existence of the birefringence fringes after unloading indicates residual
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permanent strains remain after unloading. A neck forms with continued loading

beyond the point of Luder’s band initiation as shown by the unloaded specimen

in (c). Similar strain localization in polycarbonate has been measured and

compared to numerical modeling in Parsons, Boyce and Parks (2004) and Lu

and Ravi-Chandar (1999).

Another example of a Luder’s band in polycarbonate is shown in Fig. 11.3a.
Also shown in Fig. 11.3b are micro-shear bands which form in polystyrene. In

each case, birefringence photos of an unloaded specimen show the residual

plastic deformation remaining after load removal. In polycarbonate, yielding

initially produces a single slip (shear) band at a 54.7� angle with the long axis of
the specimen as seen in Fig. 11.3a. With propagation and depending on the

specimen thickness, the shear band can develop a V-shape as shown in Fig. 11.2.
Very thick specimens will form a band (or neck) perpendicular to long axis of

Fig. 11.2 Typical isochromatic fringe patterns1 showing stress contours in polycarbon-

ate: (From: Brinson 1973) (a) at incipient yielding. (b) Unloaded specimen

after Luder’s band formation. (c) Unloaded specimen after neck formation

1The birefringence photos here and elsewhere were taken by viewing a specimen using polarizing

filters such that stress or strain induced birefringence could be viewed. The fringes are termed

isochromatics because if they are viewed with polychromatic light they will appear in various

colors dependent upon the stress field. The fringes are black here as the specimen is illuminated

with monochromatic light. In this text the isochromatics are not being used for stress or strain

analysis but simply to enhance the ability to view the shear band region. For more information, see

Optical Methods in engineering Analysis by G. Cloud, Cambridge University Press
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the specimen. Interestingly, the angle of the slip band does not coincide with the

direction of maximum shear stress of 45� as might be expected. Rather, the angle

conforms to the direction associated with the maximum distortion energy or the

octahedral angle as described in Chap. 2. (See Nadai (1950) for a discussion of

Luder’s bands in metals and Hetenyi (1952) for a discussion of Luder’s bands in

nylon 66.) However, the angles of the slip bands will depend upon the ductility

of the material. Polycarbonate exhibits nearly perfectly plastic flow past the

yield point and a distortion energy failure law is reasonable.

Molecular mechanisms associated with shear band formation are indicated

schematically in Fig. 11.4. Shear bands form due to the orientation of molecules

in regions of high stress. Initially, deformation in glassy polymers is associated

with stretching bond angles and small conformation changes due to bond

rotations. However, as the external loads increase, the internal stresses on the

molecular scale increase and the level of molecular energy nears the disassoci-

ation energy for secondary bonds, large movement of the molecules can occur.

Some motion comes from the relaxation of kinks in the structure during poly-

merization and some comes from conformation changes. That is, the molecules

tend to become unentangled and they begin to orient in the direction of the local

maximum octahedral shear stress (or the direction of maximum distortion

energy). Eventually, the molecules will tend to orient with the direction of

maximum external load as shown in Fig. 11.4.

Fig. 11.3 Shear (slip) bands in two polymers
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11.1.3. Crazing

Crazing is another deformation mechanism for glassy polymers but unlike shear

bands crazes form perpendicular to the maximum normal stress. Crazes are

micro-cracks that occur due to the formation of micro-voids at points of high

stress concentration such as surface scratches, particulate inclusions such as dust

particles or even small voids occurring during processing. Crazes in a modified

(rubber toughened) epoxy are shown in Fig. 11.5. Here the crazes are quite small

but many of them join together to produce white striations across the specimen.

For transparent polymers, a milky appearance or translucency may occur while

in an opaque polymer, as in Fig. 11.5, the crazes appear as white regions often
called stress whitening. (This is the principle behind embossed plastic labeling

tape). Generally, crazes are caused by dilatational stresses while shear bands are

caused by deviatoric stresses.

Crazes occur in both brittle and ductile polymers but they are often very hard

to see with the naked eye. For example, they can be seen in tensile tests of thin

polycarbonate fracture specimens if viewed from the correct angle and with

lighting such that the edge of the tiny cracks are positioned to reflect light back to

the viewer. A single edge notched tensile specimen is shown in Fig. 11.6 after

plastic zone growth and load removal. The crack is at the extreme left and the

plastic zone is the long, horizontal flame shaped region in the center; the sudden

reduction in thickness of the specimen at the edges of the plastic zone changes

the refraction of light from the specimen allowing its visualization. Just ahead of

the plastic zone is a region of crazes that formed while loading and due to the

residual permanent deformation remain visible after unloading. The craze zone

at the end of the plastic zone is nearly circular and represents the intense energy

region often discussed in regard to the stress field in front of a crack in a brittle

Neck

el
as

tic
al
ly

de
fo
rm

ed
m
at
er
ia
l

nu
cl
ea

tio
n

pr
op

ag
at
io
n

zo
ne

zo
ne

or
ie
nt
ed

m
at
er
ia
l

P

Fig. 11.4 Mechanisms for the formation of slip bands and a neck in a ductile polymer
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material that arises using the theory of linear elastic fracture mechanics. The

distortion of the circular shape is due to the angle at which the specimen was

photographed. Linear elastic fracture mechanics forms the basis for the analysis

of cracks in ductile materials via the Dugdale model. (See Brinson 1969).

Several mechanisms have been suggested to explain the formation of crazes

in polymers. One approach suggests that crazes initiate either on the surface of a

polymer at imperfections such as small flaws or scratches, or at internal defects

such as air bubbles dust particles, etc. The mechanism for the crazes shown in

Fig. 11.5 is likely the inclusion of rubber particles as discussed in Chap. 3 (see

Fig. 3.2). The crazes shown in Fig. 11.6 may be both due to small surface or

internal cracks occurring in the intense stress region at the crack or plastic zone

tip. While a craze may start at an imperfection such as a dust particle or small

void, a mechanism for craze growth is needed to account for the multiplicity of

crazes at the plastic zone tip in polycarbonate seen in Fig. 11.6 which, of

necessity, must be different than that due to the inclusion of rubber toughened

particles as in shown in Fig. 11.5. One explanation is that the triaxial stress field
in the region ahead of the tip of a micro-crack must be sufficient to cause a new

crack to nucleate immediately ahead of the old crack while leaving a small

ligament in between. The nucleation process is repeated until a number of the

micro-cracks coalesce to form a larger visible crack. Numerous such visible

cracks are formed and eventually one will dominate and lead to eventual failure.

This mechanism of craze growth and others are described in detail by Kinloch

and Young (1983) and Courtney (1990).

Fig. 11.5 Crazes (whitened regions) in a modified epoxy Metalbond 1113-2 (Renieri

et al. 1976). (a) Failed tensile specimen. (b) Enlargement of a central

crazed area
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11.2. Rate Dependent Yielding

First it is important to place in perspective the concept of yield behavior. For

most metals yielding is defined as the point on the tensile stress strain diagram

found in a constant strain-rate test after which a permanent deformation will

exist on unloading. As it is experimentally difficult to determine this point, often

a 0.2 % offset method is used as described in Chap. 2. However, in the case of

mild steel it is customary to define yielding as having occurred when the load in a

constant strain rate test decreases while the strain continues to increase as shown

in Fig. 2.8. In this manner, both upper and lower yield points are identified.

Typically the lower yield point associated with the plateau region is defined as

the correct one to use in analysis. In Chap. 3, Fig. 3.7 shows that polycarbonate

has a stress strain behavior similar to that of mild steel and again it is appropriate

to define yielding at the lower yield point. However, for polycarbonate, if true

stress and strain are used no stress decrease occurs and yielding may be consid-

ered as the beginning of the plateau region. Such a description agrees with the

use of Considere’s definition of yielding given in Fig. 3.5. It should be noted that
many different yield criteria have been used for polymers and no single defin-

itive definition is available which is suitable for all polymers.

For mild steel the tensile stress strain behavior in a constant strain-rate test is

often approximated by two straight lines as shown earlier in Fig. 2.9b and here in

Fig. 11.6 Craze region at tip of plastic yield zone ahead of an edge crack in thin sheet of

polycarbonate. (The white region along the crack and the long plastic zone is

reflected light due to the oblique angle of exposure (out of the plane of the page)
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Fig. 11.7. Here the permanent strain, εp, after unloading is indicated and the total
strain, εtot, at some arbitrary point is given by,

εtot ¼ εe þ εp (11:5)

where εe is the elastic strain and εp is the plastic strain or the amount of strain

past the yield point. This type of stress strain diagram forms the basis for

classical plasticity theory. The stress strain law for the elastic portion of the

diagram is given by σ¼Εε and for the yielded portion by σ¼μ _ε. That is, the
elastic portion is represented by Hooke’s law and the yielded portion is

represented by the Newtonian law for viscous liquids. It might appear that the

yielded portion is rate dependent but that is not the case as in classical plasticity

theory the yield stress is assumed to be rate independent. Newton’s law of

viscosity simply provides a convenient way to calculate the deformation past

the yield point inasmuch as a constant strain rate test is being used.

0 εy εp

εpεe

εtot ε

σy

σ

Fig. 11.7 Idealized stress–strain diagram for mild steel

Fig. 11.8 Rate dependent ideal rigid-plastic stress–strain response
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It is well known that many materials have yield points that vary with strain

rate. Notably mild steel has a significant variation in the yield stress with strain

rate at high temperature, as do other metals. As a result, various rate dependent

plasticity theories have been developed for metals and some of these have been

extended to polymers. Early approaches used idealized stress–strain response

such as that shown in Figs. 11.8 and 11.9. In Fig. 11.8 the material is assumed to

be rigid but with a rate dependent yield point. Such an assumption can be

reasonable in cases where the component for the elastic strain is very small

compared to the plastic strain component and for practical purposes can some-

times assumed to be zero.

A mechanical model to represent a rigid-plastic material is shown in

Fig. 11.9a. The model is simply a friction element that moves or slides only

when the frictional resistance is overcome. Thus the constitutive equation for the

friction element is

σf ¼ σ
ε ¼ 0

for

�
σ < σy

σf ¼ σy for σ � σy
(11:6)

Note that when the stress applied to the friction element reaches σy, the strain

increase is not defined and thus this element must be used in conjunction with

other elements to define the strain (rate) changes.

(a) Rigid-plastic material (b) Rigid-elastic material

E

E

0

σy

σ

σy

σ

ε0

σy

σ

σy

ε

Fig. 11.9 Mechanical models to represent yielding
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A rigid-elastic element is shown in Fig. 11.9b that moves linear elastically

after friction is overcome. Stress–strain diagrams of the two materials are also

shown in Fig. 11.9.

In studies of viscous fluids (such as paint), Bingham (1922) suggested that

some fluids do indeed have a yield point and suggested the model shown in

Fig. 11.10a. In this model, a viscous element and a friction element are in

parallel. Upon applying a stress, no movement occurs until the resistance of

the friction element is overcome. The stress–strain response is that of a rigid-

viscous material and is as shown in Fig. 11.10b.

To account for rate effects after yielding in solids Ludwik (1909) and Prandtl

(1928) observed that for some materials the yield stress in uniaxial tension was

linearly related to the logarithm of strain rate and suggested use of the equation,

σy ¼ σ0 þ σ1log
_εp
_ε0

� �
(11:7)

where σy is the applied tensile stress at yield for the strain rate _εp, σ1 is a constant
and σ0 is the yield stress for the strain rate _ε0. Constant strain (head) rate tests on
polycarbonate shown in Fig. 11.11a reveal the applicability of Eq. 11.7 to

polymers. Also, it should be noted that similar results were obtained for a

modified (or rubber-toughened adhesive (Brinson et al. 1975). In Fig. 11.11a
the term “initial” applied to the strain rate emphasizes that in reality the strain

rate varies slightly in a constant head rate test especially for a viscoelastic

polymer at stresses and strains near the yield point.

0

t3

t2

t1

σy

σ

μ
ε

σy

σ

(a) Rigid-viscous model of a fluid
     with a yield point.

(b) Isochronous stress-strain behavior
     of a rigid viscous fluid.

Fig. 11.10 Bingham model for a rigid viscous-fluid with a yield point
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Equations to represent the rate dependence of polymers have been developed

by Bauwens-Crowet et al. (1969) using the Eyring activation energy method

resulting in the following expression,

(a)

(b)

Fig. 11.11 Yield stress strain-rate behavior of (polycarbonate). (a) Room temperature

data (Brinson 1973). (b) Variation with temperature (Data from Bauwens-

Crowet 1969; see also Miller 1996)
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σy ¼ Ea

ν
þ kT

ν

� �
ln

_ε
c

� �
(11:8)

where ν is an activation volume, c, is a constant and the other parameters are as

described previously. A plot of the yield stress as a function of strain rate and

temperature for polycarbonate is given in Fig. 11.11b. See, Miller (1996) for a

brief description of this model, as well as the original reference.

Rearranging Eq. 11.7 results in

_εp ¼ _ε0 exp
σy � σ0

σ1

� �
(11:9)

where the conversion factor from base 10 logarithms to natural logarithms is

contained in _ε0.

Use of Eq. 11.9 to describe rate effects is often called the over-stress model

which was developed mostly for metals under high rates of loading and used

more in dynamic circumstances of impact, ballistic penetration, wave propaga-

tion, etc. (See Cristescu 1967). Krempl and his associates have used the over-

stress technique for various polymers (e.g., Bordonaro and Krempl 1992).

Malvern (1951), expressed stress as a function of plastic strain rate as,

σ ¼ f εð Þ þ a ln 1þ E _εp
	 


(11:10)

which can be expressed as,

_εp ¼ 1

E
exp

σ� f εð Þ
a

� �
� 1

� �
(11:11a)

or

E _εp ¼ F σ� f εð Þð Þ (11:11b)

and since, _ε ¼ _εe þ _εp, then,

E_ε ¼ _σ þ F σ� f εð Þð Þ (11:12)

Malvern also used the more general form,

E_ε ¼ _σ þ g σ; εð Þ (11:13)

Sokolovsky, suggested the equation,
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_ε ¼ _σ
E
, σ < σy

_ε ¼ _σ
E
þ g σ� σy

	 

, σ > σy

(11:14)

Perzyna (1980), generalized the overstress concept to obtain,

_eij ¼ _sij
2G

, f < 0

_eij ¼ _sij
2G

þ γϕ fð Þ ∂f
∂σij

, f > 0

(11:15)

where γ is a material constant related to the viscosity.

The above mathematical models2 (and later derivatives) define constitutive

relationships for the plastic strain regime and they all assume a linear elastic

behavior terminated by a yield point that is rate dependent. Hence the yield

surface of the material is rate dependent. Since the purpose of these models are

to develop methods to calculate deformations which are rate dependent beyond

the yield point of a material they are often referred to by the term viscoplasticity.
(see Perzyna 1980; Cristescu and Suliciu 1982). This practice is analogous to

referring to methods to calculate deformation beyond the yield point of an ideal

rate independent elastic–plastic material as classical plasticity. However, more

general theories of viscoplasticity have been developed in some of which no

yield stress is necessary. See Bodner (1975) and Lubliner (1990) for examples.

11.3. Delayed or Time Dependent Failure of Polymers

Due to their inherent viscoelastic behavior many polymers exhibit a time

dependent failure process either by delayed yielding or rupture under conditions

of constant load. Depending upon the type of structure and loading circumstance

this may occur under either creep or relaxation conditions. The creep response of

Polycarbonate is shown in Fig. 11.12a and indicates that creep to yield occurred
in 5 minutes at a stress level 9,056 psi but took 40 hours for yielding to occur at

2 For a review of early models, see Sancaktar (1987). Also see Cristescu (1967; Cristescu and

Suliciu 1982) for the references cited as well as further discussion. For a more complete description

of plasticity and viscoplasticity see, Shames and Cozzarelli (1992) as well as Bodner (1975) and

Lubliner (1990).
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7,952 psi. In Fig. 11.12b a delayed rupture occurred in a �45�½ �4s graphite epoxy
specimen containing a centrally located circular hole. Here several tensile

specimens were ramp loaded in a closed loop hydraulic testing machine and at

a certain point the machine was stopped and held in a fixed grip (or relaxation)

mode. Depending on the aspect ratio of the hole diameter to specimen width,

rupture (complete separation) of two specimens occurred at the times indicated.

(The load was removed prior to failure for the specimen with the lowest aspect

ratio.) The fact that the specimen failed while the load was decreasing signifi-

cantly can be attributed to the viscoelastic behavior of the matrix which led to

time delayed failure. Examination of the perimeter of the hole revealed small

growing cracks in the outer plies in the +45� direction while other cracks on the

interior plies in the�45� were growing in the opposite direction. For this reason,
far field strains (and hence loads) were decreasing to compensate for the

increased local strains in the cracked region in such a way that the overall

(global) deformation could remain constant.

Creep failures such as those illustrated in Fig. 11.12 are often called static

fatigue and are not uncommon in practical applications such as pressurized

piping applications. Kinloch and Young (1983) gives data on the creep rupture

of high-density polyethylene pipe (HDPE) and an excellent discussion of the

mechanisms associated with static fatigue.

(a) (b)

Fig. 11.12 Delayed Failures in polymer based materials. (a) Creep of polycarbonate (Data

from Brinson 1973). (b) Deformation control tensile test of a graphite/epoxy

specimen; solid points represent rupture (Data from Brinson et al. 1981a)
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At this juncture it is appropriate to recall the failure envelope given in

Chap. 2, Fig. 2.20 that displays a comparison of failure stresses for both metals

and polymers to the three failure theories mentioned therein. The data provided

for both polymers and metals were developed without regard to possible rate

and/or viscoelastic effects. In Figs. 11.11 and 11.12 it has been demonstrated

that yielding of polycarbonate is both rate and time dependent. The same is true

for most ductile polymers and, as a result, the yield (or failure) surface for

polymers should be understood to change with rate or time as depicted in

Fig. 11.13. While not to be considered herein, strain hardening (indicated

by κ) is also well known to change the yield surface for metals. However, little

information on strain hardening often associated with the Bauschinger effect is

available for polymers. (See the excellent article by Drucker (1962) or Lubliner

(1990) for an introduction to plasticity and the Bauchinger effect in metals).

Figure 11.13 shows that the yield surface expands due to strain rate effects,

shrinks due to time effects and expands due to strain hardening effects. Clearly

yielding in particular and failure in general are very complicated aspects of the

behavior of polymers. Obviously viscoelastic processes are involved in the

delayed failure behavior of polymers and it would be desirable to have a delayed

failure analytical model that combines the prediction of failure with viscoelastic

analytical constitutive models such as those discussed in Chaps. 5, 6 and 10. The

next sections address this issue where the objective is to develop relatively

simple closed form equations that would allow the prediction (and prevention)

of time dependent failure by design engineers without recourse to extensive

numerical procedures.

Fig. 11.13 von Mises yield surface displaying the effect of rate, time or strain hardening
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11.3.1. A Mathematical Model for Viscoelastic-Plastic Behavior

In 1963 Nagdi and Murch published a paper entitled “On the Mechanical

Behavior of Viscoelastic-Plastic Solids” just before Schapery first published

his efforts on a thermodynamic approach to nonlinear viscoelasticity and prior

to the development of early viscoplastity theories. Likely because both nonlinear

viscoelasticity and/or viscoplasticity caught the attention of the technical

community, Nagdi’s work received little attention. However, if the tensile

stress–strain diagrams of polycarbonate given in Figs. 3.7, 3.8 and 11.11a are

combined, the result will be the diagram shown in Fig. 11.14 where the

stress–strain diagram has been extended past the yield point by the dashed

lines. The dashed lines could be extended out to a strain of about 60 % but

have been abbreviated for clarity. Therefore, it is easy to think of polycarbonate

as a viscoelastic perfectly plastic material in much the same way that mild steel

is often considered to be a perfectly elastic–plastic material. For a tensile stress

less than 4,000 psi, rate and time effects are quite small and the material is

essentially elastic. For the rates used to produce Fig. 11.14 rate and time effects

are substantial above a tensile stress of 4,000 psi and cannot be neglected (note

the creep data given in Fig. 11.12a). For these reasons polycarbonate can be

considered to be nearly elastic below 4,000 psi and viscoelastic between 4,000

and 10,000 psi. Above the instability point of approximately 8,500 psi,

depending upon the strain rate, the material exhibits a tensile instability. That

is, Luder’s bands form and the material begins to neck. As a result it is

appropriate to think of polycarbonate as a material that has three regions of

behavior, i.e., a linear elastic region for low stresses and strains, a viscoelastic

region (portions of which may be linear and nonlinear) for intermediate stress

levels and a plastic flow region when the stress is high. When a step stress is

applied in the viscoelastic region, delayed yielding will occur after a sufficient

incubation time. It is interesting to note that the yield strain (defined as peak of

the stress–strain curve) increases with strain-rate as does the yield stress. The

fact that yield strain increases with strain rate is, in fact, similar to the phenom-

ena of increasing failure stress for increasing rates in polymers (in the rubbery

region) and elastomers. (See, Smith 1965; Landel and Fedders 1964).

The Nagdi-Murch Model

For the purposes here, the behavior of polycarbonate appears to be a good

candidate to explore the use of the Nagdi and Murch viscoelastic-plastic theory

to determine if it is possible to develop, as suggested in the preceding section, a

relatively simple closed form equation that would allow the prediction of time

dependent yielding including viscoelastic effects without recourse to extensive

numerical procedures.
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Here it is necessary for a few brief comments about plasticity and

viscoplasticity theories without providing details needed to fully appreciate the

mathematical procedures involved in their development. First, it is noted that

failure (here referred to as yield) theories as discussed in Chap. 2 are mainly used

to predict the onset of yielding and might be properly called theories of insipient

yielding. Plasticity and viscoplasticity theories are essentially subsequent yield-

ing theories developed for the purpose of determining the growth of yielded

regions within load bearing structures. For this reason, plasticity or

viscoplasticity constitutive equations are provided for regions of loading, neutral

loading and for unloading. These include a flow rule as well as conditions for

normality and convexity of the yield surface.

The von Mises theory for yielding given in Chap. 2 can be written in the form,

σ1 � σ2ð Þ2 þ σ2 � σ3ð Þ2 þ σ3 � σ1ð Þ2 � 2σy ¼ 0 (11:16)

This and all yield (or failure) theories can be written in functional form as,

Yield

Fig. 11.14 Constant strain-rate behavior of polycarbonate (Data from Brinson 1973)
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f σ1; σ2; σ3; σy
	 
 ¼ 0 (11:17)

More general plasticity theories as well as the one of Nagdi and Murch write

Eq. 11.17 in the form,

f σij, εpij , χij, κij
� �

¼ 0 (11:18)

where σij is the stress tensor, εpij is the plastic strain tensor, and κij is a tensor

representing strain hardening (which will not be used herein). In Eq. 11.18 a

time dependent factor, χij, introduced by Nagdi and Murch is included to

account for viscoelastic effects.

The Nagdi and Murch theory of viscoelastic-plasticity contains many of the

same caveats as in plasticity theory and, in fact, reduces to the two limiting cases

of plasticity for non-viscoelastic materials and linear viscoelasticity for

non-yielded materials. The only portions needed here are the linear viscoelastic

constitutive equations given in Chap. 6 and a generic failure law given by,

f σij, εpij , χij
� �

¼ 0 (11:19)

The important feature is the form of the time dependent term which Nagdi and

Murch assumed to be a function of the time dependent strains such that,

χij ¼ χij εvij � ε eij
� �

(11:20)

where εvij is the viscoelastic strain. Here the elastic strains are subtracted from the

viscoelastic strains as in Chap. 10.

The Crochet Model Time Dependent Yielding Model

Later Crochet (1966) (Nagdi’s research assistant) assumed χij, to have the

specific form,

χ ¼ εVij � εEij
� �

εVij � εEij
� �h i1=2

(11:21)

undoubtedly guided by the von Mises yield criteria written as,
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f ¼ j2 ¼
1

2
sijsij � k2 ¼ 0 (11:22)

where the yield stress k¼ σy¼ f(χ). Equation 11.22 reduces to Eq. 11.16 upon

expansion. Crochet applied the Nagdi and Murch theory to obtain the solution

for a viscoelatic-plastic cylinder under internal pressure in a state of plane strain.

He also used the approach to address the solution of a viscoelastic-plastic

cylinder under torsion.

Note that χ in the form given in Eq. 11.21 is a scalar and when expanded for

the case of uniaxial tension becomes,

χ ¼ εV11 � εE11
	 
2 þ εV22 � εE22

	 
2 þ εV33 � εE33
	 
2h i1=2

(11:23)

For uniaxial tension, Crochet assumed that the yield stress was related to the χ
function as follows,

σy ¼ Aþ B exp �Cχð Þ½ � (11:24)

where A, B, and C are constants. No rationale for this equation was given except

to note that the assumption agrees with the fact that the yield stress is an

increasing function of strain rate for many materials including metals and poly-

mers as described by others. A careful examination of Fig. 11.14 reveals that the
yield strain actually increases with strain rate as does the yield stress in poly-

carbonate and this might lead one to question the assumption associated with

Eq. 11.24. However, if the time for yielding calculated from the strain at yield in

Fig. 11.14 is divided by the strain rate for yield in Fig. 11.11a, it is clear that the
time for yielding to occur in a constant strain rate test decreases with increasing

strain rate. Therefore Eq. 11.24 is a reasonable assumption based upon exper-

imental evidence. Also, as discussed in the next section in regard to the Zhurkov

(1965) theory for time dependent failure some consider the rate at which failure

occurs to be an activated process and therefore in this light Eq. 11.24 is quite

reasonable.

Phenomenologically, the behavior of polycarbonate can be represented by a

mechanical model containing a friction or “stick–slip” element to represent

yielding. Such a model was first introduced by Bingham (See Bingham

et al. 1922; Reiner 1971) to explain the behavior of certain fluids such as paint

and later adapted to explain yielding in various materials including polymers

with various modifications as shown in Fig. 11.15.

The relation between stress and strain for the Modified Bingham model in

Fig. 11.15b has three regions of behavior, linear elastic, linear viscoelastic and
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plastic flow. The relations between stress and strain for the first two regions in

Fig. 11.15b can be described by,

ε ¼ σ
E
, σ � θ (11:25)

_ε ¼ _σ
E
þ σ� θ

μ
, θ � σ � σy (11:26)

where θ is defined as the linear elastic limit stress and σy is defined as the yield

stress. Above the yield stress a suitable relation for plastic flow must be used.

The stress–strain equations corresponding to a constant strain-rate test can be

shown to be,

σ ¼ Eε , σ � θ
σ tð Þ ¼ θþ τER 1-e- t-t0ð Þ=τ� 


, θ � σ � σy
(11:27)

where the relaxation time, τ, is given by τ¼ μ/E and t0 is the time at the elastic

limit. The second equation can be written as,

E

E

(a) Bingham

(c) Schwedoff (d) Modified Schwedoff

(b) Modified Bingham

E1E2

σy

σy

σy

σy

σ

σ σ

σ

σ

θ

σ σ

μ
μ

μ
μ

Fig. 11.15 Various mechanical models with a yielding (friction) element (After Brinson

and Das Gupta 1975)
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σ εð Þ ¼ θþ τER 1� e� ε�ϕð Þ=Rτ
h i

, θ � σ � σy (11:28)

where R is the strain rate and ϕ is the linear elastic limit strain. The stress–strain

response for a constant strain-rate test up to the yield point can be accurately

model by Eq. 11.28 for any particular strain rate as shown by Brinson and Das

Gupta (1975). To model all rates with only one equation requires that the

relaxation time vary with strain-rate which makes the representation physically

inconsistent. That is, if the relaxation time varies with strain rate then the

relaxation time is a function of either stress and/or strain and would mean that

the material is nonlinear. However, as will be shown this simple model can be

used with the viscoelastic-plastic theory of Nagdi, Murch and Crochet to allow

the prediction of delayed failures for polycarbonate and other polymers.

The differential equation 11.26 for the modified Bingham model of

Fig. 11.15b can be solved for creep to give,

ε tð Þ ¼ σ0 � θ
μ

tþ σ0
E
, θ < σ < σy (11:29)

This result predicts a linear variation of strain with time and, therefore, does not

well represent the case of creep for polycarbonate. Combining models b and d in

Fig. 11.15 would give the desired form of creep response. (See HW problem

11.4). The modified Bingham model is, however, compatible with the experi-

mental data given in Figs. 11.12 and 11.14, in the sense that there appears to be a
stress below which creep or relaxation will not occur.

Using the modified Bingham model in the Nagdi-Murch analytical approach,

the difference between viscoelastic and elastic strains in a creep test becomes,

εV11 � εE11
	 
2 ¼ σ0 � θ

μ
t

� �2

, σ � θ (11:30)

and the lateral strains become, upon assuming a constant Poisson’s ratio,

εV22 � εE22
	 
2 ¼ εV33 � εE33

	 
2 ¼ ν2
σ0 � θ

μ
t

� �2

, σ � θ (11:31)

The time factor, χ, in Crochet’s time dependent yield criteria for uniaxial tension

now becomes,
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χ ¼ σ0 � θ
μ

t

� �
1þ 2ν2
	 
1=2

, σ � θ (11:32)

and the expression for the time dependent yield behavior of Eq. 11.24 becomes,

σy tð Þ ¼ Aþ B exp �K σ0 � θð Þt½ �, σ � θ (11:33a)

where the constant K is given by,

K ¼ C 1þ 2ν2ð Þ1=2
μ

(11:33b)

In Eq. 11.33a σy and σ0 are the same, as this is the representation for a creep test.

Also, the time in Eq. 11.33a is the time for yielding to occur. As a result

Eq. 11.33a is rewritten as,

σy tð Þ ¼ Aþ B exp �K σy � θ
	 


tf
� 


, σ � θ (11:34)

where tf is the time to yield or time to rupture in the case of a more brittle

material. An explicit expression for the time to failure can be obtained by

rearranging Eq. 11.34,

tf ¼ 1

K σy � θ
	 
ln B

σy � A
(11:35)

The yield stress (Luder’s band formation) versus creep to yield time from

Fig. 11.12 is shown in Fig. 11.16 and compared to Eq. 11.35. The constants A,
B and C in Eq. 11.35 were determined from the creep to yield data. Poisson’s

ratio was assumed to be 0.4 and all other parameters were determined for the

modified Bingham model. A similar procedure was used to obtain the creep to

yield behavior of a rubber-toughened adhesive (Brinson et al. 1975).

The modified Schwedoff model as given in Fig. 11.15 could easily be

changed to have a friction element in series with model which would become

the yield point and change the friction element in parallel with the spring and

damper to the elastic limit stress. (See HW problem 11.4.) Such a model would

better represent the creep process but would be more cumbersome to use and it

would not be possible to develop a closed form equation for the creep to yield

time as given by Eq. 11.35. At the higher stresses polycarbonate is nonlinear and
it would be best to use a nonlinear approach rather than mechanical models using

friction elements. From Eqs. 10.47 and 11.23 and it is easily shown that the χ
parameter including the Schapery parameters is given by (Cartner et al. 1978)
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χ ¼ D1

g1g2
anσ

σtn 1þ 2ν2
	 
1=2

(11:36)

which when substituted in Eq. 11.24 results in the time to failure equation,

tf ¼ 1

Cβσf
ln

B

σf � A

� �1=n
(11:37)

where β is given by,

β ¼ D1

g1g2
anσ

1þ 2ν2
	 
1=2

(11:38)

Here the symbols σf is used rather than σy to indicate that the process may be

used for creep to rupture as well as creep to yield behavior. Eq. 11.37 was used

to represent time dependent failure data for a chopped fiber composite (SMC 25)

and a modified adhesive (Metlbond 1113-2) as given in Fig. 11.17.

Fig. 11.16 Uniaxial creep to yield of polycarbonate (Data from Brinson 1973)
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Long Term Delayed Yielding and Three-Dimensional Problems

The forgoing development only presents the framework for including the visco-

elastic constitutive equation in developing a method and equations to predict

the onset of delayed yielding due to the viscoelastic behavior of a polymer.

(a)

(b)

Fig. 11.17 Uniaxial creep to failure of (a) Metlbond 1113-2 and (b) SMC-25 (Data from

Cartner 1978)
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Further, only one-dimensional examples have been given and only for relatively

short times. Naturally, for realistic circumstances, any such approach needs to be

modified to predict time dependent yielding in more complicated problems

associated with real structures where the time scale may be on the order of years.

An illustration of such a realistic problem was the July 2006 failure of anchor
bolts held in place by an epoxy adhesive that led to massive amounts of concrete
to fall on motorists in the D Street portal of the Interstate 90 (I-90) connector
tunnel in Boston, resulting in one death. The NTSB Highway Safety Board
announced in July of 2007 that the cause of the failure was due to creep of the
epoxy adhesive. The time from installation until failure was a number of years,
perhaps as many as 10. Obtaining 10-year data in advance of a project is not
realistic but perhaps well-defined creep to yield or rupture tests could have
established a lower bound and given engineers a better understanding of how to
make sure that such a failure would not occur.

One way to obtain long-term information is through the use of the time-

temperature-superposition principle detailed in Chap. 7. Indeed, Lohr (1965)

(the California wine maker) while at the NASA Ames Research Center

conducted constant strain rate tests from 0.003 to 300 min�1 and from 15 �C
above the glass transition temperature to 100 �C below the glass transition

temperature to produce yield stress master curves for poly(methyl methacrylate),

polystyrene, polyvinyl chloride, and polyethylene terephthalate. It should not be

surprising that time or rate dependent yield (rupture) stress master curves can be

developed as yield (rupture) is a single point on a correctly determined isochro-

nous stress–strain curve. Whether linear or nonlinear, the stress is related to the

strain through a modulus function at the yield point (rupture) location. As a

result, a time dependent master curve for yield, rupture, or other failure param-

eters should be possible in the same way that a master curve of modulus is

possible as demonstrated in Chaps. 7 and 10.

To avoid time dependent yielding in circumstances where a two or three-

dimensional viscoelastic stress analysis is needed it would be necessary to define

the lifetime of the structure. Then tensile creep tests are needed to determine a

failure envelope for the defined lifetime similar to those depicted by Fig. 2.20. A
loading for the structure would be selected such that the stresses determined in a

viscoelastic stress analysis of the structure would be inside the envelope.

11.3.2. Analytical Approaches to Creep Rupture

In this section the concern is failure by rupture or separation rather than by

yielding as in the previous section. For example, the toughened epoxy tensile
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specimen shown in Fig. 11.5 failed by separating into two parts with the fracture
surface being perpendicular to the specimen length. That is, of all the many

visible crazes, eventually only those on the line of separation reached the critical

state. To reiterate, for failures of this type in many materials including polymers,

it is thought that the fracture process begins at small microscopic defects or flaws

in the material and if an induced stress field around these flaws is sufficient,

additional cracks will nucleate near the tip of the flaw. There will be many of

these competing micro-cracks and eventually one dominant crack will prevail

and a tensile specimen will fail as in Fig. 11.5. This has led some to consider the

fracture process to be a stochastic event and to develop statistical tools for the

evaluation of viscoelastic fracture processes. For a description, see Halpin and

Polley (1967). Indeed, they demonstrated that the breaking stress for an SBR

Gum polymer at different temperatures could be shifted to form a breaking

strength master curve that could be fit with a modified power law.

Knauss (1963), suggested that that weak bonding areas in a polymer could

also serve as the site for small cracks to nucleate. That is, during the polymer-

ization process not all molecules are able to move freely to reach the optimum

position for maximum bond strength. As a result, weakly bonded regions are

distributed throughout the bulk polymer and serve as an ideal location for an

induced stress field to create a small fissure. In developing a comprehensive

molecular based approach to fracture, the Arrhenius rate law given earlier was

used as a starting point.

In the following several time dependent failure laws will be considered that

can be used by the design engineer to make estimates of the probable time for

rupture failure in uniaxial tensile tests. The section will conclude with a brief

discussion of how to apply these approaches to more complicated structures.

While the following methods have been developed primarily for a creep to

rupture phenomenon, they can potentially be used for creep to yield as well or

even possibly as a means of determining the demarcation between linear and

nonlinear viscoelastic regimes. Some of the examples included are applied in

this manner.

Activation Energy Approach to Creep Rupture

The creep behavior of many materials including most metals and thermoplastic

polymers is often described as given in Fig. 11.18 and contains three stages;

primary (transient), secondary (steady state) and tertiary portions. Ultimately,

with sufficient loading and sufficient time the material will creep until rupture

occurs. The time associated with transient and tertiary response is often very

small compare to the time associated with secondary creep. As a result, an
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approximation for the time to creep to rupture, tr, can be obtained by using the

Ahrrenius reaction rate equation. Assuming that the secondary region can be

extended to approximate the tertiary portion, the rate of strain can be calculated

and equated to the reaction rate,

εr � ε00
tr

¼ Φ ¼ Ae�
Ea

kT ¼ _ε ¼ constant (11:39)

where tr is the time to creep to rupture, εr, ε
0
0 are defined in Fig. 11.18 and all

other parameters are previously defined in Eq. 11.3. Rearranging gives,

tr ¼ A
0
e
Ea

kT (11:40)

where A
0
is a new constant.

Taking logarithms of both sides and converting to base 10 logarithms gives,

log10tr ¼ log10A
0 þM

Ea

kT
(11:41)

where M¼ 0.4343 is a factor relating natural logarithms to base 10 logarithms.

From Eq. 11.39 both A
0
and Ea are functions of the (constant) stress level.

However, the Larson-Miller Parameter method for determining creep rupture

time of a material assumes Ea is a function of stress whileA
0
is a constant. Based

on this assumption and Eq. 11.41 the Larson-Miller parameter is defined as,

Fig. 11.18 Typical creep curve for metals and thermoplastic polymers
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LMP ¼ T log10tr þ Clmð Þ ¼ f σð Þ (11:42)

where Clm is a new constant. The Sherby-Dorn method to determine the creep

rupture time of a material assumes A
0
is a function of stress while Ea is a

constant. Again with this assumption and Eq. 11.41 the Sherby-Dorn parameter

is defined as,

SDP ¼ log10tr �
Csd

T
¼ f σð Þ (11:43)

(For a more complete description of these time dependent failure approaches,

see Dowling 1993). As an illustration of the use of the utility of Larson-Millard

parameter, method data from Dillard (1981) for the uniaxial creep rupture of a

[90/60/�60/90]2S graphite/epoxy composite at various temperatures is given in

Fig. 11.19. The rupture stress is plotted against the LMP as shown and reduces

failure stresses at three different temperatures to a single linear master curve.

Such an approach is very convenient for a designer as it provides an upper bound

for the failure stress as a function of both temperature and time that can be used

for the engineering design of structures. If all stresses in a structure are kept

below the data scatter, then failure is not likely to occur for any temperature and

the line can be extrapolated so a design lifetime can be estimated.

Fig. 11.19 Application of Larson-Miller parameter method to creep of a [90/60/�60/

90]2S graphite/epoxy laminate (Data from Dillard 1981). Line is a fit of the

data using the Larson Miller equation
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The Larson-Miller and other similar methods have been widely used for

metals but here it is important to note that difficulties arise for fiber reinforced

composite laminates because the constants are only valid for one configuration

of the plies and a more general approach is needed. Dillard (1981) developed an

incremental viscoelastic time dependent lamination theory approach that

included the Tsai-Hill failure law modified to account for delayed failures

using the Zhurkov time dependent failure model that will be discussed in the

next section. The advantage of the Dillard approach is that information on the

viscoelastic behavior as well as the delayed failure behavior of 0�, 10� and 90�

plies can be used to predict the behavior of general laminate configurations. A

similar approach using a modified Puppo Evenson criteria was developed and

used by Yeow (1980).

The Zhurkov Method

Another variant of the activation energy approach (Eq. 11.40) is the Zhurkov

method, sometimes referred to as the kinetic rate theory, which is based upon

tests on more than 50 different materials including both metals and polymers

(see Zhurkov 1965) and results in an equation for the time to creep to rupture

given by,

tr ¼ t0e
Ea�γσ
kT (11:44)

where tr is the time to creep to rupture in a uniaxial tensile test, t0, and γ, are
constants, Ea is a constant activation energy, σ, is the applied true stress, k, is
Boltzman’s constant and T is the absolute temperature. The parameter, t0, is
described by Zhurkov as the period of natural oscillation of the atomic structure

and is said to be constant for all materials. In the original form, the activation

energy was defined by a parameter, u0, as an energy barrier that must be

overcome to rupture the atomic structure and is therefore similar to the activa-

tion energy, Ea, in the Ahrrenius equation. Therefore, in Eq. 11.44 the standard

activation energy symbol has been used. This modified activation energy

approach is quite similar to Eq. 11.40.

If the activation energy, Ea, is equal to the quantity, γσ, the creep rupture time

is independent of temperature and implies the existence of a common “pole” as

shown in Fig. 11.20. That is,

lim
γσ!Ea

tr ¼ lim
γσ!Ea

t0 exp
Ea � γσ

kT

� �
¼ t0 (11:45)

and data for different temperatures will intersect at the common pole as shown in

Fig. 11.20. All the materials tested by Zhurkov displayed this behavior.
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Various modifications of Zhurkov’s equation have been suggested and a

discussion of these can be found in Griffith (1980). The Zurkov equation can

be written in the form,

ln tr ¼ Aþ B

T
(11:46)

where B is a function of stress and A¼ ln t0.

Cumulative Creep Damage of Polymers

For multi-step creep loading or even single-step creep loading in inhomogenous

materials, it is necessary to have a cumulative creep damage rule similar to

Minor’s rule for cumulative fatigue damage. Such a rule is essential for both

creep to yield and creep to rupture theories and can be used in conjunction with a

given failure theory. Note that for materials with several constituents such as a

laminated polymer composite material it is possible for a single lamina to see a

change in stress level even when the laminate is under a constant uniaxial creep

loading. Often cumulative damage under multi-level creep loads is represented

Fig. 11.20 Temperature dependence of the Zhurkov equation for creep rupture for

PMMA (Data from Zurkov 1965)
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by an approach known as Robinson’s life fraction rule shown in Table 11.1
where ti is the time at the creep stress level σi and tfi is the time to creep rupture

for the stress σi. Therefore, if the rule holds it is possible to predict the time to

creep to failure under an arbitrary number of step stress inputs provided the

creep rupture times are known for various single step input. While this theory

suggest that damage is proportioned equally to the creep time for each stress

level, actual data indicates that the right hand side of Robinson’s equation varies

between 0.3 and 2.0 for various particular polymers. These variations are not

surprising, as Minor’s rule is notorious for it’s inability to properly predict the

failure of a material with multiple stress steps under fatigue loading. For this

reason a number of modifications to the Robinson rule have been suggested and

are given in Table 11.1.

For a more complete discussion of the various cumulative creep damage rules

as well as references to those given in Table 11.1 see Zhang et al. (1986) and

Dillard (1981).

Table 11.1 Various cumulative damage rules for polymers

1. Robinson’s life fraction rule X
i

ti

tfi
¼ 1

2. Lieberman’s creep strain-fraction rule X
i

εi tð Þ
εfi tð Þ ¼ 1

3. Oding and Burdusky proposed a rate of

void production rule proportional to the

secondary creep rate, _ε, and the rate of

void accumulation, m

X
i

ti

tfi

� �m

¼ 1

4. Johnson proposed a rate of void production

rule similar to 3 except that the rate of void

accumulation was also related to primary

creep, μ

X
i

ti

tfi

� �mþμ

¼ 1

5. Freeman and Voorhees proposed a com-

bination of equations of 1 and 2

X
i

ti

tfi
þ εi
εfi

� �1=2

¼ 1

6. Abo El Ata and Finnie proposed a combi-

nation of equations 1 and 2
K
X
i

ti

tfi

� �
þ 1� Kð Þ

X
i

εi
εfi

� �
¼ 1

7. Kargin and Slonimsky proposed an inte-

gral approach for varying stresses and

temperatures

ðτ
0

dt

tf σ tð Þ, T tð Þ½ � ¼ 1
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Zhang conducted extensive creep and creep to failure tests of polycarbonate

and polysulfone for both single creep loads and multiple step-up or step-down

creep loads as illustrated in Fig. 11.21 and developed an equation of the form,

Xq
i¼1

Ki

t
0
i

tfi

� �n
¼ 1 (11:47)

where n is a constant, Ki is a constant for each creep time interval, t
0
i is the time

interval for stress σi and tfi is the time for failure at a single step stress of σi. For a
two step loading Eq. 11.47 becomes,

K1

t
0
1

tf1

� �n
þ K2

t
0
2

tf2

� �n
¼ 1 (11:48)

In experiments for both polycarbonate and polysulfone Luder’s bands formed. In

polycarbonate the Luder’s band was a precursor to yielding but in polysulfone

the Luder’s bands were a precursor to rupture that occurred almost simultaneous

with formation.

Creep to yield times (Luder’s band formation) for a single creep load are

shown in Fig. 11.22 for polycarbonate and vary linearly with log time. Creep to

yield times for a single step-down or step-up loading for polycarbonate are

shown in Figs. 11.23 and 11.24 in non-dimensional form. The dashed line is

Robinson’s life fraction rule for a single step-down or step-up loading. Solid

lines represents polycarbonate yield data for step-down or step-up loading fitted

with Eq. 11.48 where K1, K2 and n are given in the each figure. Each data point

in Figs. 11.22, 11.23, and 11.24 represents five independent tests.

Fig. 11.21 Typical step-up and step-down creep tests (Zhang et al. (1986). Reprinted

with kind permission of Springer Science and Business Media)
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Fig. 11.22 Creep to failure (rupture) for Polycarbonate for a single creep load (Zhang

et al (1986). Reprinted with kind permission from Springer Science and

Business Media)

Fig. 11.23 Step down loading creep to failure (yield) for polycarbonate (Zhang

et al. (1986). Reprinted with kind permission from Springer Science and

Business Media)
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Clearly Robinson’s life fraction rule is invalid for polycarbonate and the same

was true for polysulfone though not shown here. This is not surprising as the

effects of memory are not included, illustrating once again that using analytical

methods developed for metals are not usually viable for polymer based mate-

rials. Unlike Robinson’s life fraction rule, Eq. 11.48 is nonlinear and fits the data
for polycarbonate well though the equation is still empirical. The data for two

different loading histories given in Fig. 11.24 demonstrates that the parameters

in Eq. 11.48 vary with time and must be determined for each load history.

Perhaps the Nagdi-Murch-Crochet approach could be used for a multi-step load

though that awaits further study.

Reiner-Weissenberg Criteria for Failure

As discussed previously, failure is most often treated as a separate issue from the

determination of modulus properties of materials. In fact, most failure laws are

derived empirically from observations related to a catastrophic event such as

Fig. 11.24 Step-up loading creep to failure (yield) for polycarbonate. Triangles and

circles are for different loading histories (Zhang et al. (1986). Reprinted with
kind permission from Springer Science and Business Media)
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yielding or rupture. As a result, a great deal of testing and data analysis is

necessary to establish an appropriate law. On the other hand, modulus or

constitutive laws are derived by more rational means of relating deformations

to the forces that produce them. For this reason, often much less testing is

necessary to define a constitutive law for a material especially if deformations

do not depart from the linear elastic or reversible deformation range of a

material.

Failure, however defined, should be a part of a complete constitutive descrip-

tion of a material as discussed in the previous sections. In other, words, the key

to dealing effectively with the failure of time dependent or viscoelastic polymers

lies in treating failure properties as a termination of a nonlinear viscoelastic

process. Perhaps, for this reason, a number of investigators have suggested that

modulus and strength laws should be related to each other for polymers (e.g.,

Landel 1964).

The concept of distortional energy as a measure for the critical magnitude of

the stress state a material can endure at a point in an elastic material (von Mises

criterion) cannot be carried over directly to viscoelastic materials because

viscoelastic deformation involves dissipative mechanisms. Thus, at any point

in time the energy balance must be written as,

Total deformation energy ¼ Stored Freeð Þ energy þ Dissipated Energy

Reiner and Weissenberg (1939) suggested that the energy storage capacity of a

material is responsible for the transition from viscoelastic response to yielding in

ductile materials or to rupture (fracture) in brittle materials. They assume that a

threshold value of the distortional free (or recoverable) energy, called the

resilience of the material, is the quantity that governs failure. If the Reiner-

Weissenberg (R-W) approach is applied to a material with zero dissipation

(elastic material) it becomes identical to the von Mises failure law. When

applied to a viscoelastic material, however, the free energy under constant

load changes with time and the variation must be known. If the mechanisms

through which total deformation energy is transformed into dissipated energy

are activated such that no free energy can accumulate, there is practically no

limit to the amount of deformation energy that can be applied without failure

occurring. That is, forces up to a certain magnitude can be applied for any length

of time without leading to rupture. If the material cannot accommodate this

energy redistribution fast enough then the material will store energy until the

critical value needed for failure is achieved. At that time failure will occur. The

failure process is therefore delayed (or time dependent) which limits the life of a

given structure to a finite value or defines the time required for failure to occur

after initial loading. The instant of yielding or rupture is thus clearly dependent
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upon the final outcome of the connection between deviatoric free energy and

deviatoric dissipated energy. Thus, the effect of the strain history on delayed

yielding or rupture follows from this model in a natural way.

The advantage of this approach is that the onset of failure is defined by a

single parameter, the distortional free energy, while that the former method of

Nagdi and Murch and Crochet required the determination of three new param-

eters in addition to those needed to describe constitutive behavior.

The following description is a brief review of the Reiner-Weissenberg crite-

rion that follows that given by Hiel (1984) and Brueller (1978, 1981). (See Hiel

for additional Brueller references to his extensive investigations and application

to polymeric materials.)

Free Energy Accumulation in a Three-Parameter Model Under Creep
Loading In order to apply the R-W criterion the stored (free) and dissipative

energy must be calculated and, as an example, these will be determined for a

three-parameter model with the notation given in Fig. 5.1. Recall from Chap. 5

that work or total energy is,

W ¼
ðσ0
0

σ dε (11:49)

which for an elastic material reduces to

W ¼ 1

2
σ2D (11:50)

where D is the compliance (inverse of modulus, E). Thus, the energy stored in

the elastic spring under creep loading is,

w0 ¼ 1

2
σ20D0 (11:51)

and the energy stored in the Kelvin element spring can be shown to be,

w1 ¼ 1

2
σ20D1 1� e�t=τ1

� �2

(11:52)

The total stored energy in the springs under creep is therefore,
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wsprings ¼ wstored ¼ 1

2
σ20D0 þ 1

2
σ20D1 1� e�t=τ1

� �2

(11:53)

The dissipated energy in a 3-parameter solid is due to the damper, μ1, in the

Kelvin element and can be calculated from,

wdamper ¼ wμ ¼
ðt
0

σμ
dεμ
dt

dt (11:54)

where

σμ ¼ μ
dεμ
dt

, εμ ¼ εK ¼ σ0D1 1� e�t=τ1
� �

,
dεμ
dt

¼ σ0
D1

τ
e�t=τ1 (11:55)

where the subscript μ represents the damper and K represents the Kelvin

element. Therefore, the dissipated energy is,

wdamper ¼ wμ ¼ 1

2
σ20D1 1� e�2t=τ1

� �
(11:56)

The total energy in the three-parameter model under creep loading is found by

adding Eqs. 11.53 and 11.56 to obtain,

Wtotal ¼ Wsprings þWdamper ¼ σ20
D0

2
þ D1 1� exp �t=τ1ð Þð Þ

� �
(11:57)

The extension of Eqs. 11.53, 11.56 and 11.57 to an N-element Kelvin unit with a

free spring is,

Wstored ¼ Wsprings ¼ σ20
D0

2
þ
XN
i¼1

Di

2
1� exp �t=τið Þð Þ2

" #
(11:58)

Wdissipated ¼ Wdampers ¼ σ20
XN
i¼1

Di

2
1� exp �2t=τið Þð Þ

" #
(11:59)

Wtotal ¼ σ20
D0

2
þ
XN
i¼1

Di 1� exp �t=τið Þð Þ
" #

(11:60)

Taking the limits for t ! 1 gives,

11 Rate and Time-Dependent Failure: Mechanisms and Predictive Models 419



Wsprings

� 

lim t!1

¼ σ20
D0

2
þ
XN
i¼1

Di

2

" #
(11:61)

Wdampers

� 

lim t!1

¼ σ20
XN
i¼1

Di

2

� �
(11:62)

Wtotal½ �
lim t!1

¼ σ20
D0

2
þ
XN
i¼1

Di

" #
(11:63)

Thus, half the work done by the external forces on the Kelvin elements goes to

increase the free energy while the other half is dissipated.

If a torsion test is used, Eqs. 11.58, 11.59, and 11.60 give the stored (free),

dissipated and total deviatoric energy. However, if a uniaxial tensile test is used,

Eqs. 11.58, 11.59, and 11.60 give the total (shear and bulk) strain energy, each of
which has a stored and dissipated energy component. However, assuming

Poisson’s ratio to be a constant, it can be shown that the deviatoric stored energy

comprises 93 % of the total stored energy in a uniaxial tension test. See HW

11.9.) The stored energy due to volume change is relatively small and as only

unidirectional data will be considered here it is assumed that the deviatoric

stored energy and total stored energy are the same.

The master curve for a [90�]8s graphite/epoxy composite in uniaxial tension

using TTSP is shown in Fig. 11.25. The following six-term Prony series repre-

sentation of the data is also shown in Fig. 11.25 and as may be observed the

agreement between the two is excellent.

D tð Þ ¼ 0:71þ 0:02 1� e�t=0:01
	 
þ 0:02 1� e�t=1

	 
þ 0:04 1� e�t=10
	 


þ0:04 1� e�t=100
	 
þ 0:18 1� e�t=1000

	 
þ 0:25 1� e�t=10000
	 
� 10�10psi�1

(11:64)

Using expression 11.64 in Eqs. 11.58, 11.59, and 11.60, the total energy, the

stored (free) energy and the dissipated energy for creep was determined with the

results shown in Fig. 11.26 normalized with respect to the initial total energy.

The total energy and the stored energy are the same initially and therefore, if

sufficient creep stress were imposed, failure would occur upon loading. If a

lower creep stress were imposed, dissipation would prevent failure until a

critical stored energy is reached.
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Fig. 11.25 Comparison between a TTSP master curve and a six term Prony series for a

[90�] graphite/epoxy composite at 160� C (320� F) and a stress of 35.7 MPa

(5.18 ksi) (Data from Hiel 1984)

Fig. 11.26 Total stored and dissipated energy as calculated from Eqs. 11.58, 11.59, and

11.60 normalized with respect to the initial total energy (t¼ 0 min) using the

Prony series representation of the master curve in Fig. 11.25 Due to the log

scale starting at t> 0, the normalized total energy is slightly larger than one at

the left end of the plot
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Creep to rupture data for a [90�]8s graphite/epoxy composite in uniaxial

tension is shown in Fig. 11.27 (from Griffith 1980). The R-W theory suggests

that the critical value of stored or free energy for failure at different creep

stresses is a constant. Thus, the data for a single or a set of stress-time failure

point(s) can be used with Eq. 11.58 via an appropriate numerical fitting method

to determine this material parameter, wcrit. Using this wcrit, the variation of

rupture time with failure stress can be calculated. This was done for the material

in Fig. 11.27 in order to verify the theory and the result is shown superimposed

upon the experimental data.

Power Law Approximation for Free Energy The stored free energy expres-

sion in the form of Eq. 11.58 requires the determination of 2N+1 material

constants for Di and τi. (Thirteen material parameters were needed in the six

term series used above.) This number can be reduced using the power law,

D tð Þ ¼ D0 þ D1t
n (11:65)

with Eq. 11.49 to obtain the equivalent of Eqs. 11.59 and 11.60 as,

Fig. 11.27 Comparison between Reiner-Weissenberg theory and experimentally deter-

mined creep rupture times
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Wdissipated

σ20
¼

XN
i¼1

Di

2
1� exp �2t=τið Þð Þ

" #
¼ 1

2
D1 2tð Þn (11:66)

Wtotal

σ20
� D0

2
¼

XN
i¼1

Di 1� exp �t=τið Þð Þ ¼ D1t
n (11:67)

Subtracting Eqs. 11.66 from Eq. 11.67 gives the free energy of the springs,

Wstored

σ20
¼ D0

2
þ D1 tn � 1

2
2tð Þn

� �� �
(11:68)

Due to the decreased number of constants and the simple form of the power law,

Eq. 11.68 can be used to obtain a closed-form analytic expression for the stress

σr required to rupture a polymeric material in uniaxial tension at the time tr,

σr ¼ σfailure ¼ σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wcrit

D0

2
þ D1 tn � 1

2
2tð Þn� 


s
(11:69)

where wcrit is the critical free energy for rupture. Conversely, the delay time for

rupture tr for a creep stress of σr can be determined by,

tr ¼ 1

βσ2
wcrit � D0

2
σ2

� �� �1
n

(11:70)

where

β ¼ D1 1� 2n�1
	 


(11:71)

This approach requires less parameters than the Prony series method just

discussed and also requires less parameters than the Nagdi-Murch-Crochet

method described in a previous section. However it is dependent upon the

power law providing a good representation of the master curve.

If the polymer is nonlinear viscoelastic and if the Schapery parameters g0, g1,
g2 and as are known, Eqs. 11.69 and 11.70 would become (see homework

problem 11.11),

σ2r ¼ σ2failure ¼ σ20 ¼
wcrit

g0
D0

2
þ g1g2D1

tr

aσ

� �n

� 1

2

2tr

aσ

� �n� �� � (11:72)
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tr ¼ 1

βσ2
wcrit � g0D0

2
σ2

� �� �1
n

(11:73)

where

β ¼ g1g2
anσ

D1 1� 2n�1
	 


(11:74)

An attempt was made to use the power law expression defined by Eq. 11.68with
coefficients appropriate for the master curve of Fig. 11.25. However, with this

approach it was not possible to find a constant stored energy that would represent

the creep rupture data of Fig. 11.27. A likely reason can be visualized by

examination of Fig. 11.28 where the six term Prony series given previously in

Fig. 11.25 is extended an additional two decades. It is to be noted that the series
representation of the master curve reaches a plateau that is typical of all poly-

mers. The power law can be made to fit a portion of the master curve but will not

reach a plateau and as is shown schematically will continue to rise without

bound. As a result, it would be surprising if the time-to-failure given by

Eq. 11.68 using the power law representation could adequately represent creep

to rupture data over the glassy, transition and rubbery regions of a polymer. On

the other hand, obviously from Fig. 11.28 the Prony series can adequately

represent all the regions of behavior of a polymer.

Fig. 11.28 Six term Prony series representation of the compliance master curve of

Fig. 11.25 extended to 106 minutes (Dotted line is the approximate relaxation

modulus master curve)
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Shown in Fig. 11.29 is the Reiner-Weissenberg predictions of creep rupture

given in Fig. 11.27 extended an additional two decades together with creep

rupture data. Here it is seen that the failure stress prediction will also reach a

plateau for a given constant stored energy at failure. Again, it is quite reasonable

for the failure stress to become a constant in the rubbery plateau region of a

polymer. The inverse of the Prony series representation of the compliance is

given in Fig. 11.28 to approximate schematically the change in relaxation

modulus with time. It is interesting to note that variation in the measured and

predicted failure stress with time has essentially the same shape as the variation

of relaxation modulus with time. In other words, this seems to verify that a

change in modulus does indeed represent a change in strength as is suggested by

recent viscoplasticity or damage evolution theories.

Included in Fig. 11.29 is an empirical bi-linear approximation to the creep

rupture data. An examination of the R-W theory gives credence to the notion of

“knee” in the creep to rupture life of a polymer as has been reported by others

(see Kinloch and Young 1983, p. 213). It is reasonable to assume that the

so-called knee is just a manifestation of the change of material properties

when moving from the glassy region to the transition region of the polymer. In

fact, perhaps another “knee” would be found at longer times for a lower creep

Fig. 11.29 R-W predictions of Fig. 11.27 extended to 106 minutes using Eq. 11.58 and

Prony series compliance from Fig. 11.28. Also shown an empirical bi-linear

approximation of creep rupture data
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stress at the change of properties taking place in going from the transition to

rubbery plateau region of a polymer.

Assuming a creep test was conducted at room temperature on the graphite/

epoxy discussed here, the time to failure would be exceedingly long. The only

reason that creep ruptures could be found within four decades of time was

because the tests were conducted at 160� C (380� F) and a high level of stress.

In this instance caution is suggested for the preceding interpretations as no data

for the master curves shown in Fig. 11.25 or the strength curve shown in

Fig. 11.29 was obtained for times longer than 4 decades and, therefore, the

existence of a rubbery plateau was not verified for this composite.

The Riener-Weissenberg energy based time dependent failure criteria has

been used by Brueller (1978) to identify the craze limit for PMMA defined as the

first appearance of visible crazes which he argues is the beginning of the failure

process. Together with Schmidt he has also used the R-W method to define the

linear viscoelastic limit in PMMA (see Brueller and Schmidt (1979)). That such

a limit exists and is identifiable is shown in Fig. 10.2 for an epoxy adhesive.

Arenz (1999) using an elegant torsion test attempted to use the R-W method to

identify the linear viscoelastic limit in poly(vinyl acetate) without success and

raises concerns about the applicability of the R-W technique for such use. Since

the linear viscoelastic limit is very difficult to determine and may, in fact, be a

function of measurement sensitivity, using the R-W approach or any other

technique for this purpose may be quite subjective.

A very thorough investigation of the R-W method by Guedes (2004) com-

pares this approach with several other time dependent failure theories in

predicting the failure of two forms of nylon 66 and polycarbonate. Included

are a stress work theory, a maximum strain theory and a modified version of the

R-W method he proposes. In the latter, instead of assuming there to be a single

value of the free energy that causes failure, he assumes that the amount of free

energy required for failure varies with stress intensity. Generally his approach

appears to fit experimental data better than the original R-W technique but in one

case the original R-W method gives the better fit.

The difficulty in using the R-W technique or any other method to predict time

dependent failure is subject to the variability of experimental data. It is well

known that large variability in creep rupture data is the norm. One obvious

reason for the variability is that the slope of a stress versus failure time plot of

data is quite small and, for this reason, a small change in failure stress can

translate into a large change in time. It is for this reason that log-log or semi-log

plots are used such as the Larson-Miller parameter method.
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Again, as for the section on time dependent yielding it is necessary to

consider how to obtain data that can be useful in preventing failure over the

lifetime of a structure that may be intended to last for 20–100 years. The only

rational means for this is some type of accelerated testing such as that offered by

the time-temperature or time-stress-superposition procedure. Also, it is reiter-

ated that failure is a stochastic event and of necessity a reliable statistical

analysis should be performed.

Finally, just as for yielding, it is necessary to incorporate the various creep

rupture approaches presented here into a viscoelastic stress analysis of realistic

structures. In the case of the R-W technique the stored distortional free energy

would need to be calculated and compared to that in simple torsion. Such

procedures can be used to design structures so that the probability of failure is

very low and within prescribed safety standards.

11.4. Review Questions

11.1 Why is the process of switching important in describing the deformation

mechanisms in polymers?

11.2 What is the mechanism of reptation and why is it needed for describing

deformation mechanisms in polymers.

11.3 Describe the deformation mechanisms associated with shear bands.

11.4 Describe the method by which crazes form.

11.5 What is a Luder’s band and what stress is it’s formation associated with?

11.6 What is the purpose of the mathematical models rate dependent yield

behavior.

11.7 What is a condition of normality? Convexity?

11.5. Problems

11.1 Using the inter-atomic force model given by Eq. 11.1 and shown in

Fig. 2.22 can be used to estimate the tensile strength of a material to be

of the same order of magnitude as the elastic modulus.

11.2 Construct isochronous stress–strain curves for polycarbonate from the

creep data for t¼ 1 min. and t¼ 5 min. in Fig. 11.12.
11.3 Develop the governing equations for the modified Bingham model given

in Fig. 11.15b and show that their solution leads to Eq. 11.29.
11.4 Develop the governing equation for the following version of the modified

Schwedoff model given in Fig. 11.15d.
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11.5 The Crochet modification to the Nagdi and Murch χij function is.

χ ¼ εVkl � εEkl
	 


εVkl � εEkl
	 
� 
1=2

Expand χ for a general three-dimensional state of stress and strain and

verify the results given for uniaxial tension by Eq. 11.23.
11.6 Verify Eq. 11.35 for the creep to yield time assuming use of the modified

Bingham model and the Crochet equation Y(t)¼A+Bexp(�Cχ).
11.7 Verify that the use of the Schapery nonlinear viscoelastic model results in

the χ function of Eq. 11.36 for creep of a nonlinear viscoelastic material

in simple tension. (Assume a constant Poisson’s ratio.)

11.8 Develop an expression for the yield stress as a function of time using the

Crochet equation and the expression for creep for the model shown in

problem 11.4.

11.9 Show that the deviatoric stored energy comprises 93 % of the total stored

energy in a uniaxial tension test.

11.10 Discuss the relative merits of the Larson Miller parameter method and the

Zurkov method compared to the Reiner-Weissenberg criteria.

11.11 Verify Eqs. 11.72 and 11.73.
11.12 Perform a literature search for other time dependent failure models (both

yield and rupture) and compare their relative merits compared to those

given in this chapter.
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Appendix A: Step and Singularity Functions

A.1 Unit (Heavyside) Step Function

The unit or Heavyside step function is defined as,

H tð Þ ¼ 1, t � 0

0, t � 0

� �

and can be represented graphically as,

0 time, t

1

H(t)

The unit step function is used to indicate a discontinuous change in another

function at a particular point in time. If for example the function F(t) is given as,

F tð Þ ¼ f tð ÞH t� t1ð Þ

It states that the function f(t) is zero before t¼ t1 and is only defined for t> t1 as
illustrated graphically by,

© Springer Science+Business Media New York 2015
H.F. Brinson, L.C. Brinson, Polymer Engineering Science
and Viscoelasticity, DOI 10.1007/978-1-4899-7485-3

429



0 time, tt1

f(t)

Differentiation of the unit step function yields the singularity, or Dirac delta,

function which is defined as,

δ tð Þ ¼ 0, t 6¼ 0

1, t ¼ 0

� �

and is represented graphically as,

0 time, t

d(t)

1/e

e/2–e/2

The function δ(t) becomes infinite in the limit as ε! 0 and is defined such

that the integral of the function yields unity

ðþ1

�1
δ tð Þdt ¼ 1

The singularity function results when the step function is differentiated, i.e.,
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d H tð Þ½ �
dt

¼ δ tð Þ ¼ 0, t 6¼ 0

1, t ¼ 0

� �

and

d H t� t1ð Þ½ �
dt

¼ δ t� t1ð Þ ¼ 0, t1 6¼ 0

1, t1 ¼ 0

� �

In the latter case,

0 t1 time, t

δ(t)

1/ε

t1+ε/2t1−ε/2

The singularity function has unique properties. For example, when a function

such as f(t) is multiplied by a singularity function, δ(t), and then integrated, the

result is the function evaluated at the location of the singularity function. That is,

ðt

0

f tð Þδ t� t1ð Þdt ¼
ðt

0

f tð Þ d H t� t1ð Þ½ �
dt

dt ¼ f t1ð Þ

This is known as the sifting property of the Dirac delta function.
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Appendix B: Transforms

B.1 Laplace Transforms

The Laplace transform is a linear operator which is defined as,

L f tð Þf g ¼ f sð Þ ¼
ðt

0

f tð Þe�stdt

The above integral is easily evaluated for many simple functions which can be

illustrated by finding the Laplace transform of an exponential as follows,

L eatf g ¼
ðt

0

eate�stdt ¼
ðt

0

e� s�að Þtdt ¼ 1

s� a

The Laplace transform of many simple trigonometric, exponential and other

functions results in the given function being replaced by an algebraic function.

For example, the Laplace transform of the derivative of a function is,

L f
0
tð Þ

n o
¼

ðt

0

d f tð Þ½ �
dt

e�stdt ¼ sf sð Þ � f 0ð Þ

Because the Laplace transform of a time derivative (of any order) is an algebraic

function, differential equations involving time are converted to algebraic expres-

sions by a Laplace transformation. Thus, differential equations involving time

can often be solved in the transform domain by using usual algebraic techniques

provided that the result can be inverted back to the time domain.

The Laplace transform of many functions have been evaluated and the results

tabulated. Extensive tables may be found in many texts on the subject. The

Laplace transform of a few functions is given in the table below,
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Example of function – laplace transform Pairs

f(t) f sð Þ
c c

s
t 1

s2

eat 1

s� a
sinωt ω

s2 þ ω2

cosωt ω
s2 þ ω2

f0(t) sf sð Þ � f 0ð Þ
f(t� a)H(t� a) e�asf sð Þ

Obviously, one approach to find the inverse Laplace transform is by using the

known transforms that can be found in tables. Often, manipulation of an

algebraic transform (such as breaking up expressions using partial fractions)

can result in a form that is easily found from a table of known transforms. When

such a simple procedure is not applicable, the inversion may be possible using

the inversion integral,

f tð Þ ¼ L�1 f sð Þ� � ¼ 1

2πi

ðcþi1

c�i1
f sð Þestds

This method involves contour integration in the complex plane and is beyond the

scope of this text.

The convolution (Faltung) integral is defined as,

ðt

0

f tð Þg t� τð Þdτ ¼
ðt

0

g tð Þf t� τð Þdτ

The Laplace transform of the convolution integral is,

L
ðt

0

f tð Þg t� τð Þdτ
8<
:

9=
; ¼ L

ðt

0

g tð Þf t� τð Þdτ
8<
:

9=
; ¼ f sð Þg sð Þ

Due to the occurrence of convolution integrals naturally in the viscoelastic

constitutive law, Laplace transforms can be quite useful.
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B.2 Fourier Transform

A function, f(t), may be related to itself via the Fourier integral as

f tð Þ ¼ 1

2π

ðþ1

�1
eiωt

ðþ1

�1
f ξð Þe�iωξdξ

8<
:

9=
;dω

and is often represented by the Fourier transform pair,

F ωð Þ ¼
ðþ1

�1
f ξð Þe�iωξdξ

f tð Þ ¼ 1

2π

ðþ1

�1
F ωð Þeiωtdω

If the f(t) in the Fourier integral has no value for t< 0, the integral becomes,

f tð Þ ¼ 1

2π

ðþ1

�1
eiωt

ðþ1

0

f ξð Þe�iωξdξ

8<
:

9=
;dω

and can be shown to lead to the Laplace transform pair (Thomson 1960),

f sð Þ ¼
ðþ1

0

f tð Þe�stdt

f sð Þ ¼
ðcþ1

c�1
f sð Þestds

Similar to Laplace transforms, Fourier transforms also have special properties

under differentiation and integration making them a very effective method for

solving differential equations. Due to the form of the constitutive laws in

viscoelasticity, Fourier transforms are quite useful in analysis of viscoelastic

problems.
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Appendix C: Durability and Accelerated Life
Predictions of Structural Polymers

Polymers are used in many structural circumstances but due to their low

modulus relative to metals and other materials they are not used alone where

high modulus and high strength are required. However, in such situations they

are often used as the matrix material in polymer based composites and as an

adhesive in some highly stressed connections. The focus of this chapter is

therefore on adhesively bonded structures and polymer matrix composite

(PMC) structures sometimes known as fiber reinforced plastics (FRP). One

example of a highly successful adhesively bonded structure is the Fokker aircraft

F 27 developed in the Netherlands after WW II followed by the F 28 in 1965 and

the F 100 in the mid 1980s. The technical director of Fokker for this effort was

Rob Schliekelman whom the senior author of this text had the privilege to meet

in the early 1980s at the Fokker plant in Delft. The unique feature of these planes

was that they were made using thin aluminum sheets bonded together in the

same manner as thin sheets of wood are bonded together to make plywood. The

motivation for this development was that WW II decimated the heavy machinery

industry in Holland and using the lamination technique was the only way they

could build up their aircraft industry quickly. Figure C.1 is an illustration from a

Fokker brochure that demonstrates the type of lamination and bonding used.

Indeed the success of Fokker in building planes in this manner led to the highly

funded US Air Force PABST (Primary Adhesively Bonded Structures Technol-

ogy) program in the 1980s. Similarly, in the late 1990s NASA instituted a high-

speed civil transport (HSCT) program where composite structures were to play a

significant role. These two programs were indisputably influential in the even-

tual use of bonded and composite structures in both military and commercial

aircraft. The Boeing 787 with over 50 % structural composite is, at least

partially, a result of these two federal programs.

© Springer Science+Business Media New York 2015
H.F. Brinson, L.C. Brinson, Polymer Engineering Science
and Viscoelasticity, DOI 10.1007/978-1-4899-7485-3

437



Of course, in both PMC and/or bonded connections as well as in any circum-

stance where a structure must last for many years durability is of major concern.

Often durability in a structural sense is most often associated with fatigue.

However, as seen in the last chapter, time dependent failure due to the visco-

elastic nature of polymers is also a durability concern. In this chapter it will be

shown that the time-temperature–superposition-principle (TTSP) can be used

effectively to assess the durability of both adhesively bonded and/or PMC

structures.

C.1 Adhesively Bonded Structures

The use of polymer adhesives in structural circumstances is many and varied.

The details of specific applications with techniques and procedures are too

numerous to mention in a single chapter. However, the 1992 Engineering
Materials Handbook Volume: 3 Adhesives and Sealants and the 2006 Handbook
of Adhesives and Sealants, 2nd Edition published by ASM International are

recommended for in depth reading on chemistry, surface treatments, design

procedures, equipment, etc. A more recent compendium of articles relative to

adhesive selection, surface treatments and environmental effects may be found

in Dillard (2010). Here only essential features relevant to durability concerns

will be covered.

For engineering design, modulus and strength properties are required. For

bonding of similar or dissimilar materials such properties of the adherends (the

surfaces to be bonded together) and the adherent (the adhesive) must be

Fig. C.1 Fokker lamination and bonding technique, image courtesy of Fokker

Technologies
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determined. For example, for bonding aluminum to aluminum with an epoxy

requires the properties of both the aluminum and the epoxy. In most cases the

properties of the aluminum can be found in the literature or can be determined

experimentally. The properties of epoxy are reasonably well known but deter-

mination of the properties should be verified for the circumstances of the

intended use. Stress-strain properties of an epoxy are given in Figs. 3.10 and

3.11 as well as the variation of modulus with temperature in Fig. 7.2 and a master

curve using the TTSP in Fig. 7.4. However, these properties should not be used

arbitrarily as the properties of another epoxy might be significantly different.

Even knowledge of the correct properties for a particular aluminum and a

particular epoxy would be insufficient information to assure a good bond as it

is well known that there is a third material to consider – the interface or more

properly the interphase. In all cases of bonding the surfaces need to be clean and

dry and for best results for structural bonds surfaces need to be preconditioned

with a surface treatment. Such pretreatment creates a new material called the

interphase. The adhesive layer is normally very thin, usually a few millimeters or

less. The interphase is much smaller and may only be tens of nanometers. The

question then becomes how to correctly determine the properties of this inter-

phase region such that the information could be used in a finite element program

for a correct stress analysis. The local properties of polymers near interfaces is

an active area of research, with novel methods being developed to determine

glass transition temperatures and moduli as a function of distance from a surface

(Rittigstein et al. 2007; Watcharotone et al. 2011). As yet, no definitive test to

determine modulus and strength properties of this region has been devised.

For the above reasons many different tests have been developed to determine

the properties of an adhesive joint. Some of these are:

• Lap joints (single, double and modified)

• V-notched beam (Iosipescu)

• Arcan

• Plate-twist

• Torsion of cylindrical butt joint

• Thick adherend

• Napkin ring

• Skin doubler

• Wedge

• Peel

• Blister

Details for many of these methods can be found in various sources on the

internet. Also, details of each of these tests as well as other relevant information

on adhesive bonding can be found at the National Physical Laboratory (NPL)

website using the search term “adhesivestoolkit.________” where the test
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desired is inserted in the underlined area, e.g., adhesivestoolkit.peeltest. Also,

ASTM or ISO standards are available for most of these tests.

C.2 Adhesive Durability Tests

The first seven tests listed above are often thought of as tests to determine the

shear properties of an adhesive joint. However, in most cases the stress state is

not pure shear but a combined stress state. Indeed in all the lap shear tests

significant peel stresses exist (see Anderson et al. 1982 and Strozier et al. 1988).

It has been shown that the Arcan and the Iosipescu tests are close to the case of

pure shear. However, the lap shear test is most often used due to its simplicity.

One durability test that has been used is shown in Fig. C.2. In this test a chain

of lap joint specimens are loaded in tension by a compressed spring attached to

Fig. C.2 Schematic of 3M durability tester
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the fixture. Often as many as 10 or more fixtures are placed in an environmental

cabinet where the temperature and humidity is controlled. In this manner

numerous specimens can be tested under different stress levels at one time.

Filby and Wightman (1988) used such a test to evaluate the effect of various

surface treatments on titanium to titanium single lap shear specimens bonded

with an FM-300 adhesive. The results are shown in Fig. C.3. As may be observed

results varied significantly depending on the surface treatment. Obviously, from

this test the CAA (chromic acid anodization) would be preferred. Filby and

Wightman (1988) also performed wedge durability tests that indicated that CAA

and TURCOwere the same with very little crack growth over time. In their study

they used a number of surface analysis techniques including XPS, AES, FTIR

STEM to evaluate the surface treatment before and after failure. Their conclu-

sion was that the anodization (CAA) was superior to the etches (P/F, TURCO) as

the former was more porous than the latter.

Fig. C.3 Time to failure windows for the stress durability test at 40 % strength to break

load at 80 �C and 95 % r.h.
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Clearly it is possible to use the TTSP to obtain master curves of the adhesive

modulus and strength properties obtained through the use of lap shear (or other

specimen) and thereby make an effort to establish long term design data exper-

imentally. However, this does not provide accurate information about the prop-

erties of the interphase that can be used in a finite element analysis. One

possibility is to estimate the ratio of the interphase properties to that of the

adhesive to give an estimate of how the variation of properties might affect the

analysis. Botha (1983) used this approach to estimate the effect of the interphase

properties on the shear stress distribution in a single lap shear specimen as shown

in Fig. C.4. (See also, Brinson and Grant 1986.) As may be observed the

interphase property has a significant effect on the stress distribution.

It is clear from the above that better measurement technique need to be

developed to determine properties of materials in the nanometer range and on

the interior of an adhesive bond.

Fig. C.4 The effect of different interphase to adhesive moduli ratio on the stress

distribution along the bondline
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C.3 TTSP Applied To PMC Structures

An early use of the TTSP to produce a storage modulus master curve for a

Boron-Epoxy composite was reported by Heller et al. (1975) using forced

oscillation tests at different frequencies and temperatures. Cardon and Hiel

(1981) also used forced oscillation tests to study the viscoelastic behavior of

composites. Yeow (1978) performed a large number of creep tests at various

elevated temperatures (30 temperatures between 23 �C and 210 �C) at fiber

angles (10�, 15�, 30�, 45�, 60�, 75�, 90�) on unidirectional T300/934 tensile

specimens. The creep tests were of short duration (16 minutes) and were used to

produce a master curve at each fiber angle using the TTSP. In turn, the master

curves for axial, transverse and shear compliance were found such as the one

given in Fig. C.5 for 1/S66 for T¼ 180 �C. A similar master curve was produced

for 1/S22.

Also included were tests measuring the coefficient of thermal expansion to

determine the glass-transition temperature, Poison’s ratios and linearity. Con-

stant strain-rate tests were used to ascertain strengths for various fiber angles.

Shift factors were found and compared for all fiber directions tested but unlike

expectations little variation of shift factor with fiber angle was found. The shift

factor variation with temperature was found to match the WLF equation above

the glass transition temperature and be in agreement with an activation energy

type shift factor below the glass transition temperature. The results were then

used with laminated plate theory to predict the response of multidirectional

composite laminates. The foregoing efforts led to the development of an accel-

erated life prediction methodology outlined in Fig. C.6 and first presented by

Brinson et al. (1978) and later in a series of publications with colleagues in the

early 1980s (See, Morris et al. 1980; Brinson et al. 1981, 1982; Hiel et al. 1983.)

This approach makes it possible to determine long-term (years) behavior over

the lifetime of a polymer based composite structure from data taken over a short

time interval (minutes or days) and could include the effects of a number of

environmental parameters including time, temperature, stress, moisture and,

perhaps, other environmental parameters. It was suggested that this method

could be used to produce a multidimensional property surface that could be

modeled analytical and used with various computational procedures such as

laminated plate theory or finite element analysis to ascertain the lifetime of a

composite structure.

Appendix C: Durability and Accelerated Life Predictions of Structural Polymers 443



Fig. C.5 Reciprocal of compliance, 1/S66, and portion of master curve at 180 �C for

T300/934 epoxy laminate. (Upper: short-term data and portion of master

curve. Lower: complete master curve and long-term, 25 hour, test)
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C.4 Time Dependent Failure Master Curves

Time dependent failure has long been of concern to design engineers. For an

interesting description and an extensive reference list of early time dependent

aging and accelerated life prediction techniques including the Arrhenius and

Eyring’s models (See Carfango and Gibson 1983).

Early failure strength master curves were developed by Lohr (1965) and

Halpin and Polley (1967). In the former, yield strength master curves were

formed using constant strain rate tests from 0.003 to 300 min�1 and from

15 �C above the glass transition temperature to 100 �C below the glass transition

temperature for poly(methyl methacrylate), polystyrene, polyvinyl chloride, and

polyethylene terephthalate. In the latter, the creep rupture strength for an SBR

Gum polymer at different temperatures was shifted to form a master curve that

could be fitted with a modified power law. The master curve had the traditional

sigmoidal shape of a modulus master curve but was actually formed from data

plotted as the ratio of the number specimens (out of 60) that did not fail for each

temperature and stress level and as a result represented survival rates rather than

failure rates.

Fig. C.6 Proposed accelerated characterization method for laminated composites
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C.5 Time Dependent Modulus, Fatigue and Failure
Master Curves

At a durability conference organized by Albert Cardon, et al. at the University of

Brussels (VUB) Miyano (1996) introduced a procedure to predict long-term

static, creep and fatigue strengths of carbon reinforced polymer composites

based on the TTSP. Following this introduction Miyano and his colleagues in

an excellent series of publications reported the details of a comprehensive

procedure to develop master curves using the TTSP as the foundation for the

accelerated life or durability prediction of various fiber reinforced polymer-

based composites (See, Nakada et al. 1996; Miyano et al. 1999, 2002, 2008).

Included were not only modulus or compliance master curves but also strength

and fatigue master curves as well for temperatures above and below the glass-

transition temperature. They found that the same TTSP approach was applicable

for the resin and its composites for modulus (compliance) and for strength from

constant strain-rate tests. Fatigue strengths were found to exhibit linear depen-

dence on the stress ratio of the cyclic loadings and Robinson’s time fraction rule

(linear cumulative damage) was applicable for monotonic increasing loads.

Figure C.7 gives a schematic of Miyano’s accelerated life prediction procedure

reproduced from Miyano et al. (2008). This method was verified for a large

number of resins such as; epoxy, PAN, PI, BMI, and vinylester, and composites

made with the resins and such fibers as carbon, pitch, and glass.

Tsai et al. (2003) reported on an accelerated insertion program developed for

composite materials. The fundamental concept was that a procedure was needed

to shorten the time required for a new material to be used in primary structural

applications. They relied on Miyano’s TTSP based accelerated life prediction

method combined with micromechanics analyses together with a 3-D finite-

element based analysis of complex composite laminates and structures which

included a strain invariant failure theory. They too evaluated a wide spectrum of

resins, fibers and laminates. Most impressively they presented initial and final

failure data on an AS4/3501-6 [0/90/45/-45] biaxial laminate superimposed on

predicted initial and final failure envelopes. Data and theory correlated

extremely well. As the program (AIM-C) under which this research was accom-

plished was led by a Boeing team, it is encouraging to know that most likely the

design of aircraft using polymer-based composites has an integrated experimen-

tal and analytical basis for making rational long-time predictions of structural

performance including delayed time dependent failure due to the viscoelastic

nature of such materials.
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Topics of current composite research importance are biological tissues,

nanocomposites and fuel cells. Insight to the viscoelastic behavior of these

materials can be found in the literature, including for biological materials

(Garner et al. 2000; Ma et al. 2012), nanocomposites (Fisher et al. 2004, 2006

and fuel cells (Lia et al. 2009). The extent of the use of superposition techniques

such as the TTSP, TSSP, etc. for this research involving these materials is

certainly possible but their use is still in its infancy at this time.

Fig. C.7 Schematic of Miyano’s accelerated life prediction procedure (Redrawn from

Miyano et al. 2008)
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Appendix D: Herbert Leaderman:
A Master of Polymer Physics
and Mechanics

Herbert Leaderman (1913–1965) (Photo 1948: Courtesy of NIST Archives)

Leaderman was born in London and matriculated at both the University of

Cambridge and the University of London in 1934 with an Honors B. A. from the

former and a B. S. in Engineering from the latter. He later worked for Aero

Research Limited as an Assistant to the Director from 1936 to 1937 on

“Research and Development – Plastics” according to a bio obtained by courtesy

of the NIST Archives. He was awarded a Robert Blair Fellowship from the

London County Council (termed a “Traveling Fellowship” in his NIST bio) that

he used to attend MIT in 1937–1938 engaged in studies and research toward an

S.M. degree in Mechanical Engineering. His thesis title was: Creep, Elastic
Hysteresis, and Damping in Bakelite and was concerned with evaluating the

energy lost in materials that could be attributed to elastic hysteresis and/or

damping. The motivation was that a distinction between the two effects in metals

was small and hard to measure but in polymers (such as Bakelite) differences

would be larger and measurable. Hence, he elected to do his studies on Bakelite

and received materials from both Bakelite Limited of England and the Bakelite

Corporation of America. Another focus of his S.M. was to ascertain if the

© Springer Science+Business Media New York 2015
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Boltzmann Superposition Principle was valid for the case of creep of Bakelite, a

concern that carried over to his later Sc. D. studies at MIT. Temperature was not

a consideration in this study and there is no mention of time-temperature

shifting. Indeed, he listed only seven references and the only one that was later

used in his Sc. D. was Boltzmann’s 1876 paper relative to the superposition

principle. There was no mention of papers by Kobeko (1937) or Hetenyi (1938,

1939) that were prominently featured in his Sc. D. thesis. It is safe to say that his

efforts relative to the time-temperature-superposition-principle were only a

result of his Sc. D. research.

Leaderman’s S.M. thesis advisor was Alfred V. de Forest an associate

professor in the mechanical engineering department. De Forest was an innovator

and an entrepreneur. He had earlier founded Magnaflux, Inc. that marketed

“stress coat” and a “carbon strain gage”. Brittle coatings such as “stress coat”

were applied to models of various engineering structures made of metal or other

materials to determine the regions of high tensile stress because the coating

would exhibit cracks perpendicular to such areas. The most successful coating

was made from “wood rosin” extracted from pine trees, a natural polymer.

Sometimes models were made of brittle polymers such as PMMA, Bakelite,

etc. that would exhibit surface cracks in regions of high tensile stress. (See

Hetenyi 1950 for in-depth information.) The carbon strain gage was a thin

carbon rod sanded down to a flat sheet and bonded to a structure to be tested.

When stressed the resistance change in the carbon was measured and, when

calibrated, would provide a measure of the surface strain. However, the carbon

gage was only useful for dynamic applications and could not be used for static

circumstances. As a result there was a keen interest in developing a better strain

gage. Magnaflux is still in business though their focus has shifted to more

modern products.

Author C. Ruge was an assistant professor in civil engineering interested in

seismology and the associated equipment for related laboratory studies. (He later

became the first professor of seismology at MIT.) Ruge was interested in

developing very sensitive instrumentation that could be used in equipment to

simulate earthquakes and was undoubtedly familiar with the carbon strain gage

produced by de Forest at Magnaflux. In 1938 he experienced, by his own

admission, a “eureka moment” and invented the forerunner of the SR-4 electrical

resistance strain gage. This was essentially four thin tungsten filaments

sandwiched and glued between thin sheets of paper and bonded to a structure

to be tested under load. When stretched the resistance in the wires changed and

could be related to strain at that location. Ruge and de Forest collaborated to

form a company, Ruge-deForest Inc., to patent and market the new strain gages.

As it turned out another person, Edward E. Simmons a laboratory assistant for

Donald S. Clark (an Assistant Professor at Cal Tech) had invented a similar
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electrical resistance strain gage in 1936. (For more information on Simmons see:

“Simmons and the Strain Gage”; Engineering and Science, Volume 50:1,
September 1986. This can be found at: http://resolver.caltech.edu/

CaltechES:50.1.0) Ruge and de Forest were very generous and included

Simmons in their patent. The patent was for an SR-4 strain gage where the S

and the R stood for Simmons and Ruge and the 4 was for the two of them plus

their collaborators, Donald S. Clark and Alfred V. De Forest. A modern electri-

cal resistance strain gage is shown in Fig. 2.6c. Ruge-deForest, Inc. was sold to

Baldwin-Lima-Hamilton Corporation in 1955 but a division of Ruge-deForest

that marketed temperature measurement products was retained and the name

changed to RdF, Inc. and still remains today as a closely held company. (For

more information on the history of the strain gage, see: Tatnall, Frank G.; Tatnall
on Testing: An Autobiographical Account of Adventures Under 13 Vice Presi-
dents; ASTM, 1967.)

There is no mention of electrical strain gages in Leaderman’s M.S. thesis but

it is certain that he was aware of the strain gage activity of both de Forest and

Ruge and likely participated in the development to some degree as he

coauthored the following NACA Report and book on the subject with de Forest:

Forest, A.V and Leaderman, H., The Development of Electrical Strain
Gage, NACA-TN-744, 1940.

Forest, A.V and Leaderman, H., Die Entwicklung elektrischer
Dehnungsmesser (The development of the electrical strain measure),
Dessau: Junkers Flugzeug-und Motorenwerke AG, Stammwerk,

Werkstoff-Forschung, Germany, 1941.

The NACA Report is available on NASA’s publication website and can be

downloaded. A look at that report indicates that de Forest and Leaderman

designed a reusable electrical resistance strain gage for the aircraft industry.

The following abstract details their objective:

The design, construction, and properties of an electrical-resistance strain
gage consisting of fine wires molded in a laminated plastic are described. The
properties of such gages are discussed and also the problems of molding of
wires in plastic materials, temperature compensation, and cementing and
removal of the gages.

Further work to be carried out on the strain gage, together with instrumen-
tation problems, is discussed.

De Forest and Leaderman published an earlier preliminary NACA report in

1939 that is referenced in the above publication. On his brief NIST bio

Leaderman gives the following description of his position at MIT for the period
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1938–1943: “Research Assistant (a) Physics of plastics and textile fibers,

(b) Wire stain gage development”. So it is certain de Forest and Leaderman

were working together on an electrical resistance strain gage soon after Ruge’s

inspiration and likely with his approval. It is curious that Ruge’s name does not

appear on these publications.

The 5th IUTAM Congress was held at MIT in Cambridge, MA in September

of 1938. At this congress, Miklos Hetenyi of Westinghouse (and a former Ph. D.

student of Professor Steven P. Timoshenko at the University of Michigan) made

a presentation on “Photoelastic Studies of Three-Dimensional Stress Problems”

which almost certainly Leaderman attended (see references, Hetenyi et al. 1938,

1939). This presentation and paper was the first effort that explained in detail the

frozen stress procedure for determining the three-dimensional stress field within

structural models made of Bakelite, BT-61-893. In this study Hetenyi presented

creep data at various temperatures for this photoelastic model material that

Leaderman later referenced and used in his Sc. D. thesis. (In fact in a footnote

in his thesis, Leaderman thanked Hetenyi for providing his creep data on

Bakelite.) This data together with the creep studies of Kobeko led Leaderman

to his statement quoted in Sect. 7.2.1: “. . .it is not unreasonable to suppose that
the creep curves are identical in shape but displaced relative to each other along
an axis of logarithmic time; the effect of increases in temperature would then be
to contract the time scale.” Indeed, Hetenyi in his efforts recognized that the

same deformations observed at low temperature would be observed at a high

temperature only faster. Using a Kelvin model and estimating the viscosity of

Bakelite every 10� C, he calculated that it would take on the order of 10,000

years for Bakelite at room temperature to reach the same level of deformation

obtained in only a few minutes at high temperature.

After completing his S.M. in 1938 Leaderman switched advisors and com-

pleted his Sc. D. with Edward R. Schwarz a professor in Textile Technology at

MIT a group within the mechanical engineering department. This was likely due

to funding and the fact that de Forest and Ruge were heavily involved in creating

a new company. Leaderman and de Forest were obviously still collaborating as

evidenced by their publications in 1940 and 1941. It is clear that Hetenyi’s work

on Bakelite was a stimulus and an aid to Leaderman’s Sc. D. thesis completed in

1941. On the other hand it is doubtful that Hetenyi was aware of his contribution

to Leaderman’s work as the senior author of this text had many conversations

with Hetenyi on the subject of master curves and the shifting procedures without

a connection being made (see Brinson 1965). This is a classic example of how

one person’s efforts contribute to the work of another and the connection

between the two is lost in the haze of time!
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Between 1943 and 1946 Leaderman was a staff member at the MIT Radiation

Lab, a physicist at the Firestone Tire and Rubber Co. from 1946 to 1948 with a

brief stint as an instructor for a few months in 1947 at the University of Akron.

He joined the Physics group at NIST in 1948 and published numerous papers and

reports relative to the temperature effects on polymers throughout his career. He

was awarded a Fulbright Fellowship in 1956–1957 to give lectures on the

physics of high polymers at the Gakushiun University and the Tokyo Institute

of Technology. He was awarded the BinghamMedal by the Society of Rheology

in 1955.
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