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PREFACE

The groundwork for the fundamentals of polymer processing was laid out by Professor R. B.
Bird, here at the University of Wisconsin-Madison, over 50 years ago. Almost half a century
has past since the publication of Bird, Steward and Lightfoot’s transport phenomena book.
Transport Phenomena (1960) was followed by several books that specifically concentrate
on polymer processing, such a the books by McKelvey (1962), Middleman (1977), Tadmor
and Gogos (1979), and Agassant, Avenas, Sergent and Carreau (1991). These books have
influenced generations of mechanical and chemical engineering students and practicing
engineers. Much has changed in the plastics industry since the publication of McKelvey’s
1962 Polymer Processing book. However, today as in 1962, the set-up and solution of
processing problems is done using the fundamentals of transport phenomena.

What has changed in the last 50 years, is the complexity of the problems and how they
are solved. While we still use traditional analytical, back-of-the-envelope solutions to
model, understand and optimize polymer processes, we are increasingly using computers
to numerically solve a growing number of realistic models. In 1990, Professor C.L. Tucker
III, at the University of Illinois at Urbana-Champaign edited the book Computer Simulation
for Polymer Processes. While this book has been out of print for many years, it is still the
standard work for the graduate student learning computer modeling in polymer processing.

Since the publication of Tucker’s book and the textbook by Agassant et al., advances
in the plastics industry have brought new challenges to the person modeling polymer pro-
cesses. For example, parts have become increasingly thinner, requiring much higher injec-
tion pressures and shorter cooling times. Some plastic parts such as lenses and pats with
microfeatures require much higher precision and are often dominated by three-dimensional
flows.
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The book we present here addresses traditional polymer processing as well as the emerg-
ing technologies associated with the 21st Century plastics industry, and combines the mod-
eling aspects in Transport Phenomena and traditional polymer processing textbooks of the
last few decades, with the simulation approach in Computer Modeling for Polymer Process-
ing. This textbook is designed to provide a polymer processing background to engineering
students and practicing engineers. This three-part textbook is written for a two-semester
polymer processing series in mechanical and chemical engineering. The first and second
part of the book are designed for the senior- to grad-level course, introducing polymer pro-
cessing, and the third part is for a graduate course on simulation in polymer processing.
Throughout the book, many applications are presented in form of examples and illustra-
tions. These will also serve the practicing engineer as a guide when determining important
parameters and factors during the design process or when optimizing a process.

Polymer Processing − Modeling and Simulation is based on lecture notes from inter-
mediate and advanced polymer processing courses taught at the Department of Mechanical
Engineering at the University of Wisconsin-Madison and a modeling and simulation in
polymer processing course taught once a year to mechanical engineering students special-
izing in plastics technology at the University of Erlangen-Nurenburg, Germany. We are
deeply indebted to the hundreds of students on both sides of the Atlantic who in the past
few years endured our experimenting and trying out of new ideas and who contributed with
questions, suggestions and criticisms.

The authors cannot acknowledge everyone who helped in one way or another in the
preparation of this manuscript. We are grateful to the engineering faculty at the University
of Wisconsin-Madison, and the University of Erlangen-Nurenberg for their support while
developing the courses which gave the base for this book. In the Department of Mechanical
Engineering at Wisconsin we are indebted to Professor Jeffrey Giacomin,for his suggestions
and advise, and Professor Lih-Sheng Turng for letting us use his 3D mold filling results in
Chapter 9. In the Department of Chemical and Biological Engineering in Madison we are
grateful to Professors Juan dePablo and Michael Graham for JPH’s financial support, and
for allowing him to work on this project. We would like to thank Professor G.W. Ehrenstein,
of the LKT-Erlangen, for extending the yearly invitation to teach the "Blockvorlesung" on
Modeling and Simulation in Polymer Processing. The notes for that class, and the same class
taught at the University of Wisconsin-Madison,presented the starting point for this textbook.
We thank the following students who proofread, solved problems and gave suggestions:
Javier Cruz, Mike Dattner, Erik Foltz, Yongho Jeon, Fritz Klaiber, Andrew Kotloski, Adam
Kramschuster, Alejandro Londoño, Ivan López, Petar Ostojic, Sean Petzold, Brian Ralston,
Alejandro Roldán and Himanshu Tiwari. We are grateful to Luz Mayed (Lumy) D. Nouguez
for the superb job of drawing some of the figures. Maria del Pilar Noriega from the ICIPC
and Whady F. Florez from the UPB, in Medellı́n, Colombia, are acknowledged for their
contributions to Chapter 11. We are grateful to Dr. Christine Strohm and Oswald Immel of
Hanser Publishers for their support throughout the development of this book. TAO thanks
his wife, Diane Osswald, for as always serving as a sounding board from the beginning to
the end of this project. JPH thanks his family for their continuing support.

TIM A. OSSWALD AND JUAN P. HERNANDEZ-ORTIZ

Madison, Wisconsin

Spring 2006



INTRODUCTION

Ignorance never settles a question.

—Benjamin Disraeli

The mechanical properties and the performance of a finished product are always the
result of a sequence of events. Manufacturing of a plastic part begins with material choice
in the early stages of part design. Processing follows this, at which time the material is not
only shaped and formed, but the properties which control the performance of the product are
set or frozen into place. During design and manufacturing of any plastic product one must
always be aware that material, processing and design properties all go hand-in-hand and
cannot be decoupled. This approach is often referred to as the five P’s: polymer, processing,
product, performance and post consumer life of the plastic product.

This book is primarily concerned with the first three P’s. Chapters 1 and 2 of this
book deal with the materials science of polymers, or the first P, and the rest of the book
concerns itself with polymer processing. The performance of the product, which relates to
the mechanical, electrical, optical, acoustic properties, to name a few, are not the focus of
this book.

I.1 MODELING AND SIMULATION

A model of a process is a simplified physical or mathematical representation of that system,
which is used to better understand the physical phenomena that exist within that process.
A physical model is one where a simplified representation of that process is constructed,
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Screw flights

Tracer ink nozzle Initial tracer ink

Flow line formed by the ink tracer

Figure I.1: Photograph of the screw channel with nozzle and initial tracer ink position.

such as the screw extruder with a transparent barrel shown in Fig. I.1 [5]. The extruder
in the photographs is a 6 inch diameter, 6D long constant channel depth screw pump that
was built to demonstrate that a system where the screw rotates is equivalent to a system
where the barrel is rotating. In addition, this physical model, which contained a Newtonian
fluid (silicone oil), was used to test the accuracy of boundary element method simulations
by comparing the deformation of tracer ink markings that were injected through various
nozzles located at different locations in the screw channel.
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Figure I.2: BEM simulation results of the flow lines inside the screw channel of a single screw
extruder.

Hence, the physical model of the screw pump served as a tool to understand the under-
lying physics of extrusion, as well as a means to validate mathematical models of polymer
processes.

Physical models can be as complex as the actual system, except smaller in size. Such
a model is called a pilot operation. Usually, such a system is built to experiment with
different material formulations, screw geometries, processing conditions and many more,
without having to use excessive quantities of material, energy and space. Once the desired
results are achieved, or a specific invention has been realized on the pilot operation scale,
it is important to scale it up to an industrial scale. Chapter 4 of this book presents how
physical models can be used to understand and scale a specific process.

In lieu of a physical model it is often less expensive and time consuming to develop a
mathematical model of the process. A mathematical model attempts to mimic the actual
process with equations. The mathematical model is developed using material, energy and
momentum balance equations, along with a series of assumptions that simplify the process
sufficiently to be able to achieve a solution. Figure I.2 presents the flow lines in the metering
section of a single screw extruder, computed using a mathematical model of the system,
solved with the boundary element method (BEM), for a BEM representation shown in
Fig. 11.25, composed of 373 surface elements and 1202 nodes [22, 5]. Here, although
the geometry representation was accurate, the polymer melt was assumed to be a simple
Newtonian fluid.

The more complex this mathematical model, the more accurately it represents the actual
process. Eventually, the complexity is so high that we must resort to numerical simulation
to model the process, or often the model is so complex that even numerical simulation fails
to deliver a solution. Chapters 5 and 6 of this book address how mathematical models are
used to represent polymer processes using analytical solutions. Chapters 7 to 11 present
various numerical techniques used to solve more complex polymer processing models.
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Figure I.3: BEM representation of the screw and barrel used to predict the results presented in
Fig. I.2.

I.2 MODELING PHILOSOPHY

We model a polymer process or an event in order to better understand the system, to solve an
existing problem or perhaps even improve the manufacturing process itself. Furthermore,
a model can be used to optimize a given process or properties of the final product. In order
to model or simulate a process we need to derive the equations that govern or represent the
physical process. Before we solve the process’ governing equations we must first simplify
them by using a set of assumptions. These assumptions can be geometric simplifications,
boundary conditions, initial conditions, physical assumptions, such as assuming isothermal
systems or isotropic materials, as well as material models, such as Newtonian, elastic,
visco-elastic, shear thinning, or others.

When modeling, it is good practice to break the analysis and solution process into set of
standard steps that will facilitate a solution to the problem [1, 2, 4]. These steps are:

• Clearly define the scope of the problem and the goals you want to achieve,

• Sketch the system and define parameters such as dimensions and boundary conditions,

• Write down the general governing equations that govern the variables in the process,
such as mass, energy and momentum balance equations,

• Introduce the constitutive equations that relate the problem’s variables,

• State your assumptions and reduce the governing equations using these assumptions,

• Scale the variables and governing equations,

• Solve the equation and plot results.
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Figure I.4: Schematic diagram of a single screw mixing device.

EXAMPLE 0.1.

Physical and mathematical model of a single screw extruder mixer. To illustrate
the concept of modeling, we will use a hypothetical small (pilot) screw extruder, like
the one presented in Fig. I.4, and assume that it was successfully used to disperse
solid agglomerates within a polymer melt. Two aspects are important when designing
the process: the stresses required to disperse the solid agglomerates and controlling
the viscous friction inside the melt to avoid overheating of the material. Both these
aspects were satisfied in the pilot process, that had dimensions and process conditions
given by:

• Geometric parameters - Diameter, D1, channel depth, h1, channel width, W1 and
helix angle, φ1,

• Processing conditions - Heater temperature, T1, and rotational speed of the screw,
n1,

• Material parameters - Viscosity, µ1, and melting temperature, Tm1.

However, the pilot system is too small to be feasible, and must therefore be scaled
up for production. We now begin the systematic solution of this problem, following
the steps delineated above.

• Scope
The purpose of this analysis is to design an industrial size version of the pilot process,
which achieves the same dispersive mixing without overheating the polymer melt.
In order to simplify the solution we lay the helical geometry flat, a common way of
analyzing single screw extruders.
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• Sketch

Polymer

F=τA
u0=πDn

A

µ

h

Barrel surface

Screw root

γ=u0/h
.

W

• Governing Equations
The relative motion between the screw and the barrel is represented by the velocity

ui
0 = πDini (I.1)

where Di is the diameter of the screw and barrel and ni the rotational speed of the
screw in revolutions/second. The subscript i is 1 for the pilot process and 2 for the
scaled-up industrial version of the process. For a screw pump system, the volumetric
throughput is represented using

Qi =
ui

0hiWi

2
cosφ =

πDinihiWi

2
cosφ (I.2)

The torque used to turn the screw, T , in Fig. I.4 is equivalent to the force used to
move the plate in the model presented in the sketch, F , as

Fi =
2Ti

Di
(I.3)

Using the force we can compute the energy rate, per unit volume, that goes into the
viscous polymer using

Ei
v =

Fiu
i
0

Aihi
(I.4)

This viscous heating is conducted out from the polymer at a rate controlled by the
thermal conductivity, k, with units W/m/K. The rate of heat per volume conducted
out of the polymer can be estimated using

Ei
c = k

∆T

h2
i

(I.5)

where ∆T is a temperature difference characteristic of the process at hand given by
the difference between the heater temperature and the melting temperature.

• Constitutive Equations
The constitutive equation here is the relation between the shear stress, τ and the rate
of deformation γ̇. We can define the shear stress, τi, for system i using

τi = µiγ̇i = µi
ui

0

hi
(I.6)
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• Assumptions and Reduction of Governing Equations
Since we are scaling the system with the same material, we can assume that the
material parameters remain constant, and for simplicity, we assume that the heater
temperature remains the same. In addition, we will fix our geometry to a standard
square pitch screw (φ =17.65o) and therefore, a channel width proportional to the
diameter. Hence, the parameters to be determined are D2, h2 and n2.

Using the constitutive equation, we can also compute the force it takes to move the
upper plate (barrel)

Fi = τAi = µ
ui

0

hi
(I.7)

This results in a viscous heating given by

Ei
v = µ

#
ui

0

hi

*2

(I.8)

which, due to the high viscosity of polymers, is quite significant and often leads to
excessive heating of the melt during processing.

• Scale
We can assess the amount of viscous heating if we compare it to the heat removed
through conduction. To do this, we scale the viscous dissipation with respect to
thermal conduction by taking the ratio of the viscous heating, Ev , to the conduction,
Ec,

Ei
v

Ei
c

=
µui2

0

k∆T
(I.9)

This ratio is often referred to as the Brinkman number, Br. When Br is large, the
polymer may overheat during processing.

• Solve Problem
Since the important parameters for developing the pilot operation were the stress (to
disperse the solid agglomerates) and the viscous dissipation (to avoid overheating),
we need to maintain τi and the Brinkman number, Br, constant. If our scaling
parameter is the diameter, we can say

D2 = RD1 (I.10)

where R is the scaling factor. Hence, for a constant Brinkman number we must
satisfy

n2 = n2/R (I.11)

which results in an industrial operation with the same viscous dissipation as the pilot
process. Using this rotational speed we can now compute the required channel depth
to maintain the same stress that led to dispersion. Therefore, for a constant stress,
τ2 = τ1 we must satisfy,

h2 = h1 (I.12)

Although the above solution satisfies our requirements, it leads to a very small volu-
metric throughput. However, in industry there are various scaling rules that are used
for extruder systems which compromise one or the other requirement. We cover this
in more detail in Chapter 4 of this book.
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I.3 NOTATION

There are many ways of writing equations that represent transport of mass, heat, and fluids
trough a system, and the constitutive equations that model the behavior of the material
under consideration. Within this book, tensor notation, Einstein notation, and the expanded
differential form are considered. In the literature, many authors use their own variation of
writing these equations. The notation commonly used in the polymer processing literature
is used throughout this textbook. To familiarize the reader with the various notations, some
common operations are presented in the following section.

The physical quantities commonly encountered in polymer processing are of three cat-
egories: scalars, such as temperature, pressure and time; vectors, such as velocity, mo-
mentum and force; and tensors, such as the stress, momentum flux and velocity gradient
tensors. We will distinguish these quantities by the following notation,

T −→ scalar: italic

u = ui −→ vector: boldface or one free subindex

τ = τij −→ second-order tensor: boldface or two free subindices

The free subindices notation was introduced by Einstein and Lorentz and is commonly
called the Einstein notation. This notation is a useful way to collapse the information when
dealing with equations in cartesian coordinates, and it is equivalent to subindices used when
writing computer code. The Einstein notation has some basic rules that are as follows,

• The subindices i, j, k = 1, 2, 3 and they represent the x,y and z Cartesian coordinates,

• Every free index represents an increase in the tensor order: one free index for vectors,
ui, two free indices for matrices (second order tensors), τij , three free indices for
third order tensors, %ijk ,

• Repeated subindices imply summation, τii = τ11 + τ22 + τ33,

• Comma implies differentiation, ui,j = ∂ui/∂xj .

The vector differential operator, ∇, is the most widely used vector and tensor differential
operator for the balance equations. In Cartesian coordinates it is defined as

∇ =
∂

∂xj
=

#
∂

∂x
,

∂

∂y
,

∂

∂z

*
=

#
∂

∂x1
,

∂

∂x2
,

∂

∂x3

* (I.13)

This operator will define the gradient of any scalar or vector quantity. For a scalar quantity
it will produce a vector gradient

∇T =
∂T

∂xi
=

#
∂T

∂x1
,

∂T

∂x2
,

∂T

∂x3

*
(I.14)
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while for a vector it will produce a second-order tensor

∇u =
∂ui

∂xj
=

⎡⎢⎢⎢⎢⎣
∂ux

∂x

∂uy

∂x

∂uz

∂x
∂ux

∂y

∂uy

∂y

∂uz

∂y
∂ux

∂z

∂uy

∂z

∂uz

∂z

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
∂u1

∂x1

∂u2

∂x1

∂u3

∂x1
∂u1

∂x2

∂u2

∂x2

∂u3

∂x2
∂u1

∂x3

∂u2

∂x3

∂u3

∂x3

⎤⎥⎥⎥⎥⎥⎦

(I.15)

When the gradient operator is dotted with a vector or a tensor, the divergence of the
vector or tensor is obtained. The divergence of a vector produces a scalar

∇ · u =
∂ui

∂xi
=

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

=
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

(I.16)

while for a second order tensor it produces the components of a vector as follows

∇ · τ =
∂τij

∂xj
=

⎛⎜⎜⎜⎜⎜⎝
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z
∂τzx

∂x
+

∂τzy

∂y
+

∂τzz

∂z

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
∂τ11

∂x1
+

∂τ12

∂x2
+

∂τ13

∂x3
∂τ21

∂x1
+

∂τ22

∂x2
+

∂τ23

∂x3
∂τ31

∂x1
+

∂τ32

∂x2
+

∂τ33

∂x3

⎞⎟⎟⎟⎟⎟⎠

(I.17)

Finally, the Laplacian is defined by the divergence of the gradient. For a scalar quantity
it is

∇ · ∇T = ∇2T =
∂2T

∂xj∂xj
=

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

=
∂2T

∂x2
1

+
∂2T

∂x2
2

+
∂2T

∂x2
3

(I.18)
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while for a vector it is written as

∇ · ∇u = ∇2ui =
∂2ui

∂xj∂xj
=

⎛⎜⎜⎜⎜⎜⎜⎝

∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2

∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
∂2u2

∂x2
3

∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

⎞⎟⎟⎟⎟⎟⎟⎠

(I.19)

A very useful and particular case of the vector gradient is the velocity vector gradient,
∇u shown in eqn. (I.15). With this tensor, two very useful tensors can be defined, the strain
rate tensor

γ̇ = γ̇ij = ∇u + (∇u)T =
∂ui

∂xj
+

∂uj

∂xi
(I.20)

which is a symmetric tensor. And the vorticity tensor

ω = ωij = ∇u − (∇u)T =
∂ui

∂xj
− ∂uj

∂xi
(I.21)

which is an anti-symmetric tensor.

I.4 CONCLUDING REMARKS

This manuscript is concerned with modeling and simulation in polymer processing. We have
divided the book into three parts: I. Background, II. Processing Fundamentals and III. Sim-
ulation in Polymer Processing. The background section introduces the student to polymer
materials science (Chapter 1), to important material properties needed for modeling (Chap-
ter 2) and gives an overview of polymer processing systems and equipment (Chapter 3). The
second part introduces the student to modeling in polymer processing. The section covers
dimensional analysis and scaling (Chapter 4), the balance equations with simple flow and
heat transfer solutions in polymer processing (Chapter 5), and introduces many analytical
solutions that can be used to analyze a whole variety of polymer processing techniques
(Chapter 6). The third part of this book covers simulation in polymer processing. The
section covers the various numerical simulation techniques, starting with numerical tools
(Chapter 7), and covering the various numerical methods used to solve partial differential
equations found in processing, such as the finite difference technique (Chapter 8), the finite
element method (Chapter 9), the boundary element method (Chapter 10) and radial basis
functions collocation method (Chapter 11).
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CHAPTER 1

POLYMER MATERIALS SCIENCE

I just want to say one word to you, Ben.
Just one word - plastics.

—Advice given to the young graduate played by Dustin Hoffman in the 1967 movie The Graduate.

The material behavior of polymers is totally controlled by their molecular structure. In
fact, this is true for all polymers; synthetically generated polymers as well as polymers found
in nature (bio-polymers), such as natural rubber, ivory, amber, protein-based polymers or
cellulose-based materials. To understand the basic aspects of material behavior and its
relation to the molecular structure of polymers, in this chapter we attempt to introduce the
fundamental concepts in a compact and simple way.

1.1 CHEMICAL STRUCTURE

As the word itself suggests, polymers are materials composed of molecules of very high
molecular weight. These large molecules are generally referred to as macromolecules.
Polymers are macromolecular structures that are generated synthetically or through natu-
ral processes. Historically, it has always been said that synthetic polymers, are generated
through addition or chain growth polymerization, and condensation or radical initiated
polymerization. In addition polymerization, the final molecule is a repeating sequence of
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blocks with a chemical formulae to those of the monomers. Condensation polymerization
processes occur when the resulting polymers have fewer atoms than those present in the
monomers from which they are generated. However, since many additional polymerization
processes result in condensates, and various condensation polymerization processes are
chain growth polymerization processes that resemble addition polymerization, today we
rather break-down polymerization processes into step polymerization and chain polymer-
ization. Table 1.1 shows a break-down of polymerization into step and chain polymeriza-
tion, and presents examples for the various types of polymerization processes. Linear and
non-linear step growth polymerization are processes in which the polymerization occurs
with more than one molecular species. On the other hand, chain growth polymerization
processes occur with monomers with a reactive end group. Chain growth polymerization
processes include free-radical polymerization, ionic polymerization, cationic polymeriza-
tion, ring opening polymerization, Ziegler-Natta polymerization and Metallocene catalysis
polymerization. Free-radical polymerization is the most widely used polymerization pro-
cess and it is used to polymerize monomers with the general structure CH2=CR1R2. Here,
the polymer molecules grow by addition of a monomer with a free-radical reactive site
called an active site. A chain polymerization process can also take place when the active
site has an ionic charge. When the active site is positively charged, the polymerization
process is called a cationic polymerization, and when the active site is negatively charged
it is called ionic polymerization. Finally, monomers with a cyclic or ring structure such
as caprolactam can be polymerized using the ring-opening polymerization process. In the
case of caprolactam, it is polymerized into polycaprolactam or polyamide 6.

The atomic composition of polymers encompasses primarily non-metallic elements such
as carbon (C), hydrogen (H) and oxygen (O). In addition, recurrent elements are nitrogen
(N), chlorine (Cl), fluoride (F) and sulfur (S). The so-called semi-organic polymers contain
other non-metallic elements such as silicon (Si) in silicone or polysiloxane, as well as bor
or beryllium (B). Although other elements can sometime be found in polymers, because
of their very specific nature, we will not mention them here. The properties of the above
elements lead to specific properties that are common of all polymers. These are:

• Polymers have very low electric conductance (i.e. they are electric insulators),

• Polymers have a very low thermal conductance (i.e. they are thermal insulators),

• Polymers have a very low density (between 0.8 and 2.2 g/cm3),

• Polymers have a low thermal resistance and will easily irreversibly thermally degrade.

There are various ways that the monomers can arrange during polymerization; however,
we can break them down into two general categories: uncross-linked and cross-linked.
Furthermore, the uncross-linked polymers can be subdivided into linear and branched poly-
mers. The most common example of uncross-linked polymers that present the various
degrees of branching is polyethylene (PE).

Another important family of uncross-linked polymers are copolymers. Copolymers are
polymeric materials with two or more monomer types in the same chain. A copolymer that
is composed of two monomer types is referred to as a bipolymer (i.e., PS-HI), and one that is
formed by three different monomer groups is called a terpolymer (i.e., ABS). Depending on
how the different monomers are arranged in the polymer chain, one distinguishes between
random, alternating, block, or graft copolymers, discussed later in this chapter.

Although thermoplastics can cross-link under specific conditions, such as gel formation
when PE is exposed to high temperatures for prolonged periods of time, thermosets, and
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Table 1.1: Polymerization Classification

Classification Polymerization Examples

Step Linear
Polycondensation

Polyamides
Polycarbonate
Polyesters
Polyethers
Polyimide
Siloxanes

Polyaddition
Polyureas
Polyurethanes

Step
Non-linear

Network Polymers

Epoxy resins
Melamine
Phenolic
Polyurethanes
Urea

Chain

Free radical

Polybutadiene
Polyethylene (branched)
Polyisoprene
Polymethylmethacrylate
Polyvinyl acetate
Polystyrene

Cationic

Polyethylene
Polyisobutylene
Polystyrene
Vinyl esters

Anionic

Polybutadiene
Polyisoprene
Polymethylmethacrylate
Polystyrene

Ring opening

Polyamide 6
Polycaprolactone
Polyethylene oxide
Polypropylene oxide

Ziegler-Natta

Polyethylene
Polypropylene
Polyvinyl chloride
Other vinyl polymers

Metallocene

Polyethylene
Polypropylene
Polyvinyl chloride
Other vinyl polymers
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Figure 1.1: Symbolic representation of the condensation polymerization of phenol-formaldehyde.

some elastomers, are polymeric materials that have the ability to cross-link. The cross-
linking causes the material to become heat resistant after it has solidified. The cross-linking
usually is a result of the presence of double bonds that open, allowing the molecules to link
with their neighbors. One of the oldest thermosetting polymers is phenol-formaldehyde, or
phenolic. Figure 1.1 shows the chemical symbol representation of the reaction where the
phenol molecules react with formaldehyde molecules to create a three-dimensional cross-
linked network that is stiff and strong, leaving water as the by-product of this chemical
reaction. This type of chemical reaction is a condensation polymerization.

With regard to the chemistry of polymerization processes, we will only introduce the
topic superficially. A polymerization reaction is controlled by several conditions such as
temperature, pressure, monomer concentration, as well as by structure-controlling addi-
tives such as catalysts, activators, accelerators, and inhibitors. There are various ways a
polymerization process can take place such as schematically depicted in Fig. 1.1. There are
numerous other types of reactions that are not mentioned here. When synthesizing some
polymers there may be multiple ways of arriving at the finished product. For example,
polyformaldehyde (POM) can be synthesized using all the reaction types presented in Ta-
ble 1.1. On the other hand, polyamide 6 (PA6) is synthesized through various steps that are
present in different types of reactions, such as polymerization and polycondenzation.

1.2 MOLECULAR WEIGHT

A polymeric material may consist of polymer chains of various lengths or repeat units.
Hence, the molecular weight is determined by the average or mean molecular weight which
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is defined by

M̄ =
W

N
(1.1)

where W is the weight of the sample and N the number of moles in the sample.
The properties of polymeric material are strongly linked to the molecular weight of the

polymer as shown schematically in Fig. 1.2. A polymer such as polystyrene is stiff and
brittle at room temperature with a degree of polymerization, n, of 1,000. Polystyrene with
a degree of polymerization of 10 is sticky and soft at room temperature.

Figure 1.3 shows the relation between molecular weight, temperature and properties
of a typical polymeric material. The stiffness properties reach an asymptotic maximum,
whereas the flow temperature increases with molecular weight. On the other hand, the
degradation temperature steadily decreases with increasing molecular weight. Hence, it is
necessary to find the molecular weight that renders ideal material properties for the finished
polymer product, while having flow properties that make it easy to shape the material
during the manufacturing process. It is important to mention that the temperature scale in
Fig. 1.3 corresponds to a specific time scale, e.g., time required for a polymer molecule
to flow through an injection molding runner system. If the time scale is reduced (e.g., by
increasing the injection speed), the molecules have more difficulty sliding past each other.
This would require a somewhat higher temperature to assure flow. In fact, at a specific
temperature, a polymer melt may behave as a solid if the time scale is reduced sufficiently.
Hence, for this new time scale the stiffness properties and flow temperature curves must be
shifted upward on the temperature scale. A limiting factor is that the thermal degradation
curve remains fixed, limiting processing conditions to remain above certain time scales.
This relation between time, or time scale, and temperature is often referred to as time-
temperature superposition principle and is discussed in detail in the literature [17].

With the exception of maybe some naturally occurring polymers, most polymers have
a molecular weight distribution as shown in Fig. 1.4. We can define a number average,
weight average, and viscosity average1 for such a molecular weight distribution function.
The number average is the first moment and the weight average the second moment of the

1There are other definitions of molecular weight which depend on the type of measuring technique.
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Figure 1.4: Molecular weight distribution of a typical thermoplastic.

distribution function. In terms of mechanics, this is equivalent to the center of gravity and
the radius of gyration as first and second moments, respectively.

The viscosity average relates the molecular weight of a polymer to the measured viscosity
as shown in Fig. 1.5.

Figure 1.5 [2] presents the viscosity of various undiluted polymers as a function of
molecular weight. The figure shows how for all these polymers the viscosity goes from a
linear (slope=1) to a power dependence (slope=3.4) at some critical molecular weight. The
linear relation is sometimes referred to as Staudinger’s rule[12] and applies for a perfectly
monodispersed polymer, where the friction between the molecules increases proportionally
to the molecule’s length. The increased slope of 3.4 is due to molecular entanglement due
to the long molecular chains. The Mark-Houwink relation is often used to represent this
effect, and it is written as

η = kM̄v
α

(1.2)

where η is the viscosity, M̄v the viscosity average molecular weight, α the slope in the
viscosity curve, and k a constant.
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A measure of the broadness of a polymer’s molecular weight distribution is the polydis-
persity index defined by

PI =
M̄w

M̄n
(1.3)

Figure 1.6 [5] presents a plot of flexural strength versus melt flow index2 for polystyrene
samples with three different polydispersity indices. The figure shows that low polydispersity
index-grade materials render higher-strength properties and flowability, or processing ease,
than high polydispersity index grades.

Physically, the molecules can have rather large dimensions. For example, each repeat
unit of a carbon backbone molecule, such as polyethylene, measures 0.252 nm in length. If
completely stretched out, a high molecular weight molecule with, say 10,000 repeat units
can measure over 2 µm in length. Figure 1.7 serves to illustrate the range in dimensions
associated with polymers as well as which microscopic devices are used to capture the detail
at various orders of magnitude. If we go from the atomic structure to the part geometry we
easily travel between 0.1 nm and 1 mm, covering eight orders of magnitude.

EXAMPLE 1.1.

Polymer molecular weight and molecule size. You are asked to compute the max-
imum possible separation between the ends of a high density polyethylene molecule
with an average molecular weight of 100,000.

2The melt flow index is the mass (grams) extruded through a capillary in a 10-minute period while applying a
constant pressure. Increasing melt flow index signifies decreasing molecular weight.



8 POLYMER MATERIALS SCIENCE

0 2 4 6 8 10 12 14 16 18 20 22
27.6

41.4

55.2

69.0

82.8

96.6

Melt flow index (g/10 min)

F
le

x
ur

al
st

re
ng

th
(M

P
a)

Mw/Mn = 1.1
Mw/Mn = 2.2
Mw/Mn = 3.1
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Figure 1.7: Schematic representation of the general molecular structure of semi-crystalline
polymers and magnitudes as well as microscopic devices associated with such structures.
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Figure 1.8: Schematic diagram of a polyethylene molecule.

The first task is to estimate the number of repeat units, n, in the polyethylene
chain. Each repeat unit has 2 carbons and 4 hydrogen atoms. The molecular weight
of carbon is 12 and that of hydrogen 1. Hence

MW/repeat unit = 2(12) + 4(1) = 28 (1.4)

The number of repeat units is computed as

n = MW/(MW/repeat unit) = 100, 000/28 = 3, 571 units (1.5)

Using the diagram presented in Fig. 1.8 we can now estimate the length of the fully
extended molecule using

3 = 0.252 nm(3, 571) = 890 nm = 0.89 µm (1.6)

1.3 CONFORMATION AND CONFIGURATION OF POLYMER MOLECULES

The conformation and configuration of the polymer molecules have a great influence on the
properties of the polymer component. The conformation describes the preferential spatial
positions of the atoms in a molecule. It is described by the polarity flexibility and regularity
of the macromolecule. Typically, carbon atoms are tetravalent, which means that they are
surrounded by four substituents in a symmetric tetrahedral geometry. The most common
example is methane, CH4, schematically depicted in Fig. 1.9. As the figure demonstrates,
the tetrahedral geometry sets the bond angle at 109.5o.

This angle is maintained between carbon atoms on the backbone of a polymer molecule,
as shown in Fig. 1.10. As shown in the figure, each individual axis in the carbon backbone
is free to rotate. The configuration gives the information about the distribution and spatial
organization of the molecule.

During polymerization it is possible to place the X-groups on the carbon-carbon backbone
in different directions. The order in which they are arranged is called the tacticity. The
polymers with side groups placed randomly are called atactic. The polymers whose side
groups are all on the same side are called isotactic, and those molecules with regularly
alternating side groups are called syndiotactic. Figure 1.11 shows the three different tacticity
cases for polypropylene. The tacticity in a polymer determines the degree of crystallinity
that a polymer can reach. For example, a polypropylene with a high isotactic content will
reach a high degree of crystallinity and as a result be stiff, strong and hard.
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Figure 1.9: Schematic of a tetrahedron formed by methane.
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Figure 1.10: Random conformation of a polymer chain’s carbon-carbon backbone.
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Figure 1.12: Symbolic representation of cis-1,4- and trans-1,4-polybutadiene molecules.

Another type of geometric arrangement arises with polymers that have a double bond be-
tween carbon atoms. Double bonds restrict the rotation of the carbon atoms about the back-
bone axis. These polymers are sometimes referred to as geometric isomers. The X-groups
may be on the same side (cis-) or on opposite sides (trans-) of the chain as schematically
shown for polybutadiene in Fig. 1.12. The arrangement in a cis-1,4-polybutadiene results in
a very elastic rubbery material, whereas the structure of the trans-1,4-polybutadiene results
in a leathery and tough material. Branching of the polymer chains also influences the final
structure, crystallinity and properties of the polymeric material.

Figure 1.13 shows the molecular architecture of high density, low density and linear low
density polyethylenes. The high density polyethylene has between 5 and 10 short branches
every 1,000 carbon atoms. The low density material has the same number of branches as
PE-HD; however, they are much longer and are themselves usually branched. The PE-LLD
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Figure 1.13: Schematic of the molecular structure of different polyethylenes.

has between 10 and 35 short chains every 1,000 carbon atoms. Polymer chains with fewer
and shorter branches can crystallize with more ease, resulting in higher density.

The various intermolecular force, generally called Van der Waals forces, between macro-
molecules are of importance because of the size of the molecules. These forces are often
the cause of the unique behavior of polymers. The so-called dispersion forces, the weakest
of the intermolecular forces, are caused by the instantaneous dipoles that form as the charge
in the molecules fluctuates. Very large molecules, such as ultra high molecular weight
polyethylene can have significant dispersion forces. Dipole-dipole forces are those inter-
molecular forces that result from the attraction between polar groups. Hydrogen bonding
intermolecular forces, the largest of them all, take place when a polymer molecule contains
−OH or −NH groups. The degree of polarity within a polymer determines how strongly
it is attracted to other molecules. If a polymer is composed of atoms with different elec-
tronegativity (EN ) it has a high degree of polarity and it is usually called a polar molecule.
A non-polar molecule is one that is composed of atoms with equal or similar electroneg-
ativity. For example, polyethylene, which is formed of carbon (EN = 2.5) and hydrogen
(EN = 2.1) alone, is considered a non-polar material because ∆EN = 0.4. An increase in
polarity is to be expected when elements such as chlorine, fluorine, oxygen or nitrogen are
present in a macromolecule. Table 1.2 presents the electronegativity of common elements
found in polymers. The intramolecular forces affect almost every property that is important
when processing a polymer, including the effect that low molecular weight additives, such
as solvents, plasticizers and permeabilizers, as well as the miscibility of various polymers
have when making blends.

1.4 MORPHOLOGICAL STRUCTURE

Morphology is the order or arrangement of the polymer structure. The possible order
between a molecule or molecule segment and its neighbors can vary from a very ordered
highly crystalline polymeric structure to an amorphous structure (i.e., a structure in greatest
disorder or random). The possible range of order and disorder is clearly depicted on the
left side of Fig. 1.14. For example, a purely amorphous polymer is formed only by the non-
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Table 1.2: Electronegativity Number EN for Various Elements (After Pauling)

Element EN
Flourine (F) 4.0
Oxygen (O) 3.5
Chlorine (Cl) 3.0
Nitrogen (N) 3.0
Carbon (C) 2.5
Sulfur (S) 2.5
Hydrogen (H) 2.1
Silicone (Si) 1.8
Zink (Zn) 1.6
Sodium (Na) 0.9

Texture

Semi-crystalline
structure

Amorphous

Crystalline

Characteristic
size

ca. 0.01-0.02 µm

Inhomogeneous semi-
crystalline structure
characteristic size
1-2 µm

Figure 1.14: Schematic diagram of possible molecular structure which occur in thermoplastic
polymers.

crystalline or amorphous chain structure, whereas the semi-crystalline polymer is formed
by a combination of all the structures represented in Fig. 1.14.

The semi-crystalline arrangement that certain polymer molecules take during cooling
is in great part due to intramolecular forces. As the temperature of a polymer melt is
lowered, the free volume between the molecules is reduced, causing an increase in the
intramolecular forces. As the free volume is reduced further, the intermolecular forces
cause the molecules to arrange in a manner that brings them to a lower state of energy,
as for example, the folded chain structure of polyethylene molecules shown in Fig. 1.7.
This folded chain structure, which starts at a nucleus, grows into the spherulitic structure
shown in Fig. 1.7 and in the middle of Fig. 1.14, an image that can be captured with
an electron microscope. A macroscopic structure, shown in the right hand side of the
figure, can be captured with an optical microscope. An optical microscope can capture the
coarser macro-morphologicalstructure such as the spherulites in semi-crystalline polymers.
Figure 1.7, presented earlier, shows a schematic of the spherulitic structure of polyethylene
with the various microscopic devices that can be used to observe different levels of the
formed morphology. An amorphous polymer is defined as having a purely random structure.
However, it is not quite clear if a purely amorphous polymer as such exists. Electron
microscopic observations have shown amorphous polymers that are composed of relatively
stiff chains, exhibit a certain degree of macromolecular structure and order, for example,
globular regions or fibrilitic structures. Nevertheless, these types of amorphous polymers are
still found to be optically isotropic. Even polymers with soft and flexible macromolecules,
such as polyisoprene which was first considered to be random, sometimes show band-
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Figure 1.15: Polarized microscopic image of the spherulitic structure in polypropylene.

like and globular regions. These bundle-like structures are relatively weak and short-lived
when the material experiences stresses. The shear-thinning viscosity effect of polymers
sometimes is attributed to the breaking of such macromolecular structures.

Early on, before the existence of macromolecules had been recognized, the presence of
highly crystalline structures had been suspected. Such structures were discovered when
undercooling or when stretching cellulose and natural rubber. Later, it was found that a
crystalline order also existed in synthetic macromolecular materials such as polyamides,
polyethylenes, and polyvinyls. Because of the polymolecularity of macromolecular ma-
terials, a 100% degree of crystallization cannot be achieved. Hence, these polymers are
referred to as semi-crystalline. It is common to assume that the semi-crystalline structures
are formed by small regions of alignment or crystallites connected by random or amorphous
polymer molecules.

With the use of electron microscopes and sophisticated optical microscopes the various
existing crystalline structures are now well recognized. They can be listed as follows:

• Single crystals. These can form in solutions and help in the study of crystal formation.
Here, plate-like crystals and sometimes whiskers are generated.

• Spherulites. As a polymer melt solidifies, several folded chain lamellae spherulites
form which are up to 0.1 mm in diameter. A typical example of a spherulitic structure
is shown in Fig. 1.15. The spherulitic growth in a polypropylene melt is shown in
Fig. 1.16.

• Deformed crystals. If a semi-crystalline polymer is deformed while undergoing
crystallization, oriented lamellae form instead of spherulites.

• Shish-kebab. In addition to spherulitic crystals, which are formed by plate- and
ribbonlike structures, there are also shish-kebab crystals which are formed by circular
plates and whiskers. Shish-kebab structures are generated when the melt undergoes
a shear deformation during solidification. A typical example of a shish-kebab crystal
is shown in Fig. 1.17.

The speed at which crystalline structures grow depends on the type of polymer and on
the temperature conditions. Table 1.3 shows the maximum growth rate for common semi-
crystalline thermoplastics as well the maximum achievable degree of crystallinity.



MORPHOLOGICAL STRUCTURE 15

Figure 1.16: Development of the spherulitic structure in polypropylene. Images were taken at 30
seconds intervals.

Figure 1.17: Model of the shish-kebab morphology.
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Table 1.3: Maximum Crystalline Growth Rate and Maximum Degree of Crystallinity for
Various Thermoplastics

Polymer Growth rate(µ/min) Maximum crystallinity(%)
Polyethylene >1000 80
Polyamide 66 1000 70
Polyamide 6 200 35
Isotactic polypropylene 20 63
Polyethylene teraphthalate 7 50
Isotactic polystyrene 0.3 32
Polycarbonate 0.01 25

Figure 1.18: Schematic representation of different copolymers.

1.4.1 Copolymers and Polymer Blends

Copolymers are polymeric materials with two or more monomer types in the same chain. A
copolymer that is composed of two monomer types is referred to as a bipolymer,and one that
is formed by three different monomer groups is called a terpolymer. Depending on how the
different monomers are arranged in the polymer chain, one distinguishes between random,
alternating, block or graft copolymers. The four types of copolymers are schematically
represented in Fig. 1.18.

A common example of a copolymer is an ethylene-propylene copolymer. Although both
monomers would result in semi-crystalline polymers when polymerized individually, the
melting temperature disappears in the randomly distributed copolymer with ratios between
35/65 and 65/35, resulting in an elastomeric material, as shown in Fig. 1.19. In fact,
EPDM rubbers are continuously gaining acceptance in industry because of their resistance
to weathering. On the other hand, the ethylene-propylene block copolymer maintains a
melting temperature for all ethylene/propylene ratios, as shown in Fig. 1.20.
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Figure 1.19: Melting and glass transition temperature for random ethylene-propylene copolymers.
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Figure 1.20: Melting temperature for ethylene-propylene block copolymers.
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Another widely used copolymer is high impact polystyrene (PS-HI), which is formed by
grafting polystyrene to polybutadiene. Again, if styrene and butadiene are randomly copoly-
merized, the resulting material is an elastomer called styrene-butadiene-rubber (SBR). An-
other classic example of copolymerization is the terpolymer acrylonitrile-butadiene-styrene
(ABS). Polymer blends belong to another family of polymeric materials which are made
by mixing or blending two or more polymers to enhance the physical properties of each
individual component. Common polymer blends include PP-PC, PVC-ABS, PE-PTFE and
PC-ABS.

1.5 THERMAL TRANSITIONS

A phase change or a thermal transition occurs with polymers when they undergo a signifi-
cant change in material behavior. The phase change occurs as a result of either a reduction
in material temperature or a chemical curing reaction. A thermoplastic polymer hardens
as the temperature of the material is lowered below either the melting temperature for a
semi-crystalline polymer, the glass transition temperature for an amorphous thermoplastic
or the crystalline and glass transition temperatures in liquid crystalline polymers. A ther-
moplastic has the ability to soften again as the temperature of the material is raised above
the solidification temperature. With thermoplastics the term solidification is often misused
to describe the hardening of amorphous thermoplastics. On the other hand, the solidifi-
cation of thermosets leads to cross-linking of molecules. The effects of cross-linkage are
irreversible and result in a network that hinders the free movement of the polymer chains
independent of the material temperature.

The solidification of most materials is defined at a discrete temperature, whereas amor-
phous polymers do not exhibit a sharp transition between the liquid and the solid states.
Instead, an amorphous thermoplastic polymer vitrifies as the material temperature drops
below the glass transition temperature, Tg. Due to their random structure, the characteristic
size of the largest ordered region is on the order of a carbon-carbon bond. This dimension
is much smaller than the wavelength of visible light and so generally makes amorphous
thermoplastics transparent. Figure 1.21 shows the shear modulus, G
, versus temperature
for polystyrene, one of the most common amorphous thermoplastics. The figure shows
two general regions: one where the modulus appears fairly constant, and one where the
modulus drops significantly with increasing temperature. With decreasing temperatures,
the material enters the glassy region where the slope of the modulus approaches zero. At
high temperatures, the modulus is negligible and the material is soft enough to flow. Al-
though there is not a clear transition between solid and liquid, the temperature at which the
slope is highest is Tg. For the polystyrene in Fig. 1.21 the glass transition temperature is
approximately 120oC. Although data are usually presented in the form shown in Fig. 1.21,
it should be mentioned here that the curve shown in the figure was measured at a constant
frequency.

If the frequency of the test is increased −reducing the time scale− the curve is shifted
to the right, since higher temperatures are required to achieve movement of the molecules
at the new frequency. This can be clearly seen for PVC in Fig. 1.22. A similar effect is
observed when the molecular weight of the material is increased. The longer molecules
have more difficulty sliding past each other, thus requiring higher temperatures to achieve
flow.

The transition temperatures as well as flow behavior are significantly affected by the
pressure one applies to the material. Higher pressures reduce the free volume between the
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Figure 1.21: Shear modulus of polystyrene as a function of temperature.
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Figure 1.22: Modulus of polyvinyl chloride as a function of tempreature at various test frequencies.
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Figure 1.23: Schematic of a pvT diagram for amorphous thermoplastics.

molecules which restricts their movement. This requires higher temperatures to increase
the free volume sufficiently to allow molecular movement. This is clearly depicted in
Fig. 1.23, which schematically presents the pressure-volume-temperature (pvT ) behavior
of amorphous polymers.

Semi-crystalline thermoplastic polymers show more order than amorphous thermoplas-
tics. The molecules align in an ordered crystalline form as shown for polyethylene in
Fig. 1.24. The size of the crystals or spherulites is much larger than the wavelength of
visible light, making semi-crystalline materials translucent and not transparent. However,
the crystalline regions are very small, with molecular chains comprised of both crystalline
and amorphous regions. The degree of crystallinity in a typical thermoplastic will vary from
grade to grade as, for example, in polyethylene, where the degree of crystallinity depends
on the branching and the cooling rate. Because of the existence of amorphous as well as
crystalline regions, a semi-crystalline polymer has two distinct transition temperatures, the
glass transition temperature, Tg, and the melting temperature, Tm.

Figure 1.25 shows the dynamic shear modulus versus temperature for a high density
polyethylene, the most common semi-crystalline thermoplastic. Again, this curve presents
data measured at one test frequency. The figure clearly shows two distinct transitions: one
at about -110oC, the glass transition temperature, and another near 140oC, the melting tem-
perature. Above the melting temperature, the shear modulus is negligible and the material
will flow. Crystalline arrangement begins to develop as the temperature decreases below the
melting point. Between the melting and glass transition temperatures, the material behaves
as a leathery solid. As the temperature decreases below the glass transition temperature,
the amorphous regions within the semi-crystalline structure solidify, forming a glassy, stiff,
and in some cases brittle polymer.

Figure 1.26 summarizes the property behavior of amorphous, crystalline, and semi-
crystalline materials using schematic diagrams of material properties plotted as functions of
temperature. Again, pressures affect the transition temperatures as schematically depicted
in Fig. 1.27 for a semi-crystalline polymer.

The transition regions in liquid crystalline polymers or mesogenic polymers is much
more complex. These transitions are referred to as mesomorphic transitions, and occur
when one goes from a crystal to a liquid crystal, from a liquid crystal to another liquid
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Figure 1.25: Shear modulus of high-density polyethylene as a function of temperature.
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Figure 1.27: Schematic of a pvT diagram for semi-crystalline thermoplastics.
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Figure 1.28: Schematic volume-temperature diagram for a liquid crystalline polymer [66].

crystal, and from a liquid crystal to and isotropic fluid. The volume-temperature diagram
for a liquid crystalline polymer is presented in Fig. 1.28. The figure clearly depicts the
various phases present in a liquid crystalline polymer. From a lower temperature to a high
temperature, these are the glassy phase, partially crystalline phase, the smectic phase, the
nematic or cholesteric phase and the isotropic phase. In the smectic phase the molecules
have all distinct orientation and all their centers of gravity align with each other, giving them
a highly organized structure. In the nematic phase the axes of the molecules are aligned,
giving them a high degree of orientation, but where the centers of gravity of the molecules
are not aligned. During cooling, both the nematic and the smectic phases can be maintained,
leading to nematic glass and smectic glass, respectively.
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Figure 1.29: Shear modulus and behavior of cross-linked and uncross-linked polymers.

Cross-linked polymers, such as thermosets and elastomers, behave completely differ-
ently than their counterparts, thermoplastic polymers. In cross-linked systems, the me-
chanical behavior is also best reflected by the plot of the shear modulus versus temperature.
Figure 1.29 compares the shear modulus between highly cross-liked, cross-linked, and
uncross-linked polymers. The coarse cross-linked system, typical of elastomers, has a low
modulus above the glass transition temperature. The glass transition temperature of these
materials is usually below -50oC, so they are soft and flexible at room temperature. On
the other hand, highly cross-linked systems, typical in thermosets, show a smaller decrease
in stiffness as the material is raised above the glass transition temperature; the decrease in
properties becomes smaller as the degree of cross-linking increases. With thermosetting
polymers, strength remains fairly constant up to the thermal degradation temperature of the
material.

1.6 VISCOELASTIC BEHAVIOR OF POLYMERS

Although polymers have their distinct transitions and may be considered liquid when above
the glass transition or melting temperatures, or solid when below those temperatures, in
reality they are neither liquid nor solid, but viscoelastic. In fact, at any temperature, a
polymer can be either a liquid or a solid, depending on the time scale or speeds at which
its molecules are being deformed. The most common technique of measuring and demon-
strating this behavior is by performing a stress relaxation test and the time-temperature
superposition principle.

1.6.1 Stress Relaxation

In a stress relaxation test, a polymer test specimen is deformed by a fixed amount, %0, and
the stress required to hold that amount of deformation is recorded over time. This test is
very cumbersome to perform, so the design engineer and the material scientist have tended
to ignore it. In fact, several years ago, the standard relaxation test ASTM D2991 was
dropped by ASTM. Rheologists and scientists, however, have been consistently using the
stress relaxation test to interpret the viscoelastic behavior of polymers.
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Figure 1.30: Relaxation modulus curves for polyisobutylene at various temperatures and
corresponding master curve at 25oC.

Figure 1.30 [4] presents the stress relaxation modulus measured of polyisobutylene
(chewing gum) at various temperatures. Here, the stress relaxation modulus is defined by

Er(t) =
σ(t)

%0
(1.7)

where %0 is the applied strain and σ(t) is the stress being measured. From the test results
it is clear that stress relaxation is time and temperature dependent, especially around the
glass transition temperature where the slope of the curve is maximal. In the case of the
polyisobutylene shown in Fig. 1.30, the glass transition temperature is about -70oC. The
measurements were completed in an experimental time window between a few seconds and
one day. The tests performed at lower temperatures were used to record the initial relaxation,
while the tests performed at higher temperatures only captured the end of relaxation of the
rapidly decaying stresses.

It is well known that high temperatures lead to short molecular relaxation times and low
temperatures lead to materials with long relaxation times. This is due to the fact that at
low temperatures the free volume between the molecules is reduced, restricting or slowing
down their movement. At high temperatures, the free volume is larger and the molecules can
move with more ease. Hence, when changing temperature, the shape of creep or relaxation
test results remain the same except that they are horizontally shifted to the left or right,
which represent shorter or longer response times, respectively.

The same behavior is observed if the pressure is varied. As the pressure is increased, the
free volume between the molecules is reduced, slowing down molecular movement. Here,
an increase in pressure is equivalent to a decrease in temperature. In the melt state, the
viscosity of a polymer increases with pressure. Figure 1.31 [7] is presented to illustrate the
effect of pressure on stress relaxation.
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Figure 1.31: Shear relaxation modulus for a chlorosulfonated polyethylene at various pressures.

1.6.2 Time-Temperature Superposition (WLF-Equation)

The time-temperature equivalence seen in stress relaxation test results can be used to reduce
data at various temperatures to one general master curve for a reference temperature, Tref .
To generate a master curve at the reference temperature, the curves shown in the left of
Fig. 1.30 must be shifted horizontally, maintaining the reference curve stationary. Density
changes are usually small and can be neglected, eliminating the need to perform tedious
corrections. The master curve for the data in Fig. 1.30 is shown on the right side of the figure.
Each curve was shifted horizontally until the ends of all the curves became superimposed.
The amount that each curve was shifted can be plotted with respect to the temperature
difference taken from the reference temperature. For the data in Fig. 1.30 the shift factor is
shown in the plot in Fig. 1.32.

The amounts by which the curves where shifted are represented by

log(t) − log(tref ) = log

#
t

tref

*
= log(aT ) (1.8)

Although the results in Fig. 1.32 where shifted to a reference temperature of 298 K (25oC),
Williams, Landel and Ferry [14] chose Tref = 243K for

log(aT ) =
−8.86(T − Tref )

101.6 + T − Tref
(1.9)

which holds for nearly all polymers if the chosen reference temperature is 45 K above
the glass transition temperature. In general, the horizontal shift, log(aT ), between the
relaxation responses at various temperatures to a reference temperature can be computed
using the well known Williams-Landel-Ferry [14] (WLF) equation. The WLF equation is
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Figure 1.32: Plot of the shift factor as a function of temperature used to generate the master curve
plotted in Fig. 1.30.

given by

log aT =
C1(T − Tref )

C2 + T − Tref
(1.10)

where C1 and C2 are material dependent constants. It has been shown that with the as-
sumption C1 = 17.44 and C2 = 51.6, eqn. (1.10) fits well for a wide variety of polymers
as long as the glass transition temperature is chosen as the reference temperature. These
values for C1 and C2 are often referred to as universal constants. Often, the WLF equation
must be adjusted until it fits the experimental data. Master curves of stress relaxation tests
are important because the polymer’s behavior can be traced over much greater periods of
time than those determined experimentally.

EXAMPLE 1.2.

Stress relaxation master curve. For the poly-α-methylstyrene stress relaxation
data in Fig. 1.33 [8], create a master creep curve at Tg (204oC). Identify the glassy,
rubbery, viscous and viscoelastic regions of the master curve. Identify each region
with a spring-dashpot diagram. Develop a plot of the shift factor, log (aT ) versus T ,
used to create your master curve log (aT ) is the horizontal distance that the curve at
temperature T was slid to coincide with the master curve. What is the relaxation time
of the polymer at the glass transition temperature?

The master creep curve for the above data is generated by sliding the individual
relaxation curves horizontally until they match with their neighbors, using a fixed
scale for a hypothetical curve at 204oC. Since the curve does not exist for the desired
temperature, we can interpolate between 208.6oC and 199.4oC. The resulting master
curve is presented in Fig.1.34. The amount each curve must be shifted from the
master curve to its initial position is the shift factor, log (aT ). The graph also shows
the spring-dashpot models and the shift factor for a couple of temperatures.

Figure 1.35 represents the shift factor versus temperature. The solid line indicates
the shift factor predicted by the WLF equation. The relaxation time for the poly-α-
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Figure 1.33: Stress relaxation data for poly-α-methylstyrene.

Figure 1.34: Master curve for poly-α-methylstyrene at 204oC.
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Figure 1.35: Shift factor and WLF curves for Tref = 204oC.

methylstyrene presented here is between 104 and 104.5 s (8.8 h). The relaxation time
for the remaining temperatures can be computed using the shift factor curve.

1.7 EXAMPLES OF COMMON POLYMERS

1.7.1 Thermoplastics

Examples of various thermoplastics are discussed in detail in the literature [6, 10] and can be
found in commercial materials data banks [1]. Examples of the most common thermoplastic
polymers, with a short summary, are given below. Ranges of typical processing conditions
are also presented, grade dependent.

Polyacetal (POM). Polyacetal is a semi-crystalline polymer known for its high tough-
ness, high stiffness and hardness. It is also highly sought after for its dimensional stability
and its excellent electrical properties. It resists many solvents and is quite resistant to en-
vironmental stress cracking. Polyacetal has a low coefficient of friction. When injection
molding polyacetal, the melt temperature should be between 200-210oC and the mold tem-
perature should be above 90oC. Due to the flexibility and toughness of polyacetal it can be
used in sport equipment, clips for toys and switch buttons.

Polyamide 66 (PA66). Polyamide 66 is a semi-crystalline polymer known for its hard-
ness, stiffness, abrasion resistance and high heat deflection temperature. When injection
molding PA66, the melt temperature should be between 260 and 320oC, and the mold
temperature 80-90oC or above. The pellets must be dried before molding. Of the various
polyamide polymers, this is the preferred material for molded parts that will be mechan-
ically and thermally loaded. It is ideally suited for automotive and chemical applications
such as gears, spools and housings. Its mechanical properties are significantly enhanced
when reinforced with glass fiber.

Polyamide 6 (PA6). Polyamide 6 is a semi-crystalline polymer known for its hardness
and toughness; however, with a toughness somewhat lower than PA66. When injection
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molding PA66, the melt temperature should be between 230 and 280oC, and the mold
temperature 80-90oC or above. The pellets must be dried before molding. Low viscosity
Polyamide 6 grades can be used to injection mold many thin-walled components. High
viscosity grades can be used to injection mold various engineering components such as
gears, bearings, seals, pump parts, cameras, telephones, etc. Its mechanical properties are
significantly enhanced when reinforced with glass fiber.

Polycarbonate (PC). Polycarbonate is an amorphous thermoplastic known for its stiff-
ness, toughness and hardness over a range from -150oC to 135oC. It is also known for its
excellent optical properties and high surface gloss. When injection molding PC, the pellets
must be dried before molding for 10 hours at about 130oC. The melt temperature should
be between 280 and 320oC, and the mold temperature 85-120oC. Typical applications for
injection molded polycarbonate parts are telephone housings, filter cups, lenses for glasses
and optical equipment,camera housings, marine light covers, safety goggles, hockey masks,
etc. Compact discs (CDs) are injection compression molded. Polycarbonate’s mechanical
properties can also be significantly enhanced when reinforced with glass fiber.

Polyethylene (PE). As was mentioned in previous sections, the basic properties of
polyethylene depend on the molecular structure, such as degree of crystallinity, branch-
ing, degree of polymerization and molecular weight distribution. Due to all these factors,
polyethylene can be a low density polyethylene (PE-LD), linear low density polyethylene
(PE-LLD), high density polyethylene (PE-HD), ultra high molecular weight high density
polyethylene (PE-HD-HMW), etc. When injection molding PE-LD, the melt temperature
should be between 160 and 260oC, and the mold temperature 30-70oC, grade dependent.
Injection temperatures for PE-HD are between 200-300oC and mold temperatures between
10 and 90oC. Typical applications for injection molding PE-LD parts are very flexible and
tough components such as caps, lids and toys. Injection molding of PE-HD components
include food containers, lids, toys, buckets, etc.

Polymethylmethacrylate (PMMA). Polymethylmethacrylate is an amorphous poly-
mer known for its high stiffness, strength and hardness. PMMA is brittle but its toughness
can be significantly increased when used in a copolymer. PMMA is also scratch resistant
and it can have high surface gloss. When injection molding PMMA, the melt temperature
should be between 210 and 240oC, and the mold temperature 50- 70oC. Typical applica-
tions for injection molded polymethylmethacrylateparts are automotive rear lights, drawing
instruments, watch windows, lenses, jewlery, pipe fittings, etc.

Polypropylene (PP). Polypropylene is a semi-crystalline polymer known for its low
density, and its somewhat higher stiffness and strength than PE-HD. However,PP has a lower
toughness than PE-HD. Polypropylene homopolymer has a glass transition temperature of as
high as -10oC, below which temperature it becomes brittle. However, when copolymerized
with ethylene it becomes tough. Because of its flexibility and the large range of properties,
including the ability to reinforce it with glass fiber,polypropylene is often used as a substitute
for an engineering thermoplastic. When injection molding PP, the melt temperature should
be between 250 and 270oC, and the mold temperature 40-100oC. Typical applications
for injection molded polypropylene parts are housings for domestic appliances, kitchen
utensils, storage boxes with integrated hinges (living hinges), toys, disposable syringes,
food containers, etc.

Polystyrene (PS). Polystyrene is an amorphous polymer known for its high stiffness and
hardness. PS is brittle but its toughness can be significantly increased when copolymerized
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with butadiene. PS is also known for its high dimensional stability, its clarity and it can have
high surface gloss. When injection molding PS, the melt temperature should be between 180
and 280oC, and the mold temperature 10-40oC. Typical applications for injection molded
polystyrene parts are pharmaceutical and cosmetic cases, radio and television housings,
drawing instruments, clothes hangers, toys, etc.

Polyvinylchloride (PVC). Polyvinylchloride comes either unplasticized (PVC-U) or
plasticized (PVC-P). Unplasticized PVC is known for its high strength, rigidity and hard-
ness. However, PVC-U is also known for its low impact strength at low temperatures.
In the plasticized form, the flexibility of PVC will vary over a wide range. Its toughness
will be higher at low temperatures. When injection molding PVC-U pellets, the melt tem-
perature should be between 180 and 210oC, and the mold temperature should be at least
30oC. For PVC-U powder the injection temperatures should be 10oC lower, and the mold
temperatures at least 50oC. When injection molding PVC-P pellets, the melt temperature
should be between 170 and 200oC, and the mold temperature should be at least 15oC. For
PVC-P powder the injection temperatures should 5oC lower, and the mold temperatures at
least 50oC. Typical applications for injection molded plasticized polyvinylchlorideparts are
shoe soles, sandals and some toys. Typical applications for injection molded unplasticized
polyvinylchloride parts are pipefittings.

1.7.2 Thermosetting Polymers

Thermosetting polymers solidify by a chemical cure. Here, the long macromolecules
crosslink during cure, resulting in a network. The original molecules can no longer slide
past each other. These networks prevent flow even after re-heating. The high density of
crosslinking between the molecules makes thermosetting materials stiff and brittle. The
cross-linking causes the material to become resistant to heat after it has solidified. How-
ever, thermosets also exhibit glass transition temperatures which sometimes exceed thermal
degradation temperatures.

The cross-linking usually is a result of the presence of double bonds that break, allowing
the molecules to link with their neighbors. One of the oldest thermosetting polymers is
phenolformaldehyde or phenolic. Figure 1.1 shows the chemical symbol representation of
the reaction. The phenol molecules react with formaldehyde molecules to create a three-
dimensional cross-linked network that is stiff and strong. The byproduct of this chemical
reaction is water. Examples of the most common thermosetting polymers, with a short
summary, are given below.

Phenol Formaldehyde (PF). Phenol formaldehyde is known for its high strength, stiff-
ness, hardness and its low tendency to creep. It is also known for its high toughness, and
depending on its reinforcement, it will also exhibit high toughness at low temperatures. PF
also has a low coefficient of thermal expansion. Phenol formaldehyde can be compression
molded, transfer molded and injection-compression molded. Typical applications for phe-
nol formaldehyde include distributor caps, pulleys, pump components, handles for irons,
etc. It should not be used in direct contact with food.

Unsaturated Polyester (UPE). Unsaturated polyester is known for its high strength,
stiffness and hardness. It is also known for its dimensional stability, even when hot, making
it ideal for under the hood applications. In most cases, UPE is found reinforced with
glass fiber. Unsaturated polyester is processed by compression molding, injection molding,
injection-compression molding and casting. Sheet molding compound (SMC) is used for
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compression molding and bulk molding compound is used for injection and injection-
compression molding. Typical applications for fiber reinforced unsaturated polyester are
automotive body panels, automotive valve covers and oil pans, breaker switch housings,
electric motor parts, distributor caps, fans, bathroom sinks, bathtubs, etc.

Epoxy (EP). Epoxy resins are known for their high adhesion properties,high strength, and
excellent electrical and dielectrical properties. They are also known for their low shrinkage,
their high chemical resistance and their low susceptibility to stress crack formation. They
are heat resistant up to their glass transition temperature (around 150-190oC) where they
exhibit a significant reduction in stiffness. Typical applications for epoxy resins are switch
parts, circuit breakers, housings, encapsulated circuits, etc.

Cross-linked Polyurethanes (PU). Cross-linked polyurethane is known for its high
adhesion properties, high impact strength, rapid curing, low shrinkage and low cost. PU is
also known for its wide variety of forms and applications. PU can be an elastomer, a flexible
foam, a rigid foam, an integral foam, a lacquer, an adhesive, etc. Typical applications for
cross-linked polyurethane are television and radio housings, copy and computer housings,
ski and tennis racket composites, etc.

1.7.3 Elastomers

The rubber industry is one of the oldest industries. For many years now, rubber products
have been found everywhere, from belts to seals, and from hoses to engine mounts. To
design and manufacture such products, the rubber technologist must go through various
procedures and steps, such as choice of materials and additives, choice of compounding
equipment and vulcanization system, as well as testing procedures to evaluate the quality of
the finished product. The choice of the base elastomer can be an overwhelming task, even
for those with experience in rubber technology. There are hundreds of choices for rubber
compounds and blends. In addition, there are hundreds of different additives for various
tasks. Additives can be used for softening or plasticizing the rubber compound for easy
processing. There are choices of additives that will protect the compound and the finished
product from aging, ozone and fatigue, as well as various vulcanization additives that will
accelerate or retard the curing process.

Natural Rubbers (NR). The chemical name for NR is polyisoprene, which is a ho-
mopolymer of isoprene. It has the cis-1,4 configuration. In addition, the polymer contains
small amounts of non-rubber substances, notably fatty acids, proteins, and resinous mate-
rials that function as mild accelerators and activators for vulcanization. Raw materials for
the production of NR must be derived from trees of the Hevea Brasiliensis species. NR is
available in a variety of types and grades, including smoked sheets, air-dried sheets, and
pale crepes.

Synthetic Polyisoprene Rubbers (IR). IR is a cis-1,4 polyisoprene synthetic natural
rubber. However, it does not contain the non-rubber substances that are present in NR. One
can differentiate between two basic types of synthetic polyisoprene by the polymerization
catalyst system used. They are commonly referred to as high cis and low cis types. The
high cis grades contain approximately 96-97% cis-1,4 polyisoprene.

Styrene-Butadiene Rubbers (SBR). Styrene-butadiene rubbers are produced by ran-
dom copolymerization of styrene and butadiene. The higher the cis-1,4 content of BR, the
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lower its glass transition temperature Tg. Pure cis-1,4 BR grades have a Tg temperature of
about -100oC. Commercial grades with about 98% cis-1,4 content have a Tg temperature
around -90oC.

Acrylonitrile-Butadiene Rubbers (NBR). Acrylonitrile-butadiene rubbers (NBR), or
simply nitrile rubbers, are copolymers of butadiene and acrylonitrile. They are available in
five grades based on the acrylonitrile (ACN) content.

• Very low nitriles: typically 18-20% ACN

• Low nitriles: typically 26-29% ACN

• Medium nitriles: typically 33-35% ACN

• High nitriles: typically 38-40% ACM

• Very high nitriles: typically 45-48% ACN

The glass transition temperatures of polyacrylonitrile at +90oC and of polybutadiene at
-90oC differ considerably; therefore, with an increasing amount of acrylonitrile in the
polymer, the Tg temperature of NBR rises together with its brittleness temperature. The
comonomer ratio is the single most important recipe variable for the production of acrylonitrile-
butadiene rubbers.

Ethylene-Propylene Rubbers (EPM and EPDM). There are two types of ethylene-
propylene rubbers:

• EPM: fully saturated copolymers of ethylene and propylene

• EPDM: terpolymers of ethylene, propylene, and a small percentage of a non-conjugated
diene, which makes the side chains unsaturated.

There are three basic dienes used as the third monomer:

• 1,4 hexadiene (1,4 HD)

• Dicyclopentadiene (DCPD)

• 5-ethylidene norbornene (ENB)

The EPM rubbers, being completely saturated, require organic peroxides or radiation for
vulcanization. The EPDM terpolymers can be vulcanized with peroxides, radiation, or
sulfur.

Problems

1.1 Estimate the degree of polymerization of a polyethylene with an average molecular
weight of 150,000. The molecular weight of an ethylene monomer is 28.

1.2 What is the maximum possible separation between the ends of a polystyrene molecule
with a molecular weight of 160,000.

1.3 To enhance processability of a polymer why would you want to decrease its molecular
weight?

1.4 Why would an uncrosslinked polybutadiene flow at room temperature?
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1.5 Is it true that by decreasing the temperature of a polymer you can increase its relaxation
time?

1.6 If you know the relaxation time of a polymer at one temperature, can you use the WLF
equation to estimate the relaxation time of the same material at a different temperature?
Explain.

1.7 What role does the cooling rate play in the morphological structure of semi-crystalline
polymers?

1.8 Explain how cross-linking between the molecules affect the molecular mobility and
elasticity of elastomers.

1.9 Increasing the molecular weight of a polymer increases its strength and stiffness, as
well as its viscosity. Is too high of a viscosity a limiting factor when increasing the
strength by increasing the molecular weight? Why?

1.10 Which broad class of thermoplastic polymers densifies the least during cooling and
solidification from a melt state into a solid state? Why?

1.11 What class of polymers would you probably use to manufacture frying pan handles?
Even though most polymers could not actually be used for this particular application,
what single property do all polymers exhibit that would be considered advantageous
in this particular application.

1.12 In terms of recycling, which material is easier to handle, thermosets or thermoplastics?
Why?

1.13 You are to extrude a polystyrene tube at an average speed of 0.1 m/s. The relaxation
time, λ, of the polystyrene, at the processing temperature, is 1 second. The die land
length is 0.02m. Will elasticity play a significant role in your process.

1.14 Figure 1.36 presents some creep modulus data for polystyrene at various temperatures
[11]. Create a master curve at 109.8oC by graphically sliding the curves at some
temperatures horizontally until they line up.

a) Identify the glassy, rubbery, and viscoelastic regions of the master curve.
b) Develop a plot of the shift factor, log (aT ) versus T , used to create your master

curve log (aT ) is the horizontal distance that the curve at temperature T was slid
to coincide with the master curve. Compare your graphical result with the WLF
equation. Note: The WLF equation is for a master curve at Tg (85oC for this PS),
but your master curve is for 109.8oC, so be sure you make a fair comparison.

1.15 Figure 1.37 presents relaxation data for polycarbonate at various temperatures [8]. Cre-
ate a master curve at 25oC by graphically sliding the curves at the various temperatures
horizontally until they line up.

a) Identify the glassy, rubbery, and viscoelastic regions of the master curve.
b) Develop a plot of the shift factor, log (aT ) versus T, used to create your master

curve. log (aT ) is the horizontal distance that the curve at temperature T was slid
to coincide with the master curve.

c) Compare your graphical result with the WLF equation. Note that the resulting
master curve is far from the glass transition temperature of polycarbonate.
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Figure 1.36: Creep modulus as a function of time for polystyrene.

Figure 1.37: Relaxation modulus as a function of time for polycarbonate.
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1.16 Figure 1.31 presents shear relaxation data for a chlorosulfonated polyethylene at var-
ious pressures. Create a master curve at 1 bar by graphically sliding the curves at the
various pressures horizontally until they line up. On the same graph, draw the master
curve at a pressure of 1,200 bar, a high pressure encountered during injection molding.
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CHAPTER 2

PROCESSING PROPERTIES

Did you ever consider viscoelasticity?

—Arthur Lodge

2.1 THERMAL PROPERTIES

The heat flow through a material can be defined by Fourier’s law of heat conduction.
Fourier’s law can be expressed as

qx = −kx
∂T

∂x
(2.1)

where qx is the energy transport per unit area in the x direction, kx the thermal conductivity
and ∂T/∂x the temperature gradient. At the onset of heating, the polymer responds solely
as a heat sink, and the amount of energy per unit volume, Q, stored in the material before
reaching steady state conditions can be approximated by

Q = ρCp∆T (2.2)

where ρ is the density of the material, Cp the specific heat, and ∆T the change in temperature.
The material properties found in eqns. (2.1) and (2.2) are often written as one single property,



38 PROCESSING PROPERTIES

Table 2.1: Thermal Properties for Selected Polymeric Materials

Polymer Specific Specific Thermal Coeff. Thermal Max
gravity heat conduc. therm. diffusivity temp.

expan.
kJ/kg/K W/m/K µm/m/K (m2/s)10−7 oC

ABS 1.04 1.47 0.3 90 1.7 70
CA 1.28 1.50 0.15 100 1.04 60
EP 1.9 - 0.23 70 - 130
PA66 1.14 1.67 0.24 90 1.01 90
PA66-30% glass 1.38 1.26 0.52 30 1.33 100
PC 1.15 1.26 0.2 65 1.47 125
PE-HD 0.95 2.3 0.63 120 1.57 55
PE-LD 0.92 2.3 .33 200 1.17 50
PET 1.37 1.05 0.24 90 - 110
PF 1.4 1.3 0.35 22 1.92 185
PMMA 1.18 1.47 0.2 70 1.09 50
POM 1.42 1.47 0.2 80 0.7 85
coPOMa 1.41 1.47 0.2 95 0.72 90
PP 0.905 1.95 0.24 100 0.65 100
PPOb 1.06 - 0.22 60 - 120
PS 1.05 1.34 0.15 80 0.6 50
PTFE 2.1 1.0 0.25 140 0.7 50
uPVCc 1.4 1.0 0.16 70 1.16 50
pPVCd 1.31 1.67 0.14 140 0.7 50
SAN 1.08 1.38 0.17 70 0.81 60
UPE 1.20 1.2 0.2 100 - 200
Steel 7.854 0.434 60 - 14.1 800

aPolyacetal copolymer; bPolyphenylene oxide copolymer; cUnplasticized PVC; dPlasticized PVC

namely the thermal diffusivity, α, which for an isotropic material is defined by

α =
k

ρCp
(2.3)

Typical values of thermal properties for selected polymers are shown in Table 6.1 [7, 17].
For comparison, the properties for stainless steel are also shown at the end of the list. It
should be pointed out that the material properties of polymers are not constant and may
vary with temperature, pressure or phase changes. This section will discuss each of these
properties individually and present examples of some of the most widely used polymers
and measurement techniques. For a more in-depth study of thermal properties of polymers
the reader is encouraged to consult the literature [24, 46, 66].

2.1.1 Thermal Conductivity

When analyzing thermal processes, the thermal conductivity, k, is the most commonly used
property that helps quantify the transport of heat through a material. By definition, energy
is transported proportionally to the speed of sound. Accordingly, thermal conductivity
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Figure 2.1: Thermal conductivity of various materials.

follows the relation

k ≈ Cpρul (2.4)

where u is the speed of sound and l the molecular separation. Amorphous polymers show
an increase in thermal conductivity with increasing temperature, up to the glass transition
temperature, Tg. Above Tg, the thermal conductivity decreases with increasing temperature.
Figure 2.1 [24] presents the thermal conductivity, below the glass transition temperature,
for various amorphous thermoplastics as a function of temperature.

Due to the increase in density upon solidification of semi-crystalline thermoplastics,
the thermal conductivity is higher in the solid state than in the melt. In the melt state,
however, the thermal conductivity of semi-crystalline polymers reduces to that of amorphous
polymers as can be seen in Fig. 2.2 [40].

Furthermore, it is not surprising that the thermal conductivity of melts increases with
hydrostatic pressure. This effect is clearly shown in Fig. 2.3 [19]. As long as thermosets are
unfilled, their thermal conductivity is very similar to amorphous thermoplastics. Anisotropy
in thermoplastic polymers also plays a significant role in the thermal conductivity. Highly
drawn semi-crystalline polymer samples can have a much higher thermal conductivity as a
result of the orientation of the polymer chains in the direction of the draw.

For amorphous polymers, the increase in thermal conductivity in the direction of the
draw is usually not higher than two. Figure 2.4 [24] presents the thermal conductivity in the
directions parallel and perpendicular to the draw for high density polyethylene, polypropy-
lene, and polymethyl methacrylate. A simple relation exists between the anisotropic and
the isotropic thermal conductivity [39]. This relation is written as

1

k�
+

2

k⊥
=

3

k
(2.5)

where the subscripts � and ⊥ represent the directions parallel and perpendicular to the draw,
respectively.
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Figure 2.5: Influence of filler on the thermal conductivity of PE-LD.

The higher thermal conductivity of inorganic fillers increases the thermal conductivity of
filled polymers. Nevertheless, a sharp decrease in thermal conductivity around the melting
temperature of crystalline polymers can still be seen with filled materials. The effect of
filler on thermal conductivity for PE-LD is shown in Fig. 2.5 [22]. This figure shows the
effect of fiber orientation as well as the effect of quartz powder on the thermal conductivity
of low density polyethylene.

Figure 2.6 demonstrates the influence of gas content on expanded or foamed polymers,
and the influence of mineral content on filled polymers.

There are various models available to compute the thermal conductivity of foamed or
filled plastics [39, 47, 51]. A rule of mixtures, suggested by Knappe [39], commonly used
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to compute thermal conductivity of composite materials is written as

kc =
2km + kf − 2φf (km − kf )

2km + kf + φf (km−kf
)

km (2.6)

where, φf is the volume fraction of filler, and km, kf and kc are the thermal conductivity
of the matrix, filler and composite, respectively.

Figure 2.7 compares eqn. (2.6) with experimental data [2] for an epoxy filled with copper
particles of various diameters. The figure also compares the data to the classic model given
by Maxwell [47] which is written as

kc =

⎛⎜⎜⎝1 + 3φf

kf

km
− 1

kf

km
+ 2

⎞⎟⎟⎠ km (2.7)

In addition, a model derived by Meredith and Tobias [51] applies to a cubic array of
spheres inside a matrix. Consequently, it cannot be used for volumetric concentration
above 52% since the spheres will touch at that point. However, their model predicts the
thermal conductivity very well up to 40% by volume of particle concentration. When
mixing several materials the following variation of Knappe’s model applies

kc =
1 − 6n

i=1 2φi
km − ki

2km + ki

1 +
6n

i=1 2φi
km − ki

2km + ki

(2.8)

where ki is the thermal conductivity of the filler and φi its volume fraction. This relation is
useful for glass fiber reinforced composites (FRC) with glass concentrations up to 50% by
volume. This is also valid for FRC with unidirectional reinforcement. However, one must
differentiate between the direction longitudinal to the fibers and that transverse to them.
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For high fiber content, one can approximate the thermal conductivity of the composite by
the thermal conductivity of the fiber. The thermal conductivity can be measured using the
standard tests ASTM C177 and DIN 52612. A new method currently being balloted (ASTM
D20.30) is preferred by most people today.

2.1.2 Specific Heat

The specific heat, C, represents the energy required to change the temperature of a unit
mass of material by one degree. It can be measured at either constant pressure, Cp, or
constant volume, Cv . Since the specific heat at constant pressure includes the effect of
volumetric change, it is larger than the specific heat at constant volume. However, the
volume changes of a polymer with changing temperatures have a negligible effect on the
specific heat. Hence, one can usually assume that the specific heat at constant volume or
constant pressure are the same. It is usually true that specific heat only changes modestly
in the range of practical processing and design temperatures of polymers. However, semi-
crystalline thermoplastics display a discontinuity in the specific heat at the melting point of
the crystallites. This jump or discontinuity in specific heat includes the heat that is required
to melt the crystallites which is usually called the heat of fusion. Hence, specific heat is
dependent on the degree of crystallinity. Values of heat of fusion for typical semi-crystalline
polymers are shown in Table 2.2.

The chemical reaction that takes place during solidification of thermosets also leads to
considerable thermal effects. In a hardened state, their thermal data are similar to the ones of
amorphous thermoplastics. Figure 2.8 shows the specific heat graphs for the three polymer
categories.
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Table 2.2: Heat of Fusion of Various Thermoplastic Polymers [66]

Polymer λ (kJ/kg) Tm(oC)
Polyamide 6 193-208 223
Polyamide 66 205 265
Polyethylene 268-300 141
Polypropylene 209-259 183
Polyvinyl chloride 181 285
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Figure 2.9: Generated specific heat curves for a filled and unfilled polycarbonate. Courtesy of
Bayer AG, Germany.

For filled polymer systems with inorganic and powdery fillers, a rule of mixtures1 can
be written as

Cp(T ) = (1 − ψf )Cpm
(T ) + ψfCpf

(T ) (2.9)

where ψf represents the weight fraction of the filler and Cpm
and Cpf

the specific heat of
the polymer matrix and the filler, respectively. As an example of using eqn. (2.9), Fig. 2.9
shows a specific heat curve of an unfilled polycarbonate and its corresponding computed
specific heat curves for 10%, 20%, and 30% glass fiber content. In most cases, temperature
dependence of Cp on inorganic fillers is minimal and need not be taken into consideration.
The specific heat of copolymers can be calculated using the mole fraction of the polymer
components.

Cpcopolymer = σ1Cp1 + σ2Cp2 (2.10)

where σ1 and σ2 are the mole fractions of the comonomer components and Cp1 and Cp1

the corresponding specific heats.

2.1.3 Density

The density or its reciprocal, the specific volume, is a commonly used property for polymeric
materials. The specific volume is often plotted as a function of pressure and temperature
in what is known as a pvT diagram. A typical pvT diagram for an unfilled and filled
amorphous polymer is shown, using polycarbonate as an example, in Figs. 2.10 and 2.11
The two slopes in the curves represent the specific volume of the melt and of the glassy
amorphous polycarbonate, separated by the glass transition temperature.

Figure 2.12 presents the pvT diagram for polyamide 66 as an example of a typical semi-
crystalline polymer. Figure 2.13 shows the pvT diagram for polyamide 66 filled with 30%

1Valid up to 65% filler content by volume.
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Figure 2.10: pvT diagram for a polycarbonate. Courtesy of Bayer AG, Germany.

0. 65

0. 70

0. 75

0. 80

0.85

0 100 200 300

Temperature, T

1

200

400

800

1200

1600
PC + 20% GF

(°C)

S
p

e
ci

fi
c

vo
lu

m
e

, c
m

 /
g

3

Pressure, P
(bar)

Figure 2.11: pvT diagram for a polycarbonate filled with 20% glass fiber. Courtesy of Bayer AG,
Germany.



THERMAL PROPERTIES 47

0.85

0.90

0.95

1.00

1.05

0 100 200 300

1

200

400

800

1200

1600

Temperature, T (°C)

PA 66

S
pe

ci
fic

 v
ol

um
e,

 v
 (

   
   

/g
)

Pressure, P
(  bar )

cm
3

Figure 2.12: pvT diagram for a polyamide 66. Courtesy of Bayer AG, Germany.

glass fiber. The curves clearly show the melting temperature (i.e., Tm ≈ 250oC for the
unfilled PA66 cooled at 1 bar, which marks the beginning of crystallization as the material
cools). It should also come as no surprise that the glass transition temperatures are the same
for the filled and unfilled materials.

When carrying out die flow calculations, the temperature dependence of the specific
volume must often be dealt with analytically. At constant pressures, the density of pure
polymers can be approximated by

ρ(T ) = ρ0
1

1 + αt(T − T0)
(2.11)

where ρ0 is the density at reference temperature,T0, and αt is the linear coefficient of thermal
expansion. For amorphous polymers, eqn. (2.11) is valid only for the linear segments (i.e.,
below or above Tg), and for semi-crystalline polymers it is only valid for temperatures
above Tm. The density of polymers filled with inorganic materials can be computed at any
temperature using the following rule of mixtures

ρc(T ) =
ρm(T )ρf

ψρm(T ) + (1 − ψ)ρf
(2.12)

where ρc, ρm and ρf are the densities of the composite, polymer and filler, respectively,
and ψ is the weight fraction of filler.
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Figure 2.13: pvT diagram for a polyamide 66 filled with 30% glass fiber. Courtesy of Bayer AG,
Germany.

A widely accepted form of modeling the density or specific volume is the Tait equation.
It is often used to represent the pvT -behavior of polymers and it is represented as,

v(T, p) = v0(T )

�
1 − C ln

#
1 +

p

B(T )

*�
+ vt(T, p) (2.13)

where C = 0.0894. This equation of state is capable of describing both the liquid and solid
regions by changing the constants in v0(T ), B(T ) and vt(T, p), which are defined as,

v0(T ) =

�
b1,l + b2,lT̄ if T > Tt(p)
b1,s + b2,sT̄ if T < Tt(p)

(2.14)

B(T ) =

�
b3,le

−b4,lT̄ if T > Tt(p)

b3,se
−b4,sT̄ if T < Tt(p)

(2.15)

and

vt(T, p) =

�
0 if T > Tt(p)

b7e
b8T̄−b9p if T < Tt(p)

(2.16)

where T̄ = T − b5 and the transition temperature is assumed to be a linear function of
pressure, i.e.,

Tf (p) = b5 + b6p (2.17)

Table 2.3 presents the constants for the Tait equation for given PC, PP and PS resins.
Figures 2.14, 2.15 and 2.16 present the numerical pvT representation of the PC, PS and PP
resins presented in Table 2.3.
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Table 2.3: Tait equation constants for various materials based upon fitting data [13]

Material PC PP PS
Grade Lexan 101 PPN 1060 S3200
Manufacturer G.E. Hoechst Hoechst
Cooling Rate (oC/s) 8.0 5.4 4.0
b1,l (cm3/g) 0.848 1.246 0.988
b2,l (cm3/g/oC) 5.28×10−4 9.03×10−4 6.10×10−4

b3,l (dyne/cm2) 2.37×109 9.28×108 1.15×109

b4,l (1/oC) 5.54×10−3 4.07×10−3 3.66×10−3

b1,s (cm3/g) 0.848 1.160 0.988
b2,s (cm3/g/oC) 4.56×10−5 3.57×10−4 1.49×10−4

b3,s (dyne/cm2) 4.65×109 2.05×109 2.38×109

b4,s (1/oC) 1.49×10−3 2.49×10−3 2.10×10−3

b5 (oC) 149.0 123.0 112.0
b6 (oCg/dyne) 3.2×10−8 2.25×10−8 7.8×10−8

b7 (cm3/g) 0.0 0.087 0.0
b8 (1/oC) – 5.37×10−1 –
b9 (cm2/dyne) – 1.26×10−8 –
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Figure 2.14: pvT diagram from the Tait equation for PC (Table 2.3).
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Figure 2.15: pvT diagram from the Tait equation for PS (Table 2.3).
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Figure 2.17: Thermal diffusivity as a function of temperature for various amorphous thermoplastics.

2.1.4 Thermal Diffusivity

Thermal diffusivity, defined in eqn. (2.3), is the material property that governs the process of
thermal diffusion over time. The thermal diffusivity in amorphous thermoplastics decreases
with temperature. A small jump is observed around the glass transition temperature due
to the decrease in heat capacity at Tg. Figure 2.17 [24] presents the thermal diffusivity for
selected amorphous thermoplastics.

A decrease in thermal diffusivity, with increasing temperature, is also observed in semi-
crystalline thermoplastics. These materials show a minimum at the melting temperature
as demonstrated in Fig. 2.18 [24] for a selected number of semi-crystalline thermoplastics.
It has also been observed that the thermal diffusivity increases with increasing degree of
crystallinity and that it depends on the rate of crystalline growth, hence, on the cooling
speed.

2.1.5 Linear Coefficient of Thermal Expansion

The linear coefficient of thermal expansion is related to volume changes that occur in a
polymer due to temperature variations and is well represented in the pvT diagram. For
many materials, thermal expansion is related to the melting temperature of that material,
demonstrated for some important polymers in Fig. 2.19.

Although the linear coefficient of thermal expansion varies with temperature, it can be
considered constant within typical design and processing conditions. It is especially high
for polyolefins, where it ranges from 1.5 × 10−4K−1 to 2 × 10−4K−1; however, fibers
and other fillers significantly reduce thermal expansion. A rule of mixtures is sufficient
to calculate the thermal expansion coefficient of polymers that are filled with powdery or
small particles as well as with short fibers. In this case, the rule of mixtures is written as

αc = αp(1 − φf ) + αfφf (2.18)

where φf is the volume fraction of the filler, and αc, αp and αf are coefficients for the
composite, the polymer and the filler, respectively. In case of continuous fiber reinforce-
ment, the rule of mixtures presented in eqn. (2.18) applies for the coefficient perpendicular
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Figure 2.18: Thermal diffusivity as a function of temperature for various semi-crystalline
thermoplastics.
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Table 2.4: Thermal Penetration of Various Thermoplasticsa

Polymer a1 a2

PE-HD 1.41 441.7
PE-LD 0.0836 615.1
PMMA 0.891 286.4
POM 0.674 699.6
PP 0.846 366.8
PS 0.909 188.9
PVC 0.649 257.8

aCoefficients to calculate thermal penetration using b = a1T + a2 (W/s1/2/m2/K).

to the reinforcing fibers. In the fiber direction, however, the thermal expansion of the fibers
determines the linear coefficient of thermal expansion of the composite. Extensive calcu-
lations are necessary to determine coefficients in layered laminated composites and in fiber
reinforced polymers with varying fiber orientation distribution.

2.1.6 Thermal Penetration

In addition to thermal diffusivity, the thermal penetration number is of considerable practical
interest. It is given by

b =
0

kCpρ (2.19)

If the thermal penetration number is known, the contact temperature TC , which results when
two bodies A and B, which are at different temperatures, touch, can easily be computed
using

TC =
bATA + bBTB

bA + bB
(2.20)

where TA and TB are the temperatures of the touching bodies and bA and bB are the thermal
penetrations for both materials. The contact temperature is very important for many objects
in daily use (e.g., from the handles of heated objects or drinking cups made of plastic, to the
heat insulation of space crafts). It is also very important for the calculation of temperatures
in tools and molds during polymer processing. The constants used to compute temperature
dependent thermal penetration numbers for common thermoplastics are given in Table 2.4
[11].

2.1.7 Measuring Thermal Data

Thanks to modern analytical instruments it is possible to measure thermal data with a high
degree of accuracy. These data allow a good insight into chemical and manufacturing
processes. Accurate thermal data or properties are necessary for everyday calculations
and computer simulations of thermal processes. Such analyses are used to design polymer
processing installations and to determine and optimize processing conditions. In the last
twenty years, several physical thermal measuring devices have been developed to determine
thermal data used to analyze processing and polymer component behavior.
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Figure 2.20: Schematic of a differential thermal analysis test.

Differential Thermal Analysis (DTA). The differential thermal analysis test serves to
examine transitions and reactions which occur on the order between seconds and minutes,
and involve a measurable energy differential of less than 0.04 J/g. Usually, the measuring is
done dynamically (i.e., with linear temperature variations in time). However, in some cases
isothermal measurements are also done. DTA is mainly used to determine the transition
temperatures. The principle is shown schematically in Fig. 2.20. Here, the sample, S,
and an inert substance, I , are placed in an oven that has the ability to raise its temperature
linearly.

Two thermocouples that monitor the samples are connected opposite to one another such
that no voltage is measured as long as S and I are at the same temperature:

∆T = TS − TI = 0 (2.21)

However, if a transition or a reaction occurs in the sample at a temperature, TC , then heat
is consumed or released, in which case ∆T �= 0. This thermal disturbance in time can be
recorded and used to interpret possible information about the reaction temperature, TC , the
heat of transition or reaction, ∆H , or simply about the existence of a transition or reaction.

Figure 2.21 presents the temperature history in a sample with an endothermic melting
point (i.e., such as the one that occurs during melting of semi-crystalline polymers). The
figure also shows the functions ∆T (TI) and ∆T (TS) which result from such a test. A
comparison between Figs. 2.21 demonstrates that it is very important to record the sample
temperature, TS , to determine a transition temperature such as the melting or glass transition
temperature.

Differential Scanning Calorimeter (DSC). The differential scanning calorimeter per-
mits us to determine thermal transitions of polymers in a range of temperatures between -180
and +600oC. Unlike the DTA cell, in the DSC device, thermocouples are not placed directly
inside the sample or the reference substance. Instead, they are embedded in the specimen
holder or stage on which the sample and reference pans are placed; the thermocouples
make contact with the containers from the outside. A schematic diagram of a differential
scanning calorimeter is very similar to the one shown in Fig. 2.20. Materials that do not
show or undergo transition or react in the measuring range (e.g., air, glass powder, etc.) are
placed inside the reference container. For standardization, one generally uses mercury, tin,
or zinc, whose properties are exactly known. In contrast to the DTA test, where samples
larger than 10 g are needed, the DSC test requires samples that are in the mg range (<10
mg). Although DSC tests are less sensitive than the DTA tests, they are the most widely
used tests for thermal analysis. In fact, DTA tests are rarely used in the polymer industry.
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Figure 2.22: Typical DSC heat flow for a semi-crystalline polymer.

Figure 2.22 [66] shows a typical DSC curve measured using a partly crystalline polymer
sample. In the figure, the area that is enclosed between the trend line and the base line is
a direct measurement for the amount of heat, ∆H , needed for transition. In this case, the
transition is melting and the area corresponds to the heat of fusion.

The degree of crystallinity, X , is determined from the ratio of the heat of fusion of a
polymer sample, ∆HSC , and the enthalpy of fusion of a 100% crystalline sample ∆HC .

X =
∆HSC

∆HC
(2.22)

In a DSC analysis of a semi-crystalline polymer, a jump in the specific heat curve, as
shown in Fig. 2.22, becomes visible. The glass transition temperature, Tg, is determined at
the inflection point of the specific heat curve. The release of residual stresses as a material’s
temperature is raised above the glass transition temperature is often observed in a DSC
analysis.

Specific heat, Cp, is one of the many material properties that can be measured with DSC.
During a DSC temperature sweep, the sample pan and the reference pan are maintained
at the same temperature. This allows the measurement of the differential energy required
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Figure 2.23: Schematic diagram of the thermomechanical analysis (TMA) device.

to maintain identical temperatures. The sample with the higher heat capacity will absorb
a larger amount of heat, which is proportional to the difference between the heat capacity
of the measuring sample and the reference sample. It is also possible to determine the
purity of a polymer sample when additional peaks or curve shifts are detected in a DSC
measurement.

Thermal degradation is generally accompanied by an exothermic reaction which may
result from oxidation. Such a reaction can easily be detected in a DSC output. By further
warming of the test sample, cross-linking may take place and, finally, chain breakage, as
shown in Fig. 2.22.

An important aspect in DSC data interpretation is the finite heat flow resistance between
the sample pan and the furnace surface. Recent studies by Janeschitz-Kriegl, Eder and
co-workers [33, 70] have demonstrated that the heat transfer coefficient between the sample
pan and furnace is of finite value, and cannot be disregarded when interpreting the data. In
fact, with materials that have a low thermal conductivity, such as polymers, the finite heat
transfer coefficient will significantly influence the temperature profiles of the samples.

Thermomechanical Analysis (TMA). Thermomechanical analysis (TMA) measures
shape stability of a material at elevated temperatures by physically penetrating it with a
metal rod. A schematic diagram of TMA equipment is shown in Fig. 2.23. In TMA, the
test specimen’s temperature is raised at a constant rate, the sample is placed inside the
measuring device, and a rod with a specified weight is placed on top of it. To allow for
measurements at low temperatures, the sample, oven, and rod can be cooled with liquid
nitrogen.

Most instruments are so precise that they can be used to measure the melting temper-
ature of the material and, by using linear dilatometry, to measure the thermal expansion
coefficients. The thermal expansion coefficient can be measured using

αt
1

L0

∆L

∆T
(2.23)

where L0 is the initial dimension of the test specimen, ∆L the change in size and ∆T the
temperature difference. For isotropic materials a common relation between the linear and
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Figure 2.24: TGA analysis of a PVC fabric. (1) volatiles: humidity, monomers, solvents etc., (2)
DOP plasticizer, (3) HCl formation, (4) carbon-carbon scission, and (5) CO2 formation.

the volumetric thermal expansion coefficient can be used:

γ = 3αt (2.24)

Thermogravimetry (TGA). A thermogravimetricanalyzer can measure weight changes
of less than 10 µg as a function of temperature and time. This measurement technique,
typically used for thermal stability, works on the principle of a beam balance. The testing
chamber can be heated (up to approximately 1,200oC) and rinsed with gases (inert or
reactive). Measurements are performed on isothermal reactions or at temperatures sweeps
of less than 100 K/min. The maximum sample weight used in thermogravimetric analyses
is 500 mg. Thermogravimetry is often used to identify the components in a blend or a
compound based on the thermal stability of each component. Figure 2.24 shows results
from a TGA analysis on a PVC fabric. The figure shows the transitions at which the various
components of the compound decompose. The percent of the original sample weight is
recorded along with the change of the weight with respect to temperature. Five transitions
representing (1) the decomposition of volatile components, (2) decomposition of the DOP
plasticizer, (3) formation of HCl, (4) carbon-carbon scission, and (5) the forming of CO2,
are clearly visible.

Density Measurements. One simple form of calculating the density of a polymer
sample is to first weigh the sample immersed in water. Assuming the density of water to
be 1.0g/cm3, we can use the relation

ρ =
m

(m − mi)(1 cm3/g)
(2.25)
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Figure 2.25: DSC scan of a PET bottle screw-top sample.

where m is mass of the specimen, mi is the mass of the immersed specimen and (m − mi)
is the mass of the displaced body of water.

Some common ways of determining density of polymeric materials are described by
ASTM D792, ISO 1183, and DIN 53 479 test methods. Another common way of measuring
density is the through flow density meter. Here, the density of water is changed to that of
the polymer by adding ethanol until the plastic shavings are suspended in the solution. The
density of the solution is then measured in a device that pumps the liquid through a U-pipe,
where it is measured using ultrasound techniques. A density gradient technique is described
by the standard ASTM D1505 test method.

EXAMPLE 2.1.

Degree of crystallinity for a PET bottle screw-top. A differential scanning calorime-
try (DSC) test was performed on a 25 mg polyethylene terephthalate (PET) sample
taken from the screw-top of a soda bottle. The test was performed using a heating
rate of 5 K/min (5 K rise every minute). The DSC output is presented in Fig. 2.25.

From the curve estimate the glass transition temperature, Tg, the melting tempera-
ture, Tm, the crystallization temperature, Tc and the heat of fusion, λ, for this specific
PET sample during the temperature ramp-up. If the heat of fusion for a hypothetically
100% crystalline PET sample is 137 kJ/kg [64], what was the degree of crystallinity
in the PET bottle screw-top?

From the curve presented in Fig. 2.25 we can deduce that the glass transition
temperature is around 72oC, the crystallization temperature at 125oC and the melting
temperature at 250oC. Note that in all three cases there is a range of temperatures
at which the transition occurs. To compute the heat of fusion during the ramp-up,
we need to find the area between Q̇ and the base-line for the endothermic deviation
around the melting point, between 210 and 260oC. To do this we, must first transform
the temperature scale to time by dividing it by the heating rate as

t =
T

5 K/min
60 s

1 min
(2.26)
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Hence, 50oC becomes 600 s, 100oC becomes 1,200 s, etc. The integral equals 37.8
kJ/kg, which represents the heat of fusion of the sample during the temperature ramp-
up. However, one must consider that this melting energy includes the extra crystal-
lization that occurs between 108 and 155oC. The exothermic energy is computed by
integrating the curve between those two temperatures in a transformed time scale.
The integral equals 22.9 kJ/kg. We can also find the area under the curve by trans-
forming the heat flow, Q̇, to heat capacity, Cp, and integrating using the temperature
scale instead of a time scale. Heat capacity can be computed using

Cp =
Q̇

5 K/min
60 s

1 min
(2.27)

The degree of crystallinity of the initial PET bottle screw-top can now easily be
computed using

X =
37.87 kJ/kg − 22.9 kJ/kg

137 kJ/kg
= 0.109 or 10.9% (2.28)

2.2 CURING PROPERTIES

Both, thermosets and elastomeric materials undergo a reaction process during processing.
They can be classified in two general processing categories: heat activated cure and mixing
activated cure thermosets. However, no matter which category a reactive polymer belongs
to, its curing reaction can be described by the reaction between two chemical groups denoted
by A and B which link two segments of a polymer chain. The reaction can be followed by
tracing the concentration of unreacted As or Bs, CA or CB . If the initial concentration of
A and B is defined as CA0 and CB0 , the degree of cure can be described by

c =
CA0 − CB0

CA0

(2.29)

The degree of cure or conversion, c, equals zero when there has been no reaction and equals
one when all As have reacted and the reaction is complete. However, it is impossible
to monitor reacted and unreacted As and Bs during the curing reaction of a thermoset
polymer. It is known that the exothermic heat released during curing can be used to monitor
the conversion, c. When a small sample of an unreacted thermoset polymer is placed in a
differential scanning calorimeter (DSC) the sample will release a certain amount of heat,
QT . This occurs because every cross-link that forms during a reaction releases a small
amount of energy in the form of heat. For example, Fig. 2.26 shows the heat rate released
during isothermal cure of a vinyl ester at various temperatures.

Using the exothermic heat as a measure of cure, the degree of cure can be defined by the
following relation

c =
Q

QT
(2.30)

where Q is the heat released up to an arbitrary time t, and is defined by

Q =

� t

0

Q̇dt (2.31)
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Figure 2.26: DSC scans of the isothermal curing reaction of vinyl ester at various temperatures.

DSC data is commonly fitted to semi-empirical models that accurately describe the curing
reaction. Hence, the rate of cure can be described by the exotherm, Q̇, and the total heat
released during the curing reaction, QT , as

dc

dt
=

Q̇

QT
(2.32)

With the use of eqn. (2.32), it is now easy to take the DSC data and find the models that
best describe the curing reaction.

During cure, thermoset resins exhibit three distinct phases; viscous liquid, gel, and
solid. Each of these three stages is marked by dramatic changes in the thermomechanical
properties of the resin. The transformation of a reactive thermosetting liquid to a glassy solid
generally involves two distinct macroscopic transitions: molecular gelation and vitrification.
Molecular gelation is defined as the time or temperature at which covalent bonds connect
across the resin to form a three-dimensional network which gives rise to long range elastic
behavior in the macroscopic fluid. This point is also referred to as the gel point, where
c = cg . As a thermosetting resin cures, the cross-linking begins to hinder molecular
movement, leading to a rise in the glass transition temperature. Eventually, when Tg nears
the processing temperature, the rate of curing reduces significantly, and becomes dominated
by diffusion. At this point, the resin has reached its vitrification point. Figure 2.27, which
presents the degree of cure as a function of time, illustrates how an epoxy resin reaches a
maximum degree of cure at various processing temperatures.

The resin processed at 200oC reaches 100% cure because the glass transition temperature
of fully cured epoxy is 190oC, less than the processing temperature. On the other hand, the
sample processed at 180oC reaches 97% cure and the one processed at 160oC only reaches
87% cure. Figures 2.26 and 2.27 also illustrate how the curing reaction is accelerated as
the processing temperature is increased. The curing reaction of thermally cured thermoset
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Figure 2.27: Degree of cure as a function time for an epoxy resin measured using isothermal DSC.

c=c1 c=c2 c=1

c=cg

Sol-gel glassy

Figure 2.28: Time-temperature-transformation (TTT) diagram for a thermoset.

resins is not immediate, thus the blend can be stored in a refrigerator for a short period of
time without having any significant curing reaction.

The behavior of curing thermosetting resins can be represented with the generalized
time-temperature-transformation (TTT) cure diagram developed by Enns and Gillham[7];
it can be used to relate the material properties of thermosets as a function of time and the
processing temperature as shown in Fig. 2.28.
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The diagram presents various lines that represent constant degrees of cure. The curve
labeled c = cg represents the gel point and c = 1 the fully cured resin. Both curves have
their corresponding glass transition temperatures, Tg1 and Tggel

, for the glass transition
temperature of the fully cured resin and at its gel point, respectively. The glass transition
temperature of the uncured resin, Tg0 , and an S-shaped curve labeled vitrification line,
are also depicted. The vitrification line represents the boundary where the glass transition
temperature becomes the processing temperature. Hence, to the left of the vitrification
curve, the curing process is controlled by a very slow diffusion process. The TTT-diagram
shows an arbitrary process temperature. The material being processed reaches the gel
point at t = tgel and the vitrification line at t = tg . At this point, the material has
reached a degree of cure of c1 and glass transition temperature of the resin is equal to the
processing temperature. The material continues to cure very slowly (diffusion controlled)
until it reaches a degree of cure just below c2. There are also various regions labeled in
the diagram. The one labeled viscous liquid is the one where the resin is found from the
beginning of processing until the gel point has been reached. The flow and deformation
that occurs during processing or shaping must occur within this region. The region labeled
char must be avoided during processing, since at high processing temperatures the polymer
will eventually undergo thermal degradation.

Many models exist that are used to predict the curing reaction during processing. All of
them are of the form,

dc

dt
= g(T, c) (2.33)

The model that best represents the curing kinetics of thermosetting resins such as epoxy and
unsaturated polyester, and as reflected in a TTT-diagram, is a diffusion modified Kamal-
Sourour reaction model [9, 14, 13]. To model autocatalytic cure kinetics, the model can be
applied as

dc

dt
= (k1 + k2c

m) (1 − c)
n (2.34)

where m and n are reaction orders, and k1 and k2 are constants defined by

1

ki
=

1

kc
i

+
1

kD
(2.35)

Here, kc
i are Arrhenius overall rate constants defined by

kc
i = aie

−Ei/RT (2.36)

where a1 and a2 are fitting parameters, E1 and E2, activation energies and R the ideal gas
constant. The constant kD in eqn. (2.35) is the diffusion rate constant defined as

kD = aDe−ED/RT e−b/f (2.37)

where aD and b are adjustable parameters, ED is the activation energy of the diffusion
process, and f is the equilibrium fractional free volume given by

f = 0.00048(T − Tg) + 0.025 (2.38)

where Tg is the instantaneous glass transition temperature during cure. Equation (2.35)
shows that the overall rate constant is governed at one extreme by the Arrhenius rate constant
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when kD � kc
i , which is the case prior to vitrification, and at the other extreme by the

diffusion rate constant when kD � kc
i , which is the case well after vitrification. For a system

exhibiting a unique one-to-one relationship between the glass transition temperature and
conversion, DiBenedetto’s equation [5] is one of the easiest approaches for stoichiometric
ratios to express this relationship using only a single parameter as

Tg = Tg0 +
(Tg1 − Tg0)λc

1 − (1 − λ)c
(2.39)

where λ is a structure dependent parameter theoretically equated to

λ =
∆Cp0

∆Cp1

(2.40)

The values of ∆Cpo
and ∆Cp1 are the differences in the heat capacity between the glassy

and rubbery state for the uncured resin and the fully cured network, respectively. However,
the parameter λ can also be used as a fitting parameter.

Mixing activated cure materials such as polyurethanes will instantly start releasing
exothermic heat after the mixture of its two components has occurred. The Castro-Macosko
curing model, a second order reaction kinetic, accurately fits this behavior and is written as
[44],

dc

dt
= k0e

−E/RT (1 − c)2 (2.41)

In the above equations, the exponent of the (1−c)n term determines, which order reaction is
being used to best fit the reaction kinetics. How these properties that describe the conversion
or reaction are used, will be covered in more detail in Chapter 6 of this book.

2.3 RHEOLOGICAL PROPERTIES

Rheology is the field of science that studies fluid behavior during flow-induced deforma-
tion. From the variety of materials that rheologists study, polymers have been found to
be the most interesting and complex. Polymer melts are shear thinning, viscoelastic, and
their flow properties are temperature dependent. Viscosity is the most widely used material
parameter when determining the behavior of polymers during processing. Since the major-
ity of polymer processes are shear rate dominated, the viscosity of the melt is commonly
measured using shear deformation measurement devices. However, there are polymer pro-
cesses, such as blow molding, thermoforming, and fiber spinning, which are dominated by
either elongational deformation or by a combination of shear and elongational deforma-
tion. In addition, some polymer melts exhibit significant elastic effects during deformation.
Modeling and simulation of polymer flows will be briefly discussed in this chapter and are
covered in more detail later in this book. For further reading on rheology of polymer melts,
the reader should consult the literature [6, 8, 16, 45].

2.3.1 Flow Phenomena

There are three important phenomena seen is polymeric liquids that make them different
from simple fluids: a non-Newtonian viscosity, normal stresses in shear flow, and elas-
tic effects. All these effect are a result of the complex molecular structure of polymer
macromolecules.
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Figure 2.29: Viscosity curves for a polystyrene.

Non-Newtonian Viscosity. A Newtonian fluid is one where the deviatoric stresses that
occur during deformation, τ , are directly proportional to the rate of deformation tensor, γ̇,

τ = µγ̇ (2.42)

The proportionality constant µ is the Newtonian viscosity, which is considered to be only
dependent on temperature. However, the viscosity of most polymer melts is shear thinning
in addition to being temperature dependent. The shear thinning effect is the reduction
in viscosity at high rates of deformation. This phenomenon occurs because at high rates
of deformation the molecules are stretched out and disentangled, enabling them to slide
past each other with more ease, hence, lowering the bulk viscosity of the melt. Figure 2.29
shows the shear thinning behavior and temperature dependance of the viscosity of a specific
general purpose polystyrene.

To take into consideration these non-Newtonian effects, it is common to use a viscosity
which is a function of the strain rate and temperature to calculate the stress tensor in
eqn. (2.42)

τ = η(γ̇, T )γ̇ (2.43)

where η is the viscosity and γ̇ the magnitude of strain rate or rate of deformation tensor
defined by

γ̇ =

1
1

2
II (2.44)

where II is the second invariant of the strain rate tensor defined by

II =
5

i

5
j

γ̇ij γ̇ji (2.45)

The strain rate tensor components in eqn. (2.45) are defined by

γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
(2.46)
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Figure 2.30: Reduced viscosity curve for a low density polyethylene at a reference temperature of
150oC.

The temperature dependence of the polymer’s viscosity is normally factored out as

η(γ̇, T ) = f(T )η(γ̇) (2.47)

where for small variations in temperature, f(T ) can be approximated using an exponential
function such as

f(T ) = e−a(T−T0) (2.48)

However, as mentioned in Chapter 1, a variation in temperature corresponds to a shift in
the time scale. A shift commonly used for semi-crystalline polymers is the Arrhenius shift,
which is written as

aT (T ) =
η0(T )

η0(T0)
= e

E0

R

�
1

T
−

1

T0

!
(2.49)

where E0 is the activation energy, T0 a reference temperature, and R the gas constant.
Using this shift, one can translate viscosity curves measured at different temperatures to
generate a master curve at a specific temperature. Figure 2.30 [41] presents the viscosity
of a low density polyethylene with measured values shifted to a reference temperature of
150oC. For the shift in Fig. 2.30, an activation energy E0 = 54 kJ/mol was used.

Several models that are used to represent the strain rate dependence of polymer melts
are presented later in this chapter.

Normal Stresses in Shear Flow. The tendency of polymer molecules to curl-up while
they are being stretched in shear flow results in normal stresses in the fluid. For example,
shear flows exhibit a deviatoric stress defined by

τxy = η(γ̇)γ̇xy (2.50)
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Figure 2.31: Reduced first normal stress difference coefficient for a low density polyethylene melt
at a reference temperature of 150oC.

Measurable normal stress differences, N1 = τxx − τyy and N2 = τyy − τzz are referred
to as the first and second normal stress differences. The first and second normal stress
differences are material dependent and are defined by

N1 = τxx − τyy = −Ψ1γ̇
2
xy (2.51)

N2 = τyy − τzz = −Ψ2γ̇
2
xy (2.52)

The material functions, Ψ1 and Ψ2, are called the primary and secondary normal stress
coefficients, and are also functions of the magnitude of the strain rate tensor and temperature.
The first and second normal stress differences do not change in sign when the direction of the
strain rate changes. This is reflected in eqns. (2.51) and (2.52). Figure 2.31 [41] presents the
first normal stress difference coefficient for the low density polyethylene melt of Fig. 2.30
at a reference temperature of 150oC.

The second normal stress difference is difficult to measure and is often approximated by

Ψ2 ≈ −0.1Ψ1 (2.53)

Viscoelastic Memory Effects or Stress Relaxation. When a polymer melt is de-
formed, either by stretching, shearing or often by a combination of the above, the polymer
molecules are stretched and untangled. In time, the molecules try to recover their initial
shape, in essence getting used to their new state of deformation. If the deformation is main-
tained for a short period of time, the molecules may go back to their initial position, and
the shape of the melt is fully restored to its initial shape. Here, it is said that the molecules
remembered their initial position. However, if the shearing or stretching goes on for an
extended period of time, the polymer cannot recover its starting shape, in essence forgetting
the initial positions of the molecules. The time it takes for a molecule to fully relax and get
used to its new state of deformation is referred to as the relaxation time, λ.
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Figure 2.32: Schematic diagram of extrudate swell during extrusion.

A useful parameter often used to estimate the elastic effects during flow is the Deborah2

number, De. The Deborah number is defined by

De =
λ

tprocess
(2.54)

where tprocess is a characteristic process time. For example, in an extrusion die, a charac-
teristic process time can be defined by the ratio of characteristic die dimension in the flow
direction and average speed through the die. A Deborah number of zero represents a viscous
fluid and a Deborah number of ∞ an elastic solid. As the Deborah number becomes > 1,
the polymer does not have enough time to relax during the process, resulting in possible
extrudate dimension deviations or irregularities such as extrudate swell, shark skin, or even
melt fracture.

Although many factors affect the amount of extrudate swell, fluid memory and normal
stress effects are the most significant ones. However, abrupt changes in boundary conditions,
such as the separation point of the extrudate from the die, also play a role in the swelling
or cross section reduction of the extrudate. In practice, the fluid memory contribution to
die swell can be mitigated by lengthening the land length of the die. This is schematically
depicted in Fig. 2.32 A long die land separates the polymer from the manifold for enough
time to allow it to forget its past shape.

Waves in the extrudate may also appear as a result of high speeds during extrusion, where
the polymer is not allowed to relax. This phenomenon is generally referred to as shark skin
and is shown for a high density polyethylene in Fig. 2.33a [1]. It is possible to extrude at
such high speeds that an intermittent separation of melt and inner die walls occurs as shown
in Fig. 2.33b. This phenomenon is often referred to as the stick-slip effect or spurt flow and
is attributed to high shear stresses between the polymer and the die wall. This phenomenon
occurs when the shear stress is near the critical value of 0.1 MPa [30, 68, 67]. If the speed
is further increased, a helical geometry is extruded as shown for a polypropylene extrudate
in Fig. 2.33c. Eventually, the speeds are so high that a chaotic pattern develops, such as the
one shown in Fig. 2.33d. This well known phenomenon is called melt fracture. The shark
skin effect is frequently absent and spurt flow seems to occur only with linear polymers.

The critical shear stress has been reported to be independent of the melt temperature but
to be inversely proportional to the weight average molecular weight [63, 68]. However,
Vinogradov et al. [67] presented results that showed that the critical stress was independent
of molecular weight except at low molecular weights. Dealy and co-workers [30], and Denn
[17] give an extensive overview of various melt fracture phenomena which is recommended
reading.

2From the Song of Deborah, Judges 5:5 - "The mountains flowed before the Lord." M. Rainer is credited for
naming the Deborah number; Physics Today, 1, (1964).
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Figure 2.33: Various shapes of extrudates under melt fracture.
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Figure 2.34: Schematic of Newtonian, elastic, linear, and non-linear viscoelastic regimes as a
function of deformation and Deborah number during deformation of polymeric materials.

To summarize, the Deborah number and the size of the deformation imposed on the
material during processing determine how the system can most accurately be modeled.
Figure 2.34 [45] helps visualize the relation between time scale, deformation and applicable
model. At small Deborah numbers, the polymer can be modeled as a Newtonian fluid, and at
very high Deborah numbers the material can be modeled as a Hookean solid. In between, the
viscoelastic region is divided in two: the linear viscoelastic region for small deformations,
and the non-linear viscoelastic region for large deformations.

2.3.2 Viscous Flow Models

Strictly speaking, the viscosity η, measured with shear deformation viscometers, should not
be used to represent the elongational terms located on the diagonal of the stress and strain
rate tensors. Elongational flows are briefly discussed later in this chapter. A rheologist’s
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Table 2.5: Power Law and Consistency Indices for Common Thermoplastics

Polymer m (Pa-sn) n T (oC)
High density polyethylene 2.0 × 104 0.41 180
Low density polyethylene 6.0 × 103 0.39 160
Polyamide 66 6.0 × 102 0.66 290
Polycarbonate 6.0 × 102 0.98 300
Polypropylene 7.5 × 103 0.38 200
Polystyrene 2.8 × 104 0.28 170
Polyvinyl chloride 1.7 × 104 0.26 180

task is to find the models that best fit the data for the viscosity represented in eqn. (2.43).
Some of the models used by polymer processors on a day-to-day basis to represent the
viscosity of industrial polymers are presented in this section.

The Power Law Model. The power law model proposed by Ostwald [57] and de Waale
[15] is a simple model that accurately represents the shear thinning region in the viscosity
versus strain rate curve but neglects the Newtonian plateau present at small strain rates. The
power law model can be written as follows:

η = m(T )γ̇n−1 (2.55)

where m is referred to as the consistency index and n the power law index. The consistency
index may include the temperature dependence of the viscosity such as represented in
eqn. (2.48), and the power law index represents the shear thinning behavior of the polymer
melt. It should be noted that the limits of this model are

η −→ 0 as γ̇ −→ ∞

and

η −→ ∞ as γ̇ −→ 0

The infinite viscosity at zero strain rates leads to an erroneous result when there is a region
of zero shear rate, such as at the center of a tube. This results in a predicted velocity
distribution that is flatter at the center than the experimental profile, as will be explained in
more detail in Chapter 5. In computer simulation of polymer flows, this problem is often
overcome by using a truncated model such as

η = m0(T )γ̇n−1 for γ̇ > γ̇0 (2.56)

and

η = m0(T ) for γ̇ � γ̇0 (2.57)

where η0 represents a zero-shear-rate viscosity (γ̇0). Table 2.5 presents a list of typical
power law and consistency indices for common thermoplastics.



70 PROCESSING PROPERTIES

Table 2.6: Constants for Carreau-WLF (Amorphous) and Carreau-Arrhenius
(Semi-Crystalline) Models for Various Common Thermoplastic

Polymer k1 k2 k3 k4 k5 T0 E0

Pa-s s oC oC oC J/mol
High density polyethylene 24,198 1.38 0.60 - - 200 22,272
Low density polyethylene 317 0.015 0.61 - - 189 43,694
Polyamide 66 44 0.00059 0.40 - - 300 123,058
Polycarbonate 305 0.00046 0.48 320 153 - -
Polypropylene 1,386 0.091 0.68 - - 220 427,198
Polystyrene 1,777 0.064 0.73 200 123 - -
Polyvinyl chloride 1,786 0.054 0.73 185 88 - -

The Bird-Carreau-Yasuda Model. A model that fits the whole range of strain rates
was developed by Bird and Carreau [7] and Yasuda [72] and contains five parameters:

η − η0

η0 − η∞
= [1 + |λγ̇|a](n−1)/a (2.58)

where η0 is the zero-shear-rate viscosity, η∞ is an infinite-shear-rate viscosity, λ is a time
constant and n is the power law index. In the original Bird-Carreau model, the constant
a = 2. In many cases, the infinite-shear-rate viscosity is negligible, reducing eqn. (2.58) to
a three parameter model. Equation (2.58) was modified by Menges, Wortberg and Michaeli
[50] to include a temperature dependence using a WLF relation. The modified model,
which is used in commercial polymer data banks, is written as follows:

η =
k1aT

[1 + k2γ̇aT ]k3
(2.59)

where the shift aT applies well for amorphous thermoplastics and is written as

aT =
8.86(k4 − k5)

101.6 + k4 − k5
− 8.86(T − k5)

101.6 + T − k5
(2.60)

Table 2.6 presents constants for Carreau-WLF (amorphous) and Carreau-Arrhenius mod-
els (semi-crystalline) for various common thermoplastics. In addition to the temperature
shift, Menges, Wortberg and Michaeli [50] measured a pressure dependence of the viscosity
and proposed the following model, which includes both temperature and pressure viscosity
shifts:

log η(T, p) − log η0 =
8.86(T − T0)

101.6 + T − T0
− 8.86(T − T0 + 0.02p)

101.6 + (T − T0 + 0.02p)
(2.61)

where p is in bar, and the constant 0.02 represents a 2oC shift per bar.

The Bingham Fluid. The Bingham fluid is an empirical model that represents the rheo-
logical behavior of materials that exhibit a no flow region below certain yield stresses, τY ,
such as polymer emulsions and slurries. Since the material flows like a Newtonian liquid
above the yield stress, the Bingham model can be represented by

η =∞ and γ̇ = 0 when τ � τy

η =µ0 +
τy

γ̇
when τ � τy

(2.62)
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F

Figure 2.35: Schematic diagram of a fiber spinning process.

Here, τ is the magnitude of the deviatoric stress tensor and is computed in the same way as
in eqn. (2.44).

Elongational Viscosity. In polymer processes such as fiber spinning, blow molding,
thermoforming, foaming, certain extrusion die flows, and compression molding with spe-
cific processing conditions, the major mode of deformation is elongational. To illustrate
elongational flows, consider the fiber spinning process shown in Fig. 2.35.

A simple elongational flow is developed as the filament is stretched with the following
components of the rate of deformation:

γ̇11 = −%̇

γ̇22 = −%̇

γ̇33 = 2%̇

(2.63)

where %̇ is the elongation rate, and the off-diagonal terms of γ̇ij are all zero. The diagonal
terms of the total stress tensor can be written as

σ11 = −p − η%̇

σ22 = −p − η%̇

σ33 = −p + 2η%̇

(2.64)

Since the only outside forces acting on the fiber are in the axial or 3 direction, for the
Newtonian case, σ11 and σ22 must be zero. Hence,

p = −η%̇ (2.65)

and

σ33 = 3η%̇ = η̄%̇ (2.66)

which is known as elongational viscosity or Trouton viscosity [65]. This is analogous to
elasticity where the following relation between elastic modulus, E, and shear modulus, G,
can be written

E

G
= 2(1 + ν) (2.67)

where ν is Poisson’s ratio. For the incompressibility case, where ν = 0.5, eqn. (2.67)
reduces to

E

G
= 3 (2.68)
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Figure 2.36: Shear and elongational viscosity curves for two types of polystyrene.
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Figure 2.37: Elongational viscosity curves as a function of tensile stress for several thermoplastics.

Figure 2.36 [53] shows shear and elongational viscosities for two types of polystyrene.
In the region of the Newtonian plateau, the limit of 3, shown in eqn. (2.66), is quite clear.

Figure 2.37 presents plots of elongational viscosities as a function of stress for various
thermoplastics at common processing conditions. It should be emphasized that measuring
elongational or extensional viscosity is an extremely difficult task. For example, in order
to maintain a constant strain rate, the specimen must be deformed uniformly exponentially.
In addition, a molten polymer must be tested completely submerged in a heated neutrally
buoyant liquid at constant temperature.

Rheology of Curing Thermosets. A curing thermoset polymer has a conversion or
cure dependent viscosity that increases as the molecular weight of the reacting polymer
increases. For vinyl ester whose curing history is shown in Fig. 2.38 [29], the viscosity
behaves as shown in Fig. 2.39 [29].
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Figure 2.38: Degree of cure as a function of time for a vinyl ester at various isothermal cure
temperatures.
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Figure 2.39: Viscosity as a function of degree of cure for a vinyl ester at various isothermal cure
temperatures.
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Figure 2.40: Viscosity as a function of time for a 47% MDI-BDO P(PO-EO) polyurethane at
various isothermal cure temperatures.

Hence, a complete model for viscosity of a reacting polymer must contain the effects of
strain rate, γ̇, temperature, T , and degree of cure, c, such as

η = η(γ̇, T, c) (2.69)

There are no generalized models that include all these variables for thermosetting polymers.
However, extensive work has been done on the viscosity of polyurethanes [9, 10] used in
the reaction injection molding process. An empirical relation which models the viscosity
of these mixing-activated polymers, given as a function of temperature and degree of cure,
is written as

η = η0e
E/RT

#
cg

cg − c

*c1+c2c

(2.70)

where E is the activation energy of the polymer, R is the ideal gas constant, T is the
temperature, cg is the gel point3, c the degree of cure, and c1 and c2 are constants that fit the
experimental data. Figure 2.40 shows the viscosity as a function of time and temperature
for a 47% MDI-BDO P(PO-EO) polyurethane.

Suspension Rheology. Particles suspended in a material, such as in filled or reinforced
polymers, have a direct effect on the properties of the final article and on the viscosity during

3At the gel point, the cross-linking forms a closed network, at which point it is said that the molecular weight goes
to infinity.
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Figure 2.41: Schematic diagram of strain rate increase in a filled system.

processing. Numerous models have been proposed to estimate the viscosity of filled liquids
[3, 15, 23, 25, 26]. Most models proposed are a power series of the form

ηf

η
= 1 + a1φ + a2φ

2 + a3φ
3 + .... (2.71)

The linear term in eqn. (2.71) represents the narrowing of the flow passage caused by
the filler that is passively entrained by the fluid and sustains no deformation as shown in
Fig. 2.41.

For instance, Einstein’s model, which only includes the linear term with a1 = 2.5, was
derived based on a viscous dissipation balance. The quadratic term in the equation represents
the first-order effects of interaction between the filler particles. Geisbüsch suggested a model
with a yield stress and, where the strain rate of the melt increases by a factor κ as

ηf =
τ0

γ̇
+ κη0(κγ̇) (2.72)

For high deformation stresses, which are typical in polymer processing, the yield stress in
the filled polymer melt can be neglected. Figure 2.42 compares Geisbüsch’s experimental
data to eqn. (2.71) using the coefficients derived by Guth [25]. The data and Guth’s model
seem to agree well. A comprehensive survey on particulate suspensions was recently given
by Gupta [25], and on short-fiber suspensions by Milliken and Powell [52].

2.3.3 Viscoelastic Constitutive Models

Viscoelasticity has already been introduced in Chapter 1, based on linear viscoelasticity.
However, in polymer processing large deformations are imposed on the material, requir-
ing the use of non-linear viscoelastic models. There are two types of general non-linear
viscoelastic flow models: the differential type and the integral type.

Differential Viscoelastic Models. Differential models have traditionally been the
choice for describing the viscoelastic behavior of polymers when simulating complex flow
systems. Many differential viscoelastic models can be described by the general form

Y τ + λ1τ(1) + λ2{γ̇ · τ + τ · γ̇} + λ3{τ · τ} = η0

�
γ̇ + λ4γ(2)

�
(2.73)

where τ(1) is the first contravariant convected time derivative of the deviatoric stress tensor
and represents rates of change with respect to a convected coordinate system that moves and
deforms with the fluid. The convected derivative of the deviatoric stress tensor is defined
as

τ(1) =
Dτ

Dt
− �

(∇u)T · τ + τ · (∇u)
�

(2.74)
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Figure 2.42: Viscosity increase as a function of volume fraction of filler for polystyrene and low
density polyethylene containing spherical glass particles with diameters ranging between 36µm and
99.8µm.

Table 2.7: Definition of Constants in eqn. (2.73)

Constitutive model Y λ1 λ2 λ3 λ4

Generalized Newtonian 1 0 0 0 0

Upper convected Maxwell 1 λ1 0 0 0

Convected Jeffreys 1 λ1 0 0 λ4

White-Metzner 1 λ1(γ̇) 0 0 0

Phan-Thien Tanner-1 e(−�(λ/η0)trτ) λ
1

2
ξλ 0 0

Phan-Thien Tanner-2 1 − % (λ/η0) trτ λ
1

2
ξλ 0 0

Giesekus 1 λ1 0 − (αλ1/η0) 0
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The constants in eqn. (2.73) are defined in Table 2.7 for various viscoelastic models com-
monly used to simulate polymer flows.

A review by Bird and Wiest [6] gives a more complete list of existing viscoelastic
models. The upper convective model and the White-Metzner model are very similar with the
exception that the White-Metzner model incorporates the strain rate effects of the relaxation
time and the viscosity. Both models provide a first order approximation to flows, in which
shear rate dependence and memory effects are important. However, both models predict
zero second normal stress coefficients. The Giesekus model is molecular-based, non-linear
in nature and describes the power law region for viscosity and both normal stress coefficients.
The Phan-Thien Tanner models are based on network theory and give non-linear stresses.
Both the Giesekus and Phan-Thien Tanner models have been successfully used to model
complex flows.

EXAMPLE 2.2.

Shearing flows of the convected Jeffreys model. The convected Jeffreys model [6]
or Oldroyd’s B-fluid [54] is given by,

τ + λ1τ(1) = η0

�
γ̇ + λ2γ(2)

�
(2.75)

Here we have three parameters: η0 the zero-shear-rate viscosity, λ1 the relaxation
time and λ2 the retardation time. In the case of λ2 = 0 the model reduces to the
convected Maxwell model, for λ1 = 0 the model simplifies to a second-order fluid
with a vanishing second normal stress coefficient [6], and for λ1 = λ2 the model
reduces to a Newtonian fluid with viscosity η0. If we impose a shear flow,

∂ux

∂y
= γ̇yx(t) (2.76)

the constitutive equation (eqn. (2.75)) will be in tensor form (Table 2.8),⎡⎣τxx τyx 0
τyx τyy 0
0 0 τzz

⎤⎦ + λ1
d

dt

⎡⎣τxx τyx 0
τyx τyy 0
0 0 τzz

⎤⎦ − λ1γ̇yx

⎡⎣2τyx τyy 0
τyy 0 0
0 0 0

⎤⎦
= η0

⎧⎨⎩γ̇yx

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ + λ2
dγ̇yx

dt

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ − 2λ2γ̇
2
yx

⎡⎣1 0 0
0 0 0
0 0 0

⎤⎦
⎫⎬⎭

(2.77)

From this equations we can obtain the following set of partial differential equations,#
1 + λ1

d

dt

*
τxx − 2τyxλ1γ̇yx(t) = − 2η0λ2γ̇

2
yx(t)#

1 + λ1
d

dt

*
τyy =0#

1 + λ1
d

dt

*
τzz =0#

1 + λ1
d

dt

*
τyx − τyyλ1γ̇yx(t) =η0

#
1 + λ2

d

dt

*
γ̇yx(t)

(2.78)
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which indicates that the normal stresses τyy and τzz are zero for any time-dependent
shearing flow.

For steady shear flow these differential equations are simplified to give,

τyx =η0γ̇yx

τxx − τyy =2η0(λ1 − λ2)γ̇
2
yx

τyy − τzz =0

(2.79)

and we obtain the following viscometric functions,

η =η0

Ψ1 =2η0(λ1 − λ2)

Ψ2 =0

(2.80)

Indicating that the convected Jeffreys model gives a constant viscosity and first normal
stress coefficient, while the second normal stress coefficient is zero.

For a small amplitude oscillatory shearing flow, the strain is defined as,

γyx(t) =

� t

0

γ̇0 coswt
dt
 = γ0 sin wt (2.81)

where γ0 = γ̇0/w. The differential equation for the shear stress will be,#
1 +

d

dt

*
τyx = η0γ0w (coswt − λ2w sin wt) (2.82)

Seeking a steady periodic solution, the right hand side suggest that the solution should
be [6],

τyx = A cos wt + B sinwt (2.83)

which, after replacing it into the original equation, we obtain,

A = η0

#
1 + λ1λ2w

2

1 + λ2
1w

2

*
γ0w = η
(w)γ0w

B = η0

#
(λ1 − λ2)γ0w

2

1 + λ2
1w

2

*
γ0w = η

(w)γ0w

(2.84)

EXAMPLE 2.3.

Steady shearfree flow for the White-Metzner model. This model is a nonlinear
model which modifies the convected Maxwell model by including the dependence on
γ̇ in the viscosity, i.e.,

τ + λ1(γ̇)τ(1) = η(γ̇)γ̇ (2.85)

where γ̇ =
0

1/2γ̇ : γ̇. For a shearfree flow we have that (Table 2.9),

γ̇ = %̇(t)

⎡⎣−(1 + b) 0 0
0 (1 − b) 0
0 0 2

⎤⎦ (2.86)
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Table 2.8: Shearing Flow Tensors u = (γ̇yx(t)y, 0, 0) [6]

∇u γ̇yx(t)

⎡⎣0 0 0
1 0 0
0 0 0

⎤⎦

γ̇ = γ(1) = γ(1) γ̇yx(t)

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦

γ(2) ∂γ̇yx

∂t

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ + γ̇2
yx

⎡⎣0 0 0
0 2 0
0 0 0

⎤⎦

γ(2)
∂γ̇yx

∂t

⎡⎣0 1 0
1 0 0
0 0 0

⎤⎦ − γ̇2
yx

⎡⎣2 0 0
0 0 0
0 0 0

⎤⎦

τ = τ (0) = τ(0)

⎡⎣τxx τyx 0
τyx τyy 0
0 0 τzz

⎤⎦

τ (1) ∂

∂t

⎡⎣τxx τyx 0
τyx τyy 0
0 0 τzz

⎤⎦ + γ̇yx

⎡⎣ 0 τxx 0
τxx 2τyx 0
0 0 0

⎤⎦

τ(1)
∂

∂t

⎡⎣τxx τyx 0
τyx τyy 0
0 0 τzz

⎤⎦ − γ̇yx

⎡⎣2τyx τyy 0
τyy 0 0
0 0 0

⎤⎦
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for a steady flow %̇(t) = %̇0 and

γ̇ · γ̇ = %̇20

⎡⎣(1 + b)2 0 0
0 (1 − b)2 0
0 0 4

⎤⎦ (2.87)

and we have

1

2
γ̇ : γ̇ =

1

2
trγ̇ · γ̇ =

0
3 + b2|%̇0| (2.88)

Here 0 ≤ b ≤ 1 and %̇ is the elongation rate. Several special shearfree flows are
obtained for particular choices of b, i.e.,

b = 0 and %̇ > 0 Elongational flow

b = 0 and %̇ < 0 Biaxial stretching flow

b = 1 Plannar elongational flow

The tensor form of the constitutive equation is,⎡⎣τxx 0 0
0 τyy 0
0 0 τzz

⎤⎦ − λ1(γ̇)

⎡⎣−(1 + b)τxx 0 0
0 −(1 − b)τyy 0
0 0 2τzz

⎤⎦ %̇0

= η(γ̇)

⎡⎣−(1 + b) 0 0
0 −(1 − b) 0
0 0 2

⎤⎦ %̇0

(2.89)

which will give us the following differential equations,

τxx

�
1 + (1 + b)

 η

G
%̇0

'
%̇0

�
= − (1 + b)η%̇0

τyy

�
1 + (1 − b)

 η

G
%̇0

'
%̇0

�
= − (1 − b)η%̇0

τzz

�
1 − 2

 η

G
%̇0

'
%̇0

�
=2η%̇0

(2.90)

From these equations we get the elongational viscosities as [6],

η̄1 = τzz − τxx =
(3 + b)η(γ̇)%̇0

[1 + (1 + b)(η/G)%̇0] [1 − 2(η/G)%̇0]

η̄2 = τyy − τxx =
2bη(γ̇)%̇0

[1 + (1 + b)(η/G)%̇0] [1 + (1 − b)(η/G)%̇0]

(2.91)

Integral viscoelastic models. Integral models with a memory function have been
widely used to describe the viscoelastic behavior of polymers and to interpret their rhe-
ological measurements [37, 41, 43]. In general one can write the single integral model
as

τ =

� t

−∞
M(t − t
)S(t
)dt
 (2.92)
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Table 2.9: Shearfree Flow Tensors u = (−1/2(1 + b)�̇(t)x,−1/2(1 + b)�̇(t)y, �̇(t)z) [6]

∇u %̇(t)

⎡⎣−1/2(1 + b) 0 0
0 −1/2(1 − b) 0
0 0 1

⎤⎦

γ̇ = γ(1) = γ(1) %̇(t)

⎡⎣−(1 + b) 0 0
0 −(1 − b) 0
0 0 2

⎤⎦

γ(2) ∂%̇

∂t

⎡⎣−(1 + b) 0 0
0 −(1 − b) 0
0 0 2

⎤⎦ + %̇2

⎡⎣(1 + b)2 0 0
0 (1 − b)2 0
0 0 4

⎤⎦

γ(2)
∂%̇

∂t

⎡⎣−(1 + b) 0 0
0 −(1 − b) 0
0 0 2

⎤⎦ − %̇2

⎡⎣(1 + b)2 0 0
0 (1 − b)2 0
0 0 4

⎤⎦

τ = τ (0) = τ(0)

⎡⎣τxx 0 0
0 τyy 0
0 0 τzz

⎤⎦

τ (1) ∂

∂t

⎡⎣τxx 0 0
0 τyy 0
0 0 τzz

⎤⎦ + %̇

⎡⎣−(1 + b)τxx 0 0
0 −(1 − b)τyy 0
0 0 2τzz

⎤⎦

τ(1)
∂

∂t

⎡⎣τxx 0 0
0 τyy 0
0 0 τzz

⎤⎦ − %̇

⎡⎣−(1 + b)τxx 0 0
0 −(1 − b)τyy 0
0 0 2τzz

⎤⎦
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Table 2.10: Definition of Constants in eqn. (2.73)

Constitutive model φ1 φ2

Lodge rubber-like liquid 1 0

K-BKZa ∂W

∂I1

∂W

∂I2

Wagnerb eβ
0

αI1 + (1 − α)I2 − 3 0

Papanastasiou-Scriven-Macoskoc α

(α − 3) + βI1 + (1 − β)I2
0

aW (I1, I2) represents a potential function which can be derived from empiricisms or molecular theory; bWagner’s

model is a special form of the K-BKZ model; cThe Papanastasiou-Scriven-Macosko model is also a special form

of the K-BKZ model

where M(t − t
) is a memory function and S(t
) a deformation dependent tensor defined
by

S(t
) = φ1(I1, I2)γ[0] + φ2(I1, I2)γ
[0] (2.93)

where I1 and I2 are the first invariants of the Cauchy and Finger strain tensors, respectively.
Table 2.10 [4, 36, 42, 69] defines the constants φ1 and φ2 for various models. In

eqn. (2.93), γ[0] and γ[0] are the finite strain tensors given by

γ[0] =∆t · ∆ − δ

γ[0] =δ − E · Et
(2.94)

The terms ∆ij and Eij are displacement gradient tensors4 defined by

∆ij =
∂x


i(x, t, t
)
∂xj

Eij =
∂xi(x


, t
, t)
∂x


j

(2.95)

where the components ∆ij measure the displacement of a particle at past time t
 relative to
its position at present time t, and the terms Eij measure the material displacements at time
t relative to the positions at time t
.

A memory function M(t − t
), which is often applied and which leads to commonly
used constitutive equations, is written as

M(t − t
) =

n5
k=1

ηk

λ2
k

e
(− t−t�

λk
) (2.96)

4Another combination of the displacement gradient tensors which are often used are the Cauchy strain tensor and
the Finger strain tensor defined by B

−1 = ∆
t
∆ and B = EE

t, respectively.
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Figure 2.43: Measured and predicted shear viscosity for various high density poly-ethylene resins
at 170oC.

where λk and ηk are relaxation times and viscosity coefficients at the reference temperature
Tref , respectively. Once a memory function has been specified one can calculate several
material functions using [6]

η(γ̇) =

� ∞

0

M(s)s(φ1 + φ2)ds

ψ1(γ̇) =

� ∞

0

M(s)s2(φ1 + φ2)ds

ψ2(γ̇) =

� ∞

0

M(s)s2(φ2)ds

(2.97)

For example, Figs. 2.43 and 2.44 present the measured [55] viscosity and first normal
stress difference data, respectively, for three blow molding grade high density polyethylenes
along with a fit obtained from the Papanastasiou-Scriven-Macosko [59] form of the K-BKZ
equation. A memory function with a relaxation spectrum of 8 relaxation times was used.

The coefficients used to fit the data are summarized in Table 2.11 [43]. The viscosity
and first normal stress coefficient data presented in Figs. 2.30 and 2.31 where fitted with
the Wagner form of the K-BKZ equation [41].

EXAMPLE 2.4.

Shear flow for a Lodge rubber-liquid. If we consider the flow field,

ux =γ̇yx(t)y

uy =uz = 0
(2.98)

and we are seeking an expression of the stress tensor of a Lodge rubber-liquid, we
start from the integral form of the stress tensor

τ =

� t

−∞
M(t − t
)S(t
)dt
 (2.99)
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Figure 2.44: Measured and predicted first normal stress difference for various high density poly-
ethylene resins at 170oC.

Table 2.11: Material Parameter Values in eqn. (2.96) for Fitting Data of High Density
Polyethylene Melts at 170oC

k λk(s) ηk(Pa − s)
1 0.0001 52
2 0.001 148
3 0.01 916
4 0.1 4,210
5 1 8,800
6 10 21,200
7 100 21,000
8 1,000 600
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which for this type of materials reduces to

τ =

� t

−∞
M(t − t
)γ[0]dt
 (2.100)

For a simple shear flow

γ[0] =

⎡⎣γ2
yx γyx 0

γyx 0 0
0 0 0

⎤⎦ (2.101)

Thus, the components of the stress tensor are reduced to

τyx(t) =

� t

−∞
M(t − t
)γ(t, t
)dt


τxx(t) − τyy(t) =

� t

−∞
M(t − t
)γ2(t, t
)dt


τyy(t) − τzz(t) =0

(2.102)

where

γyx(t, t
) =

� t�

t

γ̇yx(t

)dt

 (2.103)

is the strain from t to t
.
For steady shear flow the strain is reduced to γyx(t, t
) = −γ̇(t − t
), where γ̇ is

the constant shear rate. This results in [6]

τyx(t) =

#� s

0

M(s)sds

*
γ̇

τxx(t) − τyy(t) =

#� s

0

M(s)s2ds

*
γ̇2

τyy(t) − τzz(t) = 0

(2.104)

and the material functions will be,

η =

n5
k

ηk

Ψ1 =2
n5
k

ηkλk

Ψ2 =0

(2.105)

2.3.4 Rheometry

In industry there are various ways to qualify and quantify the properties of the polymer melt.
The techniques range from simple analyses for checking the consistency of the material at
certain conditions, to more complex measurements to evaluate viscosity, and normal stress
differences. This section includes three such techniques, to give the reader a general idea
of current measuring techniques.
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Figure 2.45: Schematic diagram of an extrusion plastometer used to measure the melt flow index.

The melt flow indexer. The melt flow indexer is often used in industry to characterize
a polymer melt and as a simple and quick means of quality control. It takes a single point
measurement using standard testing conditions specific to each polymer class on a ram type
extruder or extrusion plastometer as shown in Fig. 2.45.

The standard procedure for testing the flow rate of thermoplastics using a extrusion
plastometer is described in the ASTM D1238 test. During the test, a sample is heated in the
barrel and extruded from a short cylindrical die using a piston actuated by a weight. The
weight of the polymer in grams extruded during the 10-minute test is the melt flow index
(MFI) of the polymer.

The capillary viscometer. The most common and simplest device for measuring vis-
cosity is the capillary viscometer. Its main component is a straight tube or capillary, and
it was first used to measure the viscosity of water by Hagen [28] and Poiseuille [60]. A
capillary rheometer has a pressure driven flow for which the velocity gradient or strain rate
and also the shear rate will be maximum at the wall and zero at the center of the flow,
making it a non-homogeneous flow.

Since pressure driven viscometers employ non-homogeneous flows, they can only mea-
sure steady shear functions such as viscosity, η(γ̇). However, they are widely used because
they are relatively inexpensive to build and simple to operate. Despite their simplicity,
long capillary viscometers give the most accurate viscosity data available. Another major
advantage is that the capillary rheometer has no free surfaces in the test region, unlike other
types of rheometers such as the cone and plate rheometers, which we will discuss in the next
section. When the strain rate dependent viscosity of polymer melts is measured, capillary
rheometers may provide the only satisfactory method of obtaining such data at shear rates
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Figure 2.46: Schematic diagram of a capillary viscometer.

>10 s−1. This is important for processes with higher rates of deformation such as mixing,
extrusion, and injection molding. Because its design is basic and it only needs a pressure
head at its entrance, capillary rheometers can easily be attached to the end of a screw-
or ram-type extruder for on-line measurements. This makes the capillary viscometer an
efficient tool for industry.

The basic features of the capillary rheometer are shown in Fig. 2.46. A capillary tube of
a specified radius, R, and length, L, is connected to the bottom of a reservoir. Pressure drop
and flow rate through this tube are used to determine the viscosity. This will be covered in
detail in Chapter 5.

The cone-plate rheometer. The cone-plate rheometer is often used when measuring
the viscosity and the primary and secondary normal stress coefficient functions as a function
of shear rate and temperature. The geometry of a cone-plate rheometer is shown in Fig. 2.47.
Since the angle Θ0 is very small, typically < 5o, the shear rate can be considered constant
throughout the material confined within the cone and plate. Although it is also possible
to determine the secondary stress coefficient function from the normal stress distribution
across the plate, it is very difficult to get accurate data.

The Couette rheometer. Another rheometer commonly used in industry is the concen-
tric cylinder or Couette flow rheometer schematically depicted in Fig. 2.48. The torque, T ,
and rotational speed, Ω , can easily be measured. The torque is related to the shear stress
that acts on the inner cylinder wall and the rate of deformation in that region is related to
the rotational speed. The type of flow present in a Couette device is analyzed in detail in
Chapter 5.

The major sources of error in a concentric cylinder rheometer are the end-effects. One
way of minimizing these effects is by providing a large gap between the inner cylinder end
and the bottom of the closed end of the outer cylinder.
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Figure 2.47: Schematic diagram of a cone-plate rheometer.
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Figure 2.48: Schematic diagram of a Couette rheometer.
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Figure 2.49: Schematic diagram of an extensional rheometer.

Figure 2.50: Schematic diagram of squeezing flow.

Extensional rheometry. It should be emphasized that the shear behavior of polymers
measured with the equipment described in the previous sections cannot be used to deduce the
extensional behavior of polymer melts. Extensional rheometry is the least understood field
of rheology. The simplest way to measure extensional viscosities is to stretch a polymer
rod held at elevated temperatures at a speed that maintains a constant strain rate as the
rod reduces its cross-sectional area. The viscosity can easily be computed as the ratio of
instantaneous axial stress to elongational strain rate. The biggest problem when trying to
perform this measurement is to grab the rod at its ends as it is pulled apart. The most common
way to grab the specimen is with toothed rotary clamps to maintain a constant specimen
length [48]. A schematic of Meissner’s extensional rheometer incorporating rotary clamps
is shown in Fig. 2.49 [48].

Another set-up that can be used to measure extensional properties without clamping
problems and without generating orientation during the measurement is the lubricating
squeezing flow [12], which generates an equibiaxial deformation. A schematic of this
apparatus is shown in Fig. 2.50.

It is clear from the apparatus description in Fig. 2.49 that carrying out tests to measure
extensional rheometry is a very difficult task. One of the major problems arises because
of the fact that, unlike shear tests, it is not possible to achieve steady state condition with
elongational rheometry tests. This is simply because the cross-sectional area of the test
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Figure 2.51: Development of elongational and shear viscosities during deformation for
polyethylene samples.
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Figure 2.52: Schematic diagram of sheet inflation.

specimen is constantly diminishing. Figure 2.51 [48] shows this effect by comparing shear
and elongational rheometry data on polyethylene.

Finally, another equibiaxial deformation test is carried out by blowing a bubble and
measuring the pressure required to blow the bubble and the size of the bubble during the
test, as schematically depicted in Fig. 2.52. This test has been successfully used to measure
extensional properties of polymer membranes for blow molding and thermoforming appli-
cations. Here, a sheet is clamped between two plates with circular holes and a pressure
differential is introduced to deform it. The pressure applied and deformation of the sheet
are monitored over time and related to extensional properties of the material.

2.3.5 Surface Tension

Surface tension plays a significant role in the deformation of polymers during flow, espe-
cially in dispersive mixing of polymer blends. Surface tension, σS , between two materials
appears as a result of different intermolecular interactions. In a liquid-liquid system, sur-
face tension manifests itself as a force that tends to maintain the surface between the two
materials to a minimum. Thus, the equilibrium shape of a droplet inside a matrix, which is
at rest, is a sphere. When three phases touch, such as liquid, gas, and solid, we get different
contact angles depending on the surface tension between the three phases.
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Figure 2.53: Schematic diagram of contact between liquids and solids with various surface tension
effects.
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Figure 2.54: Schematic diagram of apparatus to measure contact angle between liquids and solids.

Figure 2.53 schematically depicts three different cases. In case 1, the liquid perfectly
wets the surface with a continuous spread, leading to a wetting angle of zero. Case 2, with
moderate surface tension effects, shows a liquid that has a tendency to flow over the surface
with a contact angle between zero and π/2. Case 3, with a high surface tension effect, is
where the liquid does not wet the surface which results in a contact angle greater than π/2.
In Fig. 2.53, σS denotes the surface tension between the gas and the solid, σl the surface
tension between the liquid and the gas, and σsl the surface tension between the solid and
liquid. Using geometry one can write

cos θ =
σs − σsl

σl
(2.106)

The wetting angle can be measured using simple techniques such as a projector, as shown
schematically in Fig. 2.54. This technique, originally developed by Zisman [73], can be
used in the ASTM D2578 standard test. Here, droplets of known surface tension, σl are
applied to a film. The measured values of cosφ are plotted as a function of surface tension,
σl, as shown in Fig. 2.55, and extrapolated to find the critical surface tension, σc, required
for wetting.
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Figure 2.56: Schematic diagram of a tensiometer used to measure surface tension of liquids.

Table 2.12: Typical Surface Tension Values of Selected Polymers at 180oC

Polymer σs (N/m) ∂σs/∂T (N/m/K)

Polyamide resins (290oC) 0.0290 -
Polyethylene (linear) 0.0265 −5.7 × 10−5

Polyethylene teraphthalate (290oC) 0.027 -
Polyisobutylene 0.0234 −6 × 10−5

Polymethyl methacrylate 0.0289 −7.6 × 10−5

Polypropylene 0.0208 −5.8 × 10−5

Polystyrene 0.0292 −7.2 × 10−5

Polytetrafluoroethylene 0.0094 −6.2 × 10−5

For liquids of low viscosity, a useful measurement technique is the tensiometer, schemat-
ically represented in Fig. 2.56. Here, the surface tension is related to the force it takes to
pull a platinum ring from a solution. Surface tension for selected polymers are listed in
Table 2.12 [71], for some solvents in Table 2.13 [58] and between polymer-polymer systems
in Table 2.14 [71].
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Table 2.13: Surface Tension for Several Solvents

Solvent σS(N/m)

n-Hexane 0.0184
Formamide 0.0582
Glycerin 0.0634
Water 0.0728

Table 2.14: Surface Tension Between Polymers

Polymers σs (N/m) ∂σs/∂T (N/m/K) T (oC)

PE-PP 0.0011 - 140
PE-PS 0.0051 2.0×10−5 180
PE-PMMA 0.0090 1.8 × 10−5 180
PP-PS 0.0051 - 140
PS-PMMA 0.0016 1.3 × 10−5 140

Furthermore, Hildebrand and Scott [32] found a relationship between the solubility
parameter, δ, and surface tension, σS , for polar and non-polar liquids. Their relationship
can be written as [66]

σS = 0.24δ2.33V 0.33 (2.107)

where V is the molar volume of the material. The molar volume is defined by

V =
M

ρ
(2.108)

where M is the molar weight. It should be noted that the values in eqns. (2.107) and (2.108)
must be expressed in cgs units.

There are many areas in polymer processing and in engineering design with polymers
where surface tension plays a significant role. These are mixing of polymer blends, adhe-
sion, treatment of surfaces to make them non-adhesive and sintering. During manufacturing,
it is often necessary to coat and crosslink a surface with a liquid adhesive or bonding ma-
terial. To enhance adhesion it is often necessary to raise surface tension by oxidizing the
surface, by creating COOH-groups, using flames, etching or releasing electrical discharges.
This is also the case when enhancing the adhesion properties of a surface before painting.
On the other hand, it is often necessary to reduce adhesiveness of a surface such as required
when releasing a product from the mold cavity or when coating a pan to give it nonstick
properties. A material that is often used for this purpose is polytetrafluoroethylene (PTFE),
mostly known by its tradename of teflon.

2.4 PERMEABILITY PROPERTIES

Because of their low density,polymers are relatively permeable by gases and liquids. A more
in-depth knowledge of permeability is necessary when dealing with packaging applications
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and with corrosive protection coatings. The material transport of gases and liquids through
polymers consists of various steps. They are:

• Absorption of the diffusing material at the interface of the polymer, a process also
known as adsorption,

• Diffusiondiffusion of the attacking medium through the polymer, and

• Delivery or secretion of the diffused material through the polymer interface, also
known as desorption.

With polymeric materials these processes can occur only if the following rules are ful-
filled:

• The molecules of the permeating materials are inert,

• The polymer represents a homogeneous continuum, and

• The polymer has no cracks or voids which channel the permeating material.

In practical cases, such conditions are often not present. Nevertheless, this chapter shall
start with these ideal cases, since they allow for useful estimates and serve as learning tools
for these processes.

2.4.1 Sorption

We talk about adsorption when environmental materials are deposited on the surface of
solids. Interface forces retain colliding molecules for a certain time. Possible causes
include Van der Waals’ forces in the case of physical adsorption, chemical affinity (chemical
sorption), or electrostatic forces. With polymers, we have to take into account all of these
possibilities.

A gradient in concentration of the permeating substance inside the material results in
a transport of that substance which we call molecular diffusion. The cause of molecular
diffusion is the thermal motion of molecules that permit the foreign molecule to move along
the concentration gradient using the intermolecular and intramolecular spaces. However,
the possibility to migrate essentially depends on the size of the migrating molecule.

The rate of permeation for the case shown schematically in Fig. 2.57 is defined as the
mass of penetrating gas or liquid that passes through a polymer membrane per unit time.

The rate of permeation, ṁ, can be defined using Fick’s first law of diffusion as

ṁ = −DAρ
dc

dx
(2.109)

where D is defined as the diffusion coefficient,A is the area and ρ the density. If the diffusion
coefficient is constant, eqn. (2.109) can be easily integrated to give

ṁ = −DAρ
c1 − c2

L
(2.110)

The equilibrium concentrations c1 and c2 can be calculated using the pressure, p, and the
sorption equilibrium parameter, S:

c = Sp (2.111)

which is often referred to as Henry’s law.
The sorption equilibrium constant, also referred to as solubility constant, is almost the

same for all polymer materials. However, it does depend largely on the type of gas and on
the boiling, Tb, or critical temperatures, Tcr, of the gas, such as shown in Fig. 2.58.
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Figure 2.57: Schematic diagram of permeability through a film.

Figure 2.58: Solubility (cm3/cm3) of gas in natural rubber at 25oC and 1 bar as a function of the
critical and the boiling temperatures.
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Table 2.15: Permeability of Various Gases Through Several Polymer Films. Permeability
units are in cm3-mil/100in2/24h/atm

Polymer CO2 O2 H2O

PET 12-20 5-10 2-4
OPET 6 3 1
PVC 4.75-40 8-15 2-3
PE-HD 300 100 0.5
PE-LD - 425 1-1.5
PP 450 150 0.5
EVOH 0.05-0.4 0.05-0.2 1-5
PVDC 1 0.15 0.1

2.4.2 Diffusion and Permeation

Diffusion, however, is only one part of permeation. First, the permeating substance has to
infiltrate the surface of the membrane; it has to be absorbed by the membrane. Similarly, the
permeating substance has to be desorbed on the opposite side of the membrane. Combining
eqn. (2.110) and (2.111), we can calculate the sorption equilibrium using

ṁ = −DSρA
p1 − p2

L
(2.112)

where the product of the sorption equilibrium parameter and the diffusion coefficient is
defined as the permeability of a material

P = −DS =
ṁL

A∆pρ
(2.113)

Equation (2.113) does not take into account the influence of pressure on the permeability
of the material and is only valid for dilute solutions. The Henry-Langmuir model takes into
account the influence of pressure and works very well for amorphous thermoplastics. It is
written as

P = −DS(1 +
KR


1 + b∆p
) (2.114)

where K = c
Hb/S, with c
H being a saturation capacity constant and b an affinity coefficient.
The constant R
 represents the degree of mobility, where R
=0 for complete immobility
and R
=1 for total mobility. Table 2.15 [62] presents permeability of various gases at room
temperature through several polymer films.

In the case of multi-layered films commonly used as packaging material,we can calculate
the permeation coefficient PC for the composite membrane using

1

PC
=

1

LC

n5
i=1

Li

Pi
(2.115)
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Figure 2.59: Sorption, diffusion, and permeability coefficients, as a function of temperature for
polyethylene and methyl bromine at 600 mm of Hg.

Sorption, diffusion, and permeation are processes activated by heat and, as expected, follow
an Arrhenius type behavior. Thus, we can write

S =S0e
−∆Hs/RT

D =D0e
−ED/RT

P =P0e
−EP /RT

(2.116)

where ∆HS is the enthalpy of sorption, ED and EP are diffusion and permeation activation
energies, R is the ideal gas constant, and T is the absolute temperature. The Arrhenius
behavior of sorption, diffusion and permeability coefficients, as a function of temperature
for polyethylene and methyl bromine at 600 mm of Hg are shown in Fig. 2.59 [61].

Figure 2.60 [38] presents the permeability of water vapor through several polymers as a
function of temperature. It should be noted that permeability properties drastically change
once the temperature exceeds the glass transition temperature. This is demonstrated in
Table 2.16 [66], which presents Arrhenius constants for diffusion of selected polymers and
CH3OH.

The diffusion activation energy ED depends on the temperature, the size of the gas
molecule d, and the glass transition temperature of the polymer. This relationship is well
represented in Fig. 2.61 [62] with the size of nitrogen molecules, dN2

as a reference. Ta-
ble 2.17 contains values of the effective cross section size of important gas molecules.

Using Fig. 2.61 with the values from Table 2.15 and using the equations presented in
Table 2.18 the diffusion coefficient, D, for several polymers and gases can be calculated.
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Figure 2.60: Permeability of water vapor as a function of temperature through various polymer
films.

Table 2.16: Diffusion Constants Below and Above the Glass Transition Temperature

Polymer Tg (oC) D0(H2O) (cm2/s) ED (kcal/mol)

T < Tg T > Tg T < Tg T > Tg

Polymethylmethacrylate 90 0.37 110 12.4 21.6
Polystyrene 88 0.33 37 9.7 17.5
Polyvinyl acetate 30 0.02 300 7.6 20.5



PERMEABILITY PROPERTIES 99

Table 2.17: Important Properties of Gases

Gas d Vcr Tb Tcr dN2/dx
(nm) (cm3) (K) (K)

He 0.255 58 4.3 5.3 0.67
H2O 0.370 56 373 647 0.97
H2 0.282 65 20 33 0.74
Ne 0.282 42 27 44.5 0.74
NH3 0.290 72.5 240 406 0.76
O2 0.347 74 90 55 0.91
Ar 0.354 75 87.5 151 0.93
CH3OH 0.393 118 338 513 0.96
Kr 0.366 92 121 209 0.96
CO 0.369 93 82 133 0.97
CH4 0.376 99.5 112 191 0.99
N2 0.380 90 77 126 1.00
CO2 0.380 94 195 304 1.00
Xe 0.405 119 164 290 1.06
SO2 0.411 122 263 431 1.08
C2H4 0.416 124 175 283 1.09
CH3Cl 0.418 143 249 416 1.10
C2H6 0.444 148 185 305 1.17
CH2Cl2 0.490 193 313 510 1.28
C3H8 0.512 200 231 370 1.34
C6H6 0.535 260 353 562 1.41

Table 2.18: Equations to Compute D Using Data from Table 2.15 and Table 2.16a

Elastomers log D =
ED

2.3R

#
1

T
− 1

TR

*
− 4

Amorphous thermoplastics log D =
ED

2.3R

#
1

T
− 1

TR

*
− 5

Semi-crystalline thermoplastics log D =

#
ED

2.3R

#
1

T
− 1

TR

*
− 5

*
(1 − x)

aTR = 435K and X is the degree of crystallinity.
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Figure 2.61: Graph to determine the diffusion activation energy ED as a function of
glass transition temperature and size of the gas molecule dx, using the size of a nitrogen
molecule, dN2, as a reference. Rubbery polymers (•): 1 =Silicone rubber, 2 =Polybutadiene,
3 =Natural rubber, 4 =Butadiene/Acrylonitrile K 80/20, 5 =Butadiene/Acrylonitrile K
73/27, 6 =Butadiene/Acrylonitrile K 68/32, 7 =Butadiene/Acrylonitrile K 61/39, 8 =Butyl
rubber, 9 =Polyurethane rubber, 10 =Polyvinyl acetate (r), 11 =Polyethylene terephthalate
(r). Glassy polymers (circ): 12 =Polyvinyl acetate (g), 13 =Vinylchloride/vinyl acetate
copolymer, 14 =Polyvinyl chloride, 15 =Polymethyl methacrylate, 16 =Polystyrene,
17 =Polycarbonate. Semi-crystalline polymers (×): 18 =High-density polyethylene, 19 =Low
density polyethylene, 20 =Polymethylene oxide, 21 =Gutta percha, 22 =Polypropylene,
23 =Polychlorotrifluoroethylene, 24 =Polyethyleneterephthalate, 25 =Polytetraflourethylene,
26 =Poly(2,6-diphenylphenyleneoxide).

Table 2.18 also demonstrates that permeability properties are dependent on the degree
of crystallinity. Figure 2.62 presents the permeability of polyethylene films of different
densities as a function of temperature. Again, the Arrhenius relation becomes evident.

2.4.3 Measuring S, D, and P

The permeability P of a gas through a polymer can be measured directly by determining
the transport of mass through a membrane per unit time. The sorption constant S can be
measured by placing a saturated sample into an environment, which allows the sample to
desorb and measure the loss of weight. As shown in Fig. 2.63, it is common to plot the
ratio of concentration of absorbed substance c(t) to saturation coefficient c∞ with respect
to the root of time.

The diffusion coefficient D is determined using sorption curves as the one shown in
Fig. 2.63. Using the slope of the curve, a, we can compute the diffusion coefficient as

D =
π

16
L2a2 (2.117)

where L is the thickness of the membrane.
Another method uses the lag time, t0, from the beginning of the permeation process

until the equilibrium permeation has occurred, as shown in Fig. 2.64. Here, the diffusion
coefficient is calculated using

D =
L2

6t0
(2.118)
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Figure 2.62: Permeation of nitrogen through polyethylene films of various densities.

Figure 2.63: Schematic diagram of sorption as a function of time.

Figure 2.64: Schematic diagram of diffusion as a function of time.
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The most important techniques used to determine gas permeability of polymers are the
ISO 2556, DIN 53 380 and ASTM D 1434 standard tests.

2.4.4 Diffusion of Polymer Molecules and Self-Diffusion

The ability to infiltrate the surface of a host material decreases with molecular size. Molecules
of M > 5×103 can hardly diffuse through a porous-free membrane. Self-diffusion is when
a molecule moves, say in the melt, during crystallization. Also, when bonding rubber, the
so-called tack is explained by the self-diffusion of the molecules. The diffusion coefficient
for self-diffusion is of the order of

D ∼ T

η
(2.119)

where T is the temperature and η the viscosity of the melt.

2.5 FRICTION PROPERTIES

Friction is the resistance that two surfaces experience as they slide or try to slide past each
other. Friction can be dry (i.e., direct surface-surface interaction) or lubricated, where the
surfaces are separated by a thin film of a lubricating fluid.

The force that arises in a dry friction environment can be computed using Coulomb’s
law of friction as

F = µN (2.120)

where F is the force in surface or sliding direction, N the normal force, and µ the coefficient
of friction.

Coefficients of friction between several polymers and different surfaces are listed in
Table 2.19 [49]. However, when dealing with polymers, the process of two surfaces sliding
past each other is complicated by the fact that enormous amounts of frictional heat can be
generated and stored near the surface due to the low thermal conductivity of the material.
The analysis of friction between polymer surfaces is complicated further by environmental
effects such as relative humidity and by the likeliness of a polymer surface to deform when
stressed, such as shown in Fig. 2.65 [49]. The top two figures illustrate metal-metal friction,
wheareas the bottom figures illustrate metal-polymer friction.

Temperature plays a significant role for the coefficient of friction µ as demonstrated in
Fig. 2.66 for polyamide 66 and polyethylene. In the case of polyethylene, the friction first
decreases with temperature. At 100oC, the friction increases because the polymer surface
becomes tacky. The friction coefficient starts to drop as the melt temperature is approached.
A similar behavior can be seen in the polyamide curve.

As mentioned earlier, temperature increases can be caused by the energy released by the
frictional forces. A temperature increase in time, due to friction between surfaces of the
same material, can be estimated using

∆T =
2Q̇

√
t√

π
0

kρCp

(2.121)

where k is the thermal conductivity of the polymer, ρ the density, Cp the specific heat and
the rate of energy created by the frictional forces, which can be computed using

Q̇ = Fu (2.122)
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Table 2.19: Coefficient of Friction for Various Polymers

Specimen Partner Velocity (mm/s)
0.03 0.1 0.4 0.8 3.0 10.6

PPi PPs 0.54 0.65 0.71 0.77 0.77 0.71
PAi PAi 0.63 - 0.69 0.70 0.70 0.65
PPs PPs 0.26 0.29 0.22 0.21 0.31 0.27
PAm PAm 0.42 - 0.44 0.46 0.46 0.47
Steel PP s 0.24 0.26 0.27 0.29 0.30 0.31
Steel PAm 0.33 - 0.33 0.33 0.30 0.30
PPs Steel 0.33 0.34 0.37 0.37 0.38 0.38
PAm Steel 0.30 - 0.41 0.41 0.40 0.40

iinjection molded; ssandblasted; mmachined

Before load

N

N

F
F

N

N

F
F

Hard

Sof

After load

Figure 2.65: Effect of surface finish and hardness on frictional force build-up.
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Figure 2.66: Temperature effect on coefficient of friction for a polyamide 66 and a high density
polyethylene.

Figure 2.67: Wear as a function of temperature for various thermoplastics. Courtesy of BASF.

where u is speed between the sliding surfaces.
Wear is also affected by the temperature of the environment. Figure 2.67 shows how wear

rates increase dramatically as the surface temperature of the polymer increases, causing it
to become tacky.

Problems

2.1 Does the coefficient of linear expansion of a polymer increase or decrease upon the
addition of glass fibers?

2.2 Plot Tg versus Tm for several polymers. What trend or relation do you observe?
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Figure 2.68: Heating and cooling DSC scans of a PE-LD sample.

2.3 In a soda bottle, how does the degree of crystallinity in the screw-top region compare
to the degree of crystallinity in the wall? Explain.

2.4 A 5 K/min heating and 5 K/min cooling differential scanning calorimetry (DSC) test
(Fig. 2.68) was performed on a 10.8 mg sample of PE-LD. What is the specific heat
of the PE-LD just after melting, during heating, and just before crystallization during
cooling. What is the degree of crystallinity of the initial and the final samples.

2.5 A differential scanning calorimetry (DSC) test was performed on an 11.4 mg polyethy-
lene terephthalate (PET) sample using the standard ASTM D 3417 test method. The
ASTM test calls for a temperature heating rate of 20oC/min (20oC rise every minute).
The DSC output is presented in Fig. 2.69

a) From the curve, estimate the glass transition temperature, Tg , the melting tem-
perature, Tm, the crystallization temperature, Tc, and the heat of fusion, λ, for
this specific PET sample during the temperature ramp-up. Note that the heat flow
scale has already been transformed to heat capacity. How do Tg and Tm compare
to the "book values"?

b) If the heat of fusion for a hypothetically 100% crystalline PET is 137 kJ/kg, what
was the degree of crystallinity of the original PET sample?

c) On the same graph below sketch a hypothetical DSC output for the original PET
sample with a temperature heating rate that is too fast to allow any additional
crystallization during heating.

2.6 Isothermal differential scanning calorimetry (DSC) tests were performed on three
unsaturated polyester (UPE) samples at three different temperatures (100oC, 110oC,
and 120oC). The output for the three DSC tests are presented in the Fig. 2.70. On the
graph, label which curve is associated with which test temperature. From the curves
in Fig. 2.70 estimate the total heat of reaction, QT .
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Figure 2.69: DSC scan of a PET sample. Courtesy of ICIPC, Medellı́n-Colombia.

Figure 2.70: Isothermal DSC measurement of UPE samples. Courtesy of GenCorp Research,
Akron-OH.
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Figure 2.71: DSC scan of a PS sample.

2.7 A typical injection pack/hold pressure during injection molding of polyamide 66 com-
ponents is 1,000 bar and the injection temperature is 280oC. The gate freezes shut
when the average temperature inside the mold reaches 225oC.

a) Draw the process on the pvT -diagram given in Fig. 2.12.
b) What volume shrinkage should be taken into account when designing the mold?

Note that the shrinkage is mostly taken up by a thickness reduction.

2.8 A differential scanning calorimetry (DSC) test (Fig. 2.71) was performed on an 18.3
mg sample of polystyrene.

a) What is the glass transition temperature of the sample?
b) Determine the specific heat of this PS just before the glass transition temperature

has been reached.
c) What is Cp just after Tg?
d) Why is the heat larger as the temperature increases?

2.9 Sketch the pvT diagrams for a semi-crystalline polymer with a high and a low cooling
rate.

2.10 In example 2.2 we obtained that for steady shearing flows the viscometric functions
for this constitutive equation are defined by

η =η0

Ψ1 =2η0(λ1 − λ2)

Ψ2 =0

(2.123)

What are your comments about this resutls? How this fuctions compare with experi-
mental observations?

2.11 Develop expressions for the elongational viscosities η̄1 and η̄2 for steady shearfree
flows of a convected Jeffreys model. Comment how this expression compares with
experiments.

2.12 Develop expressions for the steady shear viscometric functions for the White-Metzner
model.
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2.13 Comment how the viscometric functions for the shear flow of a Lodge rubber-liquid
develop in Example 2.4; compare with experimental observations.

2.14 Develop expressions for the elongational viscosities for the Lodge rubber-liquid in
steady shearfree flow.
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CHAPTER 3

POLYMER PROCESSES

There’s a way to do it better - find it.

—Thomas A. Edison

Manufacturing of plastic parts can involve one or several of the following steps:

• Shaping operations - This involves transforming a polymer pellet, powder or resin
into a final product or into a preform using extrusion or molding processes such as
injection, compreession molding or rotomolding.

• Secondary shaping operation - Here a preform such as a parison or sheet is trans-
formed into a final product using thermoforming or blow molding.

• Material removal - This type of operation involves material removal using machining
operations, stamping, laser, drilling, etc.

• Joining operations - Here, two or more parts are assembled physically or by bonding
or welding operations.

Most plastic parts are manufactured using shaping operations. Here, the material is
deformed into its final shape at temperatures between room temperature and 350oC, using
wear resistant tools, dies and molds. For example, an injection mold would allow making
between 106 and 107 parts without much wear of the tool, justifying for the high cost
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of the molds utilized. One of the many advantages of polymer molding processes is the
accuracy, sometimes with features down to the micrometer scale, with which one can shape
the finished product without the need of trimming or material removal operations. For
example, when making compact discs by an injection-compression molding process, it is
possible to accurately produce features, that contain digital information smaller than 1 µm,
in a disc with a thickness of less than 1 mm and a diameter of several centimeters. The
cycle time to produce such a part can be less than 3 seconds.

In the past few years, we have seen trends where more complex manufacturing systems
are developed that manufacture parts using various materials and components such as co-
extrusion of multilayer films and sheets, multi-component injection molding, sandwiched
parts or hollow products.

Thermoplastics and thermoplastic elastomers are shaped and formed by heating them
above glass transition or melting temperatures and then freezing them into their final shape
by lowering the temperature. At that point, the crystallization, molecular or fiber orien-
tation and residual stress distributions are an integral feature of the final part, dominating
the material properties and performance of the finished product. Similarly, thermosetting
polymers and vulcanizing elastomers solidify by a chemical reaction that results in a cross-
linked molecular structure. Here too, the filler or fiber orientation as well as the residual
stresses are frozen into the finished structure after cross-linking.

This chapter is intended to give an introduction to the most important polymer processes1.

3.1 EXTRUSION

During extrusion, a polymer melt is pumped through a shaping die and formed into a profile.
This profile can be a plate, a film, a tube, or have any shape for its cross section. Ram-type
extruders were first built by J. Bramah in 1797 to extrude seamless lead pipes. The first
ram-type extruders for rubber were built by Henry Bewley and Richard Brooman in 1845.
In 1846, a patent for cable coating was filed for trans-gutta-percha and cis-hevea rubber and
the first insulated wire was laid across the Hudson River for the Morse Telegraph Company
in 1849. The first screw extruder was patented by Mathew Gray in 1879 for the purpose
of wire coating. However, the screw pump can be attributed to Archimedes, and the actual
invention of the screw extruder in polymer processing by A.G. DeWolfe of the United
States dates to the early 1860s. The first extrusion of thermoplastic polymers was done
at the Paul Troester Maschinenfabrik in Hannover, Germany in 1935. Although ram and
screw extruders are both used to pump highly viscous polymer melts through passages to
generate specified profiles, they are based on different principles. The schematic in Fig. 3.1
shows under what principles ram extruders, screw extruders, and other pumping systems
work.

The ram extruder is a positive displacement pump based on the pressure gradient term
of the equation of motion. Here, as the volume is reduced, the fluid is displaced from one
point to the other, resulting in a pressure rise. The gear pump, widely used in the polymer
processing industry, also works on this principle. On the other hand, a screw extruder is a
viscosity pump that works based on the pressure gradient term and the deformation of the
fluid, represented as the divergence of the deviatoric stress tensor in Fig. 3.1. The centrifugal
pump, based on the fluid inertia, and the Roman aqueduct, based on the potential energy of
the fluid, are also represented in the figure and are typical of low viscosity liquids.

1For further reading in the area of extrusion and injection molding we recommend [9] and [21], respectively.
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Figure 3.1: Schematic of pumping principles.

In today’s polymer industry, the most commonly used extruder is the single screw ex-
truder, schematically depicted in Fig. 3.2. A single screw extruder with a smooth inside
barrel surface is called a conventional single screw extruder, with grooved feed zone it is
called a grooved feed extruder. In some cases, an extruder can have a degassing zone, re-
quired to extract moisture, volatiles, and other gases that form during the extrusion process.

Another important class of extruders are the twin screw extruders, schematically depicted
in Fig. 3.3. Twin screw extruders can have co-rotating or counter-rotating screws, and
the screws can be intermeshing or non-intermeshing. Twin screw extruders are primarily
employed as mixing and compounding devices, as well as polymerization reactors. The
mixing aspects of single and twin screw extruders are detailed later in this chapter.

3.1.1 The Plasticating Extruder

The plasticating single screw extruder is the most common equipment in the polymer in-
dustry. It can be part of an injection molding unit and found in numerous other extrusion
processes, including blow molding, film blowing, and wire coating. A schematic of a plas-
ticating or three-zone single screw extruder, with its most important elements is given in
Fig. 3.4.

Table 3.1 presents typical extruder dimensions and relationships common in single screw
extruders, using the notation presented in Fig. 3.5.

The plasticating extruder can be divided into three main zones:

• The solids conveying zone

• The melting or transition zone
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Table 3.1: Typical Extruder Dimensions and Relationships

L/D Length to diameter ratio
20 or less for feeding or melt extruders
25 for blow molding, film blowing, and injection molding
30 or higher for vented extruders or high output extruders

D Standard diameter
US (inches) 0.75, 1.0, 1.5, 2, 2.5, 3.5, 4.5, 6, 8, 10, 12, 14, 16, 18, 20, and 24
Europe (mm) 20, 25, 30, 35, 40, 50, 60, 90, 120, 150, 200, 250, 300, 350, 400, 450, 500,

and 600
φ Helix angle

17.65o for a square pitch screw where Ls = D
New trend: 0.8 < Ls/D < 1.2

h Channel depth in the metering section
(0.05-0.07)D for D <30 mm
(0.02-0.05)D for D >30 mm

β Compression ratio
hfeed = βh
2 to 4

δ Clearance between the screw flight and the barrel
0.1 mm for D <30 mm
0.15 mm for D >30 mm

N Screw speed
1-2 rev/s (60-120 rpm) for large extruders
1-5 rev/s (60-300 rpm) for small extruders

Vb Barrel velocity (relative to screw speed) = πDN
0.5 m/s for most polymers
0.2 m/s for unplasticized PVC
1.0 m/s for PE-LD
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Figure 3.2: Schematic of a single screw extruder (Reifenhäuser).

Figure 3.3: Schematic of different types of twin screw extruders.

• The metering or pumping zone

The tasks of a plasticating extruder are to:

• Transport the solid pellets or powder from the hopper to the screw channel

• Compact the pellets and move them down the channel
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Figure 3.4: Schematic of a plasticating single screw extruder.

Figure 3.5: Schematic diagram of a screw section.
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Figure 3.6: Screw and die characteristic curves for a 45 mm diameter extruder with an PE-LD.

• Melt the pellets

• Mix the polymer into a homogeneous melt

• Pump the melt through the die

The pumping capability and characteristic of an extruder can be represented with sets
of die and screw characteristic curves. Figure 3.6 presents such curves for a conventional
(smooth barrel) single screw extruder.

The die characteristic curves are labelled K1, K2, K3, and K4 in ascending order of
die restriction. Here, K1 represents a low resistance die such as for a thick plate, and
K4 represents a restrictive die, such as is used for film. The different screw characteristic
curves represent different screw rotational speeds. In a screw characteristic curve, the point
of maximum throughput and no pressure build-up is called the point of open discharge. This
occurs when there is no die. The point of maximum pressure build-up and no throughput
is called the point of closed discharge. This occurs when the extruder is plugged. Shown
in Fig. 3.6 are also lines that represent critical aspects encountered during extrusion. The
curve labeled Tmax represents the conditions at which excessive temperatures are reached
as a result of viscous heating. The feasibility line represents the throughput required to have
an economically feasible system. The processing conditions to the right of the homogeneity
line render a thermally and physically heterogeneous polymer melt.

The solids conveying zone. The task of the solids conveying zone is to move the
polymer pellets or powders from the hopper to the screw channel. Once the material is
in the screw channel, it is compacted and transported down the channel. The process to
compact the pellets and to move them can only be accomplished if the friction at the barrel
surface exceeds the friction at the screw surface. This can be visualized if one assumes
the material inside the screw channel to be a nut sitting on a screw. As we rotate the
screw without applying outside friction, the nut (polymer pellets) rotates with the screw
without moving in the axial direction. As we apply outside forces (barrel friction), the
rotational speed of the nut is less than the speed of the screw, causing it to slide in the axial
direction. Virtually, the solid polymer is then "unscrewed" from the screw. To maintain a
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Figure 3.7: Typical conventional and grooved feed extruder pressure distributions in a 45 mm
diameter extruder.

high coefficient of friction between the barrel and the polymer, the feed section of the barrel
must be cooled, usually with cold water cooling lines. The frictional forces also result in a
pressure rise in the feed section. This pressure compresses the solids bed which continues to
travel down the channel as it melts in the transition zone. Figure 3.7 compares the pressure
build-up in a conventional, smooth barrel extruder with that in a grooved feed extruder. In
these extruders, most of the pressure required for pumping and mixing is generated in the
metering section.

The simplest mechanism for ensuring high friction between the polymer and the barrel
surface is grooving its surface in the axial direction [17, 16]. Extruders with a grooved feed
section where developed by Menges and Predöhl [17, 16] in 1969, and are called grooved
feed extruders. To avoid excessive pressures that can lead to barrel or screw failure, the
length of the grooved barrel section must not exceed 3.5D. A schematic diagram of the
grooved section in a single screw extruder is presented in Fig. 3.8. The key factors that
propelled the development and refinement of the grooved feed extruder were processing
problems, excessive melt temperature, and reduced productivity caused by high viscos-
ity and low coefficients of friction typical of high molecular weight polyethylenes and
polypropylenes.

In a grooved feed extruder, the conveying and pressure build-up tasks are assigned to the
feed section. The high pressures in the feed section (Fig. 3.7) lead to the main advantages
over conventional systems. With grooved feed systems, higher productivity and higher
melt flow stability and pressure invariance can be achieved. This is demonstrated with the
screw characteristic curves in Fig. 3.9, which presents screw characteristic curves for a 45
mm diameter grooved feed extruder with comparable mixing sections and die openings as
shown in Fig. 3.6.

The melting zone. The melting or transition zone is the portion of the extruder were the
material melts. The length of this zone is a function of material properties, screw geometry,
and processing conditions. During melting, the size of the solid bed shrinks as a melt pool
forms at its side, as depicted in Fig. 3.10 which shows the polymer unwrapped from the
screw channel.
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Figure 3.8: Schematic diagram of the grooved feed section of a single screw extruder.

Figure 3.9: Screw and die characteristic curves for a grooved feed 45 mm diameter extruder for an
PE-LD.



120 POLYMER PROCESSES

Solid bed Melt pool

Melt film begins

Delay zone

W

Leading flight

Trailing flight

X

A

A

W

X

h

Melt film

Figure 3.10: Solids bed in an unwrapped screw channel with a screw channel cross-section.
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Figure 3.11: Schematic diagram of screws with different barrier flights.

Figure 3.10 also shows a cross section of the screw channel in the melting zone. The
solid bed is pushed against the leading flight of the screw as freshly molten polymer is
wiped from the melt film into the melt pool by the relative motion between the solids bed
and the barrel surface. Knowing where the melt starts and ends is important when designing
a screw for a specific application. The solid bed profile that develops during plastication
remains one of the most important aspects of screw design.

From experiment to experiment there are always large variations in the experimental
solids bed profiles. The variations in this section of the extruder are caused by slight
variations in processing conditions and by the uncontrolled solids bed break up towards
the end of melting. This effect can be eliminated by introducing a screw with a barrier
flight that separates the solids bed from the melt pool. The Maillefer screw and barrier
screw in Fig. 3.11 are commonly used for high quality and reproducibility. The Maillefer
screw maintains a constant solids bed width, using most effectively the melting with melt-
removal mechanism, while the barrier screw uses a constant channel depth with a gradually
decreasing solids bed width.

The metering zone. The metering zone is the most important section in melt extruders
and conventional single screw extruders that rely on it to generate pressures sufficient for
pumping. In both the grooved barrel and the conventional extruder, the diameter of the
screw determines the metering or pumping capacity of the extruder. Figure 3.12 presents
typical normalized mass throughput as a function of screw diameter for both systems.
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Figure 3.12: Throughput for conventional and grooved feed extruders.

3.1.2 Extrusion Dies

The extrusion die shapes the polymer melt into its final profile. It is located at the end of
the extruder and used to extrude

• Flat films and sheets

• Pipes and tubular films for bags

• Filaments and strands

• Hollow profiles for window frames

• Open profiles

As shown in Fig. 3.13, depending on the functional needs of the product, several rules
of thumb can be followed when designing an extruded plastic profile. These are:

• Avoid thick sections. Thick sections add to the material cost and increase sink marks
caused by shrinkage.

• Minimize the number of hollow sections. Hollow sections add to die cost and make
the die more difficult to clean.

• Generate profiles with constant wall thickness. Constant wall thickness in a profile
makes it easier to control the thickness of the final profile and results in a more even
crystallinity distribution in semi-crystalline profiles.
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Figure 3.13: Extrusion profile design.

Figure 3.14: Cross-section of a coat-hanger die.

Sheeting dies. One of the most widely used extrusion dies is the coat-hanger sheeting
die. A sheeting die, such as the one depicted in Fig. 3.14, is formed by the following
elements:

• Manifold: evenly distributes the melt to the approach or land region

• Approach or land: carries the melt from the manifold to the die lips

• Die lips: perform the final shaping of the melt

• Flex lips: for fine tuning when generating a uniform profile
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Figure 3.15: Pressure distribution in a coat-hanger die.

Figure 3.16: Schematic diagram of a spider leg tubing die.

To generate a uniform extrudate geometry at the die lips, the geometry of the manifold
must be specified appropriately. Figure 3.15 presents the schematic of a coat-hanger die
with a pressure distribution that corresponds to a die that renders a uniform extrudate. It
is important to mention that the flow through the manifold and the approach zone depend
on the non-Newtonian properties of the polymer extruded. Hence, a die designed for one
material does not necessarily work for another.

Tubular dies. In a tubular die, the polymer melt exits through an annulus. These dies
are used to extrude plastic pipes and tubular film. The film blowing operation is discussed
in more detail later in this chapter. The simplest tubing die is the spider die, depicted in
Fig. 3.16. Here, a symmetric mandrel is attached to the body of the die by several legs. The
polymer must flow around the spider legs causing weld lines along the pipe or film. These
weld lines, visible streaks along the extruded tube, are weaker regions.

To overcome weld line problems, the cross-head tubing die is often used. Here, the die
design is similar to that of the coat-hanger die, but wrapped around a cylinder. This die is
depicted in Fig. 3.17. Since the polymer melt must flow around the mandrel, the extruded



MIXING PROCESSES 125

Figure 3.17: Schematic diagram of a cross-head tubing die used in film extrusion.

Figure 3.18: Schematic diagram of a spiral die.

tube exhibits one weld line. In addition, although the eccentricity of a mandrel can be
controlled using adjustment screws, there is no flexibility to perform fine tuning such as in
the coat-hanger die. This can result in tubes with uneven thickness distributions.

The spiral die, commonly used to extrude tubular blown films, eliminates weld line
effects and produces a thermally and geometrically homogeneous extrudate. The polymer
melt in a spiral die flows through several feed ports into independent spiral channels wrapped
around the circumference of the mandrel. This type of die is schematically depicted in
Fig. 3.18.

3.2 MIXING PROCESSES

Today, most processes involve some form of mixing. As discussed in the previous section,
an integral part of a screw extruder is a mixing zone. In fact, most twin screw extruders are
primarily used as mixing devices. Similarly, the plasticating unit of an injection molding
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Table 3.2: Common Polymer Blends

Compatible polymer blends
Naturtal rubber and polybutadiene
Polyamides (e.g., PA 6 and PA 66)
Polyphenylene ether (PPE) and polystyrene

Partially incompatible polymer blends
Polyethylene and polyisobutylene
Polyethylene and polypropylene (5% PE in PP)
Polycarbonate and polyethylene teraphthalate

Incompatible polymer blends
Polystyrene/polyethylene
Polyamide/polyethylene
Polypropylene/polystyrene

machine often has a mixing zone. This is important because the quality of the finished
product in almost all polymer processes depends in part on how well the material was
mixed. Both the material properties and the formability of the compound into shaped parts
are highly influenced by the mixing quality. Hence, a better understanding of the mixing
process helps to optimize processing conditions and increase part quality.

The process of polymer blending or mixing is accomplished by distributing or dispersing
a minor or secondary component within a major component serving as a matrix. The
major component can be thought of as the continuous phase, and the minor components as
distributed or dispersed phases in the form of droplets, filaments, or agglomerates. When
creating a polymer blend, one must always keep in mind that the blend will probably be
remelted in subsequent processing or shaping processes. For example, a rapidly cooled
system, frozen as a homogenous mixture, can separate into phases because of coalescence
when re-heated. For all practical purposes, such a blend is not processable. To avoid this
problem, compatibilizers, which are macromolecules used to ensure compatibility in the
boundary layers between the two phases, are common [26]..

The morphology development of polymer blends is determined by three competing
mechanisms: distributive mixing, dispersive mixing, and coalescence. Figure 3.19 presents
a model, proposed by Macosko and co-workers [26], that helps visualize the mechanisms
governing morphology development in polymer blends. The process begins when a thin
tape of polymer is melted away from the pellet. As the tape is stretched, surface tension
causes it to rip and to form into threads. These threads stretch and reduce in radius, until
surface tension becomes significant enough which leads to Rayleigh distrurbances. These
cause the threads to break down into small droplets.

There are three general categories of mixtures that can be created:

• Homogeneous mixtures of compatible polymers,

• Single phase mixtures of partly incompatible polymers, and

• Multi-phase mixtures of incompatible polymers.

Table 3.2 lists examples of compatible, partially incompatible, and incompatible polymer
blends.
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Figure 3.19: Mechanism for morphology development in polymer blends.
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Figure 3.20: Experimental results of distributive mixing in Couette flow, and schematic of the final
mixed system.

3.2.1 Distributive Mixing

Distributive mixing, or laminar mixing, of compatible liquids is usually characterized by the
distribution of the droplet or secondary phase within the matrix. This distribution is achieved
by imposing large strains on the system such that the interfacial area between the two or
more phases increases and the local dimensions, or striation thicknesses, of the secondary
phases decrease. This concept is shown schematically in Fig. 3.20 [23]. The figure shows
a Couette flow device with the secondary component having an initial striation thickness
of δ0. As the inner cylinder rotates, the secondary component is distributed through the
systems with constantly decreasing striation thickness; striation thickness depends on the
strain rate of deformation which makes it a function of position.

Imposing large strains on the system is not always sufficient to achieve a homogeneous
mixture. The type of mixing device, initial orientation and position of the two or more fluid
components play a significant role in the quality of the mixture. For example, the mixing
problem shown in Fig. 3.20 homogeneously distributes the melt within the region contained
by the streamlines cut across by the initial secondary component. The final mixed system
is shown in Fig. 3.20.

Figure 3.21 [19] shows another variation of initial orientation and arrangement of the
secondary component. Here, the secondary phase cuts across all streamlines, which leads
to a homogeneous mixture throughout the Couette device, under appropriate conditions.
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Figure 3.21: Schematic of distributive mixing in Couette flow.

Figure 3.22: break up of particulate agglomerates during flow.

3.2.2 Dispersive Mixing

Dispersive mixing in polymer processing involves breaking a secondary immiscible fluid
or an agglomerate of solid particles and dispersing them throughout the matrix. Here, the
imposed strain is not as important as the imposed stress which causes the system to break
up. Hence, the type of flow inside a mixer plays a significant role on the break up of solid
particle clumps or fluid droplets when dispersing them throughout the matrix.

The most common example of dispersive mixing of particulate solid agglomerates is the
dispersion and mixing of carbon black into a rubber compound. The dispersion of such
a system is schematically represented in Fig. 3.22. However, the break up of particulate
agglomerates is best explained using an ideal system of two small spherical particles that
need to be separated and dispersed during a mixing process.

If the mixing device generates a simple shear flow, as shown in Fig. 3.23, the maximum
separation forces that act on the particles as they travel on their streamline occur when they
are oriented in a 45o position as they continuously rotate during flow. However, if the flow
field generated by the mixing device is a pure elongational flow, such as shown in Fig. 3.24,
the particles will always be oriented at 0o; the position of maximum force.

In general, droplets inside an incompatible matrix tend to stay or become spherical due to
the natural tendencies of the drop to maintain the lowest possible surface-to-volume ratio.
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Figure 3.23: Force applied to a two particle agglomerate in a simple shear flow.

Figure 3.24: Force applied to a two particle agglomerate in an elongational flow.



MIXING PROCESSES 131

Figure 3.25: Schematic diagram of a Kenics static mixer.

However, a flow field within the mixer applies a stress on the droplets, causing them to
deform. If this stress is high enough, it will eventually cause the drops to disperse. The
droplets will disperse when the surface tension can no longer maintain their shape in the
flow field and the filaments break up into smaller droplets. This phenomenon of dispersion
and distribution continues to repeat itself until the deviatoric stresses of the flow field can
no longer overcome the surface tension of the new droplets formed. As can be seen, the
mechanism of fluid agglomerate break up is similar in nature to solid agglomerate break up
in the sense that both rely on forces to disperse the particulates. Hence, elongation is also
the preferred mode of deformation when breaking up fluid droplets and threads.

3.2.3 Mixing Devices

The final properties of a polymer component are heavily influenced by the blending or
mixing process that takes place during processing or as a separate step in the manufacturing
process. As mentioned earlier, when measuring the quality of mixing it is also necessary to
evaluate the efficiency of mixing. For example, the amount of power required to achieve the
highest mixing quality for a blend may be unrealistic or unachievable. This section presents
some of the most commonly used mixing devices encountered in polymer processing.

In general, mixers can be classified in two categories: internal batch mixers and contin-
uous mixers. Internal batch mixers, such as the Banbury type mixer, are the oldest type of
mixing devices in polymer processing and are still widely used in the rubber compounding
industry. Industry often also uses continuous mixers because they combine mixing in addi-
tion to their normal processing tasks. Typical examples are single and twin screw extruders
that often have mixing heads or kneading blocks incorporated into their system.

Static mixers. Static mixers or motionless mixers are pressure-driven continuous mixing
devices through which the melt is pumped, rotated, and divided, leading to effective mixing
without the need for movable parts and mixing heads. One of the most commonly used
static mixers is the twisted tape static mixer schematically shown in Fig. 3.25.

The polymer is sheared and then rotated by 90o by the dividing wall, the interfaces
between the fluids increase. The interfaces are then re-oriented by 90o once the material
enters a new section. The stretching-re-orientation sequence is repeated until the number of
striations is so high that a seemingly homogeneous mixture is achieved. Figure 3.26 shows
a sequence of cuts down a Kenics static mixer2. It can be seen that the number of striations

2Courtesy Chemineer, Inc., North Andover, Massachusetts.
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Figure 3.26: Experimental progression of the layering of colored resins in a Kenics static mixer.
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Figure 3.27: Schematic diagram of a Banbury type mixer.

increases from section to section by 2, 4, 8, 16, 32, etc., which can be computed using

N = 2n (3.1)

where N is the number of striations and n is the number of sections in the mixer.

Internal batch mixer. The internal batch or Banbury type mixer, schematically shown in
Fig. 3.27, is perhaps the most commonly used internal batch mixer. Internal batch mixers are
high-intensity mixers that generate complex shearing and elongational flows, which work
especially well in the dispersion of solid particle agglomerates within polymer matrices.
One of the most common applications for high-intensity internal batch mixing is the break
up of carbon black agglomerates into rubber compounds.

The dispersion of agglomerates is strongly dependent on mixing time, rotor speed, tem-
perature, and rotor blade geometry [3]. Figure 3.28 [6, 4] shows the fraction of undispersed
carbon black as a function of time in a Banbury mixer at 77 rpm and 100oC. The broken
line in the figure represents the fraction of particles smaller than 500 nm.

Mixing in single screw extruders. Mixing caused by the cross-channel flow compo-
nent can be further enhanced by introducing pins in the flow channel. These pins can either
sit on the screw as shown in Fig. 3.29 [9] or on the barrel as shown in Fig. 3.30 [15].

The extruder with the adjustable pins on the barrel is generally referred to as QSM-
extruder3. In both cases, the pins disturb the flow by re-orienting the surfaces between
fluids and by creating new surfaces by splitting the flow. Figure 3.31 shows the channel
contents of a QSM-extruder4. The photograph demonstrates the re-orientation of the layers
as the material flows past the pins. The pin type extruder is especially necessary for the
mixing of high viscosity materials such as rubber compounds; thus, it is often called a cold

3QSM comes from the German words Quer Strom Mischer which translates into cross-flow mixing.
4Courtesy of the Paul Troester Maschinenfabrik, Hannover, Germany.



134 POLYMER PROCESSES

Figure 3.28: Fraction of undispersed carbon black, larger than 9 µm, as a function of mixing time
inside a Banbury mixer. The open circles denote experimental results and the solid line a theoretical
prediction. The broken line denotes the fraction of aggregates of size below 500 nm.

Figure 3.29: Pin mixing section on the screw of a single screw extruder.
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Figure 3.30: Pin barrel extruder.
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Figure 3.31: Photograph of the unwrapped channel contents of a pin barrel extruder.

Figure 3.32: Distributive mixing sections: (a) Pineapple mixing section, (b) Cavity transfer mixing
section.

feed rubber extruder. This machine is widely used in the production of rubber profiles of
any shape and size.

For lower viscosity fluids, such as thermoplastic polymer melts, the mixing action caused
by the cross-flow is often not sufficient to re-orient, distribute, and disperse the mixture,
making it necessary to use special mixing sections. Re-orientation of the interfaces between
primary and secondary fluids and distributive mixing can be induced by any disruption in
the flow channel. Figure 3.32 [9] presents commonly used distributive mixing heads for
single screw extruders. These mixing heads introduce several disruptions in the flow field,
which have proven to perform well in mixing.
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Figure 3.33: Maddock or Union Carbide mixing section.

Figure 3.34: Schematic diagram of a cokneater.

As mentioned earlier, dispersive mixing is required when breaking down particle ag-
glomerates or when surface tension effects exist between primary and secondary fluids
in the mixture. To disperse such systems, the mixture must be subjected to large stresses.
Barrier-type screws are often sufficient to apply high stresses to the polymer melt. However,
more intensive mixing can be applied by using a mixing head. When using barrier-type
screws or a mixing head as shown in Fig. 3.33 [9], the mixture is forced through narrow
gaps, causing high stresses in the melt. It should be noted that dispersive as well as dis-
tributive mixing heads result in a resistance to the flow, which results in viscous heating
and pressure losses during extrusion.

Cokneader. The cokneader is a single screw extruder with pins on the barrel and a screw
that oscillates in the axial direction. Figure 3.34 shows a schematic diagram of a cokneader.
The pins on the barrel practically wipe the entire surface of the screw, making it the only
self-cleaning single-screw extruder. This results in a reduced residence time, which makes
it appropriate for processing thermally sensitive materials. The pins on the barrel also
disrupt the solid bed creating a dispersed melting [23] which improves the overall melting
rate while reducing the overall temperature in the material.

A simplified analysis of a cokneader gives a number of striations per L/D of [24]

Ns = 212 (3.2)

which means that over a section of 4D the number of striations is 212(4) = 2813. A detailed
discussion on the cokneader is given by Rauwendaal [24] and Elemans [9].
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Figure 3.35: Geometry description of a double-flighted, co-rotating, self-cleaning twin screw
extruder.

Twin screw extruders. In the past two decades, twin screw extruders have developed
into the best available continuous mixing devices. In general, they can be classified into
intermeshing or non-intermeshing,and co-rotating or counter-rotating twin screw extruders.
The intermeshing twin screw extruders render a self-cleaning effect that evens out the
residence time of the polymer in the extruder. The self-cleaning geometry for a co-rotating
double flighted twin screw extruder is shown in Fig. 3.35. The main characteristic of this
type of configuration is that the surfaces of the screws are sliding past each other, constantly
removing the polymer that is stuck to the screw.

In the last two decades, the co-rotating twin screw extruder systems have established
themselves as efficient continuous mixers, including reactive extrusion. In essence, the
co-rotating systems have a high pumping efficiency caused by the double transport action
of the two screws. Counter-rotating systems generate high stresses because of the calender-
ing action between the screws, making them efficient machines to disperse pigments and
lubricants5.

Several studies have been performed to evaluate the mixing capabilities of twin screw
extruders. Noteworthy are two studies performed by Lim and White [12, 13] that evaluated
the morphology development in a 30.7 mm diameter screw co-rotating [28] and a 34 mm
diameter screw counter-rotating [3] intermeshing twin screw extruder. In both studies they
dry-mixed 75/25 blend of polyethylene and polyamide 6 pellets that were fed into the hopper
at 15 kg/h. Small samples were taken along the axis of the extruder and evaluated using
optical and electron microscopy.

The quality of the dispersion of the blend is assessed by the reduction of the characteristic
size of the polyamide 6 phase. Figure 3.36 is a plot of the weight average and number average
domain size of the polyamide 6 phase along the screw axis. The weight average phase size
at the end of the extruder was measured to be 10 µm and the number average 6 µm.

5There seems to be considerable disagreement about co-versus counter-rotating twin screw extruders between
different groups in the polymer processing industry and academic community.
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Figure 3.36: Number and weight average of polyamide 6 domain sizes along the screws for a
counter-rotating twin screw extruder.
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Figure 3.37: Number and weight average of polyamide 6 domain sizes along the screws for a
counter-rotating twin screw extruder with special mixing elements.

By replacing sections of the screw with one kneading-pump element and three special
mixing elements, the final weight average phase size was reduced to 2.2 µm and the number
average to 1.8 µm, as shown in Fig. 3.37.

Using a co-rotating twin screw extruder with three kneading disk blocks, a final mor-
phology with polyamide 6 weight average phase sizes of 2.6 µm was achieved. Figure 3.38
shows the morphology development along the axis of the screws. When comparing the
outcome of both counter-rotating (Fig. 3.37) and co-rotating (Fig. 3.38), it is clear that both
extruders achieve a similar final mixing quality. However, the counter-rotating extruder
achieved the final morphology much earlier in the screw than the co-rotating twin screw
extruder. A possible explanation for this is that the blend traveling through the counter-
rotating configuration melted earlier than in the co-rotating geometry. In addition the phase
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Figure 3.38: Number and weight average of polyamide 6 domain sizes along the screws for a
co-rotating twin screw extruder with special mixing elements.

size was slightly smaller, possibly due to the calendering effect between the screws in the
counter-rotating system.

3.3 INJECTION MOLDING

Injection molding is the most important process used to manufacture plastic products.
Today, more than one-third of all thermoplastic materials are injection molded and more
than half of all polymer processing equipment is for injection molding. The injection
molding process is ideally suited to manufacture mass-produced parts of complex shapes
requiring precise dimensions. The process goes back to 1872 when the Hyatt brothers
patented their stuffing machine to inject cellulose into molds. However, today’s injection
molding machines are mainly related to the reciprocating screw injection molding machine
patented in 1956. A modern injection molding machine with its most important elements is
shown in Fig. 3.39. The components of the injection molding machine are the plasticating
unit, clamping unit, and the mold.

Today, injection molding machines are classified by the following international conven-
tion6

MANUFACTURER T/P

where T is the clamping force in metric tons and P is defined as

P =
Vmaxpmax

1000
(3.3)

where Vmax is the maximum shot size in cm3 and pmax is the maximum injection pressure
in bar. The clamping forced T can be as low as 1metric ton for small machines, and as high
as 11,000 tons.

6The old US convention uses MANUFACTURER T/V where T is the clamping force in British tons and V the
shot size in ounces of polystyrene.
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Figure 3.39: Schematic of an injection molding machine.

3.3.1 The Injection Molding Cycle

The sequence of events during the injection molding of a plastic part, as shown in Fig. 3.40,
is called the injection molding cycle. The cycle begins when the mold closes, followed
by the injection of the polymer into the mold cavity. Once the cavity is filled, a holding
pressure is maintained to compensate for material shrinkage. In the next step, the screw
turns, feeding the next shot to the front of the screw. This causes the screw to retract as
the next shot is prepared. Once the part is sufficiently cool, the mold opens and the part is
ejected.

Figure 3.41 presents the sequence of events during the injection molding cycle. The
figure shows that the cycle time is dominated by the cooling of the part inside the mold
cavity. The total cycle time can be calculated using

tcycle = tclosing + tcooling + tejection (3.4)

where the closing and ejection times, tclosing and tejection, can last from a fraction of a second
to a few seconds, depending on the size of the mold and machine. The cooling times, which
dominate the process, depend on the maximum thickness of the part.

Using the average part temperature history and the cavity pressure history, the process
can be followed and assessed using the pvT diagram as depicted in Fig. 3.42 [11, 18].
To follow the process on the pvT diagram, we must transfer both the temperature and
the pressure at matching times. The diagram reveals four basic processes: an isothermal
injection (0-1) with pressure rising to the holding pressure (1-2), an isobaric cooling process
during the holding cycle (2-3), an isochoric cooling after the gate freezes with a pressure
drop to atmospheric (3-4), and then isobaric cooling to room temperature (4-5).

The point on the pvT diagram at which the final isobaric cooling begins (4), controls the
total part shrinkage. This point is influenced by the two main processing conditions −the
melt temperature and the holding pressure as depicted in Fig. 3.43.

Here, the process in Fig. 3.42 is compared to one with a higher holding pressure. Of
course, there is an infinite combination of conditions that render acceptable parts, bound
by minimum and maximum temperatures and pressures. Figure 3.44 presents the molding
diagram with all limiting conditions. The melt temperature is bound by a low temperature
that results in a short shot or unfilled cavity and a high temperature that leads to material
degradation. The hold pressure is bound by a low pressure that leads to excessive shrinkage
or low part weight, and a high pressure that results in flash. Flash results when the cavity
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Figure 3.40: Sequence of events during an injection molding cycle.
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Figure 3.41: Injection molding cycle.

Figure 3.42: Trace of an injection molding cycle in a pvT diagram.
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Figure 3.43: Trace of two different injection molding cycles in a pvT diagram.

pressure force exceeds the machine clamping force, leading to melt flow across the mold
parting line. The holding pressure determines the corresponding clamping force required
to size the injection molding machine. An experienced polymer processing engineer can
usually determine which injection molding machine is appropriate for a specific application.
For the untrained polymer processing engineer, finding this appropriate holding pressure
and its corresponding mold clamping force can be difficult.

With difficulty one can control and predict the component’s shape and residual stresses
at room temperature. For example, sink marks in the final product are caused by material
shrinkage during cooling, and residual stresses can lead to environmental stress cracking
under certain conditions [17]. Warpage in the final product is often caused by processing
conditions that lead to asymmetric residual stress distributions through the part thickness.
The formation of residual stresses in injection molded parts is attributed to two major
coupled factors: cooling and flow stresses. The first and most important is the residual
stress formed as a result of rapid cooling which leads to large temperature variations.

3.3.2 The Injection Molding Machine

The plasticating and injection unit. A plasticating and injection unit is shown in
Fig. 3.45. The major tasks of the plasticating unit are to melt the polymer, to accumulate
the melt in the screw chamber, to inject the melt into the cavity, and to maintain the holding
pressure during cooling.

The main elements of the plasticating unit follow:

• Hopper

• Screw
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Figure 3.44: The molding diagram.

Figure 3.45: Schematic of a plasticating unit.
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Figure 3.46: Clamping unit with a toggle mechanism.

• Heater bands

• Check valve

• Nozzle

The hopper, heating bands, and the screw are similar to a plasticating single screw
extruder, except that the screw in an injection molding machine can slide back and forth to
allow for melt accumulation and injection. This characteristic gives it the name reciprocating
screw. For quality purposes, the maximum stroke in a reciprocating screw should be set
shorter than 3D. Although the most common screw used in injection molding machines is
the three-zone plasticating screw, two-stage vented screws are often used to extract moisture
and monomer gases just after the melting stage.

The check valve, or non-return valve, is at the end of the screw and enables it to work
as a plunger during injection and packing without allowing polymer melt back to flow into
the screw channel. A check valve and its function during operation is depicted in Fig. 3.40,
and in Fig. 3.45. A high quality check valve allows less then 5% of the melt back into the
screw channel during injection and packing. The nozzle is at the end of the plasticating unit
and fits tightly against the sprue bushing during injection. The nozzle type is either open
or shut-off. The open nozzle is the simplest, rendering the lowest pressure consumption.

The clamping unit. The job of a clamping unit in an injection molding machine is
to open the mold, and to close it tightly to avoid flash during the filling and holding.
Modern injection molding machines have two predominant clamping types: mechanical and
hydraulic. Figure 3.46 presents a toggle mechanism in the open and closed mold positions.
Although the toggle is essentially a mechanical device, it is actuated by a hydraulic cylinder.
The advantage of using a toggle mechanism is that, as the mold approaches closure, the
available closing force increases and the closing decelerates significantly. However, the
toggle mechanism only transmits its maximum closing force when the system is fully
extended.

Figure 3.47 presents a schematic of a hydraulic clamping unit in the open and closed
positions. The advantages of the hydraulic system is that a maximum clamping force is
attained at any mold closing position and that the system can take different mold sizes
without major system adjustments.

The mold cavity. The central point in an injection molding machine is the mold. The
mold distributes polymer melt into and throughout the cavities, shapes the part, cools the
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Figure 3.47: Hydraulic clamping unit.

melt and ejects the finished product. The mold is typically custom-made and consists of
the following elements (see Fig. 3.48):

• Sprue and runner system

• Gate

• Mold cavity

• Cooling system (thermoplastics)

• Ejector system

During mold filling, the melt flows through the sprue and is distributed into the cavities
by the runners, as seen in Fig. 3.49.

The runner system in Fig. 3.49(a) is symmetric, where all cavities fill at the same time
causing the polymer to fill all cavities uniformly. The disadvantage of this balanced runner
system is that the flow paths are long, leading to high material and pressure consumption.
On the other hand, the asymmetric runner system shown in Fig. 3.49(b) leads to parts of
different quality. Uniform filling of the mold cavities can also be achieved by varying
runner diameters. There are two types of runner systems − cold and hot runners. Cold
runners are ejected with the part and are trimmed after mold removal. The advantage of the
cold runner is lower mold cost. The hot runner keeps the polymer at its melt temperature.
The material stays in the runner system after ejection, and is injected into the cavity in
the following cycle. There are two types of hot runner system: externally and internally
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Figure 3.48: An injection mold.

Figure 3.49: Schematic of different runner system arrangements.



INJECTION MOLDING 149

Figure 3.50: Schematic of different gating systems.

heated. The externally heated runners have a heating element surrounding the runner
that keeps the polymer isothermal. The internally heated runners have a heating element
running along the center of the runner, maintaining a polymer melt that is warmer at its
center and possibly solidified along the outer runner surface. Although a hot runner system
considerably increases mold cost, its advantages include elimination of trim and lower
pressures for injection.

When large items are injection molded, the sprue sometimes serves as the gate, as shown
in Fig. 3.50. The sprue must be subsequently trimmed, often requiring further surface
finishing. On the other hand, a pin-type gate (Fig. 3.50) is a small orifice that connects
the sprue or the runners to the mold cavity. The part is easily broken off from such a gate,
leaving only a small mark that usually does not require finishing. Other types of gates, also
shown in Fig. 3.50, are film gates, used to eliminate orientation, and disk or diaphragm
gates for symmetric parts such as compact discs.

3.3.3 Related Injection Molding Processes

Although most injection molding processes are covered by the conventional process de-
scription discussed earlier in this chapter, there are several important molding variations
including:

• Multi-color

• Multi-component

• Co-injection

• Gas-assisted
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Figure 3.51: Schematic of the co-injection molding process.

• Injection-compression

Multi-component injection molding occurs when two or more polymers, or equal poly-
mers of different color, are injected through different runner and gate systems at different
stages during the molding process. Each component is injected using its own plasticating
unit. The molds are often located on a turntable. Multi-color automotive stop lights are
molded this way. In principle, the multi-component injection molding process is the same
as the multi-color process. Here, either two incompatible materials are molded or one com-
ponent is cooled sufficiently so that the two components do not adhere to each other. For
example, to mold a ball and socket system, the socket of the linkage is molded first. The
socket component is allowed to cool somewhat and the ball part is injected inside. This
results in a perfectly movable system. This type of injection molding process is used to
replace tedious assembling tasks and is becoming popular in countries where labor costs
are high. In addition, today, a widely used application is the multi-component injection of
a hard and a soft polymer such as polypropylene with a thermoplastic elastomer.

In contrast to multi-color and multi-component injection molding, co-injection molding
uses the same gate and runner system. Here, the component that forms the outer skin of the
part is injected first, followed by the core component. The core component displaces the
first and a combination of the no-slip condition between polymer and mold and the freezing
of the melt creates a sandwiched structure as depicted in Fig. 3.51.

In principle, the gas-assisted injection molding process is similar to co-injection molding.
Here, the second or core component is nitrogen, which is injected through a needle into the
polymer melt, blowing the melt out of the way and depositing it against the mold surfaces.

Injection-compression molding first injects the material into a partially opened mold, and
then squeezes the material by closing the mold. Injection-compression molding is used for
polymer products that require a high quality surface finish, such as compact discs and other
optically demanding components because it practically eliminates tangential molecular
orientation.

3.4 SECONDARY SHAPING

Secondary shaping operations such as extrusion blow molding, film blowing, and fiber
spinning occur immediately after the extrusion profile emerges from the die. The thermo-
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Figure 3.52: The fiber spinning process with detail of a stretching fiber during the cooling process.

forming process is performed on sheets or plates previously extruded and solidified. In
general, secondary shaping operations consist of mechanical stretching or forming of a
preformed cylinder, sheet, or membrane.

3.4.1 Fiber Spinning

Fiber spinning is used to manufacture synthetic fibers. During fiber spinning, a filament is
continuously extruded through an orifice and stretched to diameters of 100 µm and smaller.
The process is schematically depicted in Fig. 3.52. The molten polymer is first extruded
through a filter or screen pack, to eliminate small contaminants. The melt is then extruded
through a spinneret, a die composed of multiple orifices. A spinneret can have between
one and 10,000 holes. The fibers are then drawn to their final diameter, solidified, and
wound onto a spool. The solidification takes place either in a water bath or by forced
convection. When the fiber solidifies in a water bath, the extrudate undergoes an adiabatic
stretch before cooling begins in the bath. The forced convection cooling, which is more
commonly used, leads to a non-isothermal spinning process. The drawing and cooling
processes determine the morphology and mechanical properties of the final fiber. For
example, ultra high molecular weight PE-HD fibers with high degrees of orientation in the
axial direction can have the stiffness of steel with today’s fiber spinning technology.

Of major concern during fiber spinning are the instabilities that arise during drawing,such
as brittle fracture, Rayleigh disturbances, and draw resonance. Brittle fracture occurs when
the elongational stress exceeds the melt strength of the drawn polymer melt. The instabilities
caused by Rayleigh disturbances are like those causing filament break up during dispersive
mixing, as discussed in Chapter 4. Draw resonance appears under certain conditions and
manifests itself as periodic fluctuations that result in diameter oscillation.

3.4.2 Film Production

Cast film extrusion. In a cast film extrusion process, a thin film is extruded through a
slit onto a chilled, highly polished, turning roll where it is quenched from one side. The
speed of the roller controls the draw ratio and final film thickness. The film is then sent
to a second roller for cooling of the other side. Finally, the film passes through a system
of rollers and is wound onto a roll. A typical film casting process is depicted in Figs. 3.53
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Figure 3.53: Schematic diagram of a film casting operation.

Figure 3.54: Film casting.

and 3.54. During the cast film extrusion process stability problems similar to those in fiber
spinning encountered [2].

Film blowing. In film blowing, a tubular cross-section is extruded through an annular die,
normally a spiral die, and is drawn and inflated until the freezing line is reached. Beyond
this point, the stretching is practically negligible. The process is schematically depicted in
Fig. 3.55 [14].

The advantage of film blowing over casting is that the induced biaxial stretching renders
a stronger and less permeable film. Film blowing is mainly used with less expensive
materials such as polyolefins. Polymers with lower viscosity such as PA and PET are better
manufactured using the cast film process. The extruded tubular profile passes through one
or two air rings to cool the material. The tube’s interior is maintained at a certain pressure
by blowing air into the tube through a small orifice in the die mandrel. The air is retained in
the tubular film, or bubble, by collapsing the film well above its freeze-off point and tightly
pinching it between rollers. The size of the tubular film is calibrated between the air ring and
the collapsing rolls. The predecessor of the blow molding process was the blowing press
developed by Hyatt and Burroughs in the 1860s to manufacture hollow celluloid articles.
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Figure 3.55: Schematic of a film blowing operation.



154 POLYMER PROCESSES

Figure 3.56: Schematic of the extrusion blow molding process.

Polystyrene was the first synthetic polymer used for blow molding during World War II
and polyethylene was the first material to be implemented in commercial applications.
Until the late 1950s, the main application for blow molding was the manufacture of PE-LD
articles such as squeeze bottles. Blow molding produces hollow articles that do not require
a homogeneous thickness distribution. Today, PE-HD, PE-LD, PP, PET, and PVC are the
most common materials used for blow molding.

Extrusion blow molding. In extrusion blow molding, a parison or tubular profile is
extruded and inflated into a cavity with a specified geometry. The blown article is held
inside the cavity until it is sufficiently cool. Figure 3.56 [25] presents a schematic of the
steps in blow molding.

During blow molding, one must generate the appropriate parison length such that the
trim material is minimized. Another means of saving material is generating a parison of
variable thickness, usually referred to as parison programming, such that an article with an
evenly distributed wall thickness is achieved after stretching the material. An example of a
programmed parison and finished bottle thickness distribution is presented in Fig. 3.57 [1].

A parison of variable thickness can be generated by moving the mandrel vertically during
extrusion as shown in Fig. 3.58. A thinner wall not only results in material savings but also
reduces the cycle time due to the shorter required cooling times.

As expected, the largest portion of the cycle time is the cooling of the blow molded
container in the mold cavity. Most machines work with multiple molds in order to increase
production. Rotary molds are often used in conjunction with vertical or horizontal rotating
tables (Fig. 3.59 [14]).

Injection blow molding. Injection blow molding, depicted in Fig. 3.60 [25], begins
by injection molding the parison onto a core and into a mold with finished bottle threads.
The formed parison has a thickness distribution that leads to reduced thickness variations
throughout the container.

Before blowing the parison into the cavity, it can be mechanically stretched to orient
molecules axially, Fig. 3.61 [25]. The subsequent blowing operation introduces tangential
orientation. A container with biaxial molecular orientation exhibits higher optical (clarity)
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Figure 3.57: Wall thickness distribution in the parison and the bottle.

Figure 3.58: Moving mandrel used to generate a programmed parison.
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Figure 3.59: Schematic of an extrusion blow molder with a rotating table.

Figure 3.60: Injection blow molding.
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Figure 3.61: Stretch blow molding.

and mechanical properties and lower permeability. During injection blow molding one can
go directly from injection to blowing or one can have a re-heating stage in-between.

The advantages of injection blow molding over extrusion blow molding are:

• Pinch-off and therefore post-mold trimming are eliminated

• Controlled container wall thickness

• Dimensional control of the neck and screw-top of bottles and containers

Disadvantages include higher initial mold cost, the need for both injection and blow molding
units and lower volume production.

3.4.3 Thermoforming

Thermoforming is an important secondary shaping method of plastic film and sheet. Ther-
moforming consists of warming the plastic sheet and forming it into a cavity or over a tool
using vacuum, air pressure, or mechanical means. During the 18th century, tortoiseshells
and hooves were thermoformed into combs and other shapes. The process was refined dur-
ing the mid-19th century to thermoform various cellulose nitrate articles. During World War
II, thermoforming was used to manufacture acrylic aircraft cockpit enclosures, canopies,
and windshields, as well as translucent covers for outdoor neon signs. During the 1950s,
the process made an impact in the mass production of cups, blister packs, and other packag-
ing commodities. Today, in addition to packaging, thermoforming is used to manufacture
refrigerator liners, pick-up truck cargo box liners, shower stalls, bathtubs, as well as auto-
motive trunk liners, glove compartments, and door panels.

A typical thermoforming process is presented in Fig. 3.62 [14]. The process begins
by heating the plastic sheet slightly above the glass transition temperature for amorphous
polymers, or slightly below the melting point for semi-crystalline materials. Although,
both amorphous and semi-crystalline polymers are used for thermoforming, the process is
most suitable for with amorphous polymers, because they have a wide rubbery temperature
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Figure 3.62: Plug-assist thermoforming using vacuum.

range above the glass transition temperature. At these temperatures, the polymer is easily
shaped, but still has enough rigidity to hold the heated sheet without much sagging. Most
semi-crystalline polymers lose their strength rapidly once the crystalline structure breaks
up above the melting temperature.

The heating is achieved using radiative heaters and the temperature reached during
heating must be high enough for sheet shaping, but low enough so the sheets do not droop
into the heaters. One key requirement for successful thermoforming is to bring the sheet
to a uniform forming temperature. The sheet is then shaped into the cavity over the tool.
This can be accomplished in several ways. Most commonly, a vacuum sucks the sheet onto
the tool, stretching the sheet until it contacts the tool surface. The main problem here is
the irregular thickness distribution that arises throughout the part. Hence, the main concern
of the process engineer is to optimize the system such that the differences in thickness
throughout the part are minimized. This can be accomplished in many ways but most
commonly by plug-assist. Here, as the plug pushes the sheet into the cavity, only the
parts of the sheet not touching the plug-assist will stretch. Since the unstretched portions
of the sheet must remain hot for subsequent stretching, the plug-assist is made of a low
thermal conductivity material such as wood or hard rubber. The initial stretch is followed
by a vacuum for final shaping. Once cooled, the product is removed. To reduce thickness
variations in the product, the sheet can be pre-stretched by forming a bubble at the beginning
of the process. This is schematically depicted in Fig. 3.63 [14]. The mold is raised into the
bubble, or a plug-assist pushes the bubble into the cavity, and a vacuum finishes the process.
One of the main reasons for the rapid growth and high volume of thermoformed products is
that the tooling costs for a thermoforming mold are much lower than for injection molding.

3.5 CALENDERING

In a calender line, the polymer melt is transformed into films and sheets by squeezing
it between pairs of co-rotating high-precision rollers. Calenders are also used to produce
certain surface textures which may be required for different applications. Today, calendering
lines are used to manufacture PVC sheet, floor covering, rubber sheet, and rubber tires. They
are also used to texture or emboss surfaces. When producing PVC sheet and film, calender
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Figure 3.63: Reverse draw thermoforming with plug-assist and vacuum.

Figure 3.64: Schematic of a typical calendering process (Berstorff GmbH, Germany).

lines have a great advantage over extrusion processes because of the shorter residence times,
resulting in a lower requirement for stabilizer. This can be cost effective since stabilizers are
a major part of the overall expense of processing these polymers. Figure 3.64 [14] presents
a typical calender line for manufacturing PVC sheet.

A typical system is composed of:

• Plasticating unit

• Calender

• Cooling unit

• Accumulator
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Figure 3.65: Calender arrangements.

• Wind-up station

In the plasticating unit, which is represented by the internal batch mixer and the strainer
extruder, the material is melted and mixed and is fed in a continuous stream between the
nip of the first two rolls. In another variation of the process, the mixing may take place
elsewhere, and the material is simply reheated on the roll mill. Once the material is fed
to the mill, the first pair of rolls controls the feeding rate, while subsequent rolls in the
calender calibrate the sheet thickness. Most calender systems have four rolls as does the
one in Fig. 3.64, which is an inverted L- or F-type system. Other typical roll arrangements
are shown in Fig. 3.65. After passing through the main calender, the sheet can be passed
through a secondary calendering operation for embossing. The sheet is then passed through
a series of chilling rolls where it is cooled from both sides in an alternating fashion. After
cooling, the film or sheet is wound.

One of the major concerns in a calendering system is generating a film or sheet with a
uniform thickness distribution with tolerances as low as ±0.005 mm. To achieve this, the
dimensions of the rolls must be precise. It is also necessary to compensate for roll bowing
resulting from high pressures in the nip region. Roll bowing is a structural problem that
can be mitigated by placing the rolls in a slightly crossed pattern, rather than completely
parallel, or by applying moments to the roll ends to counteract the separating forces in the
nip region.

3.6 COATING

During coating, a liquid film is continuously deposited on a moving, flexible or rigid sub-
strate. Coating is done on metal, paper, photographic films, audio and video tapes, and
adhesive tapes. Typical coating processes include wire coating, dip coating, knife coating,
roll coating, slide coating, and curtain coating.
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Figure 3.66: Schematic of the wire coating process.

Figure 3.67: Schematic of the knife coating process.

In wire coating, a wire is continuously coated with a polymer melt by pulling the wire
through an extrusion die. The polymer resin is deposited onto the wire using the drag flow
generated by the moving wire and sometimes a pressure flow generated by the back pressure
of the extruder. The process is schematically depicted in Fig. 3.667. The second normal
stress differences, generated by the high shear deformation in the die, help keep the wire
centered in the annulus [29].

Dip coating is the simplest and oldest coating operation. Here, a substrate is continuously
dipped into a fluid and withdrawn with one or both sides coated with the fluid. Dip coating
can also be used to coat individual objects that are dipped and withdrawn from the fluid.
The fluid viscosity and density and the speed and angle of the surface determine the coating
thickness.

Knife coating, depicted in Fig. 3.67, consists of metering the coating material onto the
substrate from a pool of material, using a fixed rigid or flexible knife. The knife can be
normal to the substrate or angled and the bottom edge can be flat or tapered. The thickness
of the coating is approximately half the gap between the knife edge and the moving substrate
or web. A major advantage of a knife edge coating system is its simplicity and relatively
low maintenance.

7Other wire coating operations extrude a tubular sleeve which adheres to the wire via stretching and vacuum. This
is called tube coating.
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Figure 3.68: Schematic of forward and reversed roll coating processes.

Figure 3.69: Schematic of slide and curtain coating.

Roll coating consists of passing a substrate and the coating simultaneously through the nip
region between two rollers. The physics governing this process are similar to calendering,
except that the fluid adheres to both the substrate and the opposing roll. The coating material
is a low viscosity fluid, such as a polymer solution or paint and is picked up from a bath
by the lower roll and applied to one side of the substrate. The thickness of the coating can
be as low as a few µm and is controlled by the viscosity of the coating liquid and the nip
dimension. This process can be configured as either forward roll coating for co-rotating
rolls or reverse roll coating for counter-rotating rolls (Fig. 3.68). The reverse roll coating
process delivers the most accurate coating thicknesses.

Slide coating and curtain coating, schematically depicted in Fig. 3.69, are commonly
used to apply multi-layered coatings. However, curtain coating has also been widely used
to apply single layers of coatings to cardboard sheet. In both methods, the coating fluid is
pre-metered.
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Figure 3.70: Schematic of the compression molding process.

3.7 COMPRESSION MOLDING

Compression molding is widely used in the automotive industry to produce parts that are
large, thin, lightweight, strong, and stiff. It is also used in the household goods and electrical
industries. Compression molded parts are formed by squeezing a charge, often glass fiber
reinforced, inside a mold cavity, as depicted in Fig. 3.70.

The matrix can be either a thermoset or thermoplastic. The oldest and still widest used
material for compression molded products is phenolic. The thermoset materials used to
manufacture fiber reinforced compression molded articles is unsaturated polyester sheet
or bulk, reinforced with glass fibers, known as sheet molding compound (SMC) or bulk
molding compound (BMC). In SMC, the 25 mm long reinforcing fibers are randomly
oriented in the plane of the sheet and make up for 20-30% of the molding compound’s
volume fraction.

A schematic diagram of an SMC production line is depicted in Fig. 3.71 [8]. When pro-
ducing SMC, the chopped glass fibers are sandwiched between two carrier films previously
coated with unsaturated polyester-filler matrix. A fiber reinforced thermoplastic charge is
often called a glass mat reinforced thermoplastic (GMT) charge. The most common GMT
matrix is polypropylene. More recently, long fiber reinforced themoplastics (LFT) have
become common. Here, one squeezes sausage-shaped charges deposited on the mold by
an extruder.

During processing of thermoset charges, the SMC blank is cut from a preformed roll
and is placed between heated cavity surfaces. Generally, the mold is charged with 1 to
4 layers of SMC, each layer about 3 mm thick, which initially cover about half the mold
cavity’s surface. During molding, the initially randomly oriented glass fibers orient, lead-
ing to anisotropic properties in the finished product. When processing GMT charges, the
preforms are cut and heated between radiative heaters. Once heated, they are placed inside
a cooled mold that rapidly closes and squeezes the charges before they cool and solidify.
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Figure 3.71: SMC production line.

One of the main advantages of the compression molding process is the low fiber attrition
during processing. Here, relatively long fibers can flow in the melt without the fiber dam-
age common during plastication and cavity filling during injection molding. An alternate
process is injection-compression molding. Here, a charge is injected through a large gate
followed by a compression cycle. The material used in the injection compression molding
process is called bulk molding compound (BMC), which is reinforced with shorter fibers,
generally 10 mm long, with an unsaturated polyester matrix. The main benefit of injection
compression molding over compression molding is automation. The combination of injec-
tion and compression molding leads to lower degrees of fiber orientation and fiber attrition
compared to injection molding.

3.8 FOAMING

In foam or a foamed polymer, a cellular or porous structure has been generated through the
addition and reaction of physical or chemical blowing agents. The basic steps of foaming
are cell nucleation, expansion or cell growth, and cell stabilization. Nucleation occurs
when, at a given temperature and pressure, the solubility of a gas is reduced, leading to
saturation, expelling the excess gas to form bubbles. Nucleating agents, such as powdered
metal oxides, are used for initial bubble formation. The bubbles reach an equilibrium shape
when their inside pressure balances their surface tension and surrounding pressures. The
cells formed can be completely enclosed (closed cell) or can be interconnected (open cell).

In a physical foaming process a gas such as nitrogen or carbon dioxide is introduced
into the polymer melt. Physical foaming also occurs after heating a melt that contains a
low boiling point fluid, causing it to vaporize. For example, the heat-induced volatilization
of low-boiling-point liquids, such as pentane and heptane, is used to produce polystyrene
foams. Also, foaming occurs during volatilization from the exothermic reaction of gases
produced during polymerization such as the production of carbon dioxide during the reac-
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Figure 3.72: Schematic of various foam structures.

tion of isocyanate with water. Physical blowing agents are added to the plasticating zone of
the extruder or molding machine. The most widely used physical blowing agent is nitrogen.
Liquid blowing agents are often added to the polymer in the plasticating unit or the die.
Chemical blowing agents are usually powders introduced in the hopper of the molding ma-
chine or extruder. Chemical foaming occurs when the blowing agent thermally decomposes,
releasing large amounts of gas. The most widely used chemical blowing agent for poly-
olefin is azodicarbonamide. In mechanical foaming, a gas dissolved in a polymer expands
upon reduction of the processing pressure. The foamed structures commonly generated are
either homogeneous foams or integral foams.

Figure 3.72 [27] presents the various types of foams and their corresponding character-
istic density distributions. In integral foam, the unfoamed skin surrounds the foamed inner
core. This type of foam can be produced by injection molding and extrusion and it replaces
the sandwiched structure also shown in Fig. 3.72.

Today, foams are of great commercial importance and are primarily used in packaging
and as heat and noise insulating materials. Examples of foamed materials are polyurethane
foams, expanded polystyrene (EPS) and expanded polypropylene particle foam (EPP).
Polyurethane foam is perhaps the most common foaming material and is a typical example
of a chemical foaming technique. Here, two low viscosity components, a polyol and an
isocyanate, are mixed with a blowing agent such as pentane. When manufacturing semi-
finished products, the mixture is deposited on a moving conveyor belt where it is allowed to
rise, like a loaf of bread contained whithin shaped paper guides. The result is a continuous
polyurethane block that can be used, among others, in the upholstery and matress industries.
The basic material to produce expanded polystyrene products are small pearls produced by
suspension styrene polymerization with 6-7% of pentane as a blowing agent. To process the
pearls, they are placed in pre-expanding machines heated with steam until their temperature
reaches 80 to 100oC. To enhance their expansion, the pearls are cooled in a vacuum and
allowed to age and dry in ventilated storage silos before the shaping operation. Polystyrene
foam is is used extensively in packaging, but its uses also extend to the construction industry
as a thermal insulating material, as well as for shock absorption in children’s safety seats
and bicycle helmets. Expanded polypropylene particle foam is similar in to EPS but is
characterized by its excellent impact absorption and chemical resistance. Its applications
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Figure 3.73: Schematic of the rotational molding process.

are primarely in the automotive industry as bumper cores, sun visors and knee cushions, to
name a few.

3.9 ROTATIONAL MOLDING

Rotational molding is used to make hollow objects. In rotational molding, a carefully
measured amount of powdered polymer, typically polyethylene, is placed in a mold. The
mold is then closed and placed in an oven where the mold turns about two axes as the
polymer melts, as depicted in Fig. 3.73.

During heating and melting, which occur at oven temperatures between 250 and 450oC,
the polymer is deposited evenly on the mold’s surface. To ensure uniform thickness, the
axes of rotation should not coincide with the centroid of the molded product. The mold
is then cooled and the solidified part is removed from the mold cavity. The parts can be
as thick as 10 mm, and still be manufactured with relatively low residual stresses. The
reduced residual stress and the controlled dimensional stability of the rotational molded
product depend in great part on the cooling rate after the mold is removed from the oven.
A mold that is cooled too fast yields warped parts. Usually, a mold is first cooled with
air to start the cooling slowly, followed by a water spray for faster cooling. The main
advantages of rotational molding over blow molding are the uniform part thickness and
the low cost involved in manufacturing the mold. In addition, large parts such as play
structures or kayaks can be manufactured more economically than with injection molding
or blow molding. The main disadvantage of the process is the long cycle time for heating
and cooling of the mold and polymer.

Figure 3.74 presents the air temperature inside the mold in a typical rotational molding
cycle for polyethylene powders [7].

The process can be divided into six distinct phases:

1. Induction or initial air temperature rise
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Figure 3.74: Typical air temperature in the mold while rotomolding polyethylene parts.

2. Melting and sintering

3. Bubble removal and densification

4. Pre-cooling

5. Crystallization of the polymer melt

6. Final cooling

The induction time can be significantly reduced by pre-heating the powder,and the bubble
removal and cooling stage can be shortened by pressurizing the material inside the mold.
The melting and sintering of the powder during rotational molding depends on the rheology
and geometry of the particles. This phenomenon was studied in depth by Bellehumeur and
Vlachopoulos [5].
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PART II

PROCESSING FUNDAMENTALS



CHAPTER 4

DIMENSIONAL ANALYSIS AND SCALING

A small leak can sink a great ship.

—Benjamin Franklin

Dimensional analysis is used by engineers to gain insight into a problem by allowing
presentation of theoretical and experimental results in a compact manner. This is done by
reducing the number of variables in a system by lumping them into meaningful dimension-
less numbers. For example, if a flow system is dominated by the fluid’s inertia as well as
the viscous effects, it may best to present the results, i.e., pressure requirements, in terms
of Reynolds number, which is the ratio of both effects. As one checks the order of these
dimensionless numbers and compares them to one another, one can gain insight into what
parameters, such as process conditions and material properties, are most important. Many
researches also use dimensional analysis in theoretical studies. Often, dimensional analysis,
in combination with experiments, results in fundamental relations that govern a process.

In polymer processing, as well as other manufacturing techniques or operations, one
often works on a laboratory scale when developing new processes or materials, and when
testing and optimizing a certain system. This laboratory operation, often referred to as
a pilot plant, is a physical model of the actual or final system. How one goes from this
laboratory model, that probably produces only a few cubic centimeters of material per hour,
to the actual production process that can generate hundreds of kilograms per hour, is what is
called scale-up. On some occasions, such as when trying to push the envelope in injection
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molding, where the thickness of the part is always being reduced, the term scale-down is
also used. Since the methods mentioned in this chapter work for both, here we will simply
call them scaling.

4.1 DIMENSIONAL ANALYSIS

Dimensional analysis, often referred to as the Π-theorem is based on the fact that every
system that is governed by m physical quantities can be reduced to a set of m − n mutually
independent dimensionless groups, where n is the number of basic dimensions that are
present in the physical quantities. The Π-theorem was introduced by Buckingham [1] in
1914 and is therefore known as the Buckingham Π-theorem. The Π-theorem is a procedure
to determine dimensionless numbers from a list of variables or physical quantities that are
related to a specific problem. This is best illustrated by an example problem.

Consider the classical problem of pressure drop during flow in a smooth straight pipe,
ignoring the inlet effects. The first step is to list all possible variables or quantities that are
related to the problem under consideration. In this case, we have:

• Target quantity: Pressure drop ∆p

• Geometric variables: Pipe diameter D, and pipe length L

• Physical or material properties: the viscosity η, and the density ρ of the fluid

• Process variable: average fluid velocity u

Once we have defined all the physical quantities, also referred to as the relevance list,
we write them with their respective dimensions in terms of mass M , length L, time T and
temperature Θ, and in some cases force F , i.e.

∆p D L η ρ u
M

LT 2
L L

M

LT

M

L3

L

T

(4.1)

Table 4.1 presents various physical quantities with their respective dimensions in an MLTΘ
system and in an FLTΘ system, respectively.

In this example there are m = 6 variables and since one only finds mass, length and time
one can say that one has n = 3 dimensional quantities. Hence one can generate m − n = 3
dimensionless groups denoted by Π1, Π2 and Π3. From the list above n = 3 repeating
variables are selected. These variables can appear in all the dimensionless numbers. When
selecting the repeating variables it is important that

• They are not dimensionless, and

• They must all have different units, i.e., one cannot choose both, the diameter and the
length of the pipe, as repeating variables.

Here one can choose D, µ and ρ as the repeating variables. The first dimensionless
group that was generated involves ∆p. One can write the product of the repeating variables
and ∆p, where each of the repeating variables has an exponent that will render the whole
product dimensionless (M0L0T 0),

Π1 = ∆pDaubρc =

�
M

LT 2

�1

[L]
a

�
L

T

�b �
M

L3

�c

= M0L0T 0 (4.2)
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Table 4.1: Base and Secondary Quantities and Their Respective Dimensions According to
the SI System

Quantity Dimension SI unit Name
length (L, d) L m meter
mass (m) M kg kilogram
time (t) T s second
temperature (T ) Θ K Kelvin
amount of substance N mol mole
electric current I A ampere
luminous intensity J cd candela

area (A) L2 m2

volume (V ) L3 m3

angular velocity (ω), shear rate (γ̇), T−1 s−1

frequency

velocity (u) LT−1 m/s

acceleration (a, u̇) LT−2 m/s2

kinematic viscosity (ν), diffusivity (D) L2T−1 m2/s

density (ρ) ML−3 kg/m3

surface tension (σ, σS) MT−2 kg/s2

force MLT−2 N Newton

pressure (p), tension ML−1T−2 Pa Pascal

dynamic viscosity (µ, η) ML−1T−1 Pa-s

momentum MLT−1 kg-m/s

angular momentum ML2T−1 kg-m2/s

energy, work, torque ML2T−2 J Joule

power ML2T−3 W Watt

specific heat (Cp, CV ) L2T−2Θ−1 J/kg/K

conductivity (k) MLT−3Θ−1 W/m/K

heat transfer coefficient (h) MT−3Θ−1 W/m2/K
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For each dimensional quantity M , L and T we can write

M →1 + c = 0

L → − 1 + a + b − 3c = 0

T → − 2 − b = 0

(4.3)

The three unknown exponents as a = 0, b = −2 and c = −1 can now be solved for

Π1 =
∆p

u2ρ
(4.4)

which is widely known as the Euler number, Eu. One can repeat the procedure for L so
that

Π2 = LDaubρc = L1 [L]a
�

L

T

�b �
M

L3

�c

= M0L0T 0 (4.5)

is dimensionless if a = −1, b = 0 and c = 0, resulting in

Π2 =
L

D
(4.6)

Similar, if we repeat this for η,

Π3 = ηDaubρc =

�
M

LT

�1

[L]
a

�
L

T

�b �
M

L3

�c

= M0L0T 0 (4.7)

is dimensionless when a = −1, b = −1 and c = −1, and

Π3 =
η

Duρ
(4.8)

which is the inverse of the Reynolds number, Re. The above technique produces the relation

f

#
Eu, Re,

L

D

*
= 0 (4.9)

but cannot deduce the nature of this relation. The form of the function f can only be
produced experimentally. Figure 4.1 presents results from such experiments performed by
Stanton and Pannell [10, 14] where they plot λ = 2EuD/L as a function of Re. This figure
demonstrates the usefulness of dimensional analysis.

Tables 4.2 to 4.4 list several dimensionless numbers that are used in various areas of
engineering. This list can be helpful in performing a dimensional analysis, to help interpret
results that are sometimes difficult to discern from the variety of dimensionless numbers
that can result during such an undertaking.

4.2 DIMENSIONAL ANALYSIS BY MATRIX TRANSFORMATION

The classic technique to determine dimensionless numbers,described above, is cumbersome
to use in cases where the list of related physical quantities becomes large. Pawlowski
[8] developed a matrix transformation technique that offers a systematic approach to the
generation of Π-sets.
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Table 4.2: Base and Secondary Quantities for Flow Problems

Name Symbol Π−number Remarks

Archimedes Ar
g∆ρl3

ρν2
Ar = (∆ρ/ρ)Ga

Bond Bd
ρgl2

σ
Bd = Ca/Fr

Brinkman Br
u2η

k∆T

Capillary Ca
ρu2l

σ
Also known as Weber

Deborah De λγ̇ λ: Relaxation time
γ̇: Shear rate

Eckert Ec
u2

Cp∆T

Euler Eu
∆p

ρu2

Flow number λF
γ̇

γ̇ − ω
ω: magnitude vorticity tensor

Froude Fr
u2

lq

Galilei Ga
gl3

ν2
Ga = Re2/Fr

Laplace La
∆pd

σ
La = EuCa

Mach Ma u/us us: velocity of sound

Newton Ne
F

ρu2l2
F : force

Ohnesorge Oh
η√
ρσl

Oh = Ca1/2/Re

Reynolds Re
ul

ν
Re =

ρul

η

Strouhal Sr
lf

u
f : frequency

Weissenberg We
N1

τ
N1: Normal stress
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Table 4.3: Base and Secondary Quantities for Heat and Mass Transfer Problems

Name Symbol Π−number Remarks

Biot Bi
hl

k
h: heat transfer coefficient

k: thermal conductivity

Fourier Fo
αt

l2
α: thermal diffusivity

Graetz Gz
ul

α
(d/l) Gz = (d/l)RedPr

Grashof Gr
β∆Tgl3

ν2
Gr = β∆TGa

β: fluid expansion coefficient

Jakob Ja
Cp∆Tsat

hfg
hfg: liquid-vapor enthalpy

Nahme-Griffith Na a∆TBr a: Viscosity temperature dependence

Nusselt Nu
hl

kf
kf : fluid thermal conductivity

Peclet Pe
ul

α
Pe = RePr

Prandtl Pr
ν

α

Rayleigh Ra
β∆Tgl3

αν
Ra = GrPr

Stanton St
h

uρCp
St = Nu/Re/Pr

Mass Biot Bim
hml

D
hm: mass transfer coefficient

D: mass diffusivity

Bodenstein Bo
ul

Dax
Dax: dispersion coefficient

Lewis Le
α

D
Le = Sc/Pr

Schmidt Sc
ν

D
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Figure 4.1: Pressure drop characteristic of a straight smooth tube.

Table 4.4: Base and Secondary Quantities for Problems with Reactions

Name Symbol Π−number Remarks

Arrhenius Arr
E

RT
R: Universal gas constant

E: Energy of activation

Damköhler Da
c∆Hr

ρCpT0

DaI k1τ k1: Reaction rate constant
τ : Mean residence time

DaII k1L
2/D DaII = DaIBo

DaIII
k1τc∆Hrl

2

kT0
DaIII = DaIDa

DaIV
k1c∆Hrl

2

kT0
DaIV = DaIPeDa

Hatta Hat1

√
k1D

kL
1st order reaction

Hat2

√
k2c2D

kL
2nd order reaction

Thiele modulus Φ L
0

k1/D Φ =
√

DaII
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To demonstrate Pawlowski’s matrix transformation technique, an example will be used
in which a forced convection problem, where a fluid with a viscosity η, a density ρ, a
specific heat Cp and a thermal conductivity k, is forced past a surface with a characteristic
size D at an average speed u. The temperature difference between the fluid and the surface
is described by ∆T = Tf − Ts and the resulting heat transfer coefficient is defined by h.

Again, the first step is to generate the relevance list. Here, the relevant list of physical
quantities is:

• Geometric variable: D

• Process variables: u and ∆T

• Physical or material properties: η, ρ, Cp, and k

• Target quantity: h

The first step in generating the dimensionless variables is to set-up a dimensional matrix
with the physical quantities and their respective units,

D u ∆T η ρ Cp k h
M 0 0 0 1 1 0 1 1
L 1 1 0 −1 −3 2 1 0
T 0 −1 0 −1 0 −2 −3 −3
Θ 0 0 1 0 0 −1 −1 −1

(4.10)

The above dimensional matrix must be rearranged and divided into two parts, a square core
matrix, which contains the dimensions pertaining to the repeating variables, and a residual
matrix. Using the rules given in the previous section, the repeating variables are D, η, ρ
and Cp and the dimensional matrix can be written as

η D ρ Cp k u ∆T h
M 1 0 1 0 1 0 0 1
L −1 1 −3 2 1 1 0 0
T −1 0 0 −2 −3 −1 0 −3
Θ 0 0 0 −1 −1 0 1 −1

Core Matrix (4x4)� �� � Residual Matrix (4x4)� �� �
(4.11)

The next step is to transform the core matrix into a unity matrix. Hence, the order of
the physical variables in the core matrix should be such that a minimum amount of linear
transformations is required. Adding the M row to the L and T rows eliminates the non-zero
term below the diagonal in the core matrix, i.e.,

η D ρ Cp k u ∆T h
M 1 0 1 0 1 0 0 1

L + M 0 1 −2 2 2 1 0 1
T + M 0 0 1 −2 −2 −1 0 −2

Θ 0 0 0 −1 −1 0 1 −1

(4.12)

Performing the same operation with the upper portion of the core and residual matrices, for
example, multiplying the T + M row by 2 and add it to the L + M row above, leads to a
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unity core matrix,

η D ρ Cp k u ∆T h
−T + 2Θ 1 0 0 0 1 1 2 1

L + 3M + 2T − 2Θ 0 1 0 0 0 −1 −2 −1
T + M − 2Θ 0 0 1 0 0 −1 −2 0

−Θ 0 0 0 1 1 0 −1 1

(4.13)

With the above matrix set the dimensionless numbers can be generated, in this case, 4
dimensionless groups, by placing the physical quantities in the residual matrix in the nu-
merator and the quantities in the core matrix in the denominator with the coefficients in the
residual matrix as their exponent. Hence,

Π1 =
k

η1D0ρ0C1
p

=
k

ηCp

Π2 =
u

η1D−1ρ−1C0
p

=
uDρ

η

Π3 =
∆T

η2D−2ρ−2C−1
p

=
∆TD2ρ2Cp

η2

Π4 =
h

η1D−1ρ0C1
p

=
hD

ηCp

(4.14)

If different repeating variables had been chosen in the core matrix, as for example η, D,
u and ∆T , one would get

η D u ∆T k ρ Cp h
M 1 0 0 0 1 1 0 1
L −1 1 1 0 1 −3 2 0
T −1 0 −1 0 −3 0 −2 −3
Θ 0 0 0 1 −1 0 −1 −1

(4.15)

and after the matrix transformation

η D u ∆T k ρ Cp h
M 1 0 0 0 1 1 0 1

L + 2M + T 0 1 0 0 0 −1 0 −1
−T − M 0 0 1 0 2 −1 2 2

Θ 0 0 0 1 −1 0 −1 −1

(4.16)

Here, the dimensionless numbers are

Π

1 =

k

η1D0u2∆T−1
=

k∆T

ηu2

Π

2 =

ρ

η1D−1u−1∆T 0
=

uDρ

η

Π

3 =

Cp

η0D0u2∆T−1
=

∆TCp

u2

Π

4 =

h

η1D−1u2∆T−1
=

hD∆T

ηu2

(4.17)
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Taking the two Π-sets generates different dimensionless numbers that are more mean-
ingful. For example, one such group of dimensionless numbers that can be generated is

Nu =
hD

k
=

Π4

Π1
=

Π

4

Π

1

= Nusselt Number

Re =
ρDu

η
= Π2 = Π


2 = Reynolds Number

Br =
ηu2

k∆T
=

Π2
2

Π1Π3
=

1

Π

1

= Brinkman Number

Pr =
ηCp

k
=

1

Π1
=

Π

3

Π

1

= Prandtl Number

(4.18)

EXAMPLE 4.1.

Column buckling problem. Let us consider the classic column buckling problem
depicted in Fig. 4.2.

General buckling in a slender column with a slenderness ratio, L/D, greater than
100, occurs when it is subjected to a critical compressive load. This load is much lower
than the maximum load allowable for compressive yield. Although this problem can
be easily solved using Euler’s equation1, which predicts the critical load applied to
the slender column, it lends itself very well to illustrate dimensional analysis.

For this problem, the relevant physical quantities to be considered are:

• Target quantity: critical buckling load Pcr

• Geometric variables: area moment of inertia I and column length L

• Physical or material properties: Young’s modulus E.

This choice of physical quantities reflects the experience of the authors; however, a
different selection may also lead to satisfactory results. For example, for a column of
circular cross-section, a geometric choice could have been diameter,D, instead of area
moment of inertia, I . However, I is more general and works for every cross-sectional
geometry.

Once the relevant parameters have been chosen, the dimensional matrix subdivided
into core and residual matrix can be obtained. The core matrix is a 3 × 3 matrix,
leaving a residual matrix of size 3×1. Since this will result in only one dimensionless
number, the target value Pcr is left on the residual side, hence, choosing E, L and I
as the repeating quantities

E L I Pcr

M 1 0 0 1
L −1 1 4 1
T −2 0 0 −2

(4.19)

It is clear that this problem does not have a solution as set-up since mass and
time units only appear in one parameter of the repeating quantities. In order to solve
this problem the number of equations can be reduced by reducing the dimensional

1The Euler column formula is stated as Pcr = π2EI/L2 where Pcr is the critical buckling load.
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Figure 4.2: Schematic diagram of a column buckling case.



182 DIMENSIONAL ANALYSIS AND SCALING

quantities from M , L and T to F and L. This reduces the core matrix to 2 × 2, with
a 2 × 2 residual matrix

E L I Pcr

F 1 0 0 1
L −2 1 4 0

(4.20)

After transformation this gives

E L I Pcr

F 1 0 0 1
L + 2F 0 1 4 2

(4.21)

which gives us Π1 = Pcr/L2E and Π2 = I/L4 as the two dimensionless groups.
Arranging the dimensional matrix with Pcr and L in the core matrix, the following
dimensional matrix results

Pcr L I E
F 1 0 0 1
L 0 1 4 −2

(4.22)

which does not need transformation and leads to Π

1 = EL2/Pcr and Π


2 = L4/I ,
the inverse of the previous dimensionless numbers. Now a general relation between
Π1 and Π2 can be written as

Π1 = f(Π2) (4.23)

The relation between the resulting dimensionless groups can be found experimentally.
For this problem, several experiments were performed using soldering rods of various
materials and lengths and determining the critical buckling load for each case. A plot
of Π1 versus Π2, shown in Fig. 4.3 for all the cases with a free-free end condition
results in a straight line with a slope of π2. Hence,

Π1 = π2Π2 or
Pcr

EL2
= π2 I

L4
(4.24)

which is equivalent to Euler’s column buckling formula

Pcr = π2 EI

L2
(4.25)

EXAMPLE 4.2.

Period of oscillation of small drops submerged in an incompatible fluid. Small
drops are often submerged in incompatible fluids. For example, paint drops travel
through air during the paint spraying process or polymer drops are carried inside a
different polymer matrix during the mixing of polymer blends or simply during any
polymer processing operation that involves polymer blends. As a drop is stressed and
deforms during a given operation, it will oscillate due to the spring-effect given by
surface tension (Fig. 4.4).
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Figure 4.4: Schematic diagram of an oscillating drop.
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During blending, for example, the period of oscillation is directly related to the
time scale required to complete the dispersion or break up of the drop. Here, the
relevant physical quantities chosen can be:

• Target quantity: period of oscillation P

• Geometric variables: diameter D

• Physical or material properties: surface tension σs and density ρ

Choosing σs, ρ and D as the terms in the core matrix, and arranging them such
that the diagonal terms are populated we get

ρ D σs P
M 1 0 1 0
L −3 1 0 0
T 0 0 −2 1

(4.26)

Applying the matrix transformation operations results in

ρ D σs P
M + T/2 1 0 0 1/2

L + 3M + 3T/2 0 1 0 3/2
−T/2 0 0 1 −1/2

(4.27)

resulting in Π1 = Pσ
1/2
s /ρ1/2D3/2. It can be shown numerically and experimentally

that Π1 = K is a constant. Hence, the period of oscillation is P = K
0

ρD3/σs.

EXAMPLE 4.3.

Mixing time of two compatible fluids with the same density, viscosity and diffu-
sivity. During mixing operations, it is often important to know when the blend can
be considered homogeneous. In this example, consider t the time it takes for two
compatible fluids of similar density and viscosity to be molecularly homogeneous
[13]. Figure 4.5 depicts the set-up for this mixing operation.

Here, the relevant parameters can be

• Target quantity: mixing time t

• Process variables: rotational speed of the stirrer n, a tank with or without baffles

• Geometric variables: stirrer diameter d

• Physical or material properties: density ρ, diffusivity D and kinematic viscosity ν

The corresponding dimensional matrix can be written as

ρ d D t n ν
M 1 0 0 0 0 0
L −3 1 2 0 0 2
T 0 0 −1 1 −1 −1

(4.28)

From the dimensional matrix, it is clear that the mass unit appears only in the density
term. Hence, density must be eliminated from the list along with the row correspond-
ing to the mass unit, leaving a system with only 2 repeating parameters. In fact, the
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Figure 4.5: Schematic diagram of a stirring tank.

density is fully accounted for in the dynamic viscosity. Choosing ν and n as the
repeating parameters results in

ν n d D t
L 2 0 1 2 0
T −1 −1 0 −1 1

(4.29)

Matrix transformation results in

ν n d D t
L/2 1 0 1/2 1 0

−T − L/2 0 1 −1/2 0 −1
(4.30)

Here, Π1 = dn1/2/ν1/2, Π2 = D/ν and Π3 = nt are the resulting dimensionless
groups. From these three dimensionless numbers can be deduced:

Re =
d2n

ν
= Π2

1 = Reynolds Number

Sc =
ν

D
= Π−1

2 = Schmidt Number

τ = nt = Π3 = Dimensionless mixing time

(4.31)

The plot presented in Fig. 4.6 shows how the Reynolds number plays an effect on
mixing time. The graph shows two sets of points, one for a mixing tank with baffles
and the other for a mixing tank without baffles.
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Figure 4.6: Dimensionless mixing time inside a stirring tank with and without baffles as a function
of Reynolds number.
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Figure 4.7: Schematic diagram of a screw geometry.

EXAMPLE 4.4.

Single screw extruder operating curves. The conveying characteristics of a single
screw extruder can also be analyzed by use of dimensional analysis. Pawlowski [6, 7]
used dimensional analysis and extensive experimental work to fully characterize the
conveying and heat transfer characteristics of single screw extruders, schematically
depicted in Fig. 4.7.

The relevant physical quantities that may be considered when characterizing a
single screw extruder are:

• Target quantities: power consumption P , axial screw force F , pumping pressure ∆p,
temperature of the extrudate expressed in temperature difference ∆T = T − T0, and
volumetric throughput Q
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• Process variables: processing or heater temperature expressed in temperature differ-
ence ∆Tp = Th − T0, and screw speed n

• Geometric variables: screw or inner barrel diameter D, axial screw length L, channel
depth h, and clearance between the screw flight and the barrel δ

• Physical or material quantities: thermal conductivity k, density ρ, specific heat
Cp, viscosity η0 = η(T0), and viscosity temperature dependence a, from η =
η0e

−a(T−T0)

With this list of relevant parameters a dimensional matrix can be set up. Choosing
η0, D, n and ∆T as the repeating parameters the following dimensional matrix is set
up

η0 D n ∆Tp P F ∆p Q Cp ρ k a h L δ ∆T
M 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0
L −1 1 0 0 2 1 −1 3 2 −3 1 0 1 1 1 0
T −1 0 −1 0 −3 −2 −2 −1 −2 0 −3 0 0 0 0 0
Θ 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 0 0 1

(4.32)

which, after transformation, takes the following form

η0 D n ∆Tp P F ∆p Q Cp ρ k a h L δ ∆T
M 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0

L + M 0 1 0 0 3 2 0 3 2 −2 2 0 1 1 1 0
−T − M 0 0 1 0 2 1 1 1 2 −1 2 0 0 0 0 0

Θ 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 0 0 1

(4.33)

Which contains the following dimensionless groups:

Π1 =
P

η0D3n2
Π2 =

F

η0D2n
Π3 =

∆p

η0n

Π4 =
Q

D3n
Π5 =

Cp∆T

D2n2
Π6 =

ρD2n

η0

Π7 =
k∆T

η0D2n2
Π8 = a∆T Π9 =

h

D

Π10 =
L

D
Π11 =

δ

D
Π12 =

∆T

∆Tp

(4.34)

The first three and the last dimensionless groups are extruder operation characteristic
values for power consumption, axial screw force, pumping pressure, and the extrudate
temperature, respectively and depend on the process, material and geometry dimen-
sionless groups. Π4 is a dimensionless volumetric throughput and Π6 the Reynolds
number related to the rotational speed of the screw2. Π9 through Π11 are geometry

2A single screw extruder has two Reynolds numbers. One, Ren = ρD2n/η0, related to the rotational speed
of the screw, and another, ReQ = Qρ/η0D, related to the mass throughput. The ratio of the two gives the
dimensionless throughput ReQ/Ren = Q/D3n.
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dependent dimensionless groups. The remaining are

Br =
η0D

2n2

k∆T
=

1

Π7
= Brinkman Number

Pr =
Cpη0

k
=

Π5

Π7
= Prandtl Number

Na = a∆TBr =
Π8

Π7
= Nahme-Griffith Number

(4.35)

The following relation between the dimensionless extruder operation curves and the
other dimensionless groups can be expressed:

P

η0D3n2
,

F

η0D2n
,

∆p

η0n
,

∆T

∆Tp
= f

#
Q

D3n
, Ren, Br, Pr, Na,

h

D
,
L

D
,

δ

D

*
(4.36)

The above equation can be simplified assuming a Newtonian isothermal problem. For
such a case Pawlowski reduced the above equations to a set of characteristic functions
that describe the conveying properties of a single screw extruder under isothermal and
creeping flow (Re < 100) assumptions. These are written as

∆�p =
∆pD

η0nL
=f

 �Q'
�P =

P

η0n2D2L
=g

 �Q'
�F =

F

η0nLD
=h

 �Q' (4.37)

where ∆p̂, P̂ and F̂ are dimensionless pressure build-up, power consumption and
axial screw force, respectively. These relationships are illustrated in the experimental
measurements performed by Pawlowski [6, 7] and presented in Fig. 4.8.

From the experimental results eqns. (4.37) can be expressed as

1

A1

�Q +
1

A2
∆�p = 1 (4.38)

1

B1

�Q +
1

B2

�P = 1 (4.39)

1

C1

�Q +
1

C2

�F = 1 (4.40)

Equation (4.38) can be rewritten into the more familiar screw characteristic curve
form as

�Q = A1 − A1

A2
∆�p (4.41)

Figure 4.8 also presents an analytical solution for the screw characteristic curve of a
single screw extruder with leakage flow effects. The discrepancies between analytical
solution and experimental results arise due to the fact that the screw curvature, the
flight angle and the fillet radii are not included in the analytical model. The analytical
solution given by Tadmor and Klein [27] was used.
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Figure 4.8: Throughput, power and axial force characteristic curves for a single screw extruder.



190 DIMENSIONAL ANALYSIS AND SCALING

0

-6

-4

-2

2

6

8

1
0

1
2

•10-2

-5 -4 -3 -2 -1 1 2 3 4 5•104

-8

-10

-12

h/D=0.10

h/D=0.07

h/D=0.15

Q/ND3

∆p D
ηNL

Figure 4.9: Screw characteristic curves as a function of channel depth.



DIMENSIONAL ANALYSIS BY MATRIX TRANSFORMATION 191

0

-6

-4

-2

2

6

8

10

12 10
-2

-5 -4 -3 -2 -1 1 2 3 4 5 •10
4

-8

-10

4

δ/D=1.0•10-2

δ/D=0.5•10-2

δ/D=3.0•10-2

Q/ND3

P

ηN2L D2

•

Figure 4.10: Screw characteristic curves as a function of flight clearance.

0.8 10- 2 2 3 4 5 6 7

3

2

10
4

8
6

4

2

10
3

8
6
4

0.5•10-2 0.
07

0.
08

0.
10

0.
12

0.
14

0.180.
16

3.0•10-2

2.5•10-2

2.0•10-2

1.5•10-2

1.0•10-2

δ/
D

h/D

t/D = 0.33

b/D = 0.04

α = 4°A
2

h

b
t

D

α 0.
02

D

α

δ

A1

Figure 4.11: Nomogram summarizing the screw characteristic curves described in eqn. (4.38).



192 DIMENSIONAL ANALYSIS AND SCALING

Through extensive experimental work Pawlowski was able to demonstrate the
effect channel depth, h/D, and flight clearance, δ/D have on the screw characteristic
curve. These are shown in Figs. 4.9 and 4.10, respectively. The nomogram presented
in Fig. 4.11 summarizes the screw characteristic for a specific screw shape with
different channel depths and flight clearances.

4.3 PROBLEMS WITH NON-LINEAR MATERIAL PROPERTIES

Most dimensional analyses deal with problems with linear material properties. However, in
polymer processing, the viscosity is temperature as well as rate of deformation dependent.
In addition, other properties are temperature and pressure dependent. In Example 4.4, one
such non-linearity was introduced, namely the temperature dependance of the viscosity. In
a similar way the rate of deformation dependence of the viscosity may also be introduced.
Choosing the power-law model for the viscosity

η = mγ̇n−1 (4.42)

where n here is the power-law index and in itself is a dimensionless number that represents
the shear thinning (see Chapter 2) in a specific fluid.

In extrusion problems, the rate of deformation is directly proportional to the rotational
speed of the screw. Hence, a characteristic viscosity can be defined as

η = mnn−1 (4.43)

For extrusion problems, Π3 can be written as

Π3 =
∆p

mnn
(4.44)

In addition, the length of the extruder is directly proportional to the amount of pressure
build-up in the pumping section of the extruder. Hence, to fully account for shear thinning
as well as L/D of the extruder the operating curves data for an extruder can be significantly
reduced. This is done by plotting Π4 (throughput) as a function of Π3/Π10 (pressure).

For the screw characteristic curves presented in Fig. 4.12 and in Fig. 4.13 for a conven-
tional and grooved fed extruder, respectively, the reduced graphs are shown in Fig. 4.14. As
can be seen here, each type of extruder can be represented with a single curve for a whole
range of rotational speeds. It is to be noted that in this representation the effect of viscous
dissipation was not included, which may explain why some of the points fall somewhat
outside the fitted lines.

4.4 SCALING AND SIMILARITY

As pointed out at the beginning of the chapter, when designing a new polymer processing
operation to produce a product or to blend or compound a new material, it is often desirable
or necessary to work on a smaller scale such as a laboratory extruder, internal batch mixer,
stirring tank, etc. The evolving model must then be scaled up or down to the actual operation.

When scaling a process, similarity between the various sizes and processes is sought.
As a rule, a perfectly scalable prototype is one that is perfectly similar to its scaled system.
A perfectly similar set of systems is one where all the dimensionless numbers or Π-groups
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Figure 4.12: Screw and die characteristic curves for a 45 mm diameter extruder with an PE-LD.

Figure 4.13: Screw and die characteristic curves for a grooved feed 45 mm diameter extruder with
an PE-LD.



194 DIMENSIONAL ANALYSIS AND SCALING

100

200

300

400

0

0 5 10 15 20 25

∆pD
mN  Ln

m

ρND3

N=185 rpm
N=160 rpm
N=120 rpm
N= 80 rpm

Conventional

Grooved feed
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produced have the same numerical value between each other. A rather simple system,
for which this can be easily demonstrated, is the smooth pipe pressure drop experiments
presented in Section 4.1. Here, the same dimensionless pressure drop, λ, versus Reynolds
number curve was developed using pipes whose diameter varied from 3.61 mm to 126.2 mm
and with viscosities of water and air that differ from each other by a factor of 100. Hence, if
the system is a smooth pipe and the diameter were increased, the velocity determined would
render the same Reynolds number and would then adjust the L/D to render the same λ.
For example, if doubling the diameter of the original system that had a Reynolds number of
5 and therefore a λ = 2.1, would lead to a reduction of the speed by half, and an increase
in the length of the pipe by a factor of 8 result in a perfectly similar system. In a similar
way, scaling between two types of fluids with different viscosities could be achieved. In
such as case, the speed or the diameter as well as the length of the pipe must be adjusted to
have constant dimensionless numbers and therefore perfectly similar systems. Of course,
not all systems are as straight forward as the smooth pipe flow system.

In most cases, scale-up by similarity is not always fully achieved. A process may be
geometrically similar, but not thermally similar. Depending on the type of process involved,
one or several kinds of similarities may be required. These may be geometric, kinematic,
dynamic, thermal, kinetic or chemical similarities.

EXAMPLE 4.5.

Single screw extruder. Let us take the case of a single screw extruder section that
works well when dispersing a liquid additive within a polymer matrix. The single
screw extruder was already discussed in the previous section. However, the effect
of surface tension, which is important in dispersive mixing, was not included in that
analysis. Hence, if we also add surface tension as a relevant physical quantity, it would
add one more column on the dimensional matrix. To find the additional dimensionless
group associated with surface tension, σs, and size of the dispersed phase, R, two
new columns to the matrix in eqn. (4.32) must be added resulting in:

η0 D n ∆Tp σs R
M 1 0 0 0 1 0
L −1 1 0 0 0 1
T −1 0 −1 0 −2 0
Θ 0 0 0 1 0 0

(4.45)

which, after transformation, results in

η0 D n ∆Tp σs R
M 1 0 0 0 1 0

L + M 0 1 0 0 1 1
−T − M 0 0 1 0 1 0

Θ 0 0 0 1 0 0

(4.46)

which results in Π13 = σs/η0Dn and Π14 = R/D.
Combining these dimensionless along with Π9 forms the well known capillary

number as

Ca =
Π14

Π13Π9
=

η0DnR

σsh
=

η0τR

σs
(4.47)

In addition to the geometric parameters of this problem, of interest to us in this
dispersive mixing process are the capillary number, Ca, which must be maintained
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constant in order to achieve the same amount of dispersion and the Brinkman number,
Br, which must also be maintained constant so that the material is not overheated
during mixing. Since our scaling factor, �, is determined by an increase in diameter,

Dscaled = D� (4.48)

all our other dimensionless groups must be adjusted accordingly. Hence, if the
Brinkman number is to remain constant, the rotational speed of the screw must be
scaled by

nscaled =
n

� (4.49)

Since the capillary number dominates the dispersion of the fluids, that dimensionless
group must also be maintained constant. Since the rotational speed and the diameter
have already been dealt with, the only remaining parameter in Ca is the channel
depth, which must be maintained constant. Hence

hscaled = h (4.50)

which leads to a system that is economically unfeasible, since the material throughput
increases proportionally to the increase in diameter, instead of the expected cubic
relation. Hence, there is no geometric similarity between the model and the scaled
process.

The scaling of extruders remains a very complex and controversial art. One form
of scaling was proposed by Maddock [5] in 1959 and is still commonly used today.
He suggested a constant shear rate within the extruder using

Dscaled =D�
nscaled =

n√
�

hscaled =h
√

�
(4.51)

Scaling the Brinkman number using the above scaled parameters, gives

Brscaled = Br� (4.52)

which can potentially lead to viscous dissipation problems. To avoid these problems,
Rauwendaal [9] suggests using,

Dscaled =D�
nscaled =

n

�
hscaled =h

√
�

(4.53)

which gives,

Brscaled = Br (4.54)

It can be seen that neither of these leads to a perfectly similar scaled system.
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Figure 4.15: Schematic diagram of the pultrusion process.

EXAMPLE 4.6.

Curing reaction during the pultrusion process. The pultrusion process, as depicted
in Fig. 4.15, involves a curing reaction as the fibers impregnated with the thermosetting
resin are pulled through a heated die. As the fibers enter the die, the pressure increases
causing the resin to fully impregnate the fibers, eliminating voids in the finished
product. As the material advances through the die, the resin starts to cure, leading
to an increase in viscosity and therefore a reduction of flow. The reaction will often
lead to excessive temperature rises within the part, which in turn will lead to residual
stresses, warpage and material degradation. This reaction process is very similar to
the continuous chemical reaction process in tubular reactors studied by Damköhler
[2].

In the set-up described by Fig. 4.15, the chosen physical quantities can be:

• Target quantity: maximum temperature inside the part due to exothermic reaction
Tmax (∆Tmax = Tmax − T0), pressure rise inside the die ∆p, and pull force F ,

• Geometric variables: length of the die L, and characteristic dimension across the die
d,

• Process variables: pultrusion speed u, initial temperatureT0, die or heater temperature
TH (∆T = TH − T0), inital degree of cure c1, and final degree of cure c2,

• Physical or material properties: viscosity η, density ρ, thermal conductivity k, specific
heat Cp, molecular diffusion coefficient D, and permeability P .

During cure, thermosetting resins undergo a chemical reaction that follows laws of
chemical thermodynamics and reaction kinetics. For simplicity it can be assumed as
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a second order reaction with a reaction rate defined by an Arrhenius relation as

dc

dt
= κ0e

−E/RT c2 (4.55)

The chemical reaction is exothermic with a total heat of reaction per unit volume of
QT . For an initial degree of cure of c1, and a final degree of cure of c2, the total heat
of reaction inside the die is given by (c2 − c1)QT or ∆cQT . The complete relevance
list is given by

(L, d, u, TH , ∆Tmax, ∆T, η, ρ, k, Cp, D, P, ∆cQT , κ0, E/R, ∆p, F ) (4.56)

Following Damköhler’s [2] analysis, M , L, T , Θ, and H can be used as dimen-
sional quantities, where H are units of heat such as Joules or calories. Hence, five
repeating variables must be picked. Next, ρ, L, κ0, T0 and ∆cQT are chosen as
the repeating parameters. Eliminating L/d, ∆Tmax/∆T , TH/∆T and ER/TH as
obvious dimensionless groups reduces the dimensional matrix, which can now be
written as

ρ L κ0 TH ∆cQT u η D Cp k P ∆p F
M 1 0 0 0 0 0 1 0 −1 0 0 1 1
L −3 1 0 0 −3 1 −1 2 0 −1 2 −1 1
T 0 0 −1 0 0 −1 −1 −1 0 −1 0 −2 −2
Θ 0 0 0 1 0 0 0 0 −1 −1 0 0 0
H 0 0 0 0 1 0 0 0 1 1 0 0 0

(4.57)

which, after the transformation, becomes

ρ L κ0 TH ∆cQT u η D Cp k P ∆p F
M 1 0 0 0 0 0 1 0 −1 0 0 1 1

L + 3M + 3H 0 1 0 0 0 1 2 2 0 2 2 2 4
−T 0 0 1 0 0 1 1 1 0 1 0 2 −2
Θ 0 0 0 1 0 0 0 0 −1 −1 0 0 0
H 0 0 0 0 1 0 0 0 1 1 0 0 0

(4.58)

Here the following dimensionless groups can be obtained:

Π1 =
u

Lκ0
Π2 =

η

ρL2κ0
Π3 =

D

L2κ0
Π4 =

CpρTH

∆cQT

Π5 =
kTH

L2κ0∆cQT
Π6 =

P

L2
Π7 =

∆p

ρL2κ2
0

Π8 =
kκ2

0

ρL4

The Π-groups presented above are formed by several known dimensionless num-
bers, such as Re, Pr and Sc. The first dimensionless group, Π1 represents an inverse
mean dimensionless residence time inside the die and can be also written as

�τ = κ0τ (4.59)

where τ = L/u is the mean residence time inside the pultrusion die. Π4 is sometimes
referred to as the Damköhler number, Da which is a reaction kinetic dimensionless
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number. Π5 is the inverse of Damköhler IV number, DaIV , which represents the
ratio of the reaction heat generation to heat conduction. A large DaIV is typical
of a process during which a significant temperature increase occurs due to heat of
reaction. Π6 is a dimensionless permeability related to the fiber impregnation during
the pultrusion process. Π2 and Π3 can be written as

Π2 =
η

ρL2κ0
= (κ0τRed/L)−1

Π3 =
D

L2κ0
= (κ0τReScL/d)−1

(4.60)

Damköhler’s original analysis [2] resulted in four dimensionless numbers which
today are referred to as Damköhler numbers I through to IV and are given by

DaI =
κ0L

η

DaII =
κ0L

2

D

DaIII =
κ0∆cQT L

ρCpT0u
= Daκ0τ

DaIV =
κ0∆cQT d2

kT0
= Daκ0τRePr

(4.61)

Note that DaI is our dimensionless mean residence time and DaII = Π3. DaIII

represents the ratio of the heat of reaction to the heat removed via convection. The ratio
DaIV /DaIII = Ped/L = Gr represents the convection in the machine direction to
the conduction through the thickness of the pultruded product.

Scaling a reactive system as the one described in this example is very complex.
Let us assume that the engineer is scaling a system to a larger one, where similarity
is maintained in the dimensionless group L/D, L/D = idem. In addition, the
engineer is satisfied with the temperature build-up in the center of the part due to
the heat of reaction. Hence, similarity must also be maintained in the dimensionless
group ∆Tmax/∆T . For example, in this case the heater temperature, TH , could
be changed without changing the course of the reaction, knowing that the kinetic
properties ( κ0) of our material cannot be changed, hence, maintaining Da = idem.
Since the thicker part can lead to higher temperatures in the center (∆Tmax) due to
difficulties in conducting the heat of reaction out of our system, it may be desirable
to reduce the mean residence time by speeding up the pultruded product to the point
that τ̂ ��= idem.

In Damköhler’s analysis, which applied to a continuous chemical reaction process
in a tubular reactor, he solved these dilemmas by completely abandoning geometric
similarity and fluid dynamic similarity. In other words, L/D ��= idem and assuming
that the Reynolds number is irrelevant in the scaling. Hence, his scale-up depends
exclusively on thermal and reaction similarity. In our case it is even easier to see
that the Reynolds number is very small and does not play a role in the process. By
allowing to adjust L/D accordingly, there is more flexibility in the scaling problem.
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Figure 4.16: Schematic diagram of polymerization tank draining through a pipe on the bottom of
the tank.

EXAMPLE 4.7.

Draining a polymerization tank. When draining a polymerization tank or a mixing
vessel, a vortex forms, starting at the surface and moving toward the drainage pipe as
schematically depicted in Fig. 4.16.

Eventually, as the level of the liquid inside the tank is low enough, the vortex
is pulled into the pipe, entrapping air bubbles in the drained fluid. In most cases,
air bubbles are not desired, and this situation should therefore be avoided. To better
understand this situation, the engineer must build a model and determine the minimum
fluid level height, Hmin, to avoid air entrainment.

For this specific application a scale model of the system using a model fluid with
a density, ρmodel =1,000 kg/m3, and a Newtonian viscosity, µmodel = 1 Pa-s, should
be built. The full scale operation will have the following characteristics:

• Volumetric flow rate through the drain pipe - Q = 60 to 600 lt/min

• Tank dimensions - tank diameter of D = 3 m and drain diameter of d = 30 cm

• Fluid properties - Density of ρ =1,000 kg/m3 and Newtonian viscosity of µ = 10
Pa-s

A dimensional analysis of the system will result in four dimensionless numbers,
Reynolds number, Froude number and geometric dimensionless parameters given by,

Re =
Qρ

Dµ

Fr =
Q2

D5g

Ĥ =
Hmin

D

d̂ =
d

D

(4.62)
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respectively. If geometric similarity is assumed, the fourth dimensionless group can
be eliminated, d̂ → idem. If dynamic similarity is assumed

Remodel =Retank

Frmodel =Frtank and

Ĥmodel =Ĥtank

(4.63)

Let us evaluate the Reynolds number and the Froude number for the actual process
using Q = 600 lt/min (Q = 0.01 m3/s),

Retank =
0.01(1000)

3(10)
= 0.333 (4.64)

and

Frtank =
(0.01)2

(3)5(9.81)
= 4.2 × 10−8 (4.65)

The arbitrary decision to use a model with D = 0.3 m gives

Qmodel =
DmodelµmodelRemodel

ρ

=
0.3(1)(0.333)

1000

= 0.0001m3/s(100cm3/s)

(4.66)

and

Frmodel =
(0.0001)2

(0.3)5(9.81)
= 4.2 × 10−7 (4.67)

It is noted here that the Froude number has changed and that dynamic similarity cannot
be maintained if both, the model fluid viscosity and the model tank dimensions, are
fixed because two unknowns (D and Q) are required to satisfy the two eqns. (4.64)
and (4.65). Since gravity is a constant (9.81 m/s2) and ρ/µ=1,000 s/m2 is fixed for
the model, obtaining that

Qmodel

Dmodel
= 0.000333 (4.68)

and

Fr =
Q2

model

D5
model

= 4.1 × 10−7 (4.69)

Using the above equations yields a model tank diameter, D = 0.647 m, and drain
flow rate, Q = 0.000215 m3/s (215 cm3/s). Similarly, using the lower flow rate of
60 lt/min, eqns. (4.70) and (4.71) become,

Qmodel

Dmodel
= 0.00000333 (4.70)

and

Fr =
Q2

model

D5
model

= 4.1 × 10−9 (4.71)
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which, as expected, results in the same model tank diameter D = 0.647 m, and a drain
flow rate of Q = 0.0000215m3/s (21.5 cm3/s). Hence, performing the experiments in
the range of 21.5 cm3/s < Q <215 cm3/s is recommended. The observed minimum
fluid level Hmodel

min can then be scaled to the actual H tank
min, using eqn. (4.62) as

H tank
min =

Dtank

Dmodel
Hmodel

min = 4.54Hmodel
min (4.72)

EXAMPLE 4.8.

Scaling approach for thin-wall injection molding. As material costs increase and
weight and space restrictions are tightening, injection molders are facing the problem
of having to inject thinner and thinner parts. This is especially true in the electronics
industry where hand-held electronics housings now measure less than 0.6 mm in
thickness. For example, there are cellphone battery housings that have a thickness of
0.18 mm (less than the thickness of three sheets of paper).

By definition, thin-wall injection molding processes are those with part thicknesses
of less than 1 mm. They are produced using high injection pressures and velocities.
Due to the high pressure requirement,modeling, with commercial computer programs
has not been successful in predicting process physics during molding. Garcı́a et al. [3]
performed a dimensional analysis on injection molding and scaled-down the system
by reducing the thickness of the part. In their analysis, they assumed a non-Newtonian,
shear thinning and pressure dependent viscosity described by,

η = me−a∆T eb∆pγ̇n−1 (4.73)

which, when using a characteristic injection velocity, u, and mold thickness, h, can
be written as,

η = me−a∆T eb∆p

#
2u

h

*n−1

(4.74)

where a and b represent the melt’s sensitivity to temperature (∆T ) and pressure (∆p)
changes, respectively. Furthermore, Garcı́a et al. [3] assumed constant thermal
conductivity, k, density, ρ and specific heat , Cp, and a mold length, L. Their
dimensional analysis resulted in 5 dimensionless groups given by,

Π1 =
∆pL

ηu

Π2 =
uρL

η

Π3 =
h

L

Π4 =
k∆T

ηu2

Π5 =
Cp∆T

u2

(4.75)

where Π2 is the Reynolds number, Π4 is the inverse of the Brinkman number, Π5/Π4

is the Prandtl number and Π1/Π2 is the Euler number. Here, the thickness of the
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part is scaled down from h1 to h2 such that h2 = Rh1. Obviously, in this problem
geometric similarity is not maintained. In their analysis, to control viscous heating
during molding, Garcı́a et al. assumed that Br → idem,

η1u
2
1

k∆T1
=

η2u
2
2

k∆T2
(4.76)

where ∆T1 = ∆T2. As the velocity, we take the equation for slit flow (see Chapter 5)
where ∂p/∂z = ∆p/L,

u =

#
∆ph

me−a∆T eb∆pL

*1/n
h

2 (1/n + 2)
(4.77)

which is used to compute u1 and u2 in eqn.(4.76) to become,

u1

u2
=

∆p
1/n
1 h

(1+n)/n
1 eb∆p2/n

∆p
1/n
2 h

(1+n)/n
2 eb∆p1/n

(4.78)

Combining eqns. (4.76) and (4.78) results in,

∆p
1/n
2 R

(−3n+1)(n2+n) = ∆p
1/n
1 e

2
4(∆p2 − ∆p1)(n + 1)b + b

n(n + 1)

3
5

(4.79)

Garcı́a et al. plotted ∆p2/∆p1 as a function of R for various values of pressure
dependence b. They used a power law index n = 0.3 and two typical low and
high injection pressures of 40 MPa (400 bar) and 100 MPa (1000 bar), respectively.
Figure 4.17 presents a plot of the pressure increase as a function of the down-scaled
thickness, R. As expected, the pressure increases with a decrease in thickness and
with an increase in the pressure dependence coefficient, b. The process that already
begins with a high pressure requirement of 1000 bars,

Problems

4.1 A common way to produce small droplets is to let them drip slowly from a capillary.
The the size of the droplet, Dd, depends on surface tension, σs, the diameter of the
capillary, D, gravity, g, and density of the liquid. Perform a dimensional analysis to
determine the dimensionless groups that govern this process.

a) Set-up the dimensional matrix and rearrange it to form the core and residual
matrices.

b) Solve for the dimensionless numbers. Can you name these dimensionless num-
bers?

c) Derive an expression that predicts drop size and relate this equation to the dimen-
sionless numbers.

4.2 Perform a dimensional analysis on the polymerization tank draining problem of Ex-
ample 4.7 and find the dimensionless groups used in the example.

4.3 Perform a dimensional analysis on the thin wall injection molding scaling problem of
Example 4.8 and find the dimensionless groups used in the example.

a) What other dimensionless numbers, if any, can be derived from this problem?
b) What dimensionless number describes the cooling time in this problem?
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b=5x10-4 bar-1

b=2.5x10-4 bar-1
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Figure 4.17: Pressure increase as a function of thickness reduction for various pressure dependence
coefficients, b, and pressure requirements.

4.4 Perform a dimensional analysis on the heating of a plastic plate inside a convection
oven. Your target value is the heating time to reach certain surface and center temper-
atures.

a) What are the process variables, geometric variables and the physical or material
properties?

b) Setup the dimensional matrix and rearrange it to form the core and residual ma-
trices.

c) Solve for the dimensionless numbers. Can you name these dimensionless num-
bers?

4.5 Go to your university engineering library and find the paper written by Grace in 1982
[4]. What is the relation between Grace’s experiments and the dimensionless groups
in Example 4.5? Attach a copy of the paper to the assignment.

4.6 During dispersion of incompatible fluids such as experienced when making polymer
blends, a long thread of the dispersed phase breaks up due to Raleigh disturbances as
shown in Fig. 4.18.

During this process, the relevant list of quantities is:

• Geometric variable: radius of the thread R and wave length of the disturbance, Λ

• Process variables: rate of deformation γ̇ and type of flow3, λ,

• Physical or material properties: viscosity of the continuous phase, ηc, of the dispersed
phase, ηd, and surface tension, σs.

a) Perform a dimensional analysis and determine the relevant dimensionless groups.

3The flow parameter λ is often referred to as the flow number and is defined by: λ = γ̇
ω+γ̇

. When λ = 0.5 one
has pure shear flow and when λ = 1 one has a stretching flow, which is very desirable for dispersion.
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Figure 4.18: Disintegration of a Newtonian 0.35 mm diameter castor oil thread in a Newtonian
silicone oil matrix. Redrawn from photographs taken every second.

b) Comment on the significance of each dimensionless group.
c) Go to your university engineering library and find the paper written by Grace in

1982 [4]. What is the relation between Grace’s experiments and the dimensionless
groups found in this problem? Attach a copy of the paper to the assignment.

4.7 You are asked to mix materials of different viscosities and densities in a mixing vessel
or tank. Using two stirring tanks of 300 and 600 mm radius, viscosity ratios between
1 and 6,000 and differences in density between 0 and 0.3 g/cm3, Zlokarnik [12] found
a group of dimensionless numbers that were related as follows,

√
nΘRe

Ar1/3 + 3
= 52

where, Ar is the Arquimedes number, Θ the mixing time and n the rotational speed
of the stirrer.

a) Set-up the problem and find the dimensionless numbers found by Zlokarnik.
b) Comment on the significance of each dimensionless number. What do they mean?
c) Go to your university library and find Zlokarnik’s paper. How much spread is

there in the data that was used to determine the relation in the equation above?
Attach a copy of the paper to the assignment.
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CHAPTER 5

TRANSPORT PHENOMENA IN POLYMER
PROCESSING

So divinely is the world organized that
every one of us, in our place and time, is
in balance with everything else.

—Johann Wolfgang von Goethe

The field of transport phenomena is the basis of modeling in polymer processing. This
chapter presents the derivation of the balance equations and combines them with constitutive
models to allow modeling of polymer processes. The chapter also presents ways to simplify
the complex equations in order to model basic systems such as flow in a tube or Hagen-
Poiseulle flow, pressure flow between parallel plates, flow between two rotating concentric
cylinders or Couette flow, and many more. These simple systems, or combinations of them,
can be used to model actual systems in order to gain insight into the processes, and predict
pressures, flow rates, rates of deformation, etc.

5.1 BALANCE EQUATIONS

When solving flow and heat transfer problems in polymer processing we must satisfy
conservation of mass, forces or momentum and energy. Momentum and energy balances,
in combination with material properties through constitutive relations, sometimes result in
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Figure 5.1: Differential frame immersed in a flow and fixed in space.

governing equations that are highly non-linear. This chapter presents the balance equations,
making use of constitutive relations presented in Chapter 2 of this book.

5.1.1 The Mass Balance or Continuity Equation

The most basic aspect of modeling polymer processing is to satisfy the conservation of
mass. When modeling the flow of polymers we can assume incompressibility1, making a
volume balance equivalent to a mass balance. The resulting equation is what is referred to
as the continuity equation. In order to derive the continuity equation we place an imaginary
wire frame of dimensions ∆x×∆y×∆z inside a flowing system as schematically depicted
in Fig. 5.1.

Using the notation used in Fig. 5.1, we can perform a volumetric balance in and out of
the differential element as,

{Volumetric flow rate}in − {Volumetric flow rate}out = 0 (5.1)

or

(uz∆x∆y + uy∆x∆z + ux∆y∆z)−
([uz + ∆uz]∆x∆y + [uy + ∆uy]∆x∆z + [ux + ∆ux]∆y∆z) = 0

(5.2)

which results in,

−∆uz∆x∆y − ∆uy∆x∆z − ∆ux∆y∆z = 0 (5.3)

All balance equations are put in a more amenable form by dividing them by the differential
volume, ∆x∆y∆z , and putting them in terms per unite volume,

∆uz

∆z
+

∆uy

∆y
+

∆ux

∆x
= 0 (5.4)

1From the pvT behavior of a polymer melt we know that, in principle, a polymer is not an incompressible fluid.
However, the changes of volume with respect to pressure variations within a process are not significant enough to
affect the flow field.
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Table 5.1: Continuity Equation

Cartesian Coordinates (x, y, z):
∂ρ

∂t
+

∂

∂x
(ρux) +

∂

∂y
(ρuy) +

∂

∂z
(ρuz) = 0

Cylindrical Coordinates (r, θ, z):
∂ρ

∂t
+

1

r

∂

∂r
(ρrur) +

1

r

∂

∂θ
(ρuθ) +

∂

∂z
(ρuz) = 0

Spherical Coordinates (r, θ, φ):
∂ρ

∂t
+

1

r2

∂

∂r

"
ρr2ur

)
+

1

r sin θ

∂

∂θ
(ρuθ sin θ) +

1

r sin θ

∂

∂φ
(ρuφ) = 0

Letting the size of the differential element go to zero results in,

∂uz

∂z
+

∂uy

∂y
+

∂ux

∂x
=

∂ui

∂xi
= 0 (5.5)

which states that the divergence of the velocity vector must equal zero when the mass or
the volume is conserved. We can also write this equation as,

∇ · u = 0 (5.6)

There are some aspects of polymer processing where the above forms of the continuity
equation cannot be used, such as the flow of the nitrogen during gas assisted injection
molding, the air inside the body during blow molding, the air inside the bubble during
film blowing, and the gas inside a bubble during foaming. For all those cases, we have a
compressible fluid with a variable density and the continuity equation must be written as,

∇ · (ρu) = 0 (5.7)

and for the transient case, we use,

∂ρ

∂t
+ ∇ · (ρu) = 0 (5.8)

Table 5.1 presents the continuity equation in the Cartesian, cylindrical and spherical coor-
dinate systems.

5.1.2 The Material or Substantial Derivative

It is possible to describe a flowing system from a fixed or moving observer point of view.
A fixed observer, such as described in Fig. 5.2, feels the transient effects; a change in time
before the system reaches steady state.

In a non-isothermal flow, a fixed observer feels

∂ux

∂t
,
∂uy

∂t
,
∂uz

∂t
,
∂T

∂t
, etc.

Once the system reaches steady state, the fixed observer feels a constant velocity, temper-
ature and other field variables.
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Figure 5.2: Flow system with a fixed obeserver.
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ux
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Figure 5.3: Flow system with an observer moving with a fluid particle on a given streamline.

On the other hand, a moving observer, such as the one shown in Fig. 5.3, not only feels
the transient effects but also the changes that it undergoes as it travels through a gradient of
velocity, temperature, concentration, etc.

The moving observer, described by a fluid particle, feels

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
=

∂ui

∂t
+ uj

∂ui

∂xj
(5.9)

as the change of ux. Equation (5.6) is often written in short form as Dux/Dt and is referred
to as the material derivative or the substantial derivative.

5.1.3 The Momentum Balance or Equation of Motion

For a momentum balance, we take the same flow system as presented in Fig. 5.1, but
instead of submerging an imaginary frame into the melt, we take an actual fluid element of
dimensions ∆x × ∆y × ∆z (Fig. 5.4) and perform a force balance with the forces acting
on its surfaces.
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Figure 5.4: Differential fluid element traveling along its streamline x-direction forces that act on
its surfaces.

The force balance can be written as5
f = ma (5.10)

where the terms in the equation define force, f , mass, m, and acceleration, a, respectively.
For simplicity, here we will only show the balance of forces in the x-direction. The balance
in the y- and z-directions are left to the reader as a short exercise. The forces acting in
the x-direction on a small fluid element are described in Fig. 5.4. Since the element in
Fig. 5.4 is a fluid particle that moves with the flow, the change of its velocity components
is described by the material derivative. Hence, the force balance in the x-direction is given
by, 5

f = m
Dux

Dt
(5.11)

where m = ρ∆x∆y∆z. The following is a list of x forces that act on the surfaces of the
differential fluid element:

1. σxx∆y∆z

2. (σxx + ∆σxx)∆y∆z

3. −σyx∆x∆z

4. (σyx + ∆σyx)∆x∆z

5. −σzx∆x∆y

6. (σzx + ∆σzx)∆x∆y

7. ρgx∆x∆y∆z

Here, we used the mechanical engineering convention that takes as positive the forces
that are pulling the element (tensile stresses) and negative the forces that push on the surface
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t

t+∆t

Figure 5.5: Effect of deviatoric stresses as the fluid element travels along its streamline.

(compressive stresses). In chemical engineering, the opposite is used since the stress field
is regarded as a flux. A student may use any of the two conventions as long as she or he is
consistent2.

After adding the forces, dividing by the element’s volume, and letting the volume go to
zero, the force balance results in

ρ
Dux

Dt
=

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ ρgx (5.12)

which for all three directions can be written as

ρ
Dui

Dt
=

∂σji

∂xj
+ ρgi

ρ
Du

Dt
=∇ · σ + ρg

(5.13)

In fluid flow, however, it is necessary to split the total stress, σij , into a deviatoric stress,
τij , and a hydrostatic stress, σH . The deviatoric stress is the one that leads to deformation
(Fig. 5.5) and the hydrostatic stress is the one that is described by pressure (Fig. 5.6).

We can write,

σij = σHδij + τij (5.14)

where δij is the Kronecker delta. As the above equation reveals, the hydrostatic stress can
only act in the normal direction of a surface and it is equal in all three direction. Hence, we
can write

σH = −p (5.15)

2The chemical engineering convention has its roots at the University of Wisconsin-Madison. Professor C.L. Tucker
III, the advisor of one of the authors at the University of Illinois at Urbana-Champaign, claimed that he could feel
the stress tensor turn around on the windshield of his car every time he would drive across the Illinois-Wisconsin
border.
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Figure 5.6: Hydrostatic stresses acting on a differential element.

where p defines the pressure. The negative pressure is due to the fact that a positive pressure
causes a compressive stress. The total stress can be written as,

σij = −pδij + τij (5.16)

Using the definition of total stress given above, the momentum balance can now be written
as,

ρ
Dui

Dt
= − ∂p

∂xi
+

∂τji

∂xj
+ ρgi (5.17)

ρ
Du

Dt
= −∇p + ∇ · τ + ρg (5.18)

Table 5.2 presents the momentum balance in terms of deviatoric stress in the Cartesian,
cylindrical and spherical coordinate systems.

These forms of the equation of motion are commonly called the Cauchy momentum
equations. For generalized Newtonian fluids we can define the terms of the deviatoric
stress tensor as a function of a generalized Newtonian viscosity, η, and the components of
the rate of deformation tensor, as described in Table 5.3.

In fluid mechanics, one common description of the deviatoric stress tensor is the New-
tonian model given by,

τij = µγ̇ij (5.19)

which reduces the Cauchy momentum equations to,

ρ
Dui

Dt
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+ ρgi

ρ
Du

Dt
= − ∇p + µ∇2u + ρg

(5.20)

which is often referred to as the Navier-Stokes equations. Table 5.4 presents the full form
of the Navier-Stokes equations.
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Table 5.2: Momentum Equation in terms of τ

Cartesian Coordinates (x, y, z):

ρ

#
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

*
= − ∂p

∂x
+

�
∂

∂x
τxx +

∂

∂y
τyx +

∂

∂z
τzx

�
+ ρgx

ρ

#
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

*
= −∂p

∂y
+

�
∂

∂x
τxy +

∂

∂y
τyy +

∂

∂z
τzy

�
+ ρgy

ρ

#
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

*
= −∂p

∂z
+

�
∂

∂x
τxz +

∂

∂y
τyz +

∂

∂z
τzz

�
+ ρgz

Cylindrical Coordinates (r, θ, z):

ρ

#
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r

*
=

−∂p

∂r
+

�
1

r

∂

∂r
(rτrr)

1

r

∂

∂θ
(τθr) +

∂

∂z
(τzr) − τθθ

r

�
+ ρgr

ρ

#
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+

uruθ

r

*
=

−1

r

∂p

∂θ
+

�
1

r2

∂

∂r

"
r2τrθ

) 1

r

∂

∂θ
(τθθ) +

∂

∂z
(τzθ) +

τθr − τrθ

r

�
+ ρgθ

ρ

#
∂uz

∂t
+ ur

∂uz

∂r
+

uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

*
=

−∂p

∂z
+

�
1

r

∂

∂r
(rτrz)

1

r

∂

∂θ
(τθz) +

∂

∂z
(τzz)

�
+ ρgz

Spherical Coordinates (r, θ, φ):

ρ

!
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uφ

r sin θ

∂ur

∂φ
− u2

θ + u2
φ

r

(
= −∂p

∂r
+�

1

r2

∂

∂r

"
r2τrr

)
+

1

r sin θ

∂

∂θ
(τθr sin θ) +

1

r sin θ

∂

∂φ
(τφr) − τθθ + τφφ

r

�
+ ρgr

ρ

!
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uφ

r sin θ

∂uθ

∂φ
− uruθ − u2

φ cot θ

r

(
= −1

r

∂p

∂θ
+�

1

r3

∂

∂r

"
r3τrθ

)
+

1

r sin θ

∂

∂θ
(τθθ sin θ) +

1

r sin θ

∂

∂φ
(τφθ) +

(τθr − τrθ) − τφφ cot θ

r

�
+ ρgθ

ρ

#
∂uφ

∂t
+ ur

∂uφ

∂r
+

uθ

r

∂uφ

∂θ
+

uφ

r sin θ

∂uφ

∂φ
+

uφur + uθuφ cot θ

r

*
= − 1

r sin θ

∂p

∂φ
+�

1

r3

∂

∂r

"
r3τrφ

)
+

1

r sin θ

∂

∂θ
(τθφ sin θ) +

1

r sin θ

∂

∂φ
(τφφ) +

(τφr − τrφ) + τφθ cot θ

r

�
+ ρgφ
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Table 5.3: Stress Tensor: Generalized Newtonian Fluid

Cartesian Coordinates (x, y, z):

τxx = 2η
∂ux

∂x
τyy = 2η

∂uy

∂y

τzz = 2η
∂uz

∂z
τxy = τyx = η

#
∂ux

∂y
+

∂uy

∂x

*

τyz = τzy = η

#
∂uz

∂y
+

∂uy

∂z

*
τxz = τzx = η

#
∂ux

∂z
+

∂uz

∂x

*
Cylindrical Coordinates (r, θ, z):

τrr = 2η
∂ur

∂r
τθθ = 2η

#
1

r

∂uθ

∂θ
+

ur

r

*

τzz = 2η
∂uz

∂z
τrθ = τθr = η

#
r

∂

∂r

 uθ

r

'
+

1

r

∂ur

∂θ

*

τθz = τzθ = η

#
1

r

∂uz

∂θ
+

∂uθ

∂z

*
τzr = τrz = η

#
∂ur

∂z
+

∂uz

∂r

*
Spherical Coordinates (r, θ, φ):

τrr = 2η
∂ur

∂r
τθθ = 2η

#
1

r

∂uθ

∂θ
+

ur

r

*

τφφ = 2η

#
1

r sin θ

∂uφ

∂φ
+

ur + uθ cot θ

r

*
τrθ = τθr = η

#
r

∂

∂r

 uθ

r

'
+

1

r

∂ur

∂θ

*

τθφ = τφθ = η

#
sin θ

r

∂

∂θ

 uφ

sin θ

'
+

1

r sin θ

∂uθ

∂φ

*
τφr = τrφ = η

#
1

r sin θ

∂ur

∂φ
+ r

∂

∂r

 uφ

r

'*
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Table 5.4: Navier-Stokes Equations

Cartesian Coordinates (x, y, z):

ρ

#
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

*
= − ∂p

∂x
+ µ

�
∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

�
+ ρgx

ρ

#
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

*
= −∂p

∂y
+ µ

�
∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2

�
+ ρgy

ρ

#
∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

*
= −∂p

∂z
+ µ

�
∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

�
+ ρgz

Cylindrical Coordinates (r, θ, z):

ρ

#
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r

*
=

−∂p

∂r
+ µ

�
∂

∂r

#
1

r

∂

∂r
(rur)

*
+

1

r2

∂2ur

∂θ2
+

∂2ur

∂z2
− 2

r2

∂uθ

∂θ

�
+ ρgr

ρ

#
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+

uruθ

r

*
=

−1

r

∂p

∂θ
+ µ

�
∂

∂r

#
1

r

∂

∂r
(ruθ)

*
+

1

r2

∂2uθ

∂θ2
+

∂2uθ

∂z2
+

2

r2

∂ur

∂θ

�
+ ρgθ

ρ

#
∂uz

∂t
+ ur

∂uz

∂r
+

uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

*
=

−∂p

∂z
+

�
∂

∂r

#
1

r

∂

∂r
(ruz)

*
+

1

r2

∂2uz

∂θ2
+

∂2uz

∂z2

�
+ ρgz

Spherical Coordinates (r, θ, φ):

ρ

!
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uφ

r sin θ

∂ur

∂φ
− u2

θ + u2
φ

r

(
= −∂p

∂r
+

µ

�
1

r2

∂2

∂r2

"
r2ur

)
+

1

r2 sin θ

∂

∂θ

#
sin θ

∂ur

∂θ

*
+

1

r2 sin2 θ

∂2ur

∂φ2

�
+ ρgr

ρ

!
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uφ

r sin θ

∂uθ

∂φ
− uruθ − u2

φ cot θ

r

(
= −1

r

∂p

∂θ
+

µ

�
1

r2

∂

∂r

#
r2 ∂uθ

∂r

*
+

1

r2

∂

∂θ

#
1

sin θ

∂

∂θ
(uθ sin θ)

*
+

1

r2 sin2 θ

∂2uθ

∂φ2
+

2

r2

∂ur

∂θ
− 2 cot θ

r2 sin θ

∂uφ

∂φ

�
+ ρgθ

ρ

#
∂uφ

∂t
+ ur

∂uφ

∂r
+

uθ

r

∂uφ

∂θ
+

uφ

r sin θ

∂uφ

∂φ
+

uφur + uθuφ cot θ

r

*
= − 1

r sin θ

∂p

∂φ
+

µ

�
1

r2

∂

∂r

#
r2 ∂uφ

∂r

*
+

1

r2

∂

∂θ

#
1

sin θ

∂

∂θ
(uφ sin θ)

*
+

1

r2 sin2 θ

∂2uφ

∂φ2
+

2

r2 sin θ

∂ur

∂φ
+

2 cot θ

r2 sin θ

∂uθ

∂φ

�
+ ρgφ
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Figure 5.7: Heat flux across a differential fluid element during flow.

With a few exceptions one can say that a flowing polymer melt does not follow the
model presented in eqn. (5.20). To properly model the flow of a polymer we must take into
account the effects of rate of deformation, temperature and often time, making the partial
differential equations that govern a system non-linear.

5.1.4 The Energy Balance or Equation of Energy

An energy balance around a moving fluid element, as shown in Fig. 5.5, can be written as,

ρCp
DT

Dt
= −∆qx

∆x
− ∆qy

∆y
− ∆qz

∆z
+ Q̇ + Q̇viscous heating (5.21)

where the left hand term represents the transient and convective effects and the right hand
the conduction terms, arbitrary heat source (Q̇), and viscous dissipation (Q̇viscous heating).
Using Fourier’s law for heat conduction

qi = −ki
∂T

∂xi
(5.22)

and assuming an isotropic material, kx = ky = kz = k, we can write

ρCp
DT

Dt
= k

#
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

*
+ Q̇ + Q̇viscous heating (5.23)

As an illustration, we will derive the viscous dissipation terms in the energy balance using
a simple shear flow system such as the one shown in Fig. 5.6.

Here, the stresses within the system can be calculated using

τyx = µ
∂ux

∂y
(5.24)

which in terms of the parameters depicted in Fig. 5.6, such as force, F , area, A, gap height,
h and plate speed, u0, can be written as

F

A
= µ

u0

h
(5.25)
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Polymer

F

u0

A

µ

h

Figure 5.8: Schematic of a simple shear flow system used to illustrate viscous dissipation terms in
the energy balance.

In the system, the rate of energy input is given by

Fu0 = µ
u0

h
Au0 (5.26)

and the rate of energy input per unit volume is represented by

Fu0

Ah
= µ

 u0

h

'  u0

h

'
(5.27)

or

Qviscous heating = µ

#
∂ux

∂y

* #
∂ux

∂y

*
(5.28)

From the above equation, we can deduce that for a Newtonian fluid the general term for
viscous dissipation is given by µ(γ̇ : γ̇), where

γ̇ : γ̇ =

35
i=1

35
j=1

γ̇ij γ̇ji (5.29)

and for a non-Newtonian material, the viscous heating is written as τ : γ̇. Hence, the
energy balance becomes,

ρCp
∂T

∂t
+ ρCpuj

∂T

∂xj
=

∂

∂xj
k

∂T

∂xj
+ τij γ̇ji + Q̇

ρCp
∂T

∂t
+ ρCpu · ∇T =∇ · k∇T + τ : γ̇ + Q̇

(5.30)

Table 5.5 presents the complete energy equation in the Cartesian, cylindrical and spheri-
cal coordinate systems. Table 5.6 defines the viscous dissipation terms for an incompressible
Newtonian fluid.
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Table 5.5: Energy Equation for a Newtonian Fluid with Constant Properties

Cartesian Coordinates (x, y, z):

ρCp

#
∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z

*
= k

�
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

�
+ µΦv

Cylindrical Coordinates (r, θ, z):

ρCp

#
∂T

∂t
+ ur

∂T

∂r
+

uθ

r

∂T

∂θ
+ uz

∂T

∂z

*
= k

�
1

r

∂

∂r

#
r
∂T

∂r

*
+

1

r2

∂2T

∂θ2
+

∂2T

∂z2

�
+ µΦv

Spherical Coordinates (r, θ, φ):

ρCp

#
∂T

∂t
+ ur

∂T

∂r
+

uθ

r

∂T

∂θ
+

uφ

r sin θ

∂T

∂φ

*
=

k

�
1

r2

∂

∂r

#
r2 ∂T

∂r

*
+

1

r2 sin θ

∂

∂θ

#
sin θ

∂T

∂θ

*
+

1

r2 sin2 θ

∂2T

∂φ2

�
+ µΦv

Table 5.6: Viscous Dissipation Function Φv for Incompressible Newtonian Fluids

Cartesian Coordinates (x, y, z):

Φv = 2

�#
∂ux

∂x

*2

+

#
∂uy

∂y

*2

+

#
∂uz

∂z

*2
�

+�
∂ux

∂y
+

∂uy

∂x

�2

+

�
∂uz

∂y
+

∂uy

∂z

�2

+

�
∂ux

∂z
+

∂uz

∂x

�2

Cylindrical Coordinates (r, θ, z):

Φv = 2

�#
∂ur

∂r

*2

+

#
1

r

∂uθ

∂θ
+

ur

r

*2

+

#
∂uz

∂z

*2
�

+�
r

∂

∂r

 uθ

r

'
+

1

r

∂ur

∂θ

�2

+

�
1

r

∂uz

∂θ
+

∂uθ

∂z

�2

+

�
∂ur

∂z
+

∂uz

∂r

�2

Spherical Coordinates (r, θ, φ):

Φv = 2

�#
∂ur

∂r

*2

+

#
1

r

∂uθ

∂θ
+

ur

r

*2

+

#
1

r sin θ

∂uφ

∂φ
+

ur + uθ cot θ

r

*2
�

+�
r

∂

∂r

 uθ

r

'
+

1

r

∂ur

∂θ

�2

+

�
sin θ

r

∂

∂θ

 uφ

sin θ

'
+

1

r sin θ

∂uθ

∂φ

�2

+�
1

r sin θ

∂ur

∂φ
+ r

∂

∂r

∂

∂r

 uφ

r

'�2
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5.2 MODEL SIMPLIFICATION

In order to be able to obtain analytical solutions we must first simplify the balance equations.
Although the balance equations are fundamental and rigorous, they are nonlinear, non-
unique, complex and difficult to solve. In other words, they do not have a general solution
and so far, only particular solutions for special problems have been found.

Therefore, the balance equations must be simplified sufficiently in oder to arrive at an
analytical solution of the problem under consideration. The simplifications done on a
system are typically based on the scale of the variables, an estimate of its maximum order
of magnitude. As discussed in the previous chapter, scaling is the process of identifying the
correct order of magnitude of the various unknowns. These magnitudes are often referred to
as characteristic values, i.e., characteristic times, characteristic length, etc. When a variable
is scaled with respect to its characteristic magnitude (scale) the new dimensionless variable
will be of order 1, i.e. (∼ O(1)). For example, if we scale the x-velocity field, ux, within
a system, with respect to a characteristic velocity, U0, we can generate a dimensionless
velocity, or scaled velocity, given by

ûx =
ux

U0
(5.31)

Using the above relation, the original variable can be expressed in terms of the dimensionless
variable and its characteristic value as,

ux = U0ûx (5.32)

By substituting the new variables into the original equations we will acquire information
that allows the simplification of a specific model. Length and time scales, for example, can
lead to geometrical simplifications such as a reduction in dimensionality.

EXAMPLE 5.1.

Object submerged in a fluid. Consider an object with a characteristic length L and
a thermal conductivity k that is submerged in a fluid of constant temperature T∞ and
convection coefficient h (see Fig.5.9). If a heat balance is made on the surface of the
object, it must be equivalent to the heat by conduction, i.e.,

−k
∂T

∂n

77
S

= h (TS − T∞) (5.33)

The maximum value possible for the temperature gradient must be the difference
between the central temperature, Tc, and the surface temperature, TS ,

∆T ∼ Tc − TS (5.34)

giving us a characteristic temperature difference3. Here, the length variable is the
normal distance ∆n and has a characteristic length L. We can now approach the
scaling of this problems in two ways. The first and quickest is to simply substitute the
variables into the original equations, often referred to a order of magnitude analysis.

3Characteristic temperatures are always given in terms of temperature differences. For example, the characteristic
temperature of the melt of an amorphous polymer in an extrusion operation is ∆T = Th − Tg , or the difference
between the heater temperature and the glass transition temperature of the polymer.
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L
T∞

TS

Tc

h

k

Figure 5.9: Schematic of a body submerged in a fluid.

The second is to express the original equations in terms of dimensionless variables.
The order of magnitude analysis results in a scaled conduction given by,

k
∂T

∂n

77
S

∼ k
Tc − TS

L
(5.35)

reducing the problem to,

k
Tc − TS

L
∼ h (TS − T∞) (5.36)

or in a more convenient way,

Bi =
hL

k
∼ Tc − TS

TS − T∞
(5.37)

where Bi is the Biot number.
When Bi � 1 , the solid can be considered isothermal, which means that we

reduced the dimensionality of the problem from (x, y, z), to a zero dimensional or
lumped model [2, 11]. On the other hand, if Bi � 1, the fluid can be considered
isothermal and TS = T∞, which changes the convection boundary condition to a
thermal equilibrium condition.

The same can be deduced if we scale the problem by expressing the governing
equations in dimensionless form. Again, we choose the same characteristic values
for normal distance and temperature, allowing us to generate dimensionless variables
as

T̂ =
T

Tc − TS
, n̂ =

n

L
(5.38)

which can be solved to give,

T = (Tc − TS)T̂ , n = Ln̂ (5.39)

Substituting these into the original equations results in,

− k

Lh

∂T̂

∂n̂
=

TS − T∞
Tc − TS

(5.40)
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or,

Bi
∂T̂

∂n̂
= Θ (5.41)

Again, since ∂T̂/∂n̂ is of order one the same analysis done above applies here.

5.2.1 Reduction in Dimensionality

The number of special coordinates, or dimensionality of a problem, can be reduced using
three basic strategies: symmetry, aspect ratio and series resistances.

Symmetry is the easiest to apply. It is based on the correct selection of the coordinate
system for a given problem. For example, a temperature field with circular symmetry can
be described using just the coordinates (r, z), instead of (x, y, z). In addition, symmetry
can help to get rid of special variables that are not required by the conservation equations
and interfacial conditions. For example, the velocity field in a tube, according to the Navier-
Stokes and continuity equations, can have the functional form uz(r).

The ratio of two linear dimensions of an object is called the aspect ratio. There are
a number of possible simplifications when the aspect ratio of an object or region is large
(or small). For example, for the classical fin approximation, the thickness of the fin is
small compared with the length, therefore the temperature will be assumed to change in the
direction of the length only.

Finally, it is possible to reduce the dimensionality of a problem by determining which rate
processes in series is the controlling step. As shown for Bi � 1, the convection controls the
cooling process and conduction is so fast that the solid is considered isothermal, reducing
the dimensionality from (x, y, z) to a zero dimensional problem or lumped mass method.

Characteristic times are a key factor in formulating conduction or diffusion models,
because they determine how fast a system can respond to changes imposed at a boundary.
In other words, if the temperature or concentration is perturbed at some location, it is
important to estimate the finite time required for the temperature or concentration changes
to be noticed at a given distance from the original perturbation. The time involved in a
stagnant medium is the characteristic time for conduction or diffusion, therefore this is the
most widely used characteristic time in transport models [3, 6].

EXAMPLE 5.2.

Temperature development in an extruder channel during melting. In this ex-
ample, we illustrate reduction in dimensionality of the energy equation to find an
equation that would reveal the change of the melt temperature through the gap be-
tween the solid bed and extruder barrel during melting, as schematically depicted in
Fig. 5.10. To simplify the problem, we assume to have constant properties and a
Newtonian viscosity.

The thickness between the solid and the barrel is small compared to the screw
channel, which indicates that a reduction in dimensionality can be performed. Ini-
tially, it can be assumed that the velocity field is unidirectional, i.e. ux(y) . The
energy equation is then reduced to,

ρCpux
∂T

∂x
= k

#
∂2T

∂x2
+

∂2T

∂y2

*
+ µ

#
∂ux

∂y

*2

(5.42)
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Figure 5.10: Schematic diagram of the melt film during melting in extruders.

By choosing characteristic variables for temperatures, velocities and lengths we can
reduce the dimensionality even further. The temperature is scaled based on the max-
imum gradient, the length with the gap thickness and screw channel depth and the
velocity with the barrel x-velocity,

θ =
T − Tg

Tb − Tg
, η =

y

δ
,

ξ =
x

L
, ū =

ux

ubx

and the energy equation will be,

ρCpubx
δ2

L
ū

∂θ

∂ξ
=

δ2

L2

∂2θ

∂ξ2
+

∂2θ

∂η2
+

µu2
bx

k(Tb − Tg)

#
∂ū

∂η

*2

(5.43)

which indicates that for the small aspect ratio, δ/L, two extra terms can be neglected,
the conduction and convection in the x-direction,

∂θ2

∂η2
+

µu2
bx

k(Tb − Tg)

#
∂ū

∂η

*2

= 0 (5.44)

The last step is to compare the two remaining terms: conduction and viscous
dissipation. The two derivatives, according to the scaling parameter, are of order
1. The remaining term, Br = µu2

bx/k(Tb − Tg), is the Brinkman number, which
indictates whether the viscous dissipation is important or not. For Br � 1, the
conduction is dominant, while for Br > 1, the viscous dissipation has to be included,
which is the case in most polymer processing operations.

5.2.2 Lubrication Approximation

lubrication approximation Now, let’s consider flows in which a second component and the
inertial effects are nearly zero. Liquid flows in long, narrow channels or thin films often
have these characteristics of being nearly unidirectional and dominated by viscous stresses.

Let’s use the steady, two-dimensional flow in a thin channel or a narrow gap between
solid objects as schematically represented in Fig. 5.11. The channel height or gap width



224 TRANSPORT PHENOMENA IN POLYMER PROCESSING

x
y

h(x)

Lx

p0
pL

U

Ly

Figure 5.11: Schematic diagram of the lubrication problem.

varies with the position, and there may be a relative motion between the solid surfaces. This
type of flow is very common for the oil between bearings. The original solution came from
the field of tribology and is therefore often referred to as the lubrication approximation.

For this type of flow, the momentum equations (for a Newtonian fluid) are reduced to
the steady Navier-Stokes equations, i.e.

∂ux

∂x
+

∂uy

∂y
= 0 (5.45)

ρ

#
ux

∂ux

∂x
+ uy

∂ux

∂y

*
= − ∂p

∂x
+ µ

#
∂2ux

∂x2
+

∂2ux

∂y2

*
ρ

#
ux

∂uy

∂x
+ uy

∂uy

∂y

*
= − ∂p

∂y
+ µ

#
∂2uy

∂x2
+

∂2uy

∂y2

* (5.46)

The lubrication approximation depends on two basic conditions, one geometric and
one dynamic. The geometric requirement is revealed by the continuity equation. If Lx

and Ly represents the length scales for the velocity variations in the x- and y-directions,
respectively, and let U and V be the respective scales for uz and uy . From the continuity
equation we obtain

V

U
∼ Ly

Lx
(5.47)

In order to neglect pressure variation in the y-direction all the terms in the y−momentum
equation must be small, in other words V/U � 1. From the continuity scale analysis we
get that the geometric requirement is,

Ly

Lx
� 1 (5.48)

which holds for thin films and channels. The consequences of this geometric constrain in
the Navier-Stokes equations are,

∂p

∂y
� ∂p

∂x
and

∂2ux

∂x2
� ∂2ux

∂y2
(5.49)
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In addition, the continuity equation also tells us that the two inertia terms in the x-momentum
equation are of similar magnitude, i.e.,

uy
∂ux

∂y
∼ V U

Ly
∼ U2

Lx
∼ ux

∂ux

∂x
(5.50)

These inertia effects can be neglected, i.e.,

ρux
∂ux

∂x
� µ

∂2ux

∂y2
and ρuy

∂ux

∂x
� µ

∂2ux

∂y2
(5.51)

only if ρU2/Lx � µU/L2
y or#

ρULy

µ

* #
Ly

Lx

*
= Re

#
Ly

Lx

*
� 1 (5.52)

which is the dynamic requirement for the lubrication approximation. The x-momentum
(Navier-Stokes) equation is then reduced to,

∂2ux

∂y2
=

1

µ

dp

dx
(5.53)

for p = p(x) only.

5.3 SIMPLE MODELS IN POLYMER PROCESSING

There are only a few exact or analytical solutions of the momentum balance equations, and
most of those are for situations in which the flow is unidirectional; that is, the flow has only
one nonzero velocity component. Some of these are illustrated below. We end the section
with a presentation of the , which today is widely accepted to model the flows that occur
during mold filling processes.

5.3.1 Pressure Driven Flow of a Newtonian Fluid Through a Slit

One of the most common flows in polymer processing is the pressure driven flow between
two parallel plates. When deriving the equations that govern slit flow we use the notation
presented in Fig. 5.12 and consider a steady fully developed flow; a flow where the entrance
effects are ignored.

This flow is unidirectional, that is, there is only one nonzero velocity component. The
continuity for an incompressible flow is reduced to,

duz

dz
= 0 (5.54)

The z-momentum equation for a Newtonian, incompressible flow (Navier-Stokes equations)
is,

−∂p

∂z
+ µ

∂2uz

∂y2
= 0 (5.55)

and the x- and y-components of the equations of motion are reduced to,

− ∂p

∂x
= −∂p

∂y
= 0 (5.56)
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Figure 5.12: Schematic diagram of pressure flow through a slit.

This relation indicates that for this fully developed flow, the total pressure is a function of
z alone. Additionally, since u does not vary with z, the pressure gradient, ∂p/∂z, must be
a constant. Therefore,

dp

dz
=

∆p

L
(5.57)

The momentum equation can now be written as,

1

µ

∆p

L
=

∂2uz

∂y2
(5.58)

As boundary conditions, two no-slip conditions given by uz(±h/2) = 0 are used in this
problem. Integrating twice and evaluating the two integration constants with the boundary
conditions gives,

uz(y) =
h2

8µ

dp

dz

�
1 −

#
2y

h

*2
�

=
h2

8µ

∆p

L

�
1 −

#
2y

h

*2
� (5.59)

Also note that the same profile will result if one of the non-slip boundary conditions is
replaced by a symmetry condition at y = 0, namely duz/dy = 0. The mean velocity in the
channel is obtained integrating the above equation,

ūz =
1

h

� h

0

uz(y)dy =
h2

12µ

dp

dz
(5.60)

and the volumetric flow rate,

Q = hWūz =
Wh3∆p

12µL
(5.61)

where W is the width of the channel.
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Figure 5.13: Schematic diagram of pressure flow through a tube.

5.3.2 Flow of a Power Law Fluid in a Straight Circular Tube
(Hagen-Poiseuille Equation)

Tube flow is encountered in several polymer processes, such in extrusion dies and sprue
and runner systems inside injection molds. When deriving the equations for pressure driven
flow in tubes, also known as Hagen-Poiseuille flow, we assume that the flow is steady, fully
developed, with no entrance effects and axis-symmetric (see Fig.5.13).

Thus, we have uz = uz(r), ur = uθ = 0 and p = p(z). With this type of velocity field,
the only non-vanishing component of the rate-of-deformation tensor is the zr-component.
It follows that for the generalized Newtonian flow, τzr is the only nonzero component of
the viscous stress, and that τzr = τzr(r). The z-momentum equation is then reduced to,

1

r

d

dr
(rτzr) =

dp

dz
(5.62)

However, since p = p(z) and τzr = τzr(r), the above equation is satisfied only if both
sides are constant and can be integrated to obtain,

rτzr =
dp

dz

r2

2
+ c1 (5.63)

At this point, a symmetry argument at r = 0 leads to the conclusion that τzr = 0 because
the stress must be finite. Hence, we must satisfy c1 = 0. For a power law fluid it is found
that,

τzr = −m

7777duz

dr

7777n (5.64)

The minus sign in this equation is required due to the fact that the pressure flow is in the
direction of the flow (dp/dz < 0), indicating that τzr ≤ 0. Combining the above equations
and solving for the velocity gradient gives

duz

dr
= −

#
− 1

2m

dp

dz

*1/n

r1/n (5.65)

Integrating this equation and using the no-slip condition,at r = R, to evaluate the integration
constant, the velocity as a function of r is obtained,

uz(r) =

#
3n + 1

n + 1

* �
1 −

 r

R

'(n+1)/n
�

ūz (5.66)
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Figure 5.14: Schematic diagram of slightly tapered tube.

where the mean velocity, ūz , is defined as,

ūz =
2

R2

� R

0

uzrdr =

#
n

3n + 1

* �
−Rn+1

2m

dp

dz

�1/n

(5.67)

Finally, the volumetric flow rate is given by

Q = πR2ūz =

#
nπ

3n + 1

* �
−R3n+1

2m

dp

dz

�1/n

=

#
nπ

3n + 1

* �
−R3n+1

2m

∆p

L

�1/n
(5.68)

5.3.3 Flow of a Power Law Fluid in a Slightly Tapered Tube

Based on the lubrication approximation, the momentum equations to solve the flow through
a slightly tapered tube are the same equations that we use to solve for the equations that
pertain to the straight circular tube, i.e.,

1

r

d

dr
(rτzr) =

dp

dz
(5.69)

This means that the solution for the velocity is the same and is applied at each distance
z down the tube. Replacing R by R(z) modifies the equations to,

uz(r) =
R(z)

1 + 1/n

#
R(z)∆p

2mL

*1/n �
1 −

 r

R

'1/n+1
�

(5.70)

R(z) is obtained from the geometry,

R(z) = −
#

R0 − RL

L

*
z + R0 (5.71)

The volumetric flow rate will be,

Q =

#
πR3(z)

1/n + 3

* #
R(z)∆p

2mL

*
(5.72)
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Figure 5.15: Schematic diagram of pressure flow through an annulus.

This equation gives a first order differential equation for the pressure,#
Q (1/n + 1)

π

*n
R−3n−1

2m
= −dp

dz
(5.73)

which can be now integrated between p = p0 at z = 0 and p = pL at z = L, i.e.,

p0 − pL =
2mL

3n

�
Q

π

#
1

n + 3

*�n #
R−3n

L − R−3n
0

R0 − RL

*
(5.74)

5.3.4 Volumetric Flow Rate of a Power Law Fluid in Axial Annular Flow

Annular flow is encountered in pipe extrusion dies, wire coating dies and film blowing dies.
In the problem under consideration, a Power law fluid is flowing through an annular gap
between two coaxial cylinders of radii κR and R, with κ < 1 as schematically depicted in
Fig. 5.15. The maximum in the velocity profile is located at r = βR, where β is a constant
to be determined. Due to the geometrical characteristics and ignoring entrance effects, the
flow is unidirectional, i.e., u = (ur, uθ, uz) = (0, 0, uz(r)).

The z-momentum equation is then reduced to,

1

r

d

dr
(rτzr) =

dp

dz
(5.75)

Integrating this equation we obtain,

rτzr =
dp

dz

r2

2
+ c1 (5.76)

The constant c1 cannot be set equal to zero, because κR ≤ r ≤ R. However, β can be used
rather than c1,

rτzr =
∆pR

2L

#
r

R
− β2 R

r

*
(5.77)
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which makes β the new integration constant. The power-law expression for the shear stress
is given by

τzr = −m

#
duz

dr

*n

if κR ≤ r ≤ βR

τzr = m

#
−duz

dr

*n

if βR ≤ r ≤ R

(5.78)

Substitution of these expressions into the momentum equation leads to differential equations
for the velocity distribution in the two regions. Integrating these equations with boundary
conditions, uz = 0 at r = κR and at r = R, leads to

uz = R

�
∆pR

2mL

�1/n � ξ

κ

#
β2

ξ

− ξ


*1/n

dξ
 if κ ≤ ξ ≤ β

uz = R

�
∆pR

2mL

�1/n � 1

ξ

#
ξ
 − β2

ξ


*1/n

dξ
 if β ≤ ξ ≤ 1

(5.79)

where ξ = r/R. In order to find the parameter β, the above equations must match at the
location of the maximum velocity,� ξ

κ

#
β2

ξ

− ξ


*1/n

dξ
 =

� 1

ξ

#
ξ
 − β2

ξ


*1/n

dξ
 (5.80)

This equation is a relation between β, the geometrical parameter κ and the power-law
exponent n. The volumetric flow rate in the annulus becomes,

Q = 2π

� R

κR

uzrdr

= πR3

�
∆pR

2mL

�1/n � 1

κ

77β2 − ξ
2
771/n+1

ξ
−1/ndξ 

=
πR3+1/n

1/n + 3

#
∆p

2mL

*1/n �"
1 − β2

)1+1/n − κ1−1/n
"
β2 − κ2

)1+1/n
�

(5.81)

5.3.5 Radial Flow Between two Parallel Discs − Newtonian Model

Radial flow between parallel discs is a very common flow type encountered in polymer
processing, particularly during injection mold filling. In this section, we seek the velocity
profile, flow rates and pressure for this type of flow using the notation presented in Fig. 5.16.

Let us consider a Newtonian fluid that is flowing due to a pressure gradient between two
parallel disks that are separated by a distance 2h. The velocity and pressure fields that we
will solve for are ur = ur(z, r) and p = p(r). According to the Newtonian fluid model,
the stress components are,

τrr = − 2µ
∂ur

∂r

τθθ = − 2µ
ur

r

τrz = τzr = − µ
∂ur

∂z

(5.82)
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Figure 5.16: Schematic diagram of a center-gated disc-shaped mold during filling.

The continuity equation is reduced to,

1

r

∂

∂r
(rur) = 0 (5.83)

which indicates that rur must be a function of z only, f(z). Therefore, from the continuity
equation,

ur =
f(z)

r
(5.84)

the stresses are reduced to,

τrr = − 2µ
f(z)

r2

τθθ = + 2µ
f(z)

r2

τrz = τzr = − µ

r

df(z)

dz

(5.85)

Neglecting the inertia effects, the momentum equation becomes,

−1

r

∂

∂r
(rτrr) − ∂τzr

∂z
+

τθθ

r
− ∂p

∂r
= 0 (5.86)

which is reduced to

−dp

dr
+

µ

r

d2f(z)

dz2
= 0 (5.87)

This equation can be integrated, because the pressure is only a function of r. The constants
of integration can be solved for by using the following boundary conditions

f(±h) = 0 (5.88)

For the specific case where the gate is at r1 and the front at r2, the velocity field is given by,

ur (r, z) =
h2∆p

2µr ln (r2/r1)

�
1 −

 z

h

'2
�

(5.89)
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The volumetric flow rate is found by integrating this equation over the cross sectional area,

Q =

� 2π

0

� +h

−h

uz (r, z) rdθdz =
4πh3∆p

3µ ln (r2/r1)
(5.90)

The above equation can also be used to solve for pressure drop from the gate to the flow
front,

∆p =
3Qµ ln (r2/r1)

4πh3
(5.91)

∆p is the boundary condition when solving for the pressure distribution within the disc, by
integrating eqn. (5.87),

p =
∆p ln(r/r2)

ln(r1/r2)
(5.92)

In order to predict the position of the flow front, r2, as a function of time, we first perform
a simple mass (or volume) balance,

2hπ(r2
2 − r2

1) = Qt (5.93)

which can be solved for r2 as,

r2 =

1
Qt

2hπ
+ r2

1 (5.94)

The above equations can now be used to plot the pressure requirement, or pressure at the
gate, for a given flow rate as a function of time. They can also be used to plot for the pressure
distribution within the disc at various points in time or flow front positions. In addition, the
same equations can be used to solve for flow rates for given injection pressures.

EXAMPLE 5.3.

Predicting pressure profiles in a disc-shaped mold using a Newtonian model.
To show how the above equations are used, let us consider a disc-shaped cavity of
R =150 mm, a gate radius, r1, of 5 mm, and a cavity thickness of 2 mm, i.e., h =1
mm. Assuming a Newtonian viscosity µ =6,400 Pa-s and constant volumetric flow
rate Q =50 cm3/s predict the position of the flow front, r2, as a function of time, as
well as the pressure distribution inside the disc mold.

Equations (5.92) and (5.94) can easily be solved using the given data. Figure 5.17
presents the computed flow front positions with the corresponding pressure profiles.

5.3.6 The Hele-Shaw model

Today, the most widely used model simplification in polymer processing simulation is the
Hele-Shaw model [5]. It applies to flows in "narrow" gaps such as injection mold filling,
compression molding, some extrusion dies, extruders, bearings, etc. The major assumptions
for the lubrication approximation are that the gap is small, such that h � L, and that the
gaps vary slowly such that

∂h

∂x
� 1 and

∂h

∂y
� 1 (5.95)
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Figure 5.17: Radial pressure profile as a function of time in a disc-shaped mold computed using a
Newtonian viscosity model.
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A schematic diagram of a typical flow described by the Hele-Shaw model is presented in
Fig. 5.18.

We start the derivation with an order of magnitude analysis of the continuity equation

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (5.96)

The characteristic values for the variables present in eqn. (5.96) are given by

ux, uy ∼ Uc uz ∼ Uz

x, y ∼ L z ∼ h

Substituting these into the x and y terms of eqn. (5.96) results in

∂ux

∂x
,
∂uy

∂y
∼ Uc

L
(5.97)

and into the z term in

∂uz

∂z
∼ Uz

h
(5.98)

With the continuity equation and the scales for the x- and y-velocities, we can solve for the
z-velocity scale as

Uz =

#
h

L

*
Uc (5.99)

Hence, uz � ux, uy and uz can be ignored. We must point out that this velocity plays
a significant role in heat transfer and orientation in the flow front region, because the free
flow front is dominated by what is usually referred to as a fountain flow effect.

Next, an order of magnitude analysis is performed to simplify the momentum balance.
This is illustrated using the x-component of the equation of motion in terms of stress

ρ

#
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

*
= − ∂p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
(5.100)

An order of magnitude of the inertia terms leads to

ρux
∂ux

∂x
∼ ρ

U2
c

L

ρuz
∂ux

∂z
∼ ρ

UzUc

h
∼ ρ

U2
c

L

This order of the magnitude in the stress terms leads to

∂τxx

∂x
∼ ∂τyx

∂y
∼ ηUc

L2

∂τzx

∂z
∼ ηUc

h2

For the flow of polymer melts, the Reynolds number, Re = ρUch/η, is usually ∼ 10−5,
with the exception of the reaction injection molding process, RIM, where Re → 1 − 100 at
the gate. The geometric and dynamic conditions of the lubrication approximation, applied
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to the Hele-Shaw model, will simplify the momentum equations by neglecting the inertia
terms and the viscous terms containing τxx and τyx. Similarly, the y-momentum equation
is simplified giving the following system of equations,

∂p

∂x
=

∂τzx

∂z
∂p

∂y
=

∂τzy

∂z

(5.101)

In addition, since the velocity in the z-direction is small compared to the x- and y-directions
(eqn. (5.99)), from the momentum equation in the z-direction we get that

∂p

∂z
<<

∂p

∂x
,
∂p

∂y
(5.102)

which indicates that p = p(x, y) only.
We are now left to deal with the constitutive equation. For a generalized Newtonian

fluid, we can write

τ = ηγ̇ (5.103)

where the viscosity is a function of temperature and magnitude of the rate of deformation
tensor η = η(γ̇, T ). Performing an order of magnitude analysis to the terms in the rate of
deformation tensor, reduces its magnitude to

γ̇ =

/#
∂ux

∂z

*2

+

#
∂uy

∂z

*2

(5.104)

Integrating the stress with respect to the z-direction we get,

τzx =
∂p

∂x
+ c1 (5.105)

Symmetry for the velocity profile will set c1 = 0. With the generalized Newtonian fluid
constitutive equation, we get that

∂ux

∂z
=

∂p

∂x

z

η
(5.106)

Since this model is used to simulate the flow between thin gaps, such as in injection and
compression molding, we are not interested in the detail of the flow field through the
thickness of the part. Instead, we are more interested in the flow field and flow advancement
in the planar (xy) directions. For this, it is convenient to integrate the velocity across the
gap in order to compute the gap-wise average velocities,

ūx =
1

h/2

� h/2

0

ux(z)dz (5.107)

Substituting eqn. (5.106) into eqn. (5.107) results in

ūx =
1

h/2

#
− ∂p

∂x

* � h/2

0

� z

h/2

z
dz


η(z
)
dz (5.108)
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Figure 5.19: Diagram to illustrate order of integration change.

To simplify the integration we can switch the order of integration. The order of integration
change, schematically depicted Fig. 5.19.

Changes the above integral from,� h/2

0

� h/2

z

dz
dz →
� h/2

0

� z�

0

dzdz
 (5.109)

Hence, we can write

ūx =
−1

h/2

∂p

∂x

� h/2

0

� z�

0

z


η(z
)
dzdz
 (5.110)

and integrate once to have

ūx = − 2

h

∂p

∂x
S (5.111)

where S is usually referred to as the flow conductance, given by,

S =

� h/2

0

z
2

η(z
)
dz
 (5.112)

Using this, we can define the gap-wise average velocities as

ūx = −2S

h

∂p

∂x

ūy = −2S

h

∂p

∂y

(5.113)

where S = S(x, y). It is important to point out that,

uy(x, y, z)

ux(x, y, z)
=

∂p

∂y
(x, y)

∂p

∂x
(x, y)
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Figure 5.20: Typical velocity profile for a Hele-Shaw flow.

which means that although the velocities change in magnitude through the gap, they do not
change in direction (see Fig. 5.20); a prime characteristic of Hele-Shaw type flows.

Now we take the continuity equation and integrate it over z

∂

∂x

� h/2

0

uxdz +
∂

∂y

� h/2

0

uydz = 0 (5.114)

The integrated continuity equation is a weaker form of the full continuity equation. This
is noticed in numerical solutions of mold filling problems, where continuity is never fully
satisfied. However, this violation of continuity is insignificant and will not hinder the
solution of practical mold filling problems. The integrated continuity equation reduces to

∂

∂x

#
h

2
ūx

*
+

∂

∂y

#
h

2
ūy

*
= 0 (5.115)

Substituting the gap-wise average velocities, we get

∂

∂x

#
S

∂p

∂x

*
+

∂

∂y

#
S

∂p

∂y

*
= 0 (5.116)

There are various special forms and simplifications of the above equation and they are given
below. In subsequent chapters of this book we will illustrate how the various forms of the
Hele-Shaw model are implemented to solve realistic mold filling problems.

Newtonian-isothermal Hele-Shaw model. A special form of the Hele-Shaw type
flow governing equations is the isothermal Newtonian case where η(z) = µ. This simpli-
fication leads to flow a conductance given by

S =
h3

24µ
(5.117)

and and a governing equation for pressure expressed by

∂2p

∂x2
+

∂2p

∂y2
= 0 (5.118)
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Figure 5.21: Schematic diagram of the compression molding process.

The velocity field can be calculated using

ūx = − h2

12µ

∂p

∂x

ūy = − h2

12µ

∂p

∂y

(5.119)

Generalized Newtonian Hele-Shaw model using a power law viscosity. For a
generalized Newtonian fluid with a power law fluid, η = mγ̇n−1, the viscosity is given by,

η = msz1−s

�#
∂p

∂x

*2

+

#
∂p

∂y

*2
�(s−1)/2

(5.120)

where s = 1/n. This viscosity definition also leads to a closed form solution for the flow
conductance, given by,

S =
hs+2

(s + 2)ms2s+1

�#
∂p

∂x

*2

+

#
∂p

∂y

*2
�(s−1)/2

(5.121)

Hele-Shaw model for compression molding of a Newtonian fluid. A special
case, where the z-velocity component plays a significant role and must be included, is the
compression molding process. The process is schematically depicted in Fig. 5.21.

Here, the extra term that represents the closing speed must be included in the continuity
equation,

∂ūx

∂x
+

∂ūy

∂y
+

−ḣ

h
= 0 (5.122)

Using the velocity definition given by,

ūx = − h2

12µ

∂p

∂x

ūy = − h2

12µ

∂p

∂y

(5.123)
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the continuity equation results in,

∂2p

∂x2
+

∂2p

∂y2
= 12µ

ḣ

h3
(5.124)

5.3.7 Cooling or Heating in Polymer Processing

Cooling or heating is of great concern in polymer processing. Due to the low thermal
conductivity of polymers, the cooling and heating steps of a process control the cycle time.
Cooling or heating processes take place inside molds during injection and compression
molding, respectively. This heating or cooling process is a contact process during which
a polymer melt is pressed against a mold surface allowing for an effective heat transfer
between mold and melt. During some extrusion processes, such as extrusion of fibers or
films (during film blowing), cooling takes place in water or air, where we must rely on
the heat transfer coefficient between the flowing media and the polymer surface. In other
extrusion processes the polymer soon comes into contact with a metal surface, such as a
sizing sleeve during extrusion of plastic pipes.

Heating and cooling often take place while the polymer melt flows, making viscous
dissipation an influencing factor during the process. However, since most plastic parts are
thin, the conduction often occurs only across the thickness and the viscous heating is a
result of shear within the narrow gap of a die or mold cavity. For such cases, the equations
reduce to,

ρCp
∂T

∂t
= k

∂2T

∂x2
+ η

#
∂uz

∂x

*2

(5.125)

There are various special cases for the above equation, some of which are described below.

Cooling or heation of a semi-infinite slab. Although very thick parts are not an issue
in polymer processing, we can still solve this problem to illustrate time scales associated
with various thicknesses. In a semi-infinite slab, we have a cooling or heating process that
takes place in a space from x = 0 to x = ∞. At t = 0, the temperature throughout the slab
is T0 and the surface temperature is suddenly lowered or raised to TS .

For this problem, the above equation reduces to

∂T

∂t
= α

∂2T

∂x2
(5.126)

Bird, Stewart and Lighfoot [3] present a solution to this problem given by,

T − TS

T0 − TS
= erf

#
x

2
√

αt

*
(5.127)

where erf

#
x

2
√

αt

*
is given by,

erf

#
x

2
√

αt

*
=

2√
π

� x

2
√

αt

0

e−u2

du (5.128)

Figure 5.23 shows the dimensionless temperature as a function of dimensionless time x
2
√

αt
.

From the above equations and figure, we can define a heat penetration thickness.
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Figure 5.22: Schematic of a semi-infinite cooling body. Denoted are depths at which 50% and 1%
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Figure 5.23: Dimensionless temperature as a function of dimensionless time and tickness.
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Table 5.7: Penetration thickness and characteristic times in heating and cooling polymers

L t = L2/α
100 µm 0.025 s
1 mm 2.5 s
2 mm 10 s
10 mm 250 s

For example, Fig. 5.22 presents two depths, one where 1% and another where 50% of
the temperature differential is felt. The 1% temperature differential is defined by,

T = T0 + 0.01(TS − T0) (5.129)

or,

0.99 = erf

#
x01

2
√

αt

*
(5.130)

which can be used to solve for the given time that leads to a 1% temperature change for a
given depth x01,

t01 =
x2

01

13.25α
(5.131)

The same analysis can be carried out for a 50% thermal penetration time,

t50 =
x2

50

0.92α
(5.132)

Hence, the time when most of the temperature difference is felt by a part of a given thickness
is of the order,

t =
L2

α
(5.133)

which can be used as a characteristic time for a thermal event that takes place through
diffusion. Since polymers have a thermal diffusivity of about 10−7m2/s, we can easily
compute the characteristic times for heating or cooling as a function of part thickness, 2L.
Some characteristic times are presented as a function of thickness in Table 5.7.

With a characteristic time for heat conduction we can now define a dimensionless time
using,

Fo =
L2

αt
(5.134)

which is the well known Fourier number.

Cooling and heating of a finite thickness plate. A more accurate solution of the
above problem is to determine the cooling process of the actual part, hence, one of finite
thickness 2L. For the heating process of a finite thickness plate we can solve eqn. (5.126)
to give,

T − T0

TS − T0
= 1 − 4

π

∞5
n=1

(−1)n−1

2n − 1
cos

�
(2n − 1)πx

L

�
×

exp

!
−

�
(2n − 1)π

2

2

Fo

�( (5.135)
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Figure 5.24: Center-line temperature history during heating of a finite thickness plate. Note that
cooling is represented by the same curve using 1 − Θ as the dimensionless temperature.
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Figure 5.25: Experimental and computed center-line temperature history during heating of an 8
mm thick PMMA plate. The initial temperature T0=20oC and the heater temperature TS=140oC. [7]

Figure 5.24 presents the temperature history at the center of the plate and Fig. 5.25 shows a
comparison between the prediction and a measured temperature development in an 8 mm
thick PMMA plate. As can be seen, the model does a good job in approximating reality.

Cooling and heating of a finite thickness plate using convection. As mentioned
earlier, cooling with air or water is very common in polymer processing. For example, the
cooling of a film during film blowing is controlled by air blown from a ring located near
the die exit. In addition, many extrusion operations extrude into a bath of running chilled
water. Here, the controlling parameter is the heat transfer coefficient h, or in dimensionless
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Figure 5.26: Center-line temperature histories of finite thickness plates during convective heating
for various Biot numbers.

form the Biot number, Bi, given by,

Bi =
hL

k
(5.136)

An approximate solution for the convective cooling of a plate of finite thickness is given by
Agassant et al. [1],

T − Tf

T0 − Tf
≈ e(−BiFo)cos

 √
Bi

x

L

'
(5.137)

The center-line temperature for plates of finite thickness is given in Fig. 5.26 and a
comparison between the prediction and experiments for an 8 mm thick PMMA plate cooled
with a heat transfer coefficient, h, of 33 W/m2/K is given in Fig. 5.27. As can be seen,
theory and experiment are in relatively good agreement.

Problems

5.1 Derive the continuity equation in cylindrical coordinates.

5.2 Derive the x-direction momentum balance presented in eqn. (5.13).

5.3 Derive the equations for pressure driven flow through a slit using a shear thinning
power law viscosity model.

a) Derive the equation that describes the velocity distribution across the slit.
b) Solve for the volumetric throughput through the slit.

5.4 Derive the equations for a combination of pressure flow and shear flow within a slit
using a Newtonian viscosity model.

a) Derive the equation that describes the velocity distribution across the slit.
b) Solve for the volumetric throughput through the slit.

5.5 Solve the above problem using a power law viscosity model.
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Figure 5.27: Center-line temperature history of an 8 mm thick PMMA plate during convective
heating inside an oven set at 155oC. The initial temperature was 20oC. The predictions correspond to
a Biot number, Bi=1.3 or a corresponding heat transfer coefficient, h=33 W/m2/K.[7]

5.6 Solve for the Hagen-Poiseuille equation in a tube for a Newtonian model.

5.7 Using the Hele-Shaw model, analyze a compression molding problem where the melt
is allowed to move only in the x-direction. Use a dimension in the x-direction of 2L,
and in the y-direction of W . The gapwise thickness is h. The two flow fronts are
located at x = ±L.

a) Sketch a clear diagram of the process.
b) State your assumptions.
c) Solve for the gapwise average velocity.
d) Determine the pressure distribution inside the mold and mold closing force.

5.8 Derive the equation for flow conductance for a power law fluid given in eqn.(5.121).

5.9 Derive the equation for the steady state temperature profile in a simple shear flow with
viscous dissipation. Assume a Newtonian viscosity model.

a) Assume equal temperatures at the upper and lower surfaces.
b) Assume different temperatures at the upper and lower surfaces.
c) Plot the temperature distribution in dimensionless form for various Brinkman

numbers.

5.10 Derive the equation for the steady state temperature profile in pressure driven slit flow
with viscous dissipation. Assume a Newtonian viscosity model.

a) Assume equal temperatures at the upper and lower surfaces.
b) Assume different temperatures at the upper and lower surfaces.
c) Plot the temperature distribution in dimensionless form for various Brinkman

numbers.

5.11 Derive the equation for the steady state temperature profile in a combined simple
shear-pressure driven slit flow with viscous dissipation. Assume a Newtonian viscosity
model.

a) Assume equal temperatures at the upper and lower surfaces.
b) Assume different temperatures at the upper and lower surfaces.
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c) Plot the temperature distribution in dimensionless form for various Brinkman
numbers.

5.12 Derive the analytical solution for the temperature distribution caused by viscous heating
within a Couette flow between concentric cylinders assuming a constant viscosity µ.
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CHAPTER 6

ANALYSES BASED ON ANALYTICAL
SOLUTIONS

Order and simplification are the first steps
toward the mastery of a subject.

—Thomas Mann

Although all polymer processes involve complex phenomena that are non-isothermal,
non-Newtonian and often viscoelastic, most of them can be simplified sufficiently to allow
the construction of analytical models. These analytical models involve one or more of the
simple flows derived in the previous chapter. These back of the envelope models allow us to
predict pressures, velocity fields, temperature fields, melting and solidification times, cycle
times, etc. The models that are derived will aid the student or engineer to better understand
the process under consideration, allowing for optimization of processing conditions, and
even geometries and part performance.

This chapter attempts to cover the most important polymer processes. First we derive
solutions to non-isothermal approximations of various polymer processes. We begin with
a Newtonian analysis of the metering or pumping section of the single screw extruder,
followed by the flow in several common extrusion dies, including the analysis using non-
Newtonian shear thinning polymer melts. Within this section, we also solve for flow and
deformation in a fiber spinning operation using a viscoelastic flow model. The next sections
present a detailed analysis of isothermal, Newtonian and non-Newtonian flow in two roll
calendering systems. This is followed by the analysis of various problems and injection
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molding problems. From this point on, non-isothermal problems are introduced, which are
exemplified using melting and solidification problems, ending with melting in a plasticating
single screw extruder and the curing kinetics of elastomers and thermoseting polymers.

6.1 SINGLE SCREW EXTRUSION−ISOTHERMAL FLOW PROBLEMS

Most flows that take place during polymer processing can be simplified and modeled isother-
mally. When a system reaches steady state, a polymer melt can be considered isothermal,
unless viscous dissipation plays a significant role. As was discussed in Chapter 4, the sig-
nificance of viscous dissipation during processing is assessed using the Brinkman number
given by

Br =
ηu2

0

k∆T
(6.1)

where η is a characteristic viscosity, u0 a characteristic screw speed, k the thermal con-
ductivity of the melt and ∆T a characteristic temperature variation within the process. In
the example below, we attempt to determine if a process can be considered isothermal or if
viscous dissipation is significant.

EXAMPLE 6.1.

Determining the effect of viscous dissipation in the metering section of a single
screw extruder. Consider a 60 mm diameter extruder with a 4 mm channel depth and a
screw speed of 60 rpm. The melt used in this extrusion system is a polycarbonate with a
viscosity of 100 Pa-s, a thermal conductivity of 0.2 W/m/K and a heater temperature of
300oC. To assess the effect of viscous heating we can choose a temperature difference,
∆T of 30K. This simply means that the heater temperature is 30K above the melting
temperature of the polymer. For this system, the Brinkman number becomes

Br =
η(πDn)2

k∆T
=

100 Pa-s(0.188 m/s)2

0.2 W/m/K(30K)
= 0.59 (6.2)

which means that the heat is conducted out much faster than it is generated by viscous
heating, making the isothermal assumption a plausible one.

This can be easily checked by assuming that the flow inside this section of the
screw can be modeled using a simple shear flow, and that most of the conduction
occurs through the channel thickness direction. For such a case, the energy equation
in that direction, say the y-direction, reduces to

0 = k
∂2T

∂y2
+ Q̇ (6.3)

where Q̇ is the heat generation by viscous heating,which for simple shear flow reduces
to

Q̇ = µ

#
∂u

∂y

*2

= µ

#
πDn

h

*2

(6.4)

If we integrate eqn. (6.3) two times and use a boundary condition of T0 =300oC on
the screw and barrel surfaces, we get

T = T0 +
µ

2k

(πDn)2

h2

"
2hy − y2

)
(6.5)
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Figure 6.1: Unwrapped screw channel.

Setting y =0.002 m, which is located in the middle of the channel and using the above
data, we get a temperature of 306.6oC, a 6.6 K temperature rise. Although there is a
measurable temperature rise in this system, it is not significant enough to warrant a
non-isothermal analysis.

6.1.1 Newtonian Flow in the Metering Section of a Single Screw Extruder

Analyzing the flow in a single screw extruder using analytical solutions can only be done
if we assume a Newtonian polymer melt. As can be seen in these sections, the flow inside
the screw channel is a three dimensional flow made up of a combination of pressure and
drag flows. Non-Newtonian flow can be solved for using numerical techniques and will be
covered in Chapters 8 to 11 of this book.

The geometry of a single screw extruder can be simplified by unwinding or unwrapping
the material from the channel as schematically depicted in Fig. 6.1. By unwinding the
channel contents we are assuming that the effects caused by the curvature of the screw are
negligible. This is true for most screw geometries where the channel is shallow. Further-
more, if we assume that the barrel rotates instead of the screw, we can model the flow inside
the channel using a combination of shear and pressure flow between parallel plates.

Figure 6.2 shows a cross-section of the unwrapped channel in the yz-plane. The length
L is the helical length of the channel, which for a square pitch screw can be computed
using L = (number of turns)D/ sin(φ). The lower surface of the channel is the screw
root and is assigned a zero velocity and the upper surface is in contact with the barrel
which is given a velocity u = πDn. Because of the helical geometry of the screw, this
velocity is broken down further into x and z components. The x-component is given by
ux = u sin(φ) and is referred to as the cross-flow component. The z-component which
is given by uz = u cos(φ), is the down-channel component and is the one that leads to
pumping by dragging the polymer down the channel of the screw. Since the polymer is
dragged against a die, the pressure will build-up moving in the down-channel direction. This
results in a pressure flow that moves in the opposite direction of the drag flow component.

The volumetric flow is given by,

QT = QD + QP (6.6)
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Figure 6.2: Model of a hypothetical viscosity pump.

where QD is the drag flow due to simple shear and QP is the pressure flow, given by the
following equations,

QD =
1

2
uzhW

QP = −Wh3∆p

12µL

(6.7)

respectively. The total volumetric flow as a function of ∆p is then given by

QT =
1

2
uzhW − Wh3∆p

12µL
(6.8)

and finally

QT =
πDnhW

2
cosφ − Wh3∆p

12µL
(6.9)

As can be seen in the above equations, the resulting total flow is a combination of drag
and pressure flows. Depending on the restriction of the die, various types of flows can
develop inside the screw channel. Figure 6.3 schematically depicts the different situations
that may arise. At closed discharge, which occurs when the die is plugged, the net flow
in the down-channel direction is zero, at which point the maximum pressure build-up is
achieved. At open discharge, when the die is absent and the extruder is pumping into the
atmosphere, the flow in the down-channel direction reduces to a simple shear flow. It should
be noted that the above equations neglect the effect of leakage flow over the flight, hence
they over-predict the net material throughput as well as the maximum pressure build-up.
Furthermore, since there is a no-slip condition between the polymer and the flight walls, the
velocity profiles depicted in Fig. 6.3 are only valid away from the flights. This effect further
contributes to over-prediction of the volumetric throughput of a single screw extruder.

To correct this effect, which significantly affects extruders with a deep channel screw,
Tadmor and Gogos [25] present the following modification

QT =
πDnhW

2
cosφFD − Wh3∆p

12µL
FP (6.10)
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Figure 6.3: Down-channel velocity profiles for different pumping situations with a single screw
extruder.

where FD and FP are correction factors that account for the flow reduction down the channel
of the screw and can be computed using

FD =
16W

π3h

∞5
i=1,3,5

1

i3
tanh

#
iπh

2W

*
(6.11)

FP = 1 − 192h

π3W

∞5
i=1,3,5

1

i5
tanh

#
iπW

2h

*
(6.12)

It should be noted that the correction is less than 5% for channels that have an aspect ratio,
W/h, larger than 10.

6.1.2 Cross Channel Flow in a Single Screw Extruder

The cross channel flow is derived in a similar fashion as the down channel flow. This flow
is driven by the x-component of the velocity, which creates a shear flow in that direction.
However, since the shear flow pumps the material against the trailing flight of the screw
channel, it results in a pressure increase that creates a counteracting pressure flow which
leads to a net flow of zero1. The flow rate per unit depth at any arbitrary position along the
z-axis can be defined by

qx = −uxh

2
− h3

12µ

∂p

∂x
= 0 (6.13)

1This assumption is not completely true, since some of the material flows over the screw flight into the regions of
lower pressure in the up-channel direction.
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Figure 6.4: View in the down channel direction depicting the resulting cross flow.

Here, we can solve for the pressure gradient ∂p
∂x to be

∂p

∂x
= −6µux

h2
(6.14)

Once the pressure is known, we can compute the velocity profile across the thickness of the
channel using

ux(y) = −uxy

h
− 1

2µ

#
−6µux

h2

* "
hy − y2

)
(6.15)

This velocity profile is schematically depicted in Fig. 6.4. As shown in the figure, the cross
flow generates a recirculating flow, which performs a stirring and mixing action important
in extruders for blending as well as melting.

If we combine the flow generated by the down channel and cross channel flows, a net flow
is generated in axial or machine direction (ul) of the extruder, schematically depicted in
Fig. 6.5. As can be seen, at open discharge, the maximum axial flow is generated, whereas
at closed discharge, the axial flow is zero. From the velocity profiles presented in Fig. 6.5
we can easily deduce, which path a particle flowing with the polymer melt will take.

Due to the combination of cross channel and down channel flows, peculiar particle paths
develop for the various die restrictions. The paths that form for various situations are
presented in Fig. 6.6. When the particle flows near the barrel surface of the channel, it
moves at its fastest speed and in a direction nearly perpendicular to the axial direction of the
screw. As the particle approaches the screw flight, it submerges and approaches the screw
root, at which point it travels back at a slower speed, until it reaches the leading flight of the
screw, which causes the particle to rise once more and travel in the down channel direction.
Depending on the die restriction, the path changes. For example, for the closed discharge
situation, the particle simply travels on a path perpendicular to the axial direction of the
screw, recirculating between the barrel surface and screw root.
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Figure 6.5: Down channel, cross channel and axial velocity profiles for various situations that arise
in a single screw extruder.
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Figure 6.6: Fluid particle paths in a screw channel.



SINGLE SCREW EXTRUSION−ISOTHERMAL FLOW PROBLEMS 255

6.1.3 Newtonian Isothermal Screw and Die Characteristic Curves

When extruding a Newtonian fluid through a die, the throughput is directly proportional to
the pressure build-up in the extruder and inversely proportional to the viscosity as stated in

Qdie =
ℵ
µ

∆p (6.16)

where ℵ is a proportionality constant related to the geometry of the die, i.e., for a capillary
die of length l and radius R, ℵ = πR4/8/l. Equation (6.16) is commonly referred to as the
die characteristic curve. If we equate the volumetric throughput of the extruder and die,
using eqns. (6.10) and (6.16) we get

πDnhW

2
cosφFD − Wh3∆p

12µL
FP =

ℵ
µ

∆p (6.17)

which can be solved for the pressure build-up, ∆p = ∆pD, corresponding to a specific die
as

∆pD =
6µπDn cosφhWLFD

12ℵL + Wh3FP
(6.18)

Substituting eqn. (6.18) into eqn. (6.16), we arrive at the volumetric throughput for a single
screw pump with a particular die, described by

Q =

�
πDn cosφhWFD

2 + Wh3FP

6ℵL

�
(6.19)

which is commonly referred to as the operating point. This concept is more clearly depicted
in Fig. 6.7.

As one can imagine, there are numerous types of die restrictions. A die that is used to
manufacture a thick sheet of polystyrene is significantly less restrictive than a die that is
used to manufacture a thin polyethylene teraphthalate film. To account for the variation
of die restrictions the appropriate screw design for a specific application must be chosen.
Figure 6.8 presents two types of dies, a restricted and a less restricted die, along with two
screw characteristic curves for a deep channel screw and a shallow channel screw. As can be
seen, the deep channel screw has a higher productivity when used with a less restricted die,
and the shallow screw works best with a high restriction die. It is obvious that a deep screw
carries more material and therefore has a higher productivity at open discharge, whereas
a shallow screw carries a smaller overall amount of melt, resulting in lower productivity
at open discharge. On the other hand, a shallow screw has higher rates of deformation at
the same screw speed, which leads to higher shear stresses. This results in larger pressure
build-up, which is needed for the high restriction dies. It is therefore necessary to asses
each case on an individual basis and design the screw appropriately.

In order to maximize the throughput for a particular screw-die combination we set the
variation of eqn. (6.19) with respect to channel depth, h, to zero as

∂Q

∂h
= 0 (6.20)

which results in an optimal channel depth, hoptimum for a specific die restriction ℵ of

hoptimum =

�
6Lℵ
W

�1/3

(6.21)
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Figure 6.7: Screw and die characteristic curves.
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Figure 6.8: Screw and die characteristic curves for various screws and dies.
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Similarly, we can solve for the optimum helix angle, φ, by setting the variation of eqn. (6.19)
with respect to the helix angle to zero, ∂Q/∂φ = 0. The helix angle is embeded in the
channel length, L, term

L =
Z

sin φ
(6.22)

where Z is the axial length of the extruder’s metering section. After differentiation we get

sin2 φoptimum =
1

2 +
πDh3

12Zℵ
(6.23)

EXAMPLE 6.2.

Optimum extruder geometry. You are given the task to find the optimum screw
geometry of a 45 mm diameter extruder used for a 3 cm diameter pipe extrusion
operation. The pipe’s die land length is 100 mm and die opening gap is 2 mm.
Determine the optimum channel depth in the metering section, and the optimum
screw helix angle. Assume a Newtonian isothermal flow and an extrusion metering
section that is 5 turns long. Since the die gap is much smaller than the pipe diameter
and die length, for the solution of this problem we can assume pressure driven slit
flow, which for a Newtonian fluid is governed by

Qd =
Wdh

3
d∆p

12µLd
(6.24)

where we deduce that the die restriction constant is ℵ =
Wdh

3
d

12Ld
, which is substituted

into eqn. (6.21) assuming a square pitch(φ = 17.65o) and a channel width of 40 mm
(for a 5 mm flight width) to give,

hoptimum = hd

�
6(5D/ sin 17.65o)Wd

12LdW

�1/3

= 2 mm

�
6(5 × 45 mm/ sin 17.65o)π(30 mm)

12(100 mm)(40 mm)

�
= 4.1 mm

(6.25)

It is interesting to point out that for a die with a pressure flow through a slit, or sets of
slits, the optimum channel depth is directly proportional to the die gap. Decreasing
the die gap by a certain percentage will result in an optimum channel depth that
is reduced by the same percentage. To determine the optimum helix angle we can
re-write eqn. (6.23) for this specific application,

sin2 φoptimum =
1

2 +
πDh3Ld

ZWdh3
d

=
1

2 +
π(45 mm)(4.1 mm)3(100 mm)

(5 × 45 mm)(π30 mm)(2 mm)3

= 0.129

(6.26)
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Uniform flow

z

z=0

z=LD

Figure 6.9: Schematic diagram of an end-fed sheeting die.

which results in φoptimum = 21o, compared to 17.65o for a square pitch screw. We
note that here we used the optimum channel depth.

6.2 EXTRUSION DIES−ISOTHERMAL FLOW PROBLEMS

The flow in many extrusion dies can be approximated with one, or a combination, of
simplified models such as slit flow, Hagen Poiseulle flow, annular flow, simple shear flow,
etc. A few of these are presented in the following sections using non-Newtonian as well as
Newtonian flow models.

6.2.1 End-Fed Sheeting Die

The end-fed-sheeting die, as presented in Fig. 6.9, is a simple geometry that can be used to
extrude films and sheets. To illustrate the complexities of die design, we will modify the
die, as shown in the figure, in order to extrude a sheet or film with a uniform thickness. In
order to achieve this we must determine the length of the approach zone or die land as a
function of the manifold direction, as depicted in the model shown in Fig. 6.10.

For this specific example, the manifold diameter will be kept constant and we will assume
a Newtonian isothermal flow, with a constant viscosity µ. The flow of the manifold can be
represented using the Hagen-Poiseuille equation as,

Q =
πR4

8µ

#
−dp

dz

*
(6.27)

and the flow in the die land (per unit width) can be modeled using the slit flow equation,

q =
h3

12µ

#
−dp

dl

*
=

h3

12µ

#
p(z)

LL(z)

*
(6.28)

A manifold that generates a uniform sheet must deliver a constant throughput along the
die land. Performing a flow balance within the differential element, presented in Fig. 6.11,
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Figure 6.10: Schematic of the manifold and die land in an end-fed sheeting die.

Figure 6.11: Differential element of the manifold in an end-fed sheeting die.

results in

dQ

dz
= −q = constant (6.29)

Integrating this equation and letting Q = QT at z = 0 and Q = 0 at z = LD we get,

Q(z) = QT

#
1 − z

LD

*
(6.30)

Therefore,

dQ

dz
= −QT

LD
= − h3

12µ

p(z)

LL(z)
(6.31)
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which results in

LL(z) =
h3

12µ

LD

QT
p(z) (6.32)

where the pressure as a function of z must be solved for. The manifold equation can be
written as,

dp

dz
= − 8µ

πR4
QT

#
1 − z

LD

*
(6.33)

and integrated from p = p0 at z = 0,

p(z) = p0 − 8µQT LD

πR4

�#
z

LD

*
− 1

2

#
z

LD

*2
�

(6.34)

which can be substituted into eqn. (6.32) to give

LL(z) =
h3

12µ

LDp0

QT
− 2h3L2

D

3πR4

�#
z

LD

*
− 1

2

#
z

LD

*2
�

(6.35)

Note that the die design equation has pressure, volumetric flow rate and viscosity embed-
ded inside and can therefore lead to unrealistic results. This is due to the fact that the flow,
QT , was specified when formulating the equations. However, the die design will be bal-
anced for any volumetric throughput. Hence, during die design it is appropriate to specify
the land length at the beginning of the manifold, LL(0), and pick appropriate combinations
of viscosity, flow rate and pressure,

LL(0) = h3LD
p0

12µQT
(6.36)

EXAMPLE 6.3.

End-fed sheeting die. Design a 1000 mm wide end-fed sheeting die with a 1 mm die
land gap for a polycarbonate film. For the solution of the problem assume a manifold
diameter of 15 mm and the longest portion of the length should be 50 mm. Using the
above information we can write,

LL(z) = 50 mm − 2(1 mm)3(1000)2

3π(10 mm)4

� z

1000 mm

'
− 1

2

 z

1000 mm

'2
�

(6.37)

or

LL(z) = 50 mm − 10.6

� z

1000 mm

'
− 1

2

 z

1000 mm

'2
�

(6.38)

Hence, the land length starts at 50 mm length and reduces to 39.4 mm at the opposite
end of the die.
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Figure 6.12: Schematic diagram of a coat hanger sheeting die.

6.2.2 Coat Hanger Die

Perhaps a more common sheeting die is the so-called coat hanger die, presented in detail
in Chapter 3. For a given manifold angle α we must determine the manifold radius profile,
R(s), such that a uniform sheet or film is extruded through the die lips.

Using the nomenclature presented in Fig. 6.12 and assuming a land thickness of h we can
assume the land length to be described by slit flow and the manifold by the Hagen-Poiseuille
flow with a variable radius as

q = − h3

12µ

#
dp

dz

*
(6.39)

and

Q(s) =
πR(s)4

8µ

#
−dp

ds

*
(6.40)

Equation (6.39) can be rewritten as

QT

2W
=

−h3

12µ

#
−dp

dz

*
(6.41)

which can be solved for the pressure gradient in the die land

dp

dz
= −6µQT

Wh3
(6.42)

Here too, we can cut a small element out of the manifold area and can relate the pressure
drop in the s-direction to the drop in the z-direction using

p(s) +
dp

ds
∆s = p(s) +

dp

dz
∆z (6.43)

Combining the definition of pressure gradient in the die land, eqn. (6.42), with eqn. (6.43)
and using geometry we get

dp

ds
= −6µQT

Wh3
sinα (6.44)
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Figure 6.13: Differential element of the manifold in the coat hanger sheeting die.

which can be integrated to become

p(s) = p0 − 6µQT

Wh3
sinαs (6.45)

and a mass balance results in

dQ

ds
= − QT

2W
cosα (6.46)

Using the boundary condition that Q = QT

2 at s = 0 and Q = 0 at s = W/ cosα, we
can integrate eqn. (6.46) to be

Q(s) = QT

#
1

2
− cosα

2W
s

*
(6.47)

We can now set the manifold equation, eqn. (6.40), with the pressure gradient defined in
eqn. (6.46), equal to eqn. (6.47)

QT

#
1

2
− cosα

2W
s

*
=

πR(s)4

8µ

#
6µQT

Wh3
sinα

*
(6.48)

which, can be used to solve for the manifold radius profile

R(s) =

�
2 (1 − s cosα/W )

3π sinα

�1/4

(6.49)

A cross-head tubing die is equivalent to the coat hanger die by wrapping it around a
cylinder as can be recognized in the schematic presented in Fig. 3.17. If we follow the same
derivation but for a shear thinning power law melt, we get

R(s) =

�
[(3 + 1/n/π)]nh2n+1(W − s cosα)n

2n(2 + 1/n)n(− sinα)

�1/(3n+1)

(6.50)

which for a Newtonian fluid with n = 1 reduces to eqn. (6.49).
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Figure 6.14: Schematic diagram of die with two different die land lengths and thicknesses.

6.2.3 Extrusion Die with Variable Die Land Thicknesses

When designing plastic parts it is often recommended that the part have uniform thickness.
This is especially true for semi-crystalline polymers where thickness variations lead to
variable cooling times, and those in turn to variations in the degree of crystallinity in the
final part. Variations in crystallinity result in shrinkage variations, which lead to warpage.
However, it is often necessary to design parts in which a thickness variation is inevitable,
i.e., extrusion profiles with thickness variations as shown in Fig. 6.14.

The die land thickness differences can be compensated by using different land lengths
such that the speed of the emerging melt is constant, resulting in a uniform product. If we
assume a power-law viscosity model, a uniform pressure in the manifold and an isothermal
die and melt, the average speed of the melt emerging from the die is

ūi =
hi

2(s + 2)

#
hi∆p

2mLi

*s

(6.51)

where s = 1/n. In order to achieve a uniform, product we must satisfy

ū1 = ū2 (6.52)

or

h1

2(s + 2)

#
h1∆p

2mL1

*s

=
h2

2(s + 2)

#
h2∆p

2mL2

*s

(6.53)

which can be rearranged to become,#
L1

L2

*
=

#
h1

h2

*1+n

(6.54)

EXAMPLE 6.4.

Die design with two die land thicknesses. Determine the die land length ratios,
L2/L1 for a die land thickness ratio, h2/h1 of 3, for various power-law indeces.
Using eqn. (6.54), we can easily solve for the land length ratios for several power-law
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Figure 6.15: Land length ratios as a function of power law index for a die with a land height ratio
of 3.
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Figure 6.16: Schematic diagram of a two polymer layer system in a co-extrusion die.

indeces. This is presented graphically in Fig. 6.15. Note that while a Newtonian fluid
requires a land length ratio of 9, a Bingham fluid, with a power law index of zero,
requires a land length ratio of only 3. Hence, die design is very sensitive to the shear
thinning behavior of the polymer melt, and must always be accounted for.

6.2.4 Pressure Flow of Two Immiscible Fluids with Different Viscosities

Pressure flow of two immiscible fluids with different viscosities that flow as separate layers
between parallel plates are often encountered inside dies during co-extrusion when produc-
ing multi-layer films. Such a system is schematically depicted in Fig. 6.16, which presents
two layers of thickness h/2 and viscosities µ1 and µ2, respectively.

When solving this problem, we first assume that the melts are both Newtonian fluids and
that there is no velocity component in the y-direction. If we also assume that ∂/∂x = 0,
the continuity equation reduces to

∂uz

∂z
= 0 (6.55)
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The momentum balance for both layers can be written as

0 = −∂p

∂z
+ µ1

∂2u1
z

∂y2
(6.56)

0 = −∂p

∂z
+ µ2

∂2u2
z

∂y2
(6.57)

respectively, which can be integrated to become,

u1
z =

1

2µ1

∂p

∂z
y2 + c1y + c2 (6.58)

and

u2
z =

1

2µ2

∂p

∂z
y2 + c3y + c4 (6.59)

Using the boundary condition that u1
z = 0 at y = 0 results in c2 = 0, and using u2

z = 0 at
y = h gives,

0 =
1

2µ1

∂p

∂z
h2 + c3h + c4 (6.60)

Furthermore, assuming negligible surface tension, we can assume that the stresses match
at the melt-melt interface, y = h/2,

τ1
zy = τ2

zy (6.61)

which gives,

µ1
∂u1

z

∂y
= µ2

∂u2
z

∂y
(6.62)

which can also be written as,

µ1c1 = µ2c3 (6.63)

The final condition is that the velocity in both melt layers match at the interface, y = h/2,

1

2µ1

∂p

∂z
h2/4 + c1h/2 =

1

2µ2

∂p

∂z
h2/4 + c3h/2 + c4 (6.64)

Combining eqns. (6.60), (6.63) and (6.64) we get,

c1 =
1

4µ1

�
3µ1 + µ2

µ1 + µ2

� #
∂p

∂z

*
h (6.65)

c3 =
1

4µ2

�
3µ1 + µ2

µ1 + µ2

� #
∂p

∂z

*
h (6.66)

and

c4 =
1

4µ2

�
2 − 3µ1 + µ2

µ1 + µ2

� #
∂p

∂z

*
h2 (6.67)
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Figure 6.17: Velocity distribution in a two immiscible layer system with different viscosities and
viscosity ratios µ2/µ1 of 5, 10 and 50.

which results in,

u1
z =

1

2µ1

∂p

∂z
y2 − 1

4µ1

�
3µ1 + µ2

µ1 + µ2

� #
∂p

∂z

*
hy (6.68)

and

u2
z = − 1

2µ2

∂p

∂z

�
h2 − y2

�
+

1

4µ2

�
3µ1 + µ2

µ1 + µ2

� #
∂p

∂z

* �
h2 − hy

�
(6.69)

Figure 6.17 presents several velocity distributions within the two-layer system for dif-
ferent viscosity ratios, µ2/µ1. For this solution, a gap separation, and pressure gradient of
unity was chosen.

6.2.5 Fiber Spinning

The process of fiber spinning, described in Chapter 3 and schematically represented in
Fig. 6.18, will be modeled in this section using first a Newtonian model followed by a
shear thinning model. To simplify the analysis, it is customary to set the origin of the
coordinate system at the location of largest diameter of the extrudate. Since the distance
from the spinnerette to the point of largest swell is very small, only a few die diameters,
this simplification will not introduce large problems in the solution.

If we take the schematic of a differential fiber element presented in Fig. 6.19, we can
define the fiber geometry by the function R(x) and the unit normal vector n. The continuity
equation tells us that the volumetric flow rate through any cross-section along the x-direction
must be Q

Q = πR(x)2ux (6.70)
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Figure 6.18: Schematic diagram of the fiber spinning process in the post-extrusion die region.
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Figure 6.19: Differential element of a fiber during spinning.
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We further assume that surface tension is negligible and that in steady state the surface
will only move tangentially, which means that

u · n = 0 (6.71)

The components of the normal vector are described by the geometry of the fiber as

nx = −dR

dx

�
1 +

#
dR

dr

*2
�−1/2

(6.72)

and

nr =

�
1 +

#
dR

dr

*2
�−1/2

(6.73)

Due to the negligible effects of surface tension, we can assume that the stress boundary
condition is

σ · n = 0 (6.74)

which for each direction can be written as

σrxnr + σxxnx = 0 (6.75)

and

σrrnr + σrxnx = 0 (6.76)

Due to the fact that the fiber is being pulled in the x-direction, we should expect a non-zero
σxx at the free surface. Hence, we can write

σrx = −σxx
nx

nr
=

dR

dr
σxx (6.77)

It is clear that only the x-component of the equation of motion plays a significant role in a
fiber spinning problem

ρ

#
ur

∂ux

∂r
+ ux

∂ux

∂x

*
=

1

r

∂

∂r
(rσrx) +

∂σxx

∂x
(6.78)

The first term in the above equation drops out since ux is not a function of r. Using
eqn. (6.77) and rearranging somewhat, the equation of motion becomes

ρux
∂ux

∂x
=

2

R

dR

dr
σxx +

dσxx

dx
(6.79)

For a total stress, σxx, in a Newtonian approximation we write the constitutive relation

σxx = −p + 2µ
dux

dx
(6.80)

We can show that the isotropic pressure p is given by

p = −(σxx + σrr + σθθ)/3 (6.81)
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However, we can assume that σrr = 0 and σθθ = 0. Hence, we can write

σxx = 3µ
dux

dx
(6.82)

Combining the above equation with the continuity equation, eqn. (6.70), the momentum
balance presented in eqn. (6.79) becomes

d

dx
(ux)2 = 12

µ

ρR

dR

dr

dux

dx
+ 6

µ

ρ

d2ux

dx2
(6.83)

If we neglect the effect inertia has on the stretching fiber and drop the inertial term in
the above equation, it can be solved as

ux = c1e
c2x (6.84)

With boundary conditions ux = U0 at x = 0, and ux = UL at x = L we get

ux = U0e
x ln DR/L = U0D

x/L
R (6.85)

where DR is the draw down ratio defined by

DR =
UL

U0
(6.86)

Using the continuity equation we can now write

R(x) = R0D
−

x

2L
R (6.87)

The derivation of the fiber spinning equations for a non-Newtonian shear thinning vis-
cosity using a power law model are also derived. For a total stress, σxx, in a power law
fluid, we write the constitutive relation

σxx = −p + 2m(3)(n−1)/2

#
dux

dx

*n

(6.88)

This leads to the velocity distribution

ux = U0

�
1 +

 
D

(n−1)/n
R − 1

' x

L

�n/(n−1)

(6.89)

6.2.6 Viscoelastic Fiber Spinning Model

It is appropriate at this time to introduce viscoelastic flow analysis. Fiber spinning is one
of the few processes that can be analyzed using analytical viscoelastic models. Here, we
follow the approach developed by Denn and Fisher [4]. Neglecting inertia, we can start
with the momentum balance by modifying eqn. (6.79) as,

2

R

dR

dr
σxx +

dσxx

dx
=

1

R2

d

dx
(R2σxx) = 0 (6.90)

Using the continuity balance and and setting the take-force to,

F = (πR2
Lσxx)|L (6.91)
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we can integrate eqn. (6.90) to give,

σxx =
ρFux

ṁ
(6.92)

Since σrr ≈ 0 we can write,

σxx − σrr = τxx − τrr =
ρFux

ṁ
(6.93)

which is the first normal stress difference. For the two stress components, Denn and Fisher
[4] used the White-Metzner constitutive model,

τxx + λ

#
ux

dτxx

dx
− 2τxx

dux

dx

*
= −ηγ̇xx = −2η

dux

dx
(6.94)

and

τrr + λ

#
ux

dτrr

dx
− τrr

dux

dx

*
= −ηγ̇rr = −2η

dur

dr
= η

duz

dz
(6.95)

respectively. Here, λ is the relaxation time defined by,

λ =
η

G
(6.96)

where G is the elastic shear modulus. Using the power law model to define the viscosity
η, we can combine the two constitutive equations, eqns. (6.94) and (6.95), to give the
dimensionless equation,

Ū +(αŪ −3%)

#
dŪ

dξ

*n

−2α2Ū

#
dŪ

dξ

*2n

−nαŪ2

#
d2Ū

dξ2

* #
dŪ

dξ

*n−1

= 0 (6.97)

where, Ū = ux/U0, ξ = x/L and, α and % are dimensionless rheological and force
parameters, defined by,

α =
m(3)(n−1)/2

G

#
U0

L

*n

(6.98)

and

% =
mṁ(3)(n−1)/2

ρFL

#
U0

L

*n−1

(6.99)

respectively. To solve the problem, we need one additional boundary condition that τxx = τ0

at x = 0, which is difficult to estimate. However, Denn and Fisher [4] solved eqn. (6.97)
with the velocity boundary conditions of the Newtonian problem, given above. Figure 6.20
presents a plot of eqn (6.97) with various values of α. The graph also presents experimental
results for the fiber spinning of polystyrene at 170oC. The fiber had a value of α between
0.2 and 0.3, but the theoretical prediction compares with the experiments for a value of α
between 0.4 and 0.5. Phan-Thien had better agreement between the experiments done with
polystyrene and low density polyethylene by using the Phan-Thien-Tanner model [22].
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Figure 6.20: Comparison between experimental and computed velocity profiles during fiber
spinning using Denn and Fisher’s viscoelastic model [4].

6.3 PROCESSES THAT INVOLVE MEMBRANE STRETCHING

There are numerous processes that involve the stretching of a membrane such as film
blowing, film casting, extrusion blow molding, injection blow molding, themoforming, etc.
In this section we will address two very important processes: the film blowing process and
the thermoforming process.

6.3.1 Film Blowing

Despite the non-isothermal nature of the film blowing process we will develop here an
isothermal model to show general effects and interactions during the process. In the deriva-
tion we follow Pearson and Petrie’s approach [20], [19] and [21]. Even this Newtonian
isothermal model requires an iterative solution and numerical integration. Figure 6.21
presents the notation used when deriving the model.

A common form of analyzing film blowing is by setting-up a coordinate system, ξ, that
moves with the moving melt on the inner surface of the bubble, and that is oriented with the
film as shown in Fig. 6.21. Using the moving coordinates, we can define the three non-zero
terms of the local rate of deformation tensor as

γ̇11 =2
∂u1

∂ξ1

γ̇22 =2
∂u2

∂ξ2

γ̇33 =2
∂u3

∂ξ3

(6.100)

For an incompressible fluid, these three components must add-up to zero

γ̇11 + γ̇22 + γ̇33 = 0 (6.101)
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Figure 6.21: Schematic diagram of the film blowing process.
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For a thin film, where dξ1 = dz/ cos θ, the γ̇22 term can be defined by

γ̇22 = 2
u2

h
=

2

h

dh

dt
=

2

h

dh

dξ1

dξ1

dt
=

2u1

h

dh

dξ1
=

2u1 cos θ

h

dh

dz
(6.102)

The rate of expansion in the circumferential direction is defined by the rate of growth of the
circumference

u3 = 2π
dR

dt
(6.103)

divided by the local circumference, 2πR, to become

γ̇33 =
1

R

dR

dt
=

2u1

R

dR

dξ1
=

2u1 cos θ

R

dR

dz
(6.104)

and finally

γ̇11 = −γ̇22 − γ̇33 = −2u1 cos θ

h

dh

dz
− 2πu1 cos θ

R

dR

dz
(6.105)

It is possible to relate the total volumetric throughput, Q, to u1 using

Q = 2πRhu1 (6.106)

We can now write

γ̇11 = − Q cos θ

πRh

1

h

dh

dz
− 1

R

dR

dz

γ̇22 =
Q cos θ

πRh

1

h

dh

dz

γ̇33 =
Q cos θ

πRh

1

R

dR

dz

(6.107)

The total stress in the ξ-coordinate system is written as

σii = p − µγ̇ii (6.108)

Since surface tension is neglected and no external forces act on the bubble

σ22 = 0 (6.109)

Hence

p = µγ̇22 =
Qµ cos θ

πRh2

dh

dz
(6.110)

The two stresses become

σ11 = −µQ cos θ

πRh

#
2

h

dh

dz
+

1

R

dR

dz

*
(6.111)

and

σ33 =
µQ cos θ

πRh

#
1

R

dR

dz
− 1

h

dh

dz

*
(6.112)
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Figure 6.22: Forces acting on a film element.

It is necessary to perform a force balance for the bubble in order to determine the radius,
R(z), and the thickness, h(z), of the bubble. The longitudinal force is computed using

FL = 2πRhσ11 (6.113)

and for the small fluid element defined in Fig. 6.22, the transverse force is defined by

dFT = hξ1σ33 (6.114)

A force balance about the differential element results in

∆p = h

#
σ11

RL
+

σ33

RT

*
(6.115)

where RL and RT are defined in the ξ-coordinate system. In a cylindrical-polar coordinate
system we can write

RL = − sec3 θ

d2R/dz2
(6.116)

and

RT = R sec θ (6.117)

The bubble will grow to a maximum −or final− radius, Rf , when it freezes at a position
z = Z , which is called the freeze-line. Since the bubble is pulled by a force FZ , which is
usually referred to as the draw force, we can perform a force balance between a position z
and Z to give,

FZ = 2πR cos θhσ11 + π(R2
f − R2)∆p (6.118)

For convenience we define the following dimensionless parameters,
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• Draw down ratio: DR =
Uf

U0

• Dimensionless pressure: B =
πR3

0∆p

µQ

• Blow-up ratio: BUR =
Rf

R0

• Dimensionless stress: T =
R0FZ

µQ
− B(BUR)2

• Dimensionless take-up force: F̂ =
R0FZ

µQ

• Dimensionless radius: R̂ = R/R0

• Dimensionless axial direction: ẑ = z/R0

• Dimensionless thickness: ĥ = h/R0

• Thickness ratio: h0/hf = DrBUR

Using these dimensionless parameters, defining dR̂/dẑ = tan θ, and combining the
above equations yields two dimensionless differential equations

2R̂2(T + R̂2B)
d2R̂

dẑ2
= 6

dR̂

dẑ
+ R̂

⎛⎝1 +

�
dR̂

dẑ

�2
⎞⎠ 

T − 3R̂2B
'

(6.119)

and

1

ĥ

dĥ

dẑ
= − 1

2R̂

dR̂

dẑ
−

#
1 +

�
dR̂
dẑ

�2
*  

T + R̂2B
'

4
(6.120)

As boundary conditions we specify that R̂ = 1 at ẑ = 0, dR̂/dẑ = 0 at ẑ = Z/R0 and
ĥ = h0/R0 at ẑ = 0.

Since T depends on BUR, we must first specify BUR and iterate until a solution of
R̂(ẑ) is found that agrees with the choice of BUR. Hence, we must integrate eqn. (6.119)
numerically with each choice of BUR. After the correct value of BUR has been found,
we numerically integrate eqn. (6.120). Figures 6.23 and 6.24 present solutions for a fixed
value of Ẑ = 20 and a fixed value of B = 0.1, respectively.

EXAMPLE 6.5.

Film blowing. A tubular 50 µm thick low density polyethylene film is blown with
a draw ratio of 5 at a flow rate of 50 g/s. The annular die has a diameter of 15 mm
and a die gap of 1 mm. Calculate the required pressure inside the bubble and draw
force to pull the bubble. Assume a Newtonian viscosity of 800 Pa-s, a density of 920
kg/m3 and a freeze line at 300 mm.

Since we know the thickness reduction and the draw ratio of the film, we can
compute the blow-up ratio,

BUR = (h0/hf)/DR = (1000 µm/50 µm)/5 = 4 (6.121)
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Figure 6.23: Predicted film blowing process using an isothermal Newtonian model for a
dimensionless freezing line at Ẑ = 20 [21].
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Figure 6.24: Predicted film blowing process using an isothermal Newtonian model for a
dimensionless pressure B = 0.1 [21].
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Figure 6.25: Schematic diagram of the thermoforming process of a conical geometry.

Next, we can compute the dimensionless freeze line using,

Ẑ = Z/R0 = 300 mm/15 mm = 20 (6.122)

which allows us to use Fig. 6.23 to get B = 0.075 and F̂ = 1.3, which results in
∆p = 307 Pa and Fz = 3.77 N.

6.3.2 Thermoforming

A simple approximation of the thermoforming process is based on a mass balance principle.
To illustrate this concept, let us consider the thermoforming process of a conical object, as
schematically depicted in Fig. 6.25.

For the solution, we assume the notation presented in in Fig. 6.25. As shown in the
figure, at an arbitrary point in time the bubble will contact the mold at a height z and will
have a radius R, which is determined by the mold geometry

R =
H − sin β

sinβ tanβ
(6.123)

where H is the depth of the cone, s the contact point along the cone’s wall and β the angle
described in Fig. 6.25. The surface area of the cone at that point in time is given by

A = 2πR2(1 + cosβ) (6.124)

If we perform a mass balance as the bubble advances a distance ∆s, we get

2πR(1 + cosβ)h|s − 2πR2(1 + cosβ)h|s+∆s = 2πrh(s)∆s) (6.125)

with r = R sin β, the above equation results in

− d

ds
(R2h(s)) =

Rh(s) sin β

1 + cosβ
(6.126)
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differentiating eqn. (6.123), we get

dR

ds
=

1

tan β
(6.127)

We can combine the above equations to get

dh

h(s)
=

#
2 − tan β sin β

1 + cosβ

*
sin β

ds

H − s sin β
(6.128)

which can be integrated using h(0) = h1 as a boundary condition,

h

h1
=

 
1 − s

H
sinβ

'sec β−1

(6.129)

where h1 is the thickeness of the bubble when it first makes contact with the cone wall. The
initial thickness of the sheet, h0, can be related to h1 using

πD2h0

4
=

πD2(1 + cosβ)

2 sin2 β
h1 (6.130)

Finally, we can write the thickness distribution using

h

h0
=

1 + cosβ

2

 
1 − s

H
sin β

'sec β−1

(6.131)

This equation can be extended to simulate the thermoforming process of a truncated cone,
which is a more realistic geometry encountered in the thermoforming industry.

6.4 CALENDERING − ISOTHERMAL FLOW PROBLEMS

As discussed in Chapter 3, the calendering process is used to squeeze a mass of polymeric
material through a set of high-precision rolls to form a sheet or film. In this section, we
will derive the well known model developed by Gaskell [11] and by McKelvey [15]. For
the derivation, let us consider the notation and set-up presented in Fig. 6.26.

6.4.1 Newtonian Model of Calendering

In Gaskell’s treatment, a Newtonian flow was assumed with a very small gap-to-radius ratio,
h � R. This assumption allows us to assume the well known lubrication approximation
with only velocity components ux(y). In addition, Gaskell’s model assumes that a very
large bank of melt exists in the feed side of the calender. The continuity equation and
momentum balance reduce to

dux

dx
= 0 (6.132)

and

∂p

∂x
= µ

∂2ux

∂y2
(6.133)
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Figure 6.26: Schematic diagram of a two roll calendering system in the nip region.

respectively. Integrating eqn. (6.133) twice with the boundary conditions ux = U at
y = h(x) and ∂ux

∂y = 0 at y = 0, results in

ux = U +

�
y2 − h2(x)

2µ

�
dp

dx
(6.134)

where U = 2πnR is the speed on the roll surface. Using the velocity profile we can compute
the flow rate per unit width as

q = 2

� h

0

uxdy = 2h

�
U − h2

3µ

dp

dx

�
(6.135)

which will not vary with x. The pressure distribution is unknown and will be solved for
next. In order to do this, we require that the velocity at the outlet be uniform and equal to
the roll surface speed, ux(y) = U . A uniform velocity implies no shear stress, τyx = 0,
which means that the pressure gradient should also be zero at that point. Hence, at that
position the flow rate can be expressed as

q = 2h1U (6.136)

We can combine eqns. (6.135) and (6.136) to give

∂p

∂x
=

3µU

h2
1

#
1 − h1

h

* #
h1

h

*2

(6.137)

This equation implies that the pressure gradient vanishes at x = x1 as well as at x = −x1,
at which point, as will be shown later, the pressure is at a maximum.

The half-gap between the rolls is defined by

h = h0 + R −
0

R2 − x2, (6.138)

but since we can assume that x � R, the term
√

R2 − x2 can be approximated using the
first two terms of the binomial series. This results in

h

h0
= 1 + ξ2 (6.139)
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where, ξ2 =
x2

2Rh0
. Now we can integrate eqn. (6.137) to give

p =
3µU

4h0

1
R

2h0

#�
ξ2 − 1 − 5λ2 − 3λ2ξ2

(1 + ξ2)2

�
ξ + (1 − 3λ2) tan−1 ξ + C(λ)

*
(6.140)

where, λ =
x2

1

2Rh0
and C(λ) is obtained by letting p = 0 at ξ = λ

C(λ) =
(1 + 3λ2)

(1 + λ2)
λ − (1 − 3λ2) tan−1 λ (6.141)

McKelvey [15] approximated C(λ) ≈ 5λ3. The maximum pressure occurs at x = −x1

(ξ = λ)

pmax =
3µU

4h0

1
R

2h0
[2C(λ)] ≈ 15µUλ3

2h0

1
R

2h0
(6.142)

Figure 6.27 presents a dimensionless pressure, p/pmax, as a function of dimensionless
x-direction, ξ, for various values of λ, computed using the above equations. Figure 6.28
compares experimental pressure measurements to a curve computed using Gaskell’s New-
tonian model [11]. The two curves were matched by choosing the best value of λ to match
the position of maximum pressure. The predicted pressure is very accurate at values of ξ
larger than −λ but is not very good before −λ. Although a shear thinning model would help
achieve a better match between experiments and prediction [13], still within that region the
accuracy of the models remain poor. Another aspect that should be pointed out at this point
is that the maximum pressure, pmax, is very sensitive to λ, e.g., doubling λ increases pmax

8 times. It is reasonable to assume that p → 0 when ξ → −∞, which means that λ must
have a specific value, namely, λ = 0.475.

It should be noted that the pressure distribution goes to zero in the up-stream position ξ2,
where the material makes contact with both rolls. This position can be determined for any
value of λ by letting the pressure in eqn. (6.140) go to zero. Figure 6.29 presents a graph
of position of first contact, ξ2, and the position where the sheet separates from the rolls, λ.

With the above equations, the velocity distribution between the rolls becomes

ûx = 1 +
3

2

(1 − η2)(λ2 − ξ2)

(1 + ξ2)
(6.143)

where, ûx = ux/U and η = y/h. Equation (6.143) can be used to determine that a
stagnation point, ux(0) = 0, exists at a position ξs = −√

2 + 3λ2. Figure 6.30 presents
the flow pattern that develops in the nip region as predicted by eqn. (6.143). As can be
seen, a recirculation pattern develops due to the backflow caused by the pressure build-up
as the polymer is forced through the nip region. The calendering process was modeled
in 2D using the RBFCM in Chapter 11 of this book for a Newtonian as well as power
law viscosity models. Comparison with the analytical solutions reveal that the lubrication
approximation does an excellent job when modeling the process.

We will calculate the power consumption as well as predict the temperature rise within
the material due to viscous heating. In order to compute the power consumption, we need
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to integrate the product of the shear stress and the roll surface speed over the surface of the
roll. The rate of deformation can be computed using eqn. (6.143) as

γ̇yx(η) =
3U(ξ2 − λ2)

h0(1 − ξ2)2
η (6.144)

and the stress

τyx(η) = µ
3U(ξ2 − λ2)

h0(1 − ξ2)2
η (6.145)

The maximum rate of deformation and shear stress occur at the roll surface, η = 1, at ξ = 0
where the gap is smallest

γ̇max(η) =
3Uλ2

h0
(6.146)

and

τmax(η) = µ
3Uλ2

h0
, (6.147)

respectively. However, the overall maximum of stress and rate of deformation occurs at
ξ = ξ2 when ξ2 > −√

1 + 2λ2, and at ξ =
√

1 + 2λ2, if ξ2 <
√

1 + 2λ2. We can compute
the overall power requirement by integrating Uτyx along the surface of the roll, η = 1

P = 3µWU2

1
2R

h0
F(λ) (6.148)

where W is the width of the rolls and

F(λ) = (1 − λ2)[tan−1 λ − tan−1 ξmax] −
�
(λ − ξmax)(1 − ξmaxλ)

(1 − ξ2
max)

�
(6.149)

Of importance to the mechanical design of the calendering system and to the prediction of
the film thickness uniformity is the force separating the two rolls, F . This is computed by
integrating the pressure over the area of interest on the surface of the roll

F =
3µURW

4h0
G(λ) (6.150)

where G is given by

G(λ) =

#
λ − ξ2

1 − ξ2
2

*
[−ξ2 − λ − 5λ3(1 + ξ2

2)] + (1 − 2λ2)(λ tan−1 λ − ξ2 tan−1 ξ2)

(6.151)

Both functions F(λ) and G(λ) are shown in Fig. 6.31.
Finally, if from an adiabatic energy balance we assume that the power goes into heat

generation, we can estimate the temperature rise within the material to be

∆T =
P

ρQWCp
(6.152)
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Figure 6.31: Power and force functions F(λ) and G(λ) used in eqns. (6.149) and (6.151).

EXAMPLE 6.6.

Calendering problem with a Newtonian viscosity polymer. A calender system
with R = 10 cm, w = 100 cm, h0 = 0.1 mm operates at a speed of U = 40 cm/s and
produces a sheet thickeness h1 = 0.0218 cm. The viscosity of the material is given
as 1000 Pa-s. Estimate the maximum pressure developed in the material, the power
required to operate the system, the roll separating force and the adiabatic temperature
rise within the material.

Since the final sheet thickness is given we can compute λ using eqn. (6.139) as

h1

h0
= 1 + λ2 (6.153)

resulting in λ =0.3. Equation (6.142) becomes

pmax ≈ 15(1000 Pa-s)(0.40 m/s)(0.3)3

0.0001 m

1
0.1 m

0.0001 m
= 18.1 MPa (6.154)

The power is computed using eqn. (6.148) with F(0.3) =0.043

P = 3(1000 Pa-s)(0.4 m/s)2(1 m)

/
2(0.1 m)

(0.0001 m)
F(0.3) = 923 W (6.155)

The separating force is computed using eqn. (6.150) with G(0.3)=0.16

F =
3(1000 Pa)(0.4 m/s)(0.1 m)(1 m)

4(0.0001 m)
G(0.3) = 48 kN (6.156)
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Using a volumetric flow rate ofQ = 2Uh1W =8.72×105 m3/s, we can use eqn. (6.152)
with a typical specific heat of 1000 J/kg/K and density of 1000 kg/m3 to compute the
adiabatic temperature rise,

∆T =
923 W

(1000 kg/m3)(8.72 × 105 m3/s)(1 m)(1500 J/kg/K)
= 7 K. (6.157)

EXAMPLE 6.7.

Calendering problem with floating roll. In a set of calendering rolls, weighing
500 kg each, the upper roll rests on top of the calendered polymer. The calender
dimensions are R =0.15 m and W =2.0 m. For a material with a Newtonian viscosity
of 1000 Pa-s and a speed of 0.1 m/s, what is the final sheet thickness?

To solve this problem, we begin with eqn. (6.150) and substitute G(λ) with a value
of λ = 0.475

F = 1.23
3µURW

4h0
(6.158)

We can solve for h0 with values of F = 500 × 9.81 N, U = 0.1 m/s, R =0.15 m,
W =2.0 m and µ =1000 Pa-s

h0 = 1.23
3µURW

4F
= 0.0022 m (2.2 mm or 85.8 mils) (6.159)

6.4.2 Shear Thinning Model of Calendering

As with the Newtonian model, we assume a lubrication approximation, where the momen-
tum balance reduces to

∂p

∂x
=

∂τxy

∂y
(6.160)

If we assume a power law model, the shear stress τxy can be written as

τxy = m

7777∂ux

∂y

7777n−1
∂ux

∂y
(6.161)

The absolute value in eqn. (6.161) is to avoid taking the root of a negative number. From the
Newtonian solution we can see that there are two regions, one where the velocity gradient
is positive, ξ < λ, and one where the velocity gradient is negative, ξ > −λ. In each region,
the above equation must be integrated separately, resulting in two velocity distributions

ux = U +
1

n/(1 + n)

#
1

m

dp

dx

*1/n �
yn/(1+n) − hn/(1+n)(x)

�
(6.162)

for the region with the negative velocity gradient, and

ux = U − 1

n/(1 + n)

#
− 1

m

dp

dx

*1/n �
yn/(1+n) − hn/(1+n)(x)

�
(6.163)
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Figure 6.32: Function λ0 and sheet thickness as a function of power law index, n.

for the region with the positive velocity gradient. Either equation can be used to solve for
the pressure gradient

dp̂

dξ
= −

#
2n + 1

n

*n 1
2R

h0

(λ2 − ξ2)|λ2 − ξ2|n−1

(1 + ξ2)2n+1
(6.164)

where p̂ is a power law dimensionless pressure defined by

p̂ =
p

m

#
h0

U

*n

(6.165)

Equation (6.164) can be integrated to become

p̂ =

1
2R

h0

#
2n + 1

n

*n � λ0

−λ0

(λ2
0 − ξ2)n

(1 + ξ2)1+2n
dξ =

1
2R

h0
P(n) (6.166)

where λ0 is the position where the integral vanishes

0 =

� λ0

−∞

(λ2
0 − ξ2)|λ2

0 − ξ2|n−1

(1 + ξ2)2n+1
(6.167)

Figure 6.32 presents λ0 as a function of power law index, n. The figure also presents the
ratio of final sheet thickness to the nip separation as a function of n.

We can also compute the roll separating force, F , and the power required to drive the
system, P ,

F = WRm

#
U

h0

*n

F(n) (6.168)

and

P = WU2m
0

Rh0

#
U

h0

*n−1

E(n) (6.169)

Figure 6.33 [16] presents the functions P , F and E as a function of the power law index.
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Figure 6.33: Pressure (P(n)), force (F(n)) and power (E(n)) functions as a function of power
law index, n.

Unkrüer [18] performed experimental studies on the flow development during the cal-
endering process of unplasticized polyvinyl chloride to produce thin films. Among other
things he compared the measured maximum pressure that develops between the rolls to the
analytical value predicted by the shear thinning model presented above. Figure 6.34 shows
this comparison between experiment and theory and their rather good agreement.

6.4.3 Calender Fed with a Finite Sheet Thickness

All the above problems relate to the calendering process where a large mass of polymer melt
is fed into the calender. In some industrial applications, a finite polymer sheet of thickness
hf is fed to the calendering rolls, as depicted in Fig. 6.35.

To solve this problem, eqn. (6.166) is replaced by

p̂ =

1
2R

h0

#
2n + 1

n

*n � λ0

−ξf

(λ2
0 − ξ2)n

(1 + ξ2)1+2n
dξ =

1
2R

h0
P(n) (6.170)

and eqn. (6.167) becomes

0 =

� −ξ

−ξf

(λ2
0 − ξ2)|λ2

0 − ξ2|n−1

(1 + ξ2)2n+1
(6.171)

The position where the sheet being fed enters the system can be computed using

ξf =

1
hf

h0
− 1 (6.172)

Figure 6.36 presents a plot of final sheet thickness as a function of fed sheet thickness for
a Newtonian polymer and a shear thinning polymer with a power law index of 0.25.
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Figure 6.34: Comparison between experiments and theoretical predictions of maximum pressure
between the rolls during the calendering process of an unplasticized PVC film. A power law index,
n, of 0.1505 and a consistency index, m, of 155.2 kPa-s were used in the power law model of the
viscosity.

x

y
R

h0

h1

h(x)

n

n

Figure 6.35: Schematic diagram of a two roll calendering system in the nip region fed with a finite
sheet.
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Figure 6.37: Schematic diagram of a wire coating die.

6.5 COATING PROCESSES

Various coating processes have been discussed in Chapter 3. During a coating operation a
liquid is continuously applied to a surface or web, which can be a wire, paper, board, plastic
films, metal films, etc. There are numerous types of coating processes and variations, for
some of which analytical solutions are presented in this section.

6.5.1 Wire Coating Die

One important aspect of wire-coating is the thickness distribution of the polymer on the
surface of the wire as well as the velocity distribution within the die. A simplified wire
coating process is presented in the Fig. 6.37, where the wire radius is defined by R and the
annulus radius by κR. This type of flow is often referred to as an axial annular Couette
flow.

The most important assumptions when solving this problem are a steady, incompress-
ible and isothermal flow. Let us now consider a power-law fluid, but neglect the elastic
effects. Furthermore, for the solution of this specific problem, let us assume that the flow
is primarily driven by drag and that there are no significant pressure drops across the die.
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The unidirectional flow condition will simplify the momentum equation to

d

dr
(rτrz) = 0 (6.173)

using the power-law model and two integrations, we obtain the velocity as

uz =
 c1

m

's r1−s

s − 1
− c2 (6.174)

If we impose the boundary conditions

uz (R) = U

uz (κR) = 0
(6.175)

the velocity profile will become

uz (r)

U
=

ξ1−s − 1

κ1−s − 1
(6.176)

where ξ = r/R and s = 1/n.
In addition, from the definition of the stress tensor, using the power law model for the

viscosity, τrz becomes

τrz =
mUn(s − 1)n

Rn(κ1−s − 1)n

#
R

r

*
(6.177)

In order to relate the thickness of the coating to R and U , we must perform a mass balance
on the region starting at the exit of the die and ending where the fluid has reached the same
velocity as the wire. Here, we must assume that the polymer density is constant, although
the melt undergoes density changes as it solidifies. The mass balance is written as

2π

� R

κR

uz(r)rdr = Uπ
�
(κR + δ)2 − (κR)2

�
(6.178)

where δ is the coating thickness. By substituting the velocity profile into the integral in the
above equation, an equation for the coating thickness is obtained

2R2

κ1−s − 1

�
1 − κ3−s

3 − s
− 1 − κ2

2

�
=

�
(κR + δ)2 − (κR)2

�
(6.179)

which can be written as follows

2R2
"
1 − κ3−s

)
(κ1−s − 1) (3 − s)

− R2
"
1 − κ2

)
(κ1−s − 1)

− 2κRδ − δ2 = 0 (6.180)

This non-linear equation relates R and δ, which can be used to obtain the flow rate and the
coating thickness. Finally, the force needed to pull the wire through the die obtained from
integrating the stress at the polymer-die surface interface over the area of the die is defined
as,

F = (2πκRL) [τrz]r=κR = (2πκRL)

�
mUn(s − 1)n

Rn(κ1−s − 1)n

1

κ

�
(6.181)
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Figure 6.38: Schematic diagram of roll coating.

6.5.2 Roll Coating

In principle, roll coating is very similar to calendering, the difference being that the fluid
does not separate from the roll. The fluid continues adhered to both surfaces, the substrate
or web and the roll. In the analysis presented below, we follow the model presented by
Middleman [16]. His derivation assumes that the coating fluid evenly wets both surfaces
as schematically depicted in Fig. 6.38, as well as a Netwonian, isothermal and steady state
flow.

Using these assumptions and the notation presented in Fig. 6.38 the equation of motion
reduces to

− ∂p

∂x
+ µ

∂2ux

∂y2
= 0 (6.182)

To generalize the solution, we introduce the dimensionless variables, ξ = x/(Rh0)
1/2,

η = y/h0, ûx = ux/u, p̂ = (ph
3/2
0 )/(µuR1/2). The momentum balance reduces to

∂p̂

∂ξ
=

∂2ûx

∂η2
(6.183)

For small gaps, for which h0 � R, the pressure is independen of η. After integrating
eqn. (6.183) twice we get

ûx =
1

2

#
∂p̂

∂ξ

*
η2 + c1η + c2 (6.184)

If we approximate the gap with a quadratic equation

ĥ(ξ) = h(x)/h0 = 1 + ξ2/2 (6.185)

and apply the boundary conditions ûx = 1 at η = 0 and at η = ĥ(ξ), we get

ûx = 1 +
1

2

#
∂p̂

∂ξ

*
(η2 − ĥ(ξ)η) (6.186)

At this point, the pressure and pressure gradient are unknown. However, we can perform a
mass balance by using eqn. (6.186) to compute the volumetric flow rate

Q = W

� h(x)

0

uxdy (6.187)
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Figure 6.39: Schematic diagram of separation region.

and in dimensionless form

Q̂ =
Q

uWh0
=

� ĥ(ξ)

0

ûxdy (6.188)

which can be integrated to give

Q̂ = ĥ(ξ) − 1

12

#
dp̂

dξ

*
ĥ(ξ)3 (6.189)

The above equation can be written as

dp̂

dξ
= 12

ĥ(ξ) − Q̂

ĥ(ξ)3
(6.190)

p̂(ξ) = 12

� ξ

ξ0

ĥ(ξ) − Q̂

ĥ(ξ)3
dξ (6.191)

where ξ0 is the value of ξ at p̂ = 0. Since we are assuming that the liquid splits evenly to
the web and the roll, we can write

Q = 2uhc (6.192)

and in dimensionless form

Q̂ =
2hc

h0
(6.193)

At the separation point located at ξ = ξ1 and η = ĥ(ξ1)/2, depicted in Fig. 6.39, the
velocity goes to zero.

Hence, after combining eqns. (6.186) and (6.190), we can write

ûx = 1 − 3

2

ĥ(ξ) − Q̂

ĥ(ξ)
= 0 (6.194)

which can be solved to give

ĥ1 = 3Q̂ (6.195)
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If we integrate eqn. (6.191), assuming that ξ0 = −∞, we get

p̂(ξ) =
(6 − (9/2)Q̂)ξ

1 + ξ2/2
− 3Q̂ξ

(1 + ξ2/2)2

+

!
12√
2

− 9Q̂√
2

(
tan−1

#
ξ√
2

*
+

6π√
2

!
1 − 3Q̂

4

( (6.196)

Middleman suggests the simplest model for the separation region based on the assumption
that the fluid splits at a point where ûx = 0 and p̂ = 0. The above equation can be solved
numerically to give

Q̂ = 1.30 (6.197)

For a power law solution the equation, of motion is non-dimensionalized in a similar
manner as with the Newtonian solution, except that dimensionless pressure is defined as

p̂ =

#
h0

u

*n #
h0

R

*1/2
p

m
(6.198)

When using the power law model, the pressure distribution cannot be evaluated explicitly,
and is left in integral form as

p̂ = 21+n

#
1 + 2n

n

*n � ξ

−∞

(ĥ(ξ) − Q̂)n−1(ĥ(ξ) − Q̂)

ĥ(ξ)1+2n
dξ (6.199)

Similar to the Newtonian solution, Q̂ is obtained by assuming that at the separation point
the velocity goes to zero. If we let ûx(ξ1, ĥ(ξ1)/2) = 0

ξ1 =

�
2

#
2n + 1

n
Q̂ − 1

*�1/2

(6.200)

We can solve for Q̂ by trial and error after setting the limit in eqn. (6.199) to ξ1. Figure 6.40
presents the value for Q̂ as a function of power law index. As can be seen, the shear thinning
effect is not very large.
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Figure 6.42: Dimensionless force as a function of power law index.

The pressure profile can now be solved for and is presented in dimensionless form for
various power law indices in Fig. 6.41.

From the pressure distribution we can now compute the roll separating force using

F/W = mR

#
u

h0

*n

F(n) (6.201)

where F(n) is presented in Fig. 6.42.
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Figure 6.43: Change in interfacial area after applying a shear strain γ.

6.6 MIXING − ISOTHERMAL FLOW PROBLEMS

The basic concepts of mixing have already been discussed in Chapter 3 of this book. This
section presents various examples and models that show how a mixing process can be
analyzed and assessed.

6.6.1 Effect of Orientation on Distributive Mixing − Erwin’s Ideal Mixer

Erwin [8] developed the theoretical background to assess the effect orientation has on the
distributive mixing in single screw extruders. His starting point was the equation that relates
the growth of an interface between fluids undergoing shear flow (Fig. 6.43), and described
by

A

A0
=

0
1 − 2γ cosα cosβ + cos2 αγ2 (6.202)

For a simple geometry (β = 0) undergoing simple shear flow, the above equation sim-
plifies to

A

A0
= γ cosα (6.203)

Let us consider the best case scenario, where the initial angle α = 0. During shear, the
surface is reoriented and will eventually approach 90o; hence, the mixing becomes very
ineffective as the fluid interfaces are deformed. However, if during the flow, where the
total shear, γ, is imposed upon the surfaces, the flow is interrupted in the middle so that the
surface can be reoriented back to the initial position, we get

A1

A0
=

γ

2
(6.204)
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of area increase for the first half and

A2

A1
=

γ

2
(6.205)

for the second half. Therefore, with one interruption used to reorient the surface we get

A1

A0

A2

A1
=

γ

2

γ

2
=

 γ

2

'2

(6.206)

If the flow is interrupted twice, dividing the total shear into 3 sections we get

A3

A0
=

 γ

3

'3

(6.207)

Hence, in general we can write

A

A0
=

 γ

N

'N

(6.208)

where N is the number of interruptions plus1. Each interruption could be a mixingmixing,interruption
section in a single screw extruder, such as pins or rhomboids, which attempt to randomnize
surfaces that have been oriented by the shear imposed by the channel flow.

Erwin [9] and Ng [17] demonstrated this in an experimental study that involved placing
black and white polyethylene blocks in a Couette device (Fig. 6.44a). Figure 6.44b shows
that after applying a small amount of shear, the surfaces that were originally oriented in
the radial direction have stretched a certain amount and have changed their orientation. It
is clear from the photograph that the same surface tends to align with the planes of shear,
reducing the mixing efficiency of the process. Hence, in order to increase the effectiveness
of the mixer, Erwin [10] and Ng [17] took the Couette content and cut it into new blocks,
that were placed inside the Couette device rotated by 90o(Fig. 6.44c). This changed the
orientation of the surfaces back to a position where they can more effectively feel the
effects of deformation. They repeated this procedure several times, by performing 1,2,
and 3 interruptions. Figure 6.45 compares the measured values of surface increase to
eqn. (6.208).

Using this concept, Erwin [9] demonstrated that the upper bound for the ideal mixer
is found in a mixer that applies a plane strain extensional flow or pure shear flow to the
fluid and where the surfaces are maintained ideally oriented during the whole process; this
occurs when N = ∞ and each time an infinitesimal amount of shear is applied. In such a
system the growth of the interfacial areas follows the relation given by

A

A0
= eγ/2 (6.209)

In Erwin’s ideal mixer, the amount of mixing increases in an exponential fashion, compared
to a linear increase, if the orientation of the fluids’ interfaces remain undisturbed.

6.6.2 Predicting the Striation Thickness in a Couette Flow System − Shear
Thinning Model

For this problem, we will consider a Couette device, schematically represented in Fig. 6.46
in which the inner cylinder rotates at a speed Ω and with a secondary component made up
of a black tracer line with an initial thickness δ0. As the tracer line is deformed, it spirals
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Figure 6.44: Couette flow and reorientation scheme, after Ng [17].
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Figure 6.45: Increase in interfacial area as function of shear and number of interruptions.
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Figure 6.46: Schematic diagram of a Couette flow mixer with a tracer line.
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Figure 6.47: Non-diffusive mixing progress within a Couette mixing device (after McKelvey [15]).

around the inner cylinder as it gradually reduces its thickness (δ(t)), as depicted for 1,2,3
and 1000 revolutions of the inner cylinder in Fig. 6.47 [15]. The thickness of the secondary
component is referred to as the striation thickness. Eventually, the striation thickness is
so small that the naked eye can no longer distinguish it. Approximately at this point we
consider the mixing process to be complete. Here, we will derive the equations that will
allow us to predict the striation thickness of the tracer line.

Using the notation described in Fig. 6.46 and the solution presented for Couette flow in
Chapter 4, we write

uθ = rΩ
1 − (Ro/r)2/n

1 − κ−2/n
(6.210)

Since uθ = r(dθ/dt), we can integrate eqn. (6.210) to give

θ = Ω
1 − (Ro/r)2/n

1 − κ−2/n
t (6.211)

Assuming (r + dr)2/n − r2/n ≈ (2/n)r(2−n)/ndr, after one revolution, t = 2π/Ω, a
distance dr on the tracer line has grown to

dθ =
4π

n(κ−2/n − 1)

R
2/n
o

r(n+2)/n
dr (6.212)
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Figure 6.48: Striation thickness reduction as a function of number of revolutions in a Couette
device.

After N revolutions, the length will be Ndθ and the total length of the tracer line will be

Ls =

�
[dr2 + r2(Ndθ)2]1/2 (6.213)

where Ls is the length of the striation or tracer line. Combining eqns. (6.212) and (6.213)
we get

Ls =

� Ro

κRo

�
1 +

16π2N2R
4/n
o

n2(κ−2/n − 1)2
r−4/n

�1/2

dr (6.214)

The striation thickness reduction can now be written as#
δ

δ0

*
=

R0 − κr

Ls
(6.215)

Since dr2 � (rNdθ)2, we get#
δ

δ0

*
=

�
2 − n

4πN

� �
(1 − κ)(κ−2/n − 1)

(κ(n−2)/n − 1)

�
(6.216)

Figure 6.48 presents the reduction of the striation thickness as a function of number of
revolutions, as well as ratio of inner to outer cylinder radius, κ for a Newtonian fluid. If
we were to plot the striation thickness for a shear thinning fluid, say a power law index
n = 0.5, the naked eye would not be able to distinguish between the Newtonian and the
shear thinning results.
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Figure 6.49: Schematic diagram of tube flow.

6.6.3 Residence Time Distribution of a Fluid Inside a Tube

The residence time distribution is a way to asses the mixing quality of a continuous flowing
system such as an extruder. The residence time distribution is a measure of how much time
the melt spends inside a continuous mixing device. The fluid particles entering the tube on
one plane at the same time, will leave at different times according to their radial position.
For example, a melt flowing through a tube has a large residence time near the wall, and
the shortest residence time at the center. To illustrate this concept, let us consider the flow
through a tube of radius R, length L and a volumetric throughput Q.

If we consider the tube geometry and notation presented in Fig. 6.49 we can show that
the time, t, that every fluid particle spends inside the tube is defined by

t =
L

uz(r)
(6.217)

Residence time distribution functions were developed by Danckwerts [3] and are defined
as external or internal RTD functions. The external RTD function f(t) is defined such that
f(t)dt is the fraction of fluid exiting the system with a residence timebetween t and t + dt
and the internal RTD function g(t) is defined such that g(t)dt is the fraction of the fluid in
the system with a residence time between t and t + dt.

For the external RTD, we can write

f(t)dt =
dQ

Q
=

uz(r)2πrdr

πR2U
(6.218)

where U is the average speed inside the tube, as is defined by

U =
Q

πR2
(6.219)

The average residence time distribution t̄ can be computed using

t̄ =
L

U
(6.220)

Using eqn. (6.219) and the analytical solution for Newtonian Hagen-Poiseuille flow given
by

uz(r) = 2U
�
1 − (

r

R
)2

�
=

L

t
(6.221)

we can write

2rdr

R2
=

t̄

2t2
dt (6.222)
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and

uz(r)

U
=

t̄

t
(6.223)

If we solve for dt in eqn. (6.218), substitute it into eqn. (6.222), and using eqn. (6.223) we
can solve for the residence time distribution as

f(t) =
1

2

t̄2

t3
(6.224)

It is more common to assess mixing using the cumulative residence time distribution,defined
by

F (t) =

� t

t̄/2

f(t)dt (6.225)

where the lower limit of the integral is the shortest residence time, i.e., the time it takes for
the first fluid particles, at r = 0, to appear at the other end of the pipe. After integrating we
get,

F (t) = 1 − 1

4

#
t

t̄

*−2

(6.226)

For a shear thinning fluid following a power law model, the residence time distribution
becomes

f(t) =
n(1 + 3n)

2(1 + n)2
t̄2

t3

#
1 − t̄

2t

*n − 1

1 + n (6.227)

and the cumulative residence time distribution

F (t) =

#
1 +

n(1 + 2n)

(1 + 2n)(1 + n)

t̄

2t

* #
1 − (1 + n)(1 + 2n)

(1 + 2n)(1 + n)

t̄

2t

* n

1 + n (6.228)

Figure 6.50 presents the cumulative residence time distribution for a tube with a Newto-
nian model and for a shear thinning fluid with power law indices of 0.5 and 0.1. Plug flow,
which represents the worst mixing scenario, is also presented in the graph. A Bingham
fluid, with a power law index of 0, would result in plug flow.

Similarly, we can derive the external cumulative residence time distribution G(t) defined
by,

G(t) =

� t

0

g(t)dt (6.229)

6.6.4 Residence Time Distribution Inside the Ideal Mixer

The shape of the residence time or cumulative residence time distributions are used when
optimizing the mixing ability of a system. Often, this shape is compared to the residence time
in an ideal or perfect mixer. Such a mixer is a well stirred tank, as depicted in Fig. 6.51(a).
Here, two components, a primary and secondary component, are fed to the tank at a total
flow rate Q. The output can be regarded as a flow rate Q with a concentration (1 − C0) of
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Figure 6.50: Cumulative residence time distributions for tube flow with a Newtonian fluid, and
power law fluids with power law indeces of 0.5 and 0.1. Plug flow, which corresponds to a Bingham
fluid with a power law index of 0 is also shown.
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Figure 6.51: Flow through a stirred tank. (a) Before the marked material is added. (b) Instant the
marked material is added, t = 0. (c) After the adding marked material, t.
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the primary component and a concentration C0 of the secondary component. We assume
that the stirring tank is so rigorous that the contents are homogeneous at a concentration
equal to the output.

At some point in time, which we will call t = 0, we mark a portion of the secondary
component entering the tank (Fig. 6.51b), say with a pigment, so we can distinguish it from
the material that was in the tank before t = 0 (Fig. 6.51a), as well as the material that enters
the tank after (Fig. 6.51c) the marked material is inserted. We now call F (t) the fraction
of the material that was in the tank the instant the marked material is added, and has left
the tank at time t. Hence, the volumetric output of the marked secondary component is
F (t)C0Q. The concentration of the marked secondary component in the output is C(t).
We can now write the balance

QC(t) = F (t)C0Q (6.230)

or

F (t) =
C(t)

C0
(6.231)

If we assume a perfectly homogeneous stirring tank, a balance of the marked material inside
the tank will give

V
dC

dt
= QC0 − QC (6.232)

with the boundary condition C(0) = 0. With t̄ = V/Q, the above equation can be integrated
to become

C(t) = C0

 
1 − e−t/t̄

'
(6.233)

or

F (t) =
 
1 − e−t/t̄

'
(6.234)

Figure 6.52 compares the cumulative residence time distributions of a perfect mixer to
Poiseuille flow. Disregarding the fact that the stirring tank’s output starts at t = 0, we can
see that the overall shape of the curve with the prefect mixer is much broader, pointing to
a more homogeneous output, or simply, a better mixer.

6.7 INJECTION MOLDING − ISOTHERMAL FLOW PROBLEMS

Injection molding is a rather complex process during which non-Newtonian as well as non-
isothermal effects play significant roles. Here, we present a couple of problems that are
relatively simple to allow an analytical solution. Injection molding is discussed further in
the next chapters.

6.7.1 Balancing the Runner System in Multi-Cavity Injection Molds

Inevitably, in multi-cavity injection molds, some of the mold cavity gates are located further
than others from the sprue that delivers the melt from the plasticating unit. If the runner
system that distributes the melt from the sprue to the individual cavities has a constant
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Figure 6.52: Cumulative residence time distribution for a stirring tank with perfect mixing.
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Figure 6.53: Schematic diagram of an eight cavity mold system with various runner lengths and
radii.
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diameter, each cavity would receive the melt at a different time and pressure. Differences
in pressure will result in variable shrinkage, part weight and appearance. In order to avoid
part inconsistencies the runner system has to be appropriately designed. For example, let
us consider a multi-cavity system, schematically depicted in Fig. 6.53. In the figure, each
portion of the runner is labeled with a number inside a circle, and the juncture between the
runners are labeled with a number. In order to balance such a runner system we must assure
that the flow-rate into each cavity is the same for the cavities near the gate and the cavities
far away. Hence, for the case shown in Fig. 6.53 we must satisfy

Q2 = Q4 (6.235)

The flow through runners 1 and 3 must be

Q3 = 2Q4 (6.236)

and

Q1 = 2Q2 + 2Q4, (6.237)

respectively. Assuming an isothermal flow inside the runner system2, the flow rate in each
runner can be approximated using the Hagen-Poiseuille equation for a power law fluid

Qi =
πR3

s + 3

#
R∆pi

2mLi

*
(6.238)

where ∆pi is the pressure drop between the junctures, specific to each runner within the
system.

EXAMPLE 6.8.

Sample balancing problem. Let us consider the multi-cavity injection molding
process shown in Fig. 6.54. To achieve equal part quality, the filling time for all
cavities must be balanced. For the case in question, we need to balance the cavities
by solving for the runner radius R2. For a balanced runner system, the flow rates
into all cavities must match. For a given flow rate Q, length L, and radius R1, solve
for the pressures at the runner system junctures. Assume an isothermal flow of a
non-Newtonian shear thinning polymer. Compute the radius R2 for a part molded of
polystyrene with a consistency index (m) of 2.8 × 104 Pa-sn and a power law index
(n) of 0.28. Use values of L = 10 cm, R1 = 3 mm, and Q = 20 cm3/s.

Assuming a Hagen Poiseuille flow, we can write the following equations for the 4
runner system sections

• Section 1: 4Q =
π(1.5R1)

3

s + 3

�
1.5R1(p1 − p2)

2mL

�s

• Section 2: 2Q =
π(1.5R1)

3

s + 3

�
1.5R1(p2 − p3)

4mL

�s

• Section 3: Q =
πR3

2

s + 3

�
R1(p2 − 0)

4mL

�s

2This is only true for a hot runner system. However, in many injection molding processes the runner system is
directly inside the cooled mold, and the flow is not isothermal.
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Figure 6.54: Runner system lay out.

• Section 4: Q =
πR3

1

s + 3

�
R1(p3 − 0)

4mL

�s

The unknown parameters, p1, p2, p3, and R2 can be obtained using the listed
equations. For the given values, a radius, R2, of 2.34 mm would result in a balanced
runner system, with pressures p1 = 562 bar, p2 = 460 bar, and p3 = 292 bar. For
comparison, had we assumed a Newtonian viscosity where µ = m, a radius, R2, of
2.76 mm would have resulted in a balanced system, with much higher pressures of
p1 = 63030 bar, p2 = 49120 bar, and p3 = 35210 bar.

6.7.2 Radial Flow Between Two Parallel discs

In Chapter 5 of this book we derived the equations that govern the pressure flow between two
parallel discs for a Newtonian fluid. In a similar fashion, we can derive the equations that
govern flow rate, gate pressure, and pressure distributions for disc-shaped cavities filling
with a shear thinning fluid. For the equations presented in this section, we assumed a power
law viscosity. For the velocity distribution we have

ur(r, z) = −2n + 1

n + 1

Q

4πnh2

 
z1+1/n − h1+1/n

'
(6.239)

where

Q =
4πnh2+1/n

2n + 1

#
−rn

m

dp

dr

*1/n

(6.240)

with a pressure distribution of

p(r) =
m

(1 − n)h

�
(2n + 1)Q

4πnh2

�n

(R1−n − r1−n) (6.241)

where r is the radial position in the disc mold. By substituting r = r1, we can compute the
pressure at the gate.
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Figure 6.55: Radial pressure profile as a function of time in a disc-shaped mold computed using a
shear thinning viscosity model (after Agassant [1]).

EXAMPLE 6.9.

Predicting pressure profiles in a disc-shaped mold using a shear thinning power
law model [1]. We can solve the problem presented in example 5.3 for a shear thinning
polymer with power law viscosity model. We will choose the same viscosity used in
the previous example as the consistency index, m = 6, 400 Pa-sn, in the power law
model, with a power law index n = 0.39. With a constant volumetric flow rate, Q,
we get the same flow front location in time as in the previous problem, and we can
use eqns. (6.239) to (6.241) to predict the required gate pressure and pressure profile
throughout the disc.

Figure 6.55 presents the pressure profiles within the material for various melt flow
front locations. First of all, we can see that the shear thinning behavior of the polymer
has caused the pressure requirement to go down significantly (by a factor of 30). The
curves presented in Fig. 6.55 also reveal that the shape of the curves was also affected
when compared to the Newtonian profiles.

Figure 6.56 presents a comparison of the pressure at the gate for the Newtonian
and shear thinning case. The figure also shows the effect of temperature [1]. We can
see the effect that the cooling has on the pressure requirements. This is caused by
a reduction of thickness due to the growth of a solidified layer on the mold surface,
as well as an increase in viscosity due to a drop in overall temperature. For a better
comparison, Fig. 6.57 presents the pressure requirements for the shear thinning and
non-isothermal cases [1].
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6.8 NON-ISOTHERMAL FLOWS

Although we analyze most polymer processes as isothermal problems, many are non-
isothermal even at steady state conditions. The non-isothermal effects during flow are
often difficult to analyze, and make analytical solutions cumbersome or, in many cases
impossible. The non-isothermal behavior is complicated further when the energy equation
and the momentum balance are fully coupled. This occurs when viscous dissipation is
sufficiently high to raise the temperature enough to affect the viscosity of the melt.

Hence, when solving a non-isothermal problem the question arises −is this a problem
where the equations of motion and energy are coupled? To address this question we can
go back to Example 6.1, a simple shear flow system was analyzed to decide whether it
can be addressed as an isothermal problem or not. In a simple shear flow, the maximum
temperature will occur at the center of the melt. By substituting y = h/2 into eqn. (6.5),
we get an equation that will help us estimate the temperature rise

∆Tmax =
3

8

ηu2
o

k
(6.242)

When analyzing non-isothermal flow problems, we often assume that the viscosity decays
exponentially with temperature following the relation

η = η0e
−a(T−T0) (6.243)

We can determine the change of viscosity with respect to temperature change by differen-
tiating eqn. (6.243)

∂η

∂T
= −η0ae−a∆T (6.244)

Here, we can see that an increase in temperature will reduce the viscosity by an amount
controlled by the material constant a −the temperature dependence of the viscosity− and
the actual temperature rise, ∆T . Hence, the effect is controlled by the producta∆T . Taking
eqn. (6.242) and dropping the 3/8 term we can say that

a∆T ∝ a
ηu2

o

k
(6.245)

Equation (6.245) is the well known Nahme-Griffith number

Na = a
ηu2

o

k
(6.246)

which is a measure of the degree of coupling between the energy equation and the momentum
balance. For the two problems that follow, we will assume that the energy equation and the
equation of motion are not coupled, hence Na � 1.

6.8.1 Non-Isothermal Shear Flow

A common flow problem in polymer processing is a shear flow with a temperature gradient
as depicted in Fig. 6.58. For example, this type of flow occurs within the melt film that
develops during melting with drag flow removal, as will be discussed later in this chapter.

In the problem we are addressing in this section, the two plates are assigned two different
temperatures, T0 on the lower plate and T1 on the upper moving plate. In addition, we are as-
suming a Newtonian flow with an exponential temperature dependence, µ = µ0e

−a(T−T0),
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Figure 6.58: Schematic diagram of a shear flow problem with an imposed temperature gradient.

constant thermal properties and negligible viscous heating. In such a system, the energy
balance reduces to

0 = k
∂2T

∂y2
(6.247)

which can be integrated using the boundary conditions given above to become

(T − T0) = (T1 − T0)
 y

h

'
(6.248)

or

Θ = Θ1

 y

h

'
(6.249)

The equation of motion reduces to

0 =
∂τyx

∂y
(6.250)

which after integration gives

τyx = C1 (6.251)

We can now make use of the constitutive equation

τyx = µ0e
−aΘ ∂ux

∂y
= C1 (6.252)

which can be rewritten as

∂ux

∂y
=

C1

µ0
eaΘ (6.253)

and integrated using the boundary conditions, ux = 0 and T = T0 at y = 0, as well as
ux = U0 and T = T1 at y = h, to give

ux = U0

#
1 − eΩ(y/h)

1 − eΩ

*
(6.254)
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Figure 6.59: Dimensionless shear flow results with various dimensionless temperature imbalances.

where Ω = aΘ1.
To illustrate the effect of thermal gradients and temperature dependent viscosity, we

can plot a dimensionless velocity, ux/U0 as a function of dimensionless position, y/h, for
various values of thermal imbalance between the surfaces, Θ1. Note that Ω, the product
between the temperature dependence of the viscosity and the temperature imbalance is also
a dimensionless quantity. This gives a fully dimensionless graph that can be used to assess
many case scenarios. Figure 6.59 presents dimensionless velocity distributions across the
plates for various dimensionless temperature imbalances, Ω.

6.8.2 Non-Isothermal Pressure Flow Through a Slit

For this non-isothermal flow consider a Newtonian fluid between two parallel plates sep-
arated by a distance h. Again we consider the notation presented in Fig. 6.58, however,
with both upper and lower plates being fixed. We choose the same exponential viscosity
model used in the previous section. We are to solve for the velocity profile between the two
plates with an imposed pressure gradient in the x-direction and a temperature gradient in
the y-direction.

Again, neglecting viscous heating results in the linear temperature profile, eqn. (6.249),
presented in the previous section. In this case, with the imposed pressure gradient, the
equation of motion becomes

∂p

∂x
=

∂τyx

∂y
(6.255)

which after integration leads to

τyx =

#
∂p

∂x

*
y + C1 (6.256)
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The stress can be defined using the constitutive equation τyx = µ

#
∂p

∂x

*
, and letting

∂p

∂x
=

∆p

L
results in

µ0e
(
−Θ1a

h
y) dux

dy
=

∆p

L
+ C1 (6.257)

Defining Ω = Θ1a and ŷ = y/h, we can write

dux

dy
=

1

µ0

∆p

L
yeΩŷ +

C1

µ0
eΩŷ (6.258)

which can be integrated to give

ux =
h2∆p

µ0LΩ2
eΩŷ(Ωŷ − 1) +

C1

µ0Ω
eΩŷ + C2 (6.259)

Using the boundary conditions ux = 0, at ŷ = 0 and ŷ = 1, we get the following velocity
distribution

ux =
h2∆p

µ0LΩ

�
eΩŷ

#
ŷ +

eΩ

1 − eΩ

*
− eΩ

1 − eΩ

�
(6.260)

If we further assume a dimensionless velocity

ûx = ux
µ0LΩ

h2∆p
(6.261)

Equation (6.262) reduces to

ûx =

�
eΩŷ

#
ŷ +

eΩ

1 − eΩ

*
− eΩ

1 − eΩ

�
(6.262)

Figure 6.60 presents the dimensionless pressure flow velocity profile for various positive
values of Ω. It should be noted that negative values of Ω lead to symmetric velocity profiles
as the one generated by the positive values.

6.9 MELTING AND SOLIDIFICATION

Melting is an important step in any polymer process. Before the material can be shaped
into its final form it must first be softened or molten. For example, during thermoforming
the sheet is heated using radiative heaters to a temperature high enough that the sheet can
be stretched and formed into, or over, the cavity that will give it its final shape. In extrusion
and injection molding the pellets first move from the hopper into the plasticating region of
the screw, where they are molten and subsequently pushed out of the die or into the mold
cavity.

In the plastication step of the process, melting is critical in controlling cycle time. Also,
during thermoforming, the heating of the sheet is the most time consuming step of the whole
process. For example, if we consider the melting of an infinite slab, at an initial temperature
of T0, as presented in Fig. 6.61, the heat supplied by the hot wall, set at a heater temperature
of Th, will create a layer of molten polymer of thickness, X(t).
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Figure 6.61: Schematic diagram of the melting process of an infinite slab.
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For such a case, where the temperature can be computed as a function of time using

T − Th

T0 − Th
= erf

#
x√
4αt

*
(6.263)

where α =
k

ρCp
is the thermal diffusivity; the error function, erf, is defined by

erf

#
x√
4αt

*
=

2√
π

� x√
4αt

0

e−s2

ds (6.264)

The equation clearly demonstrates that the molten layer, with temperatures above Tm for
semi-crystalline polymers and above Tg for amorphous polymers, will follow the following
relation

X(t) ∝
√

αt (6.265)

for amorphous polymers. The melting and solidification process for semi-crystalline mate-
rials is more complex because the heat of fusion or heat of crystallization, nucleation rate,
etc. When measuring the specific heat as the material crystallizes, a peak representing the
heat of fusion is detected, shown in Fig. 2.8. Although theoretical predictions of melting and
solidification in semi-crystalline polymers predict a similar growth rate as with amorphous
polymers

X(t) ∝ f(λ, α)
√

t (6.266)

where f(λ, α) represents heat of fusion effects, experimental evidence [14] of solidification
has demonstrated that the growth rate of the solidified crystallized layer in semi-crystalline
polymers is finite at the beginning of the solidification process. This is mainly due to
the fact that at the beginning the nucleation can only occur at a finite rate. Hence, the
solution presented in eqn. (6.266) as well as the widely used Stefan condition, discussed
later, can only be used for melting but do not hold for cooling and solidification of semi-
crystalline polymers. This can be seen in Fig. 6.62, which shows the measured thickness of
crystallized layers as a function of time for polypropylene plates quenched at three different
temperatures. For further reading on this important topic the reader is encouraged to consult
the literature [6, 12].

In either case, the growth rate of the molten layer during conduction melting follows the
relation

dX(t)

dt
∝ 1√

t
(6.267)

which means that the growth rate of the molten layer, X(t) during melting is infinite at
t = 0, but rapidly decreases as the molten layer increases in thickness. For example, the
growth rate at 10 seconds, is only 32% of the growth rate at 1 second, and the growth
rate at 1 minute is only 13% of the growth rate at 1 second. Hence, even after only 10
seconds the melting rate is quite inefficient, and can only be increased by continuously
maintaining the thickness of the molten layer small. This can be achieved by various melt
removal schemes, namely, the pressure flow melt removal and the drag flow melt removal
techniques, presented in Figs. 6.63 and 6.64, respectively.

During the pressure flow melt removal scheme a force is applied on the melting solid
resulting in a pressure build-up within the melt film, causing the melt film to be squeezed
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out from under the solid body. On the other hand, in the drag flow melt removal scheme, the
melt is transported out from under the solid by the moving heated surface. This mechanism
exists in the melting section of a single screw extruder. Both of these cases are addressed
in more detail in the the following sections.

6.9.1 Melting with Pressure Flow Melt Removal

Melting with pressure flow melt removal is the less common of the two melt removal
schemes. However, it can be seen during butt welding, where a plastic is pressed against a
hot surface and the melt is squeezed from under the part. Another application of industrial
relevance is a special form of polyester fiber manufacturing process, where a plastic bar is
pressed against a heated screen [24]. Here, we will follow the derivation by Stammers and
Beek [24]. First, let us consider a circular polymer bar of radius R pressed against a heated
metal surface using a force F as depicted in Fig. 6.65

To simplify the problem, we can assume that the polymer bar moves at a constant
speed Usy , and that a film of constant thickness, δ, exists between the bar and the heated
plate. In addition, we assume that the polymer melt is Newtonian and that the viscosity
is independent of temperature. The Newtonian assumption is justified by low rates of
deformation that develop in this relatively slow flow problem. Furthermore, due to these
low rates of deformation we can assume that the convective and viscous dissipation effects
are negligible.

We can perform a mass balance as

ρsπR2(−Usy) = 2πrδûrρm (6.268)
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and we can compute the total melting rate as the material displaced by the moving bar

wT = π(−Usy)ρsR
2 (6.269)

In eqn. (6.268), ûr is the mean radial velocity at position r, and can be computed using

ûr =
(−Usy)r

2δ
ρ̂ =

1

δ

� δ

0

urdy (6.270)

where ρ̂ = ρs/ρm is a dimensionless density.
For this problem, the momentum balance reduces to a simple form of the radial compo-

nent of the equation of motion

dp

dr
= µ

d2ur

dy2
(6.271)

We can now integrate eqn. (6.271) using a no-slip boundary condition on the heated metal
surface, ur(0) = 0, and on the polymer bar, ur(δ) = 0, to give

ur(y) =
1

2µ

dp

dr
(y − δ)y (6.272)

Integrating eqn. (6.270) results in

ûr =
−δ2

12µ

dp

dr
=

(−Usy)r

2δ
ρ̂ (6.273)

which can be solved for the pressure gradient

−dp

dr
=

6µρ̂(−Usy)r

δ3
(6.274)

Equation (6.274) can be integrated using the boundary condition p(R) = 0 to give the
pressure profile

p(r) =
3µρ̂(−Usy)

δ3
(R2 − r2) (6.275)

The pressure profile can be related to the force F used to press the polymer bar against the
heated plate using,

F =

� r

0

2πrp(r)dr =
3πµρ̂(−Usy)R4

2δ3
(6.276)

When examining eqn. (6.276) it is clear that the only two unknowns are the speed at
which the solid moves, Usy , and the melt film thickness, δ. To solve for melt film thickness
we can perform a energy balance by setting the heat conduction through the thickness of
the film equal to the heat of fusion of the melting material and the energy required to raise
its temperature from T0 to Tm

km
(Th − Tm)

δ
= ρs(−Usy) [λ + Cs(Tm − T0)] (6.277)

We can solve for δ and substitute it into eqn. (6.276) and solve for our last unknown, Usy ,

(−Usy) =
0.67872

R

�
F

µρ̂

�1/4 �
km(Th − Tm)

ρs [λ + Cs(Tm − T0)]

�3/4

(6.278)
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Figure 6.66: Comparison of experimental melting rates to the predicted (solid lines) rates using
eqn. (6.278).

If we take the time to analyze the various terms in eqn. (6.278), we can gain significant
insight. For example, we can see that the rate of melting is proportional to F 1/4, simply
because an increase in force will reduce the thickness of the melt film, which in turn
requires a larger pressure to cause it to flow from under the cylinder. On the other hand,
the rate of melting is inversely proportional to R. Stammers and Beek [24] compared this
equation to experimental results and found good agreement. Figure 6.66 presents a plot of
Usy/F 1/4 versus [(Th − Tm)3/µ]1/4 and shows the linear relation and the slope predicted
by eqn. (6.278).

6.9.2 Melting with Drag Flow Melt Removal

Let us consider the case described in Fig. 6.64 of an isotropic homogeneous solid infinite
slab of width W , pushed against a heated moving plate. Here, we want to solve for
the temperatures, velocities and melting rates at steady-state conditions. The problem
is essentially two-dimensional, which means that the velocity and temperature fields are
functions of x and y. The melt film thickness, δ(x), is very small at x = 0 and it increases
in the x-direction; however, its actual shape is unknown. Heat is conducted from the heated
plate, T0, to the solid-melt interface at T = Tm. Here, we are considering the more
general case of a semi-crystalline polymer and will follow the assumptions and derivation
from Tadmor [25, 27]. For simplicity, in his derivation Tadmor assumed constant thermal
properties. Furthermore, as a geometric constraint, Tadmor assumed that the film thickness
is much smaller than its width, δ/W � 1. In addition, all body forces and inertial effects
within the film, Re � 1, are also negigible . Together, these assumptions justify using the
lubrication approximation.
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Figure 6.67: Schematic diagram of the melting at the interface.

The equations of continuity reduce to

∂ux

∂x
+

∂uy

∂y
= 0

∂τxy

∂y
= 0

(6.279)

The energy equation within the melt will include the conductive and the viscous dissipation
terms as follows

km
∂2T

∂y2
− τxy

∂ux

∂y
= 0 (6.280)

The boundary conditions for the momentum and energy balance equations are

ux(0) = U0 ux(δ) = 0

uy(0) = 0

T (0) = T0 T (δ) = Tm

(6.281)

The velocity at any point uy(δ) is determined by the rate of melting at the interface
(Fig. 6.67), which is obtained from the Stefan condition or heat balance between conduction
and the rate of melting at that interface,

km

�
−∂T

∂y

�
y=δ

= ρm (−uy(δ)) λ + ks

�
−∂T

∂y

�
y=δ

(6.282)

where λ is the heat of fusion and ks, km are the thermal conductivity of the solid and melt,
respectively.

In order to reduce eqn. (6.282) we must find the temperature distribution for the solid.
The energy balance for the solid is given by

ρsCsusy
∂T

∂y
= ks

∂2T

∂y2
(6.283)
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which can be solved by integration using the boundary conditions T (δ) = Tm and T (∞) =
Ts0, which results in the temperature profile

T = Ts0 + (Tm − Ts0) e

0
@usy(yδ)

αs

1
A

(6.284)

The rate of heat conduction out the solid-melt interface will be

−ks

�
∂T

∂y

�
y=δ

= − (Tm − Ts0) uy(δ)ρmCs (6.285)

where the mass balance in the interface, usyρs = uy(δ)ρm, was used. Equation (6.282)
can now be written as

km

�
∂T

∂y

�
y=δ

= ρmuy(δ)λ

 (6.286)

where λ
 = λ + Cs (Tm − Ts0) is the energy required to bring the solid from an initial
temperature Ts0 to Tm and to melt it at that temperature.

The variables in the balance eqns. (6.279) to (6.283) can be scaled into dimensionless
variables as

Θ =
T − Tm

T0 − Tm

ξ =
x

W
ζ =

y

δ

ûx =
ux

U0
ûy =

uy

U0(δ0/W )

(6.287)

where the characteristic film thickness, δ0, is determined from a scaling analysis of eqn. (6.286),
using characteristic values, and reduces to

δ0 =

#
km (T0 − Tm) W

λ
ρmU0

*
(6.288)

The dimensionless form of the boundary conditions eqn. (6.281) are

Θ(0) = 1 ûx(0) = 1 ûy(0) = 0

Θ(1) = 0 ûx(1) = 0
(6.289)

Melting model using a Newtonian fluid with temperature independent viscos-
ity µ. For a Newtonian fluid the equation of motion reduces to

∂2ûx

∂ζ2
= 0 (6.290)

which with the boundary conditions, eqn. (6.289), has the solution

ûx = 1 − ζ (6.291)
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The energy equation, which can be solved independently from the equation of motion,
reduces to

∂2Θ

∂ζ2
+ Br

#
∂ûx

∂ζ

*2

= 0 (6.292)

where the Brinkman number, Br, is defined by

Br =
µU2

0

km(T0 − Tm)
(6.293)

Integrating eqn. (6.292) with the corresponding boundary conditions yields the temperature
profile

Θ = (1 − ζ) +
Br

2
ζ (1 − ζ) (6.294)

This temperature profile can be used to find the y-velocity component at the interface, i.e.,#
∂Θ

∂ζ

*
ζ=1

=
δ

δ0
ûy(1) (6.295)

to obtain

ûy(1) = −δ0

δ

#
1 +

Br

2

*
(6.296)

Integrating the continuity equation and using eqn. (6.291), it is found that

ûy(1) = −1

2

δ̇

δ0
(6.297)

Combining these two equations and integrating results in the film thickness profile

δ(ξ) = δ0

0
(4 + 2Br) ξ (6.298)

The rate of melting, per unit width, is given by

wL(x) = ρmU0δ

� 1

0

ûxdζ =
U0δ

2
ρm (6.299)

which results in

wL =

�
U0ρm

"
km(T0 − Tm) + µU2

0 /2
)

λ
 W

�1/2

(6.300)

In this analysis, we neglected the convection in the film. Tadmor et al. [25, 27] accounted
approximately for convection by including in λ
 the heat needed to bring the melt from Tm

to the mean temperature, i.e.,

λ

 = λ + Cs(Tm − Ts0) + Cs(T0 − Tm)Θ̄ (6.301)

where the mean temperature is defined by

Θ̄ =

� 1

0 ûxΘdζ� 1

0
ûxdζ

=
2

3
+

Br

12
(6.302)



MELTING AND SOLIDIFICATION 323

In addition, wL must be reduced by a factor of
√

2 because the newly melted material must
be removed from the interface, allowing it to flow into the film at that point, keeping the
film thickness constant, i.e.,

wL =

�
U0ρm

"
km(T0 − Tm) + µU2

0 /2
)

2λ

 W

�1/2

(6.303)

Power law model fluid with temperature dependent viscosity m0 = e(−a(T −Tm)).
The rate of melting is strongly dependent on the shear thinning behavior and the temper-
ature dependent viscosity of the polymer melt. However, we can simplify the problem
significantly by assuming that the viscous dissipation is low enough that the temperature
profile used to compute the viscosity is linear, i.e.,

Θ = 1 − ζ, (6.304)

such that the equation of motion reduces to

∂

∂ζ

#
eb(1−ζ)

#
−∂ûx

∂ζ

*n*
= 0 (6.305)

Solving this equation, the local velocity profile (derived in the previous sections) becomes

ûx =
eb�ζ − eb�

1 − eb�
(6.306)

where b
 = b/n = −a(T0 − Tm)/n. The energy equation without convection, will be

∂2Θ

∂ζ2
+ Br

#
δ0

δ

*n−1

eb(1−ζ)

#
−∂ûx

∂ζ

*n+1

= 0 (6.307)

where the Brinkman number is defined by

Br =
m0U

(3n+1)/2
0 ρ

(n−1)/2
m λ
(n−1)/2

(T0 − Tm)(n+1)/2k
(n+1)/2
m W (n−1)/2

(6.308)

Integrating the equation will give the temperature profile

Θ = (1−ζ)+Br

#
δ0

δ

*n−1 #
b


1 − e−b�

*n+1
e−b�

b
2

�
1 − eb� − ζ

 
1 − eb�

'�
(6.309)

with these equations, and similar to the Newtonian case, the film profile can be obtained

δ(ξ) = δ0

⎡⎢⎢⎢⎢⎣
4

�
1 + Br

#
δ0

δ̄

*n−1 #
b


1 − e−b�

*n+1
!

b
 − 1 + e−b�

b
2

(�
ξ

U2

⎤⎥⎥⎥⎥⎦
1/2

(6.310)

where δ̄ is an assumed value of the mean melt thickness and

U2 = 2
1 − b
 − e−b�

b
 (e−b� − 1)
(6.311)
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By substitution of the parameters we find

δ =

�
2 (2km(T0 − Tm) + U1) ξ

U2ρmU0λ


�
(6.312)

where

U1 =
2m0U

n+1
0

δ̄n−1

#
b


1 − e−b�

*n+1
b
 − 1 + e−b�

b
2
(6.313)

And the rate of melting, per unit width, is given by

wL(ξ) =

�
ρmU0U2 (km(T0 − Tm) + U1/2) ξ

λ


�1/2

(6.314)

Convection can be accounted for, using the same approximation used for the Newtonian
case [25, 27], then λ
 is replaced by λ

 (eqn. (6.301)), and wL(ξ) is reduced by a factor of√

2, i.e.,

wL(ξ) =

�
ρmU0U2 (km(T0 − Tm) + U1/2) ξ

2λ



�1/2

(6.315)

where the mean temperature of the film is

Θ̄ =
b
/2 + e−b�(1 + 1/b
) − 1/b


b
 + e−b� − 1
(6.316)

6.9.3 Melting Zone in a Plasticating Single Screw Extruder

One of the most important aspects when designing the screw geometry for a single screw
extruder is to control the melting of the pellets within the screw. Here, we will present the
model developed by Tadmor [27], which is based on observations of the state of the material
along the screw channel. If we unwrap the channel contents several characteristics can be
recognized, as schematically represented in Fig. 6.68. The first section of the screw, the
solids conveying zone, compacts and pressurizes the polymer pellets and, as discussed in
Chapter 3 of this book, is responsible for starting the motion in the down-channel direction.
The first portion of the solids conveying zone is cooled with chilled water in order to avoid
melt formation on the barrel surface. However, after the chilled region, due to friction of
the pellets against each other and against the barrel surface, as well as the effect of the
nearby heaters, a melt film forms between the bed of solid pellets and the barrel. One to
three turns later, a melt pool forms against the trailing flight of the screw. These few turns,
between the melt film formation and the start of the melt pool is often referred to as the
delay zone. The delay zone has been described by various researchers in the past, and was
quantitatively described by Tadmor and Klein [27]. Noriega et. al [18] were able to clearly
discern its existence and attributed it to a solid bed saturation process where the melt pool
does not form until the melt has completely filled the gaps between the pellets. From that
point on, a solid bed profile develops as schematically depicted in Fig. 6.68.

Cutting a cross-section A-A of the channel contents in Fig. 6.68, leads to a cross-sectional
view that is shown Fig. 6.69. Furthermore, to help visualize and to aid in the mass balances,
we can break the channel contents in the melting section down to a differential element
shown in Fig. 6.70.
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Figure 6.68: Schematic diagram of unwrapped channel contents of a single screw extruder.
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Figure 6.69: Schematic diagram of a channel cross-section in the melting zone of a single screw
extruder.
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Figure 6.70: Differential element of the channel contents in the melting section of a single screw
extruder. The element includes the temperature distribution across the channel as well as isothermal
velocity distributions.
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Once the melt film forms, the conveying mechanism changes at the barrel surface where
viscous drag is now dominant, but frictional drag is still important at the root of the screw
and the flights. The thickness of the melt film continues to increase as the plug proceeds
down the channel until it attains a value of several times the flight clearance. At this point,
the melt film thickness stays nearly constant and the melt is scraped off and accumulated
on the side of the trailing or pushing flight. The axial distance from where the melt film
appears until melt begins to accumulate at the pushing flight is referred to as the delay zone.

The Tadmor model assumes Newtonian fluids and shallow channels. The channel cross
section and that of the solid bed are assumed to be rectangular. The width of the solid
bed profile is denoted by X(z), which is the the main objective that we are seeking with
the model. The solid bed that develops at steady state conditions is the focal interest here.
Furthermore, Tadmor assumed that melting only occurs at the barrel surface and the solid
bed is homogeneous, continuous and deformable.

From observation, it is clear that the solid bed has a local down channel velocity usz

and a local velocity component into the melt film of usy. As before, we resolve the barrel
surface velocity Ub into a down channel, ubz , and a cross channel component, ubx. Using
Tadmor’s notation, we define the relative velocity between barrel surface and solid bed as

|Uj | =
.

u2
bx + (ubz − usz)2 (6.317)

which controls the rate of viscous dissipation. The rate of melting per unit down channel
distance is obtained directly from the Newtonian model of melting with drag removal

wL =

�
U0ρm

"
km(T0 − Tm) + µU2

0 /2
)

2λ

 W

�1/2

(6.318)

with X replacing W , Tb replacing T0, ubx replacing U0 in the first term and Uj replacing
U0 in the second term, we have

wL(z) =

�
ubxρm

"
km(Tb − Tm) + µU2

j /2
)

2
�
λ + Cs(Tm − Ts0) + CmΘ̄(Tb − Tm)

�X

�1/2

(6.319)

The change in the solid width is obtained by a differential mass balance as follows

ρsusz(h − δ)X |z − ρsusz(h − δ)X |z+∆z = wL∆z (6.320)

Neglecting the film thickness change in the down channel direction and taking the limit as
∆z → 0 we get

−d(HX)

dz
=

wL(z)

ρsusz
(6.321)

By substituting the definition of wL(z), it reduces to

−d(HX)

dz
=

Φ
√

X

ρsusz
(6.322)

where

Φ =

�
ubxρm

"
km(Tb − Tm) + µU2

j /2
)

2
�
λ + Cs(Tm − Ts0) + CmΘ̄(Tb − Tm)

��1/2

(6.323)
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For a constant channel depth, eqn. (6.322) can be integrated to give

X2

W
=

X1

W

�
1 − ψ(z2 − z1)

2H

�2

(6.324)

where X1 and X2 are the widths of the solid bed at locations z1 and z2, respectively and

ψ =
Φ

uszρs

√
X1

(6.325)

Hence, for a constant channel depth we can determine the length of the channel required to
melt the solid bed from eqn. (6.324). For a tapered channel of constant taper, eqn. (6.322)
can be written as

−d(HX)

dz
=

Φ
√

X

Aρsusz
(6.326)

where

A = −dH

dz
(6.327)

which integrated will give

X2

W
=

X1

W

�
ψ

A
−

#
ψ

A
− 1

*1
H1

H2

�2

(6.328)

where X1 and X2 are the widths of the solid bed at down channel locations corresponding
to heights H1 and H2. Equations (6.324) and (6.328) represent the basic equations for the
melting model of a extruder. The total length of melting for a channel of constant depth is

zT =
2H

ψ
(6.329)

and for the tapered channel is

zT =
H

ψ

#
2 − A

ψ

*
(6.330)

EXAMPLE 6.10.

Solid bed profile prediction for a plasticating single screw extruder. In this ex-
ample we would like to use Tadmor’s model to predict the solid bed profile of a low
density polyethylene in a plasticating single screw extruder, based on experiments
published by Tadmor and Klein[27]. In their experiments they used the following
screw geometry:

• Square pitch screw, D = 63.5 mm, L/D =26.5 and W =54.16

• Feed zone - 12.5 turns and h1 =9.4 mm

• Transition zone - 9.5 turns and constant taper from h1 =9.4 mm to h2 =3.23 mm
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• Metering zone - 4.5 turns and h2 =3.23 mm

The processing conditions used in the experiments were:

• Initial temperature of pellets: T0 =24oC

• Barrel or heater temperature:Tb =149oC

• Pressure buildup: ∆p = 204 bar

• Screw speed: N = 60 rpm

• Mass throughput: ṁ = 61.8 kg/hr

The material properties of the PE-LD to be used in the calculations are for a power
law viscosity model and thermal properties independent of temperature and pressure,
except for the melt density:

• Viscosity: m0 = 56, 000 Pa-sn, n = 0.345, a = 0.01/K and Tm =110oC

• Thermal properties: km = 0.1817 W/m/K, Cm = 2, 596 J/kg/K, Cs = 2, 763 J/kg/K,
ρbulk = 595 kg/m3, ρs = 915.1 kg/m3, ρm = 852.7 + 5.018 × 10−7p − 0.4756T ,
and λ = 129.8 kJ/kg.

From the above data, we can first compute the barrel velocity to beUb = πDN=0.1995 m/s.
Note that this speed is on the low end of realistic speeds used in industry for low den-
sity polyethylene. PE-LD usually can have screw speeds that lead to velocities up to
of 1 m/s. Other polymers can take up to 0.5 m/s, and PVC about 0.2 m/s. The down
channel and cross channel velocities become

ubz = Ub cosφ (6.331)

and

ubx = Ub sin φ, (6.332)

respectively. The solid bed velocity is computed using

usz =
ṁ

ρbulkWh
= 0.0567 m/s (6.333)

The relative speed between the solids bed and the barrel is calculated using

Uj =
.

u2
bx + (ubz − usz)2 = 0.1465 m/s (6.334)

We can now compute

b
 = −a(T0 − Tm)/n = −1.1304 (6.335)

U2 = 2
1 − b
 − e−b�

b
 (e−b� − 1)
= 2

�
1 + 1.1304 − e1.1304

−1.1304 (e1.1304 − 1)

�
= 0.8155 (6.336)

and

Θ̄ =
b
/2 + e−b�(1 + 1/b
) − 1/b


b
 + e−b� − 1
= 0.7002 (6.337)
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Table 6.1: Thermal Properties for Selected Polymeric Materials

Turns z δ (m) U1(N/s) ψ X(m) X/W

7.0 1.466 0.0002967 13.63 0.003169 0.05416 1.000
7.5 1.571 0.0002905 13.44 0.003158 0.05227 0.965
8.0 1.675 0.0002844 13.26 0.003147 0.05227 0.931
8.5 1.780 0.0002783 13.07 0.003137 0.05043 0.898
9.0 1.885 0.0002723 12.88 0.003126 0.04863 0.866
9.5 1.990 0.0002664 12.70 0.003115 0.04688 0.834
10.0 2.094 0.0002605 12.52 0.003105 0.04517 0.803
10.5 2.199 0.0002548 12.33 0.003094 0.04350 0.773
11.0 2.304 0.0002490 12.15 0.003083 0.04188 0.744
11.5 2.408 0.0002434 11.97 0.003073 0.04030 0.716
12.0 2.513 0.0002378 11.79 0.003062 0.03876 0.688
12.5 2.618 0.0002323 11.61 0.003052 0.03580 0.661

Neglecting the pressure effects, we can compute the melt density using an average
temperature of 129.5oC as

ρm = 852.7 + −0.4756T = 852.7 − 0.4756(129.5) = 791.1 kg/m3 (6.338)

The rest of the equations depend from each other and will reduce to:

U1 =
2m0U

n+1
0

δ̄n−1

#
b


1 − e−b�

*n+1
b
 − 1 + e−b�

b
2
= 2786.8(δ)0.655 (6.339)
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�
2 (2km(T0 − Tm) + U1) ξ

U2ρmU0λ


�
= 2.418 × 10−4[(14.7 + U1)ξ]

1/2

(6.340)
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Ubxρm

"
km(Tb − Tm) + µU2
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)

2
�
λ + Cs(Tm − Ts0) + CmΘ̄(Tb − Tm)
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= 4.72 × 10−3[14.17 + U1]
1/2

(6.341)

ψ =
Φ

Uszρs

√
X1

= 6.01 × 10−4[14.17 + U1]
1/2

(6.342)

For the constant channel depth region in the solids section, we compute with the initial
position of the melt film of 1.26 m, we can write

X

W
= [1 − 53.19ψ(z − 1.26)]2 (6.343)

Equations (6.339), (6.340), (6.342) and (6.343) must now be solved simultaneously
starting at the end of the 6th turn. The results are presented in Table 6.1.

The remaining two sections are computed in a similar fashion. Figure 6.71 presents
a comparison between the measured and the predicted solid bed profiles.
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Figure 6.71: Predicted and experimental solids bed profile [27].

6.10 CURING REACTIONS DURING PROCESSING

While thermoplastics solidify and melt by lowering and raising the temperature below and
above transition temperatures, thermosets and elastomers undergo an irreversible cross-
linking or curing reaction during processing. When processing these materials it is important
to predict the cycle time, in order to know when to demold a part. In addition, predicting the
curing reaction allows us to optimize, control and understand the process. In this section,
we follow the procedure used by Enns and Gillham [7].

As discussed in Chapters 2 and 4, a general cure kinetic equation that describes the
reaction is given by

dc

dt
= ae−E/RT f(c) (6.344)

where the function f(c) describes the nature and order of the reaction. For a zero order
reaction f(c) = 1, a first order reaction f(c) = 1 − c, and a second order reaction f(c) =
(1 − c)2. A first order autocatalytic reaction is described by f(c) = (B + c)(1 − c) and a
second order autocatalytic reaction by f(c) = (B + c)(1− c)2. For the sake of the analysis
here, let us assume a first order reaction such that

dc

dt
= ae−E/RT (1 − c) (6.345)

We can rearrange eqn. (6.345) and form the integral

t =

� c(t)

0

aeE/RT

1 − c
dc (6.346)

which after integration results in

t = −aeE/RT ln(1 − c) (6.347)

This equation can be used to solve for the time to gelation

tgel = −aeE/RT ln(1 − cg) (6.348)
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and using DiBenedetto’s equation,3 which relates the glass transition temperature of a curing
resin as a function of the degree of cure [5]

Tg − Tg0

Tg0
=

(Ex/Em − Fx/Fm)c

1 − (1 − Fx/Fm)c
(6.349)

where Ex/Em is the ratio of lattice for cross-linked and uncross-linked resins and Fx/Fm

is the ratio of molecular mobilities. The ratio
Ex/Em

Fx/Fm
is determined from measurements

of the minimum and maximum glass transition temperature as

Tg1

Tg0
=

Ex/Em

Fx/Fm
(6.350)

The individual ratios, Ex/Em and Fx/Fm, are then determined by fitting eqn. (6.349) to
measured data of glass transition temperatures as a function of cure. We can take eqn. (6.349)
and solve for the degree of cure

c =
T̂g

Ex/Em − 1 + (1 − Fx/Fm)T̂g

(6.351)

which in turn can be substituted into eqn. (6.347) to give

tvitr = −aeE/RT ln(
(Fx/Fm)T̂g

Ex/Em − 1 + (1 − Fx/Fm)T̂g

) (6.352)

We are now in the position to construct a time-temperature-transformation (TTT) diagram
as presented in Chapter 2. Figure 6.72 presents a TTT diagram generated for an epoxy with
Ex/Em = 0.34, Fx/Fm = 0.19, Tg0 = 254 K, Tg1 = 439 K, a = 4.5 × 106min−1 and
R = 1.987 cal/mol/K.

6.11 CONCLUDING REMARKS

This chapter gave an overview of how to simplify complex processes sufficiently to allow
the use of analytical models for their analysis and optimization. These models are based on
mass, momentum, energy and kinetic balance equations, with simplified constitutive mod-
els. At one point, as the complexity and the depth of these models increases by introducing
more realistic geometries and conditions, the problems will no longer have an analytical
solution, and in many cases become non-linear. This requires the use of numerical tech-
niques which will be covered in the third part of this book, and for the student of polymer
processing, perhaps in a more advanced course.

Problems

6.1 Plot the screw characteristic curve at 40, 80 and 120 rpm screw speed for a 45 mm
square pitch extruder with a channel depth of 4 mm in the metering section and a
flight width of 4 mm. The metering section of the extruder is 5 turns long. Assume a
Newtonian viscosity µ =1000 Pa-s.

3Another form of this equation was presented in Chapter 2 as Tg = Tg0 +
(Tg1 − Tg0)λc

1 − (a − λ)c
.
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Figure 6.72: Predicted TTT behavior for an epoxy using a first order reaction kinetic model.

6.2 You are to use a square pitch 60 mm diameter extruder to extrude fibers through a
spinnerette with 100 capillaries. Each capillary has a 0.2 mm diameter and is 1mm
long.

a) What is the ideal channel depth in the metering section for this application?
Assume a metering section that is 6 turn long and has a flight width of 4.5 mm.

b) What is the ideal helix angle for this application?

6.3 Derive the equations for a wire coating operation with a Newtonian fluid model and
the notation presented in Fig. 6.37.

6.4 Formulate the die design equation for an end-fed sheeting die with a constant manifold
diameter and a variable die land gap. Assume a Newtonian viscosity.

6.5 Formulate the die design equation for an end-fed sheeting die such as the one solved
for in this chapter. Unlike that die, the new die should have a variable radius manifold
as presented in Fig. 6.73. In this example, the axial distance from the manifold center
to the die lips must be maintained constant. Assume a Newtonian viscosity, µ.

6.6 Using the geometry and notation given in Fig. 6.14, relate the die land length ratio,
L1/L2 for a die land thickness h1/h2 = 2 to the power law index of a shear thinning
polymer.

6.7 The flow in a wire coating die can be modeled using a combination of drag and pressure
flow. Derive an expression for the velocity field inside the die.

a) Derive an expression for the volumetric flowrate through the die, Q.
b) Derive an expression for the wire coating thickness.

6.8 Derive an equation that will give the coating thickness in a blade coating operation
schematically depicted in Fig. 6.74. Assume a Newtonian fluid and neglect inertia
effects.
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Figure 6.73: Schematic diagram of an end-fed sheeting die with a variable manifold diameter.
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Figure 6.74: Schematic diagram of a blade coating operation.

a) Derive an expression that predicts the pressure distribution on the surface of the
blade.

b) Derive an expression that predicts the velocity field under the blade.

6.9 Derive the die design equation (eqn. (6.50)) for a coat hanger die assuming a shear
thinning power law viscosity model.

6.10 A polyamide 66 fiber is extruded into air and drawn to a draw down ratio, DR, of 100
and a length of 3 m. The take-up velocity is 1km/min and the final radius of the fiber
is 100 µm.

a) Using the data above as characteristic values for a fiber spinning operation, de-
termine if inertia is significant in the momentum balance.

b) What force is required to draw the fiber?
c) Should we have included inertial effects in the analysis?
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Figure 6.75: Schematic diagram of the thermoforming process of a cylindrical geometry.

6.11 Derive eqn. (6.89), which describes the velocity distribution along a spinning fiber
using a shear thinning power law viscosity model.

6.12 Equation (6.89) can be used to predict the velocity distribution along a spinning fiber
using a shear thinning power law viscosity model.

a) Plot the dimensionless velocity distribution along the fiber for power law indeces
of 0.2, 0.5 and 1.0.

b) Spearot and Metzner [23] performed fiber spinning experiments on polyethylene
melts. Find Spearot and Metzner’s journal paper in your library and compare
their data to eqn. (6.89). How does the equation compare to the experiments?

6.13 You are asked to extrude a 15 kg/h of a 100 µm thick polyethylene plastic bag with
a lay-flat witdth of 20 cm. The annular extrusion die has diameter, R0 of 5 cm and a
gap, h0, of 1 mm. Assume an isothermal Newtonian process up to the freezeline with
a viscosity µ = 3 × 104 Pa-s and a density ρ =950 kg/m3.

a) Determine the operating conditions.
b) How would the process change if you were to increase the bubble pressure by

20%?

6.14 Derive the equation that describes the thickness distribution after thermoforming the
constant diameter tubular geometry described in Fig. 6.75. Use the notation presented
in the figure. Assume that the sheet stops stretching once it touches the mold wall.

6.15 Derive the equation that describes the thickness distribution after thermoforming the
long trough described in Fig. 6.76. The process is similar to the one schematically
depicted in Fig. 6.75. Assume that the height of the trough, H , is much larger than the
depth, L.

6.16 A 15 cm diameter, 2 m wide calendering system is used to produce a PVC sheet with
a Newtonian viscosity of 10,000 Pa-s. The roll speed, U is 6 m/s and the distance
between the nips is 5 mm.

a) What is the thickness of the PVC sheet?
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Figure 6.76: Schematic diagram of the thermoforming process of a deep trough.

b) What is the maximum pressure between the rolls?
c) What is the maximum roll separating force?
d) Calculate the maximum roll deflection for a steel roll with a thickness of 5mm.
e) How much power is required to drive the system?
f) Estimate the maximum temperature rise within the PVC.

6.17 A 15 cm diameter, 2 m wide calendering system is used to produce a PVC sheet with
a shear thinning power law viscosity with a consistency index, m=17,000 Pa-sn and a
power law index, n=0.26. The roll speed, U=6 m/s and the distance between the nips
is 5 mm.

a) What is the thickness of the PVC sheet?
b) What is the maximum pressure between the rolls?
c) What is the maximum roll separating force?
d) Calculate the maximum roll deflection for a steel roll with a thickness of 5mm.
e) How much power is required to drive the system?
f) Estimate the maximum temperature rise within the PVC.

6.18 Solve for the pressure distribution for the two previous problems and compare them
to each other. On the same graph, plot the dimensionless pressure p/pmax for both
cases.

6.19 Derive a model to predict flow and presssure distributions for the case of calendering
a sheet of finite thickeness and Newtonian viscosity.

6.20 Internal batch mixers can sometimes be simplified to a system such as the one shown
in Fig. 6.77. For h � R, the system can be further simplified by unwrapping the
material from the cylinder and modeling it using rectangular coordinates.

a) What is the velocity distribution accross the gap far from the lip?
b) What is the pressure rise inside the system?
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Figure 6.77: Schematic diagram of a simplified internal batch mixer geometry.
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Figure 6.78: Schematic diagram of a pressure driven slit die.

6.21 Derive the equation for the cumulative residence time distribution, F (t), for the fluid
driven by pressure flow inside a slit. Assume a volumetric flow rate of Q and a
Newtonian viscosity of µ. Use the notation used in the schematic of Fig. 6.78.

6.22 Derive the cumulative residence time distribution, F (t), for pressure driven flow inside
a slit of a power law fluid. Use the notation presented in Fig. 6.78.

6.23 For the slit-shaped cavity with a unidirectional flow, presented in Fig. 6.79, derive
an expression for the pressure at the gate during mold filling for a constant injection
speed. Assume a volumetric flow rate Q and an isothermal flow of a shear thinning
polymer with a power law model.

a) Assuming that the polymer is a polystyrene with a consistence index of m =
2.8 × 104 Pa-sn and a power law index n = 0.28, with an injection speed of
Q = 30 cm3/s, mold geometry h = 1mm, L = 15 cm and W = 20 mm,
determine the filling time, and plot the pressure at the gate as a function of mold
filling. Use the geometry and notation presented in Fig. 6.79.

b) For the above numerical values, determine if viscous dissipation effects are sig-
nificant.
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Figure 6.79: Schematic diagram of a slit-shaped injection mold cavity.
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Figure 6.80: Schematic diagram of an off-center gated slit-shaped injection mold.

6.24 A long thin part is bein injection molded with the dimension and gate location shown
in Fig. 6.80. The mold is filled at a constant flow rate. Estimate the maximum pressure
at the gate and the clamp force at the instant just before the mold fills for a filling time
of 2 seconds. Assume an isothermal flow of a shear thinning power law high-density
polyethylene with a consistence index of 2 × 104Pa-sn and a power law index of 0.41.

6.25 For compression molding inside the disc-shaped cavity shown in Fig. 6.81, derive an
expression for the flow field and pressure distribution inside the mold during filling for
an arbitrary flow front location Rf . Assume a Newtonian fluid and the notation found
in the figure.

a) Derive an expression for the closing force as a function of flow front position.
b) Assume you are compression molding polypropylene with a viscosity µ = 1000

Pa-s, inside a cavity with a 50 cm radius and an initial 25 mm thick, 20 cm radius
initial charge. Assume a closing speed of 10 mm/s.

c) For the above numerical values, determine if viscous dissipation effects are sig-
nificant.

6.26 Determine what the viscous dissipation effects are in a melting with pressure removal
problem. Use the notation of Fig. 6.65.

a) Use material properties that pertain to polyethylene to assess the effects of viscous
heating.
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Figure 6.81: Schematic diagram of a disc-shaped compression mold cavity.

b) In your university library, find the paper on melting with pressure melt removal
by Stammers and Beek [24]. Which of Stammers and Beek’s assumptions, if any,
could be changed to achieve a more accurate solution?

6.27 Using the data from Example 6.10, estimate the screw length required to melt the solid
bed for a constant channel depth extruder. Estimate the screw length required if the
entire screw were tapered.

6.28 A square pitch plasticating extruder has the following geometry:

• D = 50 mm

• W = 42 mm

• L/D = 25

• Feed section: h = 12 mm, 5 turns

• Transition: constant taper, 15 turns

• Metering section: h = 4 mm, 5 turns

The material being extruded is polypropylene with the following properties: ρ =
900 kg/m3, Tm =430 K, km = 0.5 W/m/K, Cp =2300 J/kg/K, µ =2000 Pa-s, and
λ = 23.4 × 104 J/kg. The operating conditions are: n = 50 rpm, T0 =373 K (Pellet
temperature inside the hopper), Tb =500 K and ṁ = 2.5×10−2 kg/s. Melting starts at
the end of the third turn of the feed section. For a Newtonian, temperature independent
viscosity, find the solid bed profile and calculate the percent of solids in the output.

6.29 Solve the above plasticating extruder problem with a mass throughput ṁ = 1.8 × 102

kg/s.

6.30 Solve the above plasticating extruder problem with a mass throughput ṁ = 3.6 × 102

kg/s.

6.31 Construct a time-temperature-transformation diagram for a thermoset that follows a
second order reaction kinetic model described by

dc

dt
= ae−E/RT (1 − c2)
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Assume Ex/Em = 0.34, Fx/Fm = 0.19, Tg0 =254 K, Tg1 =439 K, a = 4.5 ×
106 min−1, and R = 1.987 cal/mol/K.

a) Plot the rate of curing as a function of degree of cure.
b) Plot the degree of cure and rate of curing as a function of time for a couple of

sample processing temperatures.
c) When constructing the TTT diagram, please include lines for 20%, 50%, 90%

and 95% cure.

6.32 Construct a time-temperature-transformation diagram for a thermoset that follows an
autocatalytic second order reaction kinetic model described by

dc

dt
= ae−E/RT (B + c)(1 − c)2

Assume the kinetic properties given in the previous problem and B = 0.5.
a) Plot the rate of curing as a function of degree of cure
b) Plot the degree of cure and rate of curing as a function of time for a couple of

sample processing temperatures.
c) When constructing the TTT diagram, please include lines for 20%, 50%, 90%

and 95% cure.

6.33 You are to pultrude a thin fiber reinforced epoxy plate at a rate of 1cm/s. Assume kinetic
properties given in the last two problems and that the material is best represented with
the autocatalytic second order reaction kinetic model of the previous problem. You
are asked to design the die and the process to manufacture this product.

a) Draw a clear diagram of the process.
b) Fully state your assumptions, boundary conditions and simplifications.
c) What should the pultrusion die length be if you want the epoxy to be 90%, 95%,

99% and 99.9% cured when the plate emerges from the die.
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PART III

NUMERICAL TECHNIQUES



CHAPTER 7

INTRODUCTION TO NUMERICAL
ANALYSIS

Part of the inhumanity of the computer is
that, once it is competently programmed
and working smoothly, it is completely
honest.

—Isaac Asimov

In the previous chapters we understood how transport phenomena provides the physical
and analytical tools needed to analyze all changes that a polymeric material undergoes
during processing. Unfortunately, often the analysis does not result in a simple model or
equation.

Often, a model that represents a polymer process is in the form of an algebraic equation,
a set of non linear partial differential equations and/or an integral equation, which do not
have analytical solutions. Numerical analysis will provide methods for obtaining useful
solutions to those mathematical problems [10]. Such methods will give an approximate
but satisfactory solution to the problem, which can be used to interprete and understand
the problem. In the past decades, and thanks to the evolution of the high-speed digital
computers, numerical simulation has evolved together with the sciences of fluid mechan-
ics [10, 18, 26, 27], heat transfer [18, 26], transport phenomena and, of course, polymer
rheology [16] and processing [3, 20].
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The aim of this part of the book is to present the main and current numerical techniques
that are used in polymer processesing. This chapter presents basic principles, such as error,
interpolation and numerical integration, that serve as a foundation to numerical techniques,
such as finite differences, finite elements, boundary elements, and radial basis functions
collocation methods.

7.1 DISCRETIZATION AND ERROR

The analysis of polymer processing is reduced to the balance equations, mass or continuity,
energy, momentum and species and to some constitutive equations such as viscosity models,
thermal conductivity models,etc. Our main interest is to solve this coupled nonlinear system
of equations as accurately as possible with the least amount of computational effort. In order
to do this, we simplify the geometry, we apply boundary and initial conditions, we make
some physical simplifications and finally we chose an appropriate constitutive equations
for the problem. At the end, we will arrive at a mathematical formulation for the problem
represented by a certain function, say f (x, T, p,u, ...), valid for a domain V . Due to the fact
that it is impossible to obtain an exact solution over the entire domain, we must introduce
discretization, for example, a grid. The grid is just a domain partition, such as points
for finite difference methods, or elements for finite elements. Independent of whether the
domain is divided into elements or points, the solution of the problem is always reduced
to a discreet solution of the problem variables at the points or nodal pointsinxxnodes. The
choice of grid, i.e., type of element, number of points or nodes, directly affects the solution
of the problem.

Thus, the first step in computing a numerical simulation is the construction of a grid. A
well-constructed grid can result in a very accurate solution, but a poorly constructed grid
is a major contributor to error in the solution. For example, the lack of convergence to a
desired level normally is a result of a poor grid quality. The reader is encouraged to seek
more information on grid types or grid generation in the literature [6, 21, 38, 37].

We must keep in mind that, when using numerical techniques, we are only finding an
approximate solution to the problem for the given nodes inside the domain. The error of
this approximate solution is defined as the difference between the solution and the true
value, i.e.,

True value = approximation + error (7.1)

Typically, the error in equation (7.1) is called truncation error. This is a hypothetical
definition of the error, because it excludes gross errors, which are caused by unpredictable
mistakes (for example, human or mechanical mistakes in an experiment), and round off
errors, which are a result of having only a finite number of digits. The truncation error is
the error that is implied in an approximation. More in-depth definitions on error can be
found in the literature, as presented by Achieser [2], Hildebrand [10] or Davis [8].

7.2 INTERPOLATION

Every time we need a specific value of a mathematical function or a property in a table,
such as specific heat in a cooling problem, we perform linear interpolation to obtain the
desired value. Such a linear interpolation is the simplest way to compute data between
known values. The given data can be a result of a physical measurement or numerical
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calculation that is difficult to process. Hence, in order to find the unknown function that
correctly satisfies the data, measured or computed, we are going to set basis functions, such
as a line or a first order polynomial, and solve for the coefficients of these functions.

When interpolating, we know a value of a function, f (x), at discrete points xi, where
i = 1, 2, ..., n, and xi < ... < xn. We also define ∆xi = xi −xi−1 that can be equal for all
points. We would like to find an analytical expression for f (x) that allows us to calculate
its value at any arbitrary point, x. If the arbitrary point x is between x1 and xn, the problem
is called interpolation, however, if it is outside that range, it is called extrapolation. Use of
extrapolation can be dangerous, because it assumes that a trend will continue beyond the
available data [10, 19].

Linear interpolation, or first order interpolation, is the simplest form of solving the
problem, since it assumes a linear behavior between two adjacent points; this is clearly
depicted in Fig. 7.1. Here, we only use information given by the two points. Often, this is
a good approximation, however, if a better interpolation is desired, we need to include data
points beyond the two points used to interpolate. The inclusion of more points increases
the order, and may include derivatives of the function at those points.

f

xxxi xi+1

Figure 7.1: Linear interpolation.

Interpolation consists of finding the correlation between the known points according to
the selected basis functions. Hence, we need to search for appropriate equations that fit the
behavior of our function f (x). For example, in linear interpolation, the chosen function
is a straight line. The most commonly used functional forms are polynomials, rational
functions, trigonometric functions and radial functions [10, 19, 21].

7.2.1 Polynomial and Lagrange Interpolation

A common form of interpolation is using polynomial basis functions, often referred to as
Lagrange interpolation. The order of the polynomial increases with the number of points
used; two points fit a unique line (first order polynomial), three points a unique quadratic
polynomial, and in general, for any set of n points there is a unique polynomial of degree
n−1. Hence, the objective is to look for a linear combination of coefficients, that according
to the polynomial, will give an expression for the unknown function. Let us begin with
a first and second order interpolation for a function u (x), which could represent velocity
measurements on a one dimensional grid shown in Fig. 7.2.

Initially, we want to find the velocity for an arbitrary point between i and i + 1, using
only the two adjacent points. Here, the highest polynomial is a first order polynomial or a
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Figure 7.2: Schematic of a one-dimensional grid for u(x).

straight line. In other words, u (x) must be a function of the discreet values of u on points
i and i + 1, as

u = b1ui+1 + b2ui (7.2)

and it must fit a first order polynomial, as

u = a1x + a2 (7.3)

Substituting eqn. (7.3) into eqn. (7.2) results in

u = a1 (b1xi+1 + b2xi) + a2 (b1 + b2) (7.4)

which gives us a system of two equations with two unknowns, b1 and b2�
xi+1 xi

1 1

� #
b1

b2

*
=

#
x
1

*
(7.5)

Solving the linear algebraic system (eqn. (7.5)) results in a linear interpolation equation
given by

u = ui
xi+1 − x

xi+1 − xi
+ ui+1

x − xi

xi+1 − xi
(7.6)

Following the same procedure for a point x that is between i − 1 and i, the desired relation
will be

u = ui−1
x − xi

xi−1 − xi
+ ui

xi−1 − x

xi−1 − xi
(7.7)

If the points between the intervals are located in the center of the interval (points i − 1/2
and i + 1/2 in Figure 7.2, both eqns. (7.6) and (7.7) will be reduced to the simple midpoint
rule, i.e.,

ui+1/2 =
1

2
(ui + ui+1) (7.8)

ui−1/2 =
1

2
(ui + ui−1) (7.9)

Similarly, we fit a second order polynomial using three points

u = b1ui−1 + b2ui + b3ui+1 (7.10)
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with a corresponding second order polynomial required for the interpolation

u = a1x
2 + a2x + a3 (7.11)

After solving for the constants we obtain the following second order interpolation function,

u (x) = ui−1
(x − xi) (x − xi+1)

(xi−1 − xi) (xi−1 − xi+1)
+ ui

(x − xi−1) (x − xi+1)

(xi − xi−1) (xi − xi+1)

+ ui+1
(x − xi−1) (x − xi)

(xi+1 − xi) (xi+1 − xi−1)

(7.12)

According to eqns. (7.6), (7.7) and (7.12), we can generalize for an arbitrary polynomial
interpolation of order n−1 (n number of points), by saying that the function u (x) is approx-
imately equal to a linear combination of the known values ui multiplied by interpolating
functions, Ni,

u (x) =

n5
i=1

Niui (7.13)

Depending on the nature of the interpolation functions, the different types of schemes are
reached. For the example in Fig. 7.2, the interpolation functions were polynomials. In
eqn. (7.13), n is the number of points used in the interpolation, and therefore, n − 1 is the
order of the interpolation.

Every time that the number of points is increased to do a higher order interpolation, the
order of the equation system that is reached will also increase (i.e., linear system for first
order interpolation, quadratic system for second order interpolation). It is not recommended
to use the same procedure that we used above, to find first and second order interpolation
functions when performing a higher order interpolation. There are better methodologies
that allow to find a n − 1 degree polynomial that satisfies the interpolation. The most
common is called Newton’s interpolation formula with divided differences [10], which
give a general type of (n − 1)th degree polynomials called Lagrange Polynomials. When
these polynomials are used in eqn. (7.13), Lagrange interpolation is obtained [19, 21], i.e.,

u (x) =
n5

i=1

Liui (7.14)

where Li are the Lagrange polynomials defined as,

Li =
(x − x1) . . . (x − xi−1) (x − xi+1) . . . (x − xn)

(xi − x1) . . . (xi − xi−1) (xi − xi+1) . . . (xi − xn)
(7.15)

In general, this method works well for interpolation; however, not for extrapolation, as long
as not too many points are used [19]. If too many points are used, the resulting polynomial
will inevitably lead to oscillations [10, 19, 21].

EXAMPLE 7.1.

First, second and 5th order polynomial interpolation for the specific heat ca-
pacity of a semi-crystalline thermoplastic (PA6). When performing a heat transfer
simulation (heating or cooling) for a thermoplastic, the complete course of the spe-
cific heat capacity as a function of temperature is needed. A common way to do this
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Figure 7.3: Specific heat for a polyamide 6 thermoplastic.

is to take a measured heat capacity, and use a polynomial interpolation between the
experimental data to obtain the specific heat capacity for any temperature.

Figure 7.3 shows a typical specific heat measurement of a semi-crystalline ther-
moplastic (PA6) with a melting temperature around 220oC. Let us assume that we
can obtain this continuous curve from a continuous equation. The increase in the Cp

represents the heat of fusion of the transition between the semi-crystalline solid to
a melt, and is represented with N measurements or discrete points (see Table 7.1).
A first, second and 5th order polynomial interpolation will be performed in order to
obtain the specific heat for three different temperatures.

The results for each interpolation are shown in Table 7.2 and Fig. 7.4 For 190oC
and 250oC, the specific heat is locally a smooth function, therefore the three different
schemes give very accurate results. The problem is for the 220oC, this temperature is
right in the middle of the melting. The linear interpolation can use only two points,
whereas the 2nd and 5th interpolation use more points following the behavior closer.
For this particular case the 5th order interpolation is the one that mimics best the
complete curve obtained from the equation. However, as already mentioned, we
must be careful because a polynomial interpolation of a very high order can lead to
oscillations [19].

It should be mentioned here that these concepts of interpolation are commonly applied
in numerical analysis, where the values are functions defined at the nodes as a result of
a domain discretization (grid). Hence, if the value of the function on a point between
nodes i + 1 and i − 1 is needed, we can use a first (eqns. (7.6) or (7.7)) or a second order
interpolation (eqn. (7.12)). For example, let us define the derivative of u (x) at xi in terms
of the discreet values at locations i + 1/2 and i − 1/2, i.e.,#

du

dx

*
i

≈ f
"
ui+1/2, ui−1/2

)
(7.16)
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Table 7.1: Specific heat capacity of a polyamide 6 thermoplastic.

Temperature (oC) Cp (J/kg/K)
100.0000 2870.0000
110.5263 2870.0000
121.0526 2870.0000
131.5789 2870.0000
142.1052 2870.0000
152.6315 2870.0000
163.1578 2870.0000
173.6842 2870.0000
184.2105 2870.0246
194.7368 2885.2214
205.2631 3895.8068
215.7894 10407.8670
226.3157 8909.5687
236.8421 3397.6402
247.3684 2875.0262
257.8947 2870.0052
268.4210 2870.0000
278.9473 2870.0000
289.4736 2870.0000
300.0000 2870.0000

Table 7.2: Interpolated specific heat capacity (J/kg/K) for each temperature.

T (oC) 1st 2nd 5th Eqn.
190.00 2872.6992 2871.8667 2871.3654 2871.1767
220.00 10907.7835 11574.2922 11656.6442 12000.0000
250.00 2875.0205 2844.6609 2874.3131 2871.1445
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12000
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Figure 7.4: Interpolated specific heat.
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Figure 7.5: Schematic diagram of flow through a slit.

The order of the chosen interpolation to obtain ui+1/2 and ui−1/2 will affect the value of the
derivative, the order of the approximation, and the error. Lagrange’s interpolation formula
is very useful to perform changes in the order of the interpolation and the points involved.
For example, when using a second order interpolation we can use the set

�
xi−1 xi xi+1

�
for both interpolations (ui+1/2 and ui−1/2). Or we can choose different points for each in-
terpolation,

�
xi−2 xi−1 xi

�
for ui−1/2 and

�
xi xi+1 xi+2

�
for ui+1/2 (see Fig. 7.2),

keeping the second order for the interpolation, but increasing the order in the derivative.

EXAMPLE 7.2.

Interpolation for the velocity gradient of a laminar flow of an incompressible
power law fluid in a narrow slit. Let’s assume that the velocity gradient in the slit
shown in Fig. 7.5 can be calculated in a discrete way as follows

du

dy
≈ ui+1/2 − ui−1/2

∆y
+ O(∆yn) (7.17)

where the i ± 1/2 nodes are imaginary located between nodes. From Chapter 5 we
know that the velocity and velocity gradient profile of a power law fluid in a narrow
slit are

u(y) =

�
(p0 − pL)h

mL

�1/n
h

1/n + 1

�
1 −

 y

h

'1/n+1
�

(7.18)

du

dy
= −

�
(p0 − pL)y

mL

�1/n

(7.19)

A total of 10 equally spaced nodes will be distributed through the thickness and
the velocity of each node will be calculated using eqn. (7.18). Then, eqn. (7.17) will
be used to calculate the derivative using two different interpolation schemes for the
i±1/2nodes: a first order interpolation using the two neighboring nodes and a second
order interpolation using

�
i − 2 i − 1 i

�
for i − 1/2 and

�
i i + 1 i + 2

�
for

the i + 1/2.
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Figure 7.6: Normalized velocity and velocity gradient for the power law fluid on a narrow slit.

The first order interpolation with two neighboring nodes leads to the mid point
rule for each imaginary node (i ± 1/2). The derivative will be of the second order

du

dy
≈ ui+1 − ui−1

2∆y
(7.20)

On the other hand, using Langrange’s interpolation formula for the second order
interpolation we will obtain

ui+1/2 =
1

8
(3ui + 6ui+1 − ui+2) (7.21)

ui−1/2 =
1

8
(3ui + 6ui−1 − ui−2) (7.22)

and the third order derivative,

du

dy
≈ −ui+2 + 6ui+1 − 6ui−1 + ui−2

8∆y
(7.23)

Figure 7.6 illustrates the velocity profile from the analytical solution and the com-
parison between the analytical and the numerical velocity gradient. The velocity has
been normalized with respect to the maximum value at the center of the slit (y = 0),
while the gradients are normalized with the maximum value at the wall (y = h).

In this particular problem, in which the diffusion effects drive the momentum
transport, by increasing the order in the interpolation, which finally represents an
increased order in the derivative, the approximation given in eqn. (7.17) is improved.
This is related with the idea of the form in which the information is traveling (explained
later in Chapter 8). Both interpolations were chosen in a way that the function in the
imaginary nodes, i ± 1/2, was expressed in terms of nodes which are at both sides of
the imaginary nodes. In other words, the information for the function at this imaginary
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node is comming from left and right. The way the information travels is analogous
to diffusion, where the information travels in all directions.

Finally, Fig. 7.6 reveals the fact that even by increasing the order for the inter-
polation, the derivative approximation, when compared with the analytical, value is
not improved. The assumed approximation of eqn. (7.17) has an extra term, which
is a function of the node separation, ∆y. What is important to recall here is that the
approximation depends directly on the number of nodes, and these two approxima-
tions will be improved by increasing the number of nodes, thus decreasing distance
between nodes.

7.2.2 Hermite Interpolations

In the previous discussion of interpolation we stated the problem for known values of a
function at n points within a domain. In some cases, values of both, the function f (x) and
its derivative f 
 (x) are available. Hence, it is required to find an interpolation formula which
utilizes 2n data points. One way to solve this problem is to use polynomial interpolation
since for 2n known values, a 2n − 1 order polynomial must exist. However, we must find
this polynomial, y (x), in a way that it has the same value and the same derivative as f (x)
at all n points. One function that fulfills this is [10]

y (x) =

n5
i=1

hi (x) f (xi) +

n5
i=1

h̄i (x) f 
 (xi) (7.24)

where hi (x) and h̄i (x) are polynomials of maximum (2n−1)th degree. Two requirements
must be satisfied for these two polynomials:

y (xi) = f (xi) if hi (xj) = δij and h̄i (xj) = 0 (7.25)

and

y
 (xi) = f 
 (xi) if hi (xj) = 0 and h̄i (xj) = δij (7.26)

for i ∈ [1, n] and j ∈ [1, n], where δij is the Kronecker delta. The Kronecker delta equals
1 when i = j, and 0 when i ��= j.

Recall that Lagrange polynomials Li (x) are polynomials of degree n − 1, which are
equal to the Kronecker delta at each of the points, and the function [Li (x)]2 is a polynomial
of degree 2n−2, which is also equal to the Kronecker delta at each of the points and whose
derivative vanishes at xj when i �= j. Therefore, because hi (x) and h̄i (x) are polynomials
of degree 2n − 1, they can be written as

hi (x) = ri (x) [Li (x)]
2 (7.27)

h̄i (x) = si (x) [Li (x)]
2 (7.28)

where ri (x) and si (x) are linear functions of x. In order to satisfy the conditions of
eqns. (7.27) and (7.28), they must be defined as [10]

ri (x) =1 − 2L

i (xi) (x − xi) (7.29)

si (x) =x − xi (7.30)
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These definitions result in the Hermite’s interpolation formula,

y (x) =

n5
i=1

hi (x) f (xi) +

n5
i=1

h̄i (x) f 
 (xi) (7.31)

where

hi (x) = [1 − 2L

i (xi) (x − xi)] [Li (x)]

2 (7.32)

and

h̄i (x) = (x − xi) [Li (x)]
2 (7.33)

EXAMPLE 7.3.

Hermite interpolation for the velocity and velocity gradient of a power law fluid
in a narow slit. Consider the analytical expressions for the velocity and the velocity
gradient for the flow of an incompressible power law fluid through a narrow slit due to
a pressure gradient to represent velocity measurements. With eqns. (7.17) and (7.18),
the velocity and its gradient are evaluated in 10 equally spaced points through the
thickness. An expression to interpolate both, the velocity and its gradient, is required
for a point i + 1/2 located between point i and i + 1.

In order to use Hermite interpolation, we must first chosse the order for the in-
terpolation of hi(x) and h̄i(x). For simplicity, let’s use a first order interpolation,
n = 2, for the Lagrange polynomials involved in these two terms. Using Hermite
interpolation formula (eqn. (7.31)) and eqns. (7.32) and (7.33) we obtain

yx =

�
1 − 2

x − xi

xi − xi+1

� �
x − xi+1

xi − xi+1

�2

fi+�
1 − 2

x − xi+1

xi+1 − xi

� �
x − xi

xi+1 − xi

�2

fi+1+

(x − xi)

�
x − xi+1

xi − xi+1

�2

f 

i + (x − xi+1)

�
x − xi

xi+1 − xi

�2

f 

i+1

(7.34)

Deriving this equation with respect to x, an expression for the interpolated gradient
is obtained, i.e.,

y
(x) =

�
2

#
1 − 2

x − xi

xi − xi+1

*
x − xi+1

(xi − xi+1)2
− 2

(x − xi+1)
2

(xi − xi+1)3

�
fi+�

2

#
1 − 2

x − xi+1

xi+1 − xi

*
x − xi

(xi+1 − xi)2
− 2

(x − xi)
2

(xi+1 − xi)3

�
fi+1+�

2
(x − xi)(x − xi+1)

(xi − xi+1)2
+

#
x − xi+1

xi − xi+1

*2
�

f 

i+�

2
(x − xi)(x − xi+1)

(xi+1 − xi)2
+

#
x − xi

xi+1 − xi

*2
�

f 

i+1

(7.35)
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Figure 7.7: Analytical and interpolated velocity and its gradient for the power law fluid through a
narrow slit.

These equations are reduced to

yi+1/2 =
1

2
(fi + fi+1) +

∆x

8

"
f 


i + f 

i+1

)
(7.36)

y

i+1/2 =

3

2∆x
(fi+1 − fi) − 1

4

"
f 


i + f 

i+1

)
(7.37)

for the mid point i + 1/2, where ∆x is the distance between nodes. Figure 7.7
ilustrates the normalized velocity and velocity gradient calculated using the analytical
expressions (solid line) and the Hermite interpolation for the i + 1/2 points. It can
be seen that the 1st order Lagrange polynomial renders a satisfactory interpolation.

7.2.3 Cubic Splines

Instead of using a specific polynomial f (x, y) over an interval [(x0, y0)(xn, yn)], we can
divide the domain into n − 1 intervals defined by the points:

[(x0, y0), (x1, y1), (x2, y2), . . . , (xn−1, yn−1), (xn, yn)]

as depicted in Fig. 7.8, and approximate the function using different polynomials on each
interval. If we use a third degree polynomial in these intervals , so that the approximation
agrees for every point n in the domain, the first and second derivative will be continuous
on that domain. This type of approximation is called cubic spline interpolation.

Here, a cubic polynomial is fitted between adjacent points with the condition that second-
order continuity is maintained between adjacent polynomials. Each spline is expressed in
parametric form as

Y(ξ) = ai + biξ + ciξ
2 + diξ

3 (7.38)
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Figure 7.8: Representation of a curve in a 2D space.
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Figure 7.9: Geometric definition od a cubic spline in a 2D space.

for the y-coordinate description of interval i, and

X (ξ) = ei + fiξ + giξ
2 + hiξ

3 (7.39)

for the x-coordinate description of the interval,where the parameter ξ varies between 0 and 1
between the two control points of each segment, (yi, xi) and (yi+1, xi+1), as schematically
depicted in Fig. 7.9.
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If we concentrate on Y(ξ), we can say that

Yi(0) = yi = ai

Yi(1) = yi+1 = ai + bi + ci + di (7.40)

The derivatives, which must be continuous between segments i and i + 1, give

Y 
(0) = Di = bi

Y 
(1) = Di+1 = bi + 2ci + 3ci (7.41)

Using these equations we can write,

ai = yi (7.42)

bi = Di

ci = 3(yi+1 − yi) − 2Di − Di+1

di = 2(yi − yi+1) + Di + Di+1

The derivatives and the second derivatives between segments i−1 and i must be continuous

Yi−1(1) = yi (7.43)

Y 

i−1(1) = Y 


i(0)

Y 


i−1(1) = Y 



i (0)

Finally, to match the number of equations and unknowns, we force the second derivatives
to vanish at the endpoints,

Y 


0 (1) = 0 (7.44)

Y 


n(1) = 0

For a series of segments where the first and last points do not match (open curve), the
above equations can be re-arranged into a tridiagonal system of algebraic equations given
by, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0 0 0
1 4 1 0 · · · 0 0 0 0
0 1 4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1 0
0 0 0 0 · · · 0 1 4 1
0 0 0 0 · · · 0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0

D1

D2

...
Dn−2

Dn−1

Dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(y1 − y0)
3(y2 − y0)
3(y3 − y1)

...
3(yn − yn−3)
3(yn − yn−2)
3(yn − yn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.45)

For a closed curve the equation system takes the form,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 · · · 0 0 0 0
1 4 1 0 · · · 0 0 0 0
0 1 4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1 0
0 0 0 0 · · · 0 1 4 1
0 0 0 0 · · · 0 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0

D1

D2

...
Dn−2

Dn−1

Dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3(y1 − yn)
3(y2 − y0)
3(y3 − y1)

...
3(yn − yn−3)
3(yn − yn−2)
3(y0 − yn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.46)
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The same procedure can be followed for the cubic splines that describe the x-coordinates
of the segments X (ξ). With derivative values Di known, we can now compute the cubic
spline coefficients using eqn. (7.43). Cubic splines are ideal to represent free surfaces in
polymer processing such as the bubble profile that develops during film blowing, the free
surfaces during coating or the free flow fronts during mold filling [11].

7.2.4 Global and Radial Interpolation

For many applications, interpolations of functions of two or three variables defined in two-
and three-dimensional domains must be considered. For example, global interpolations
in two- and three-dimensional systems are analogous to polynomial interpolation in one-
dimensional systems; however, global interpolants do not exist in 2- and 3D. This is a
big drawback in numerical analysis because a basic tool available for one variable is not
available for multivariable approximation [21]. The best developed aspect of this theory
is that of piecewise polynomial approximation, associated with finite element and finite
volume approximations for partial differential equations, which will be examined in detail
in Chapters 9 and 10.

To interpolate a function fI(x), in a 2- and 3D domain, we can write

fI(x) =

N5
i=1

aiψi(x) (7.47)

where x are the global coordinates. This interpolation must satisfy

fI(xj) = ψj(xj) for 1 ≤ j ≤ N (7.48)

which results in a system of equations for the unknown coefficients, i.e.,

N5
i=1

aiψi(xj) = f(xj) for 1 ≤ j ≤ N (7.49)

The matrix Ψ = [ψi(xj)]
N
1 is called the Gram matrix, when the matrix is non-singular

(has an inverse). If the matrix is non-singular, the equation Ψa = f has a unique solution;
however, according to Golberg [21], this fails to be true even in very simple cases [21].

EXAMPLE 7.4.

Linear interpolant for three points in a two dimensional domain. We want to
obtain a linear interpolation for a function f(x, y) at three points (xj , yj) for j =
1, 2, 3. The proposed interpolant will be,

fI(x, y) = a1 + a2x + a3y (7.50)

and the Gram matrix will be defined by,

Ψ =

⎡⎣ 1 1 1
x1 x2 x3

y1 y2 y3

⎤⎦ (7.51)

In order for this matrix to be singular, the three points must be non-collinear. Other-
wise an infinite number of planes exist that pass through the given line. It is difficult
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to find a general domain that satisfies the requirement that all the points be non-
collinear. However, performing piece wise interpolation using interpolants in simple
geometries with non-collinear points (triangles, rectangles) will avoid this problem.
This is the basis of the finite element technique.

Global basis functions. Common global basis functions, where the interpolation func-
tions for multi-dimensional domains can be obtained, come from expansions of Pascal’s
triangle. In 2D, Pascal’s triangle is defined by,

ψg(x) =

1
x y

x2 xy y2

... · · · · · · ... · · · · · · ...

(7.52)

Pascal’s triangle is often used to generate piecewise polynomial interpolations for various
domains (triangles and rectangles in 2D and tetrahedrons, cubes and shells in 3D). In fact,
most of the families of elements that are commonly used in finite elements, finite volumes
and boundary elements, come from expansions of this triangle (more detail can be found
in [67, 68]).

Radial basis functions. Radial interpolation uses radial basis functions in the linear
combination that express the desired interpolated function, i.e.,

fI(xj) =
N5

i=1

αiψ(rij) for 1 ≤ j ≤ N (7.53)

where rij is the Euclidean distance between points defined by

rij =
.

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 (7.54)

A big advantage of this type of interpolation is that the matrices in the linear system of
equations of coefficients, αi, always have an inverse. A drawback is that in order to obtain
the coefficients of the interpolation, we must solve very large systems of equations with full
matrices. The most common radial functions are

ψr(r) = 1 + r + r2 + r3 + · · · + rm power expansions

= r2m log r thin-plate splines

=
1√

c2 + r2
inverse multi-cuadratics

In Chapter 11 of this book we will use the thin spline radial function to develop the radial
basis functions collocation method (RBFCM). A well known property of radial interpolation
is that it renders a convenient way to calculate derivatives of the interpolated function. This
is an advantage over other interpolation functions and it is used in other methods such us
the dual reciprocity boundary elements [43], collocation techniques [24], RBFCM, etc.

For an interpolated function u,

u = [ψ] (α) (7.55)
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Figure 7.10: Geometry and mesh points where the values of u are known.

the derivatives of u can be approximated by

d(n)u

dx(n)
=

�
d(n)ψ

dx(n)

�
(α) (7.56)

The elements of the matrix
�
d(n)ψ

dx(n)

�
are easily calculated depending of the radial functions

that were selected.

EXAMPLE 7.5.

Two-dimensional radial interpolation. To illustrate the above concept, consider a
2 × 2 rectangle where a function u(x, y) is defined by

u(x, y) = sin x + cos y (7.57)

Two sets of discretizations were used to apply the method, a coarse (Fig. 7.10) with
n nodes, and a finely discretized system with m nodes (Fig. 7.11). Let the values of u
in the coarsely discretized system be known. These values will be used to interpolate
between, in order to determine the values of u in the fine system. We calculate the
coefficients for a radial interpolation as,

(α) = [FR]−1 · (u) (7.58)

where (u) is the vector of n known values of u in the points depicted in Fig. 7.10 and
[FR] is an n × n matrix of radial functions computed using f r = r2

ij ln rij .
Once the coefficient vector (α) has been solved for, we can use the radial interpo-

lation to calculate the values of u for the finely discretized system shown in Fig. 7.11.



360 INTRODUCTION TO NUMERICAL ANALYSIS

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x

y

Figure 7.11: Mesh points where the values are interpolated.

Here, we use the same coefficients α and the radial interpolating matrix is calculated
from the desired or unknown point (fine discretization) to the points where the value
is known (coarse discretization), i.e.,

(uI) =
�
FR

I

� · (α) (7.59)

where (uI) is a vector of m unknown values of u and
�
FR

I

�
is an m × n matrix

of radial functions, f r. Figure 7.12 shows a comparison between the interpolated
values and the values given by u = sin x+cos y. Here, we can observe the excellent
performance of the radial interpolation.

One of the benefits of using radial interpolation is the way derivatives can be
approximated. Once we solve for the coefficient vector α, the derivatives can be
approximated using,

∂uI

∂x
=

∂FR
I

∂x
· α (7.60)

∂uI

∂y
=

∂FR
I

∂y
· α (7.61)

Figures 7.13 and 7.14 compare the interpolated and the analytical x- and y-derivatives
of u. Again, the interpolation agrees with the analytical solution.

7.3 NUMERICAL INTEGRATION

Historically, numerical integration, sometimes also referred to as quadratures, has been
a motivation for the development and advancement of numerical analysis. Integrals of
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Figure 7.12: Interpolated values of u. Solid line represents the equation while the dots represent
the interpolated values.
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Figure 7.13: Interpolated values of ∂u/∂x. Solid line represents the equation while the dots
represent the interpolated values.
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Figure 7.14: Interpolated values of ∂u/∂y. Solid line represents the equation, while the dots
represent the interpolated values.

elementary functions were not, in general, computed analytically, while derivatives were
found easily. During the 18th and 19th centuries, a significant amount of work was put into
finding methodologies that facilitate the solution for integral equations [10, 19]. In general,
numerical integration uses the definition of the integral operator, i.e., for a continuous
function f(x) in the closed interval [a, b], the integral of f(x) between a and b is given by

� b

a

f(x)dx = lim
∆x→0

!
n5

i=1

f(xi)∆xi

(
(7.62)

A good quadrature is one where the number of evaluations of the function is kept as
small as possible in order to achieve an accurate solution. There are two different types
of integrations methods, closed and open formula, as schematically depicted in Fig. 7.15.
Those that use the value of the function at the lower and upper limits, f(a) and f(b), called
closed formula and those that do not include these function values, called open formulas.
The lattter are used when the function presents a singularity in one of the limits.

7.3.1 Classical Integration Methods

Classical integration methods are widely used techniques to evaluate integrals where a
formula for f(x) is not at hand such as evaluation of experimental data. The classical
techniques often require that the spacing between the points is the same for all the points,
as depicted in Fig. 7.16.
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Figure 7.15: Closed and open numerical integration formulations.
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Figure 7.16: Linear numerical integration.

However, in some sets of data, the spacing between the points is not necessarily constant,
for which we can use the most basic approximation of integration written as,� b

a

f(x)dx =

n−15
i=1

� xi+1

xi

f(x)dx ≈
n−15
i=1

Ai (7.63)

where the area of each rectangle i is defined as,

Ai = fi+1/2 (xi+1 − xi) = fi+1/2∆xi (7.64)

We simply need to find an expression for fi+1/2. If we use linear interpolation, since the
point is in the middle of the interval, we arrive to the mid point rule, and the integral between
two limits xi and xi+1 is given by� xi+1

xi

f(x)dx ≈ ∆xi

2
(fi + fi+1) + O(∆x3

i f


) (7.65)
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which tells us that the error is proportional to the cube of the interval size times the second
derivative of the function at that point. This formula is the well known trapezoidal rule,
which is a second order approximation made of a first order interpolation for the area, and
a first order approximation for the interpolation of fi+1/2. For constant intervals between
the points we can include three points (xi−1, xiandxi+1), and we can write� xi+1

xi−1

f(x)dx ≈ ∆x

#
1

3
fi−1 +

4

3
fi +

1

3
fi+1

*
+ O(∆x5f 



) (7.66)

The above equation is the well known Simpson’s rule, which is more accurate than the
simpler trapezoidal rule.

EXAMPLE 7.6.

Total heat released of a cured thermoset polymer QT . As we saw in Chapter 2,
the heat released by a thermoset or an elastomer during curing can be directly related
to the degree of cure and the curing rate by

c =
Q(t)

QT

dc

dt
=

Q̇

QT
(7.67)

where

Q(t) =

� t

0

Q̇(t
)dt
 (7.68)

and QT is the total heat that the polymer can release during conversion.
In order to obtain the degree of cure and rate of curing, we must first measure the

reaction. This is typically done using a differential scanning calorimeter (DSC) as
explained in Chapter 2. Typically, several dynamic tests are performed, where the
temperature is increased at a constant rate and heat release rate (Q̇) is measured until
the conversion is finished. To obtain QT we must calculate the area under the curve Q̇
versus t. Figure 7.17 shows four dynamic tests for a liquid silicone rubber at heating
rates of 10, 5, 2.5 and 1 K/min. The trapezoidal rule was used to integrate the four
curves. As expected, the total heat QT is the same (more or less) for all four tests.
This is to be expected, since each curve was represented with approximately 400 data
points.

7.3.2 Gaussian Quadratures

The problem with classical integration techniques is that they require a large number of
integration points, which for two- and three-dimensional domains, where area and volume
integrals are calculated, requires large amounts of storage and computation time.

To reduce the number of integration stations we must use an optimum number of points,
selected along the abscissas, with their corresponding weighting coefficients, such as done
with Gaussian quadratures. Using Gauss quadratures which can approximate the integral
of any smooth function using� b

a

f(x)dx ≈
ngauss5

i=1

f(xgi)wi (7.69)
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Figure 7.17: DSC measurements for a liquid silicone rubber at different rates.

where xgi is the location of the Gauss points and wi are the Gaussian weights. Depending
on the number of integration stations and weighting function, the Gaussian quadratures will
have different values for the abscissas and weights. Table 7.3 summarizes some abscissas
and weights for the Gauss-Legendre quadrature technique, the most widely used quadrature
used to evaluate integrals in the finite element and boundary element methods using� +1

−1

f(x)dx ≈
ngauss5

i=1

f(xi)wi (7.70)

for integration limits between -1 and +1. The abscissas and weights can be modified, if we
integrate between the limits a and b, using

xab
i =

1

2
(b + a) +

1

2
(b − a)xi (7.71)

and

wab
i =

1

2
(b − a)wi (7.72)

EXAMPLE 7.7.

Numerical integration of a known function. To illustrate the Gauss quadrature inte-
gration technique and compare it to classical integration techniques, we will evaluate
the following integral

I =

� 2

0

"
3x2 − 2x

)
dx = x3 − x2

7772
0

= 4 (7.73)
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Table 7.3: Gauss-Legendre Abscissas and Weights.

ngauss xi wi

2 -1/
√

3 1
1/

√
3 1

3 -0.77459667 0.55555556
0 0.88888889

0.77459667 0.55555556
4 -0.86113631 0.34785485

-0.33998104 0.65214515
0.33998104 0.65214515
0.86113631 0.34785485

5 -0.90617985 0.23692689
-0.53846931 0.47862867

0 0.56888889
0.53846931 0.47862867
0.90617985 0.23692689

10 -0.97390653 0.06667134
-0.86506337 0.14945135
-0.67940957 0.21908636
-0.43339539 0.26926672
-0.14887434 0.29552422
0.14887434 0.29552422
0.43339539 0.26926672
0.67940957 0.21908636
0.86506337 0.14945135
0.97390653 0.06667134
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Table 7.4: Function f(x) = 3x2
− 2x evaluated at discrete x positions, xi

Point number xi f(xi)
1 0 0
2 0.25 -0.3125
3 0.5 -0.25
4 0.75 0.1875
5 1.0 1
6 1.25 2.1875
7 1.5 3.75
8 1.75 5.6875
9 2.0 8

To use classical integration techniques, we will first generate a table of discrete points
where we evaluate the function seperated by equal intervals of ∆x = 0.25 (Table
7.4).

Let us first use the trapezoidal rule to calculate the above integral

I = 0.25
�1

2
(0) + (−0.3175) + (−0.25) + 0.1875+

1 + 2.1875 + 3.75 + 5.6875 +
1

2
(8)

�
= 4.0625

(7.74)

which, over-predicts the integral by 1.56%. This is primarily due to the fact that the
chosen points miss the lowest value of the function, f(1/3) = −1/3. Hence, data
was used that did not accurately represent the function. For that same reason we do
not expect Simpson’s rule to perform much better. Simpson’s rule gives

I = 0.25
�1

3
(0) +

4

3
(−0.3175) +

1

3
(−0.25) +

1

3
(−0.25)+

4

3
(0.1875) +

1

3
(1) +

1

3
(1) +

4

3
(2.1875)+

1

3
(3.75) +

1

3
(3.75) +

4

3
(5.6875) +

1

3
(8)

�
= 4.0416

(7.75)

which represents an error of 1.04%. Next we apply Gauss quadrature. Since the limits
are not between -1 and +1,but 0 and 2, we must first modify the abscissa values. Using
8 digits of precision, these become xab

1 = 0.42264973 and xab
2 = 1.57735027 with

their corresponding weights, wab
1 = 1 and wab

2 = 1. The integral can now be written
in terms of Gauss quadrature as

I =
�
3(0.42264973)2 − 2(0.42264973)

�
(1.0)+�

3(1.57735027)2 − 2(1.57735027)
�
(1.0) = 4.0000000056

(7.76)

Had we used a higher precision for the Gauss points, the quadrature would have
rendered a solution even closer to the exact integral.

7.4 DATA FITTING

Data fitting or modeling of data is often required to find a numerical representation for
a set of data points. In polymer processing, we often want to fit complex models, such
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as viscosity, viscoelastic and cure kinetic models, to name a few, to data measured using
rheometers, DSC or other material characterization instruments. This section will present
some of these techniques with respective applications.

7.4.1 Least Squares Method

The least squares method is the best possible solution to an overdetermined system of
equations, where we have more equations than unknowns. This is a very common situation
in problems, in which, for example, we have a set of N measurements which we want to fit
to an equation with M parameters (M < N ). For example if we measure temperatures as
a function of time7777777777

t T
0 20
10 28
20 32
30 40

7777777777
(7.77)

and we want to fit these experimental data with the equation given by T = B + Ct. We
will have an overdetermined linear system of equations given by⎡⎢⎢⎣

1 0
1 10
1 20
1 30

⎤⎥⎥⎦#
B
C

*
=

⎛⎜⎜⎝
20
28
32
40

⎞⎟⎟⎠ (7.78)

which can also be written as

Ax = b (7.79)

An alternative is to find the best solution of B and C and minimize the error given by
e = (Ax − b). When minimizing the error, we usually write

�e�2 =
"
eT e

)1/2
(7.80)

or

�Ax − b�2 =
"
eT e

)1/2

= (Ax − b)
T

(Ax − b)

= (Ax)
T

(Ax) − 2xT AT b + bT b

X = xT AT Ax − 2xT AT b + bT b ≥ 0

(7.81)

The minimization is obtained from dX/dx = 0, which by convention is multiplied by 1/2.
This minimization reduces the problem to [9, 10, 19]

1

2

dX
dx

= AT Ax − AT b = 0 (7.82)

Hence,

AT Ax = AT b (7.83)
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is used to find the vector x that best fits the data. We can also use this technique to fit the
data to exponential or power equations given by

y = beCt (7.84)

and

y = bxC (7.85)

by rewriting them as

ln y = ln b + Ct (7.86)

T = B + Ct

and

ln y = ln b + C ln x (7.87)

T = B + Ct

respectively.

EXAMPLE 7.8.

Least squares method application. To illustrate the least squares method presented
above, we will fit the data given in eqn. (7.77) by minimizing the error using eqn. (7.83)

AT A =

�
4 60
60 1400

�
AT b =

#
120
2120

*
(7.88)

which can be solved for B = 20.4 and C = 0.64. The best fit is therefore given by

T = 20.4 + 0.64t (7.89)

Figure 7.18 presents the data with the best fit linear equation given by the least squares
method.

7.4.2 The Levenberg-Marquardt Method

The Levenberg-Marquardt method is used to model data with non-linear dependencies.
Here, we may have m functions f1, f2, f3...fm that depend on n parameters p1, p2...pn

written in vector form as

fT = (f1f2f3...fm) (7.90)

pT = (p1p2p3...pn)

Since we are dealing with non-linear equations, this is an iterative procedure that begins
by making an initial guess for p, such as for example (111....1)T . In each iteration step,
the values of p are replaced by a new value of p + q. To determine, p we approximate the
vector f(p + q) by

f(p + q) ≈ f(p) + Jq (7.91)
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Figure 7.18: Fitting data in a line.

where, J is the Jacobian of f

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂p1

∂f1

∂p2
· · · ∂f1

∂pn
∂f2

∂p1

∂f2

∂p2
· · · ∂f2

∂pn
...

...
...

...
∂fm

∂p1

∂fm

∂p2
· · · ∂fm

∂pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.92)

As in the previous section, by minimizing the error we get

[JT J]q + JT f (7.93)

which can be solved for q. The Levenberg-Marquardt method requires the introduction of
a non-negative factor λ, which is used to modify the above equation to give

[JT J + λ]q + JT f (7.94)

Here too, we will minimize X 2 to find the best fit parameters. We repeat the above procedure
until X 2 stops decreasing.

The following steps are followed:

• Guess p

• Compute X 2(p)

• Pick a value of λ (say (0.001))

• Determine q by solving the linear equations (7.94)
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Table 7.5: Non-Newtonian Viscosity for Polystyrene at 453 K [5]

Shear rate γ̇ (s−1) Viscosity η (Pa-s)
0.3 14,800
0.4 14,600
0.5 14,300
1.0 12,000
3.0 8,000
6.0 5,500

10.0 4,000
20.0 2,800
30.0 2,300
60.0 1,500
100.0 1,100

• Check if X 2(p + q) ≥ X 2(p) and increase λ by a factor of 10. Go back and solve
the linear equation 7.94

• Check if X 2(p + q) ≤ X 2(p) and decrease λ by a factor of 10

• Update p = p + q. Go back and solve the linear equation 7.94

Details of this methodology can be found in the literature (see for instance [19]). The
Levenberg-Marquardt technique, as many other numerical schemes, can be found as free-
ware on the world wide web [31].

EXAMPLE 7.9.

Fitting a Bird-Carreau model to viscosity data. Table 7.5 shows the measurements
of Ballenger et. al [5] of the viscosity as a function of shear rate for polystyrene at
453 K.

For this particular data we can assume that η∞ = 0, which reduces the Bird-
Carreau model to,

η = η0

�
1 + (λγ̇)

2
�n − 1

2 (7.95)

To fit this data and obtain the three fitting parameters, we must use a non-linear
fitting technique. In general, to perform this type of fitting requires a routine with the
function that minimizes a certain quantity. In this case, we want to obtain a vector x

with the three unknown parameters, i.e.,

x =
"
η0 λ n

)
(7.96)

and the function to minimize will be,

fi = ηi − x(1)
�
1 + (x(2)γ̇i)

2
�x(3) − 1

2 (7.97)

We used the MINPACK [31] routines to perform the fitting and the results are shown
in Fig. 7.19. The fitted parameters for the PS data given above are η0 = 1.53 × 104

Pa-s, λ = 1.11s and n = 0.45.
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Figure 7.19: Non-Newtonian viscosity for PS at 453K.

EXAMPLE 7.10.

Modeling the vulcanization of liquid silicone rubber (LSR). Lopez et al. [28, 29]
modeled the vulcanization of liquid silicone rubber using dynamic DSC tests. In
order to do this, the Kissinger model [25, 26] and the Kamal-Sourour model were
used to determine kinetic parameters that fit the experimental data. The idea is to
generate a single set of parameters that accurately models the used scanning rates of
1, 2.5, 5, and 10 K/min.

The model used for fitting the data was the autocatalytic Kamal-Sourour model
[13, 14],

dc

dt
= (k1 + k2c

m) (1 − c)
n (7.98)

where ki are the rate constants described by the Arrhenius equation

ki = aie
(− Ei

RT ) (7.99)

where ai are fittig parameter to the Kamal-Sourour model,Ei are the activation energy,
T is the processing temperature in Kelvin, and R is the universal gas constant.

This model requires six parametes (a1, a2, E1, E2, m, n) to be fitted to the exper-
imental dynamic DSC data. Let x be the unknown vector parameter defined as,

x =
"
m n a1 a2 E1 E2

)
(7.100)

In order to find a unique set of parameters for all rates, Lopez et al. proposed that the
activation energy E1 is determined through Kissinger’s model, which is implemented
to mathematically determine the other five parameters for the Kamal-Sourour model.
The activation energy, E2, is fitted as a constant, while the four remaining parameters,
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m, n, a1 and a2, in the cure model are represented using a power series of the
temperature [9] such as

xi = bi1 + bi2T + bi3T
2 (7.101)

where i = 1, ..., 4 and bij are the new fitting parameters. In other words, the technique
looks for the 13 components of the B matrix defined in such a way that

x =
"
m n a1 a2 E2

)
=

⎡⎢⎢⎢⎢⎣
b11 b12 b13

b21 b22 b23

b31 b32 b33

b41 b42 b43

E2 0 0

⎤⎥⎥⎥⎥⎦
⎛⎝ 1

T
T 2

⎞⎠ (7.102)

In order to obtain a physical energy of activation, E1, the Kissinger model [25, 26]
was used. This model uses an nth-order expression to model the kinetic reaction
defined as

dc

dt
= k (1 − c)n (7.103)

Here, k is the rate constant defined by the Arrhenius equation, c is the extent of
vulcanization or cure, and n is the order of the reaction.

Heat activated reactions show a variation of the position of the peak in the cure
rate curves with varying heating rate. If the temperature rises during reaction, the
reaction rate, dc/dt, will rise to a maximum value and then returns to zero as reaction
completes. The temperature at which the reaction rate reaches its maximum is also the
temperature of maximum deflection in differential thermal analysis. Dynamic DSC
measurements at different heating rates are used to determine the activation energy
of the material, because they show the effects both time and temperature have on the
reaction.

The maximum rate of reaction occurs when the derivative of dc/dt is zero. If the
temperature is raised at a constant rate, Ṫ , then by differentiation of eqn. (7.103) and
replacing k by an Arrhenius eqn. (7.99), the maximum rate of reaction can be defined
as

d

dt

#
dc

dt

*
=

dc

dt

�
EṪ

RT 2
− an(1 − c)n−1e(−E/RT )

�
(7.104)

The maximum rate of reaction occurs at the peak temperature of the heat flow from the
thermal analysis, Tpeak. The peak temperature can be defined by setting eqn. (7.104)
to zero

EṪ

RT 2
= an(1 − c)n−1

peak e(−E/RTpeak) (7.105)

The amount of unreacted material, (1 − c)peak, is not determined directly through
DSC analysis. Integration of eqn. (7.105), assuming a constant heating rate, gives an
expression of the extent of reaction as a function of temperature. Approximations of
this expression were obtained by Murray and White [32] through integration by parts.
The expression for eqn. (7.105) after using Murray and White’s approximations is
written as

1

n − 1

�
1

(1 − c)n−1
− 1

�
=

aRT 2

EṪ

�
1 − 2RT

E

�
e(−E/RT ) (7.106)
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Table 7.6: Vulcanization Data of LSR [28]

Heating Rate Sample mass Tpeak Heat of Reaction
K/min mg oC J/g

1.0 19.2 94.9 3.887
1.0 13.3 94.7 3.824
2.5 23.0 102.0 3.856
2.5 18.6 101.3 3.799
5.0 13.9 107.9 3.847
5.0 11.9 108.3 3.826
10.0 15.8 115.8 3.861
10.0 23.4 115.8 3.740

Average 3.830
Standard
deviation 0.040

Table 7.7: Fitting Parameters for the Vulcanization of LSR [28]

Parameter ×1 ×T ×T 2

m 1.5533 × 102 −0.7588 9.3349 × 10−4

n 1.7499 × 102 −0.8911 1.1426 × 10−3

a1 1.6554 × 1015 2.8889 × 1012 −1.8655 × 1010

a2 −5.8582 × 10−5 2.4736 × 10−7 −2.3529×10−10

E2 −36800.93 0 0
E1 124850.53 0 0

The expression for the amount of unreacted material at Tpeak for reaction orders other
than zero or unity, can be simplified to

n(1 − c)n−1
peak = 1 + (1 − n)

2RTpeak

E
(7.107)

An expression for the activation energy can be found by substituting eqn. (7.107) into
eqn. (7.104) and neglecting small quantities

−E

R
=

d

d(1/T )

!
ln

Ṫ

T 2
peak

(
(7.108)

The activation energy can be easily calculated by performing DSC tests at different
scanning rates regardless of the order of the reaction.

Table 7.6 shows the repeatability for the vulcanization of a LSR formulation when
different rates are used.

The data of heating rate and the temperature at which the maximum rate of reaction
occurs, Tpeak, was plotted, and fitted to a linear model. The activation energy, E1,
of a silicone rubber was calculated with the data from four dynamic scanning rates.
The slope of the line corresponds to the negative ratio of the activation energy and
the universal gas constant R (8.3145 J/gmol/K) as can be seen in Fig. 7.20.

Figure 7.21 shows the comparison between the experiments and the fitted model.
The kinetic parameters are summarized in Table 7.7.
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Figure 7.20: Kissinger model for a LSR formulation.

Figure 7.21: Fitted model and experimental data for a LSR formulation.
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7.5 METHOD OF WEIGHTED RESIDUALS

Numerical methods such as the finite element method is based on the method of weighted
residuals. To illustrate this method, we begin with boundary value partial differential
equation (PDE) presented in the form

∂

∂t
u(x, t) + Lu(x, t) = f(x) (7.109)

for x ∈ V and the corresponding boundary and initial conditions

u(xS, t) = uS

u(x, 0) = u0 (7.110)

for xS ∈ S. For the transient heat conduction problem, for example, the operator L is
defined by

L = −k
∂2

∂xj∂xj
(7.111)

Equations such as eqn. (7.109) usually do not have an analytical solution; therefore, we will
express an approximate solution, ū, as a linear combination of some known basis functions,
ψ, similar to the procedure in the previous section

ū(x, t) =
N5

i=1

ci(t)ψi(x) (7.112)

Only a perfect analytical expression for u(x, t) will satisfy eqn. (7.109). Hence, since our
approximate solution will always have a residual, or error, we will try to make this residual
as small as possible

∂

∂t
ū(x, t) + Lū(x, t) − f(x) = R �= 0 (7.113)

Hence, we can require that the inner product of the residual and weighting functions, wj

go to zero over the domain [68]�
V

R(x, t)wj(x)dx = 0 (7.114)

This approximation is commonly called the method of weighted residuals; it was first
described by Crandall [7] and is fully explained in many references [11, 12, 13, 19, 23, 68].

In principle, any set of independent functions, wj , can be used for the purpose of weight-
ing. According to the choice of the function, a different method is achieved. The most
common choices are:

• Point collocation. The weighting functions are equal to delta functions located at n
points, wj(x) = δj(x), which is equivalent to forcing the residual to zero at the n
points [24].

• The Galerkin Method. The basis functions used in the approximation for ū are also
used for weighting, wj = ψj . This method frequently leads to symmetric matrices
and it is the most commonly used method in the finite element literature [14, 30].
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In the mathematical literature, the Galerkin method is also known as Galerkin-Bubnov,
while the case wj �= ψj is commonly called Petrov-Galerkin [30, 68] and is used in special
finite element formulations, such as those where the heat transfer is governed by convective
effects. The application of Galerkin’s method in the finite element method will be covered
in detail in Chapter 9 of this textbook.

The choice of the basis functions used in the truncated series (eqn. 7.112) will lead to
different types of methods. The most common set of methods are the finite element and the
spectral methods. For the case of finite element methods, the domain is divided into small
elements, and a basis function is specified in each element to interpolate the parameters
throughout the element. The functions are locally defined within each element and can
handle complex geometries.

In collocation methods, different sets of basis functions can also be used, for example
radial basis functions, which are functions that depend only on the euclidean distance
between collocation points i and j, rij .

EXAMPLE 7.11.

Fourier-Galerkin method. To illustrate the weighted residuals method we chose a
Fourier-Galerkin method to solve a PDE of the form,

∂u(x, t)

∂t
=

∂u(x, t)

∂x
(7.115)

which is a hyperbolic PDE with an initial condition u(x, 0). For simplicity, we will
assume a spatial domain x ∈ [0, 2π], with a periodic boundary condition, where
u(0, t) = u(2π, t). To solve this with a Fourier-Galerkin weighted residuals method,
we know that the basis and weighting functions are the same and in this case they are
chosen as trigonometric polynomials

ū =

N5
k

ck(t)ψk(x) =

N5
k

ck(t)eikx (7.116)

The weighting functions, wj(x) = e−ikx/2π, were chosen because they satisfy the
orthogonality condition� 2π

0

ψk(x)wj(x)dx = δkj (7.117)

The weighted residual expression for this problem becomes

1

2π

� 2π

0

�#
∂

∂t
− ∂

∂x

* N5
k

ck(t)eikx

�
e−ijxdx = 0

1

2π

� 2π

0

�
N5
k

#
dck

dt
− ikck

*
eikx

�
e−ijxdx0 (7.118)

with the orthogonality condition of the Fourier functions we get

dck

dt
− ikck = 0 for k = 1, ..., N (7.119)
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The N initial conditions for this system of equations will be found by applying the
Galerkin method to the initial conditions for u(x, 0)

ck(0) =

� 2π

0

u(x, 0)wk(x)dx =
1

2π

� 2π

0

u(x, 0)e−ikxdx (7.120)

EXAMPLE 7.12.

The Chebyshev-collocation method. This example problem uses the Chebyshev-
collocation method to approximate u(x, t) in a domain x ∈ [−1, 1] as a solution to
the PDE

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
(7.121)

with homogeneous Dirichlet boundary conditions u(1, t) = u(−1, t) = 0 and some
initial conditions u(x, 0). We want to proceed with a weighted residual method with
the combination between collocation and Chebyshev polynomials as basis functions
for the approximation. Note, that the Chebyshev polynomials [1, 4, 27]

ψj(x) = cos (j cos−1 x) (7.122)

are a perfect choice because they satisfy the homogeneous boundary conditions at
x = 1 and x = −1. The approximate ū will be

ū(x, t) =

N5
k

ck(t)ψk(x) =

N5
k

ck(t) cos(k cos−1 x) (7.123)

For collocation, we will replace the weighting functions by Dirac delta functions
located at N − 1 positions within the domain, i.e.,

wj(x) = δ(x − xj) (7.124)

The weighted residual expression for this Chebyshev-collocation will be� 1

−1

�
∂ū

∂t
− ∂2ū

∂x2

�
δ(x − xj)dx = 0 (7.125)

The definition and properties of the delta function will reduce this equation to the
solution of the PDE for the approximate ū at each collocation point xj�

∂ū

∂t
− ∂2ū

∂x2

�
xj

= 0 (7.126)

for j = 1, ..., N − 1 collocation points, with boundary and initial conditions

ū(1, t) =0

ū(−1, t) =0 (7.127)

ū(xk, 0) =u(xk, 0)
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EXAMPLE 7.13.

Solution of a steady-state one-dimensional diffusion with a source term using
Garlerkin and collocation weighted residual techniques. In this example, we
want to solve the PDE

d2φ

dξ2
+ Q(ξ) = 0 (7.128)

where φ can, for example, represent the dimensionless temperature, ξ ∈ [0, 1] and
Q = 1 for ξ ∈ [0, 1/2] while Q = 0 for ξ ∈ (1/2, 1]. The boundary conditions
will be φ(0) = φ(1) = 0, i.e., homogeneous Dirichlet boundary conditions. A good
choice of the basis functions will be to use a sin Fourier series, because it will satisfy
the boundary conditions. Such approximation will be

φ ≈ φ̄ =
N5

j=1

cj sin jπξ (7.129)

where ψj is represented by sin jπξ. The weighted residual formulation for this
problem becomes

� 1

0

wk

⎡⎣ d2

dξ2

⎛⎝ N5
j=1

cjψj

⎞⎠ + Q

⎤⎦ dξ = 0 (7.130)

For a Galerkin solution, the weighting functions will be the same basis functions
and the weighted residual expression will reduce to

N5
j=1

−cj(jπ)2

2

� 1

0

sin (jπξ
) sin (kπξ
)dξ
 +

� 1/2

0

sinkπξ
dξ
 = 0

N5
j−1

−cj(jπ)2

2
δjk − 1

kπ
(cos (kπ/2) − 1) = 0 (7.131)

which is an independent linear system of equations whose solution is

cj =
−2

(jπ)3
(cos (jπ/2) − 1) (7.132)

giving the solution for the approximate φ̄ as

φ̄(ξ) =

N5
j=1

−2

(jπ)3
(cos (jπ/2) − 1) sin (jπξ) (7.133)

For a collocation solution, we need first to chose a set of points within the domain
where we want to find the solution. At these locations, we will place delta functions
for the weighted residual method. Here, we select N terms for the approximation and
we need N points located at ξk (k = 1, ..., N ). The collocation weighted residual
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Figure 7.22: Comparison of Garlerkin’s weighted residual and analytical solutions.

expression becomes,

N5
j=1

−cj(jπ)2
� 1

0

sin (jπξ
)δ(ξ
 − ξk)dξ
 +

� 1/2

0

δ(ξ
 − ξk) = 0

N5
j−1

−cj(jπ)2 sin (jπξk) +

� 1/2

0

δ(ξ
 − ξk) = 0 (7.134)

Note that the second integral only plays a role if the point ξk ∈ [0, 1/2]. We now
have a linear system of equations that will require a conventional matrix inversion
method. If, for example N = 2, the system becomes�

π2 sin πξ1 (2π)2 sin 2πξ1

π2 sin πξ2 (2π)2 sin 2πξ2

� #
c1

c2

*
=

#
1
0

*
(7.135)

Galerkin employs the sinusoidal functions throughout the domain, using its pe-
riodicity and increasing the frequency as the number of terms are increased. The
results using Galerkin’s weighted residual are shown in Fig. 7.22, where only one
and two terms were used. As can be seen, the results agree well with the analytical
solution. In addition, eqn. (7.132) indicates that this coefficient decays rapidly as
the number of terms increase. Figure 7.23 shows the predictions using collocation
weighted residual methods using two and four points. Although, the solution is not as
good as the Galerkin approximation, it is also interesting to note that few collocations
points result in a fairly accurate solution. In fact, the solution is further improved by
increasing the number of collocation points.
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Figure 7.23: Comparison of the collocation weighted residual and analytical solutions.

Problems

7.1 Derive the equation for Simpson’s integration rule.

7.2 Integrate the function y = x2 between x =-1 and x =+1.
a) Use the trapezoidal rule using 4, 8 and 16 intervals. Plot the error as a function

of number of intervals.
b) Use Simpson’s rule using 4, 8 and 16 intervals. Plot the error as a function of

number of intervals.
c) Use Gauss quadrature using 2 and 3 integration stations.

7.3 Integrate the function y = x ln x between x =0 and x =+1.
a) Use the trapezoidal rule using 4, 8 and 16 intervals. Plot the error as a function

of number of intervals.
b) Use Simpson’s rule using 4, 8 and 16 intervals. Plot the error as a function of

number of intervals.
c) Use Gauss quadrature using 2, 4, and 10 integration stations. Plot the error as a

function of number of integration stations.

7.4 Integrate the function y = ln x between x =0 and x =+1.
a) Use the trapezoidal rule. Plot the error as a function of number of intervals.
b) Use Gauss quadrature using 2, 4 and 10 integration stations. Plot the error as a

function of number of integration stations.

7.5 Use numerical integration to determine the heat of fusion of the polyamide 6 repre-
sented in Fig. 7.3. Use the data given in Table 7.1.

a) Use the trapezoidal rule.
b) Use Simpson’s rule.
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Figure 7.24: Viscosity curves for a polystyrene.

c) According to your results, give a range for the degree of crystallinity of your
original sample.

7.6 Find a linear fit to the set of data points given below.

777777777777

t T
0 50
10 105
30 208
40 245
60 359

777777777777
7.7 Derive the least squares matrix system to fit a quadratic equation of the form y =

a + bx + cx2.

7.8 Find a fit to the set of data points given below using the function y = axb.

777777777777

x y
0 0
5 2
10 10
15 20
20 30

777777777777
7.9 Fit a power law model to the viscosity curve given in Fig. 7.24.

7.10 Fit a Bird-Carreau model to the viscosity curve given in Fig. 7.24. To solve this
problem, download a non-linear fitting program from the world wide web.
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7.11 Fit a set of cubic splines through the data set given below. Plot the curve with at least
5 points per segment.77777777777777

i x y
1 1 1
2 2 1.2
3 3 1.5
4 4 2.5
5 3 4
6 1 3

77777777777777
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CHAPTER 8

FINITE DIFFERENCE METHOD

I don’t know, I don’t care, and it doesn’t
make any difference!

—Albert Einstein

The finite difference method (FDM) is probably the easiest and oldest method to solve
partial differential equations. For many simple applications it requires minimum theory,
it is simple and it is fast. When a higher accuracy is desired, however, it requires more
sophisticated methods, some of which will be presented in this chapter. The first step to
be taken for a finite difference procedure is to replace the continuous domain by a finite
difference mesh or grid. For example, if we want to solve partial differential equations
(PDE) for two functions φ(x) and u(x, y) in a 1D and 2D domain, respectively, we must
generate a grid on the domain and replace the functions by functions evaluated at the discrete
locations, i∆x and j∆y, φ(i∆x) and u(i∆x, j∆y), or φi and uij . Figure 8.1 illustrates
typical 1D and 2D FDM grids.

A finite difference representation for a derivative can be introduced by recalling the
definition of the derivative of a function φ(x)

∂φ

∂x
= lim

∆x→0

φ(x + ∆x) − φ(x)

∆x
(8.1)
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Figure 8.1: Typical 1D and 2D finite difference discretization.

which, for continuous functions, can be written as

∂φ

∂x
≈

φ(x + ∆x) − φ(x)

∆x
(8.2)

This equation is a good approximation for a small but finite ∆x. Using the i notation, this
equation can be written as follows

∂φ

∂x

77777
i

≈

φi+1 − φi

∆x
(8.3)

which is generally referred to as a forward difference approximation. If we take a detailed
look at this equation, we notice that we are approximating the derivative of the function at
point xi as a function of the values of the function at the discrete locations xi+1 and xi. In
the same way, we can obtain the value of the derivative by using xi and xi−1, i.e.,

∂φ

∂x

77777
i

≈

φi − φi−1

∆x
(8.4)

which in turn is referred to as a backward difference approximation. Finally, eqns. (8.3)
and (8.4) can be used to approximate the derivative at point i using the points located ahead
(forward), i + 1, and behind (backward), i − 1, to get a central difference approximation

∂φ

∂x

77777
i

≈

φi+1 − φi−1

2∆x
(8.5)

In addition to the above ad hoc approximations there are many procedures to develop finite
difference approximations for given PDE’s with their respective finite difference grids. The
most commonly used are

• Taylor-series expansions,

• Integral methods,
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Figure 8.2: Schematic of the backward, forward and central difference schemes.

• Finite-volume approach,

• Polynomial fitting.

Typically, these methods arrive at the same finite difference representation for a given
problem. However, we feel that Taylor-series expansions are easy to illustrate and we will
therefore use them here in the derivation of finite difference equations. We encourage the
student of polymer processing to look up the other techniques in the literature, for instance,
integral methods and polynomial fitting from Tannehill, Anderson and Pletcher [26] or from
Milne [16] and finite volume approach from Patankar [18], Versteeg and Malalasekera [27]
or from Roache [20].

8.1 TAYLOR-SERIES EXPANSIONS

Taylor-series expansions allow the development of finite differences on a more formal basis.
In addition, they provide tools to analyze the order of the approximation and the error of the
final solution. In order to introduce the methodology, let’s use a simple example by trying
to obtain a finite difference expression for ∂φ/∂x at a discrete point i, similar to those in
eqns. (8.1) to (8.3). Initially, we are going to find an expression for this derivative using the
values of φ at discrete locations i − 1 and i (such as presented for a backward difference
equation). Thus, we are looking for an expression such as

∂φ

∂x

77777
i

= aφi−1 + bφi (8.6)

which is a simple linear interpolation (Chapter 7). Now, we proceed to expand φi−1 in
Taylor-series about the point i, i.e.,

φi =φi

φi−1 =φi − ∆x
∂φ

∂x

77777
i

+
∆x2

2!

∂2φ

∂x2

77777
i

− ∆x3

3!

∂3φ

∂x3

77777
i

+ . . . (8.7)

We can now solve for the value of the derivative by substituting these values in eqn. (8.6)
as follows

∂φ

∂x

77777
i

= a

�
φi − ∆x

∂φ

∂x

77777
i

+
∆x2

2!

∂2φ

∂x2

77777
i

+ . . .



+ b {φi} (8.8)
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which leads to a system of two equations with two unknowns

∂φ

∂x

77777
i

= (a + b)φi + a

�
−∆x

∂φ

∂x

77777
i

+
∆x2

2!

∂2φ

∂x2

77777
i

+ . . .



(8.9)

The fact that the sought formula is for the derivative leads to

a + b =0 (8.10)

−a∆x =1 (8.11)

and

∂φ

∂x

77777
i

=
φi − φi−1

∆x
+

∆x

2!

∂2φ

∂x2

77777
i

+ . . . (8.12)

If we collapse all the higher order terms we get

∂φ

∂x

77777
i

=
φi − φi−1

∆x
+ O(∆x) (8.13)

Here, we obtained a backward finite difference expression for the derivative ∂φ/∂x at a
point i, and we get the order of the interpolation, i.e., all the terms that we collapsed in
O(∆x), which is a metric for the error built into the approximation. Similarly, we can
obtain the forward difference approximation as

∂φ

∂x

77777
i

=
φi+1 − φi

∆x
+ O(∆x) (8.14)

and the central difference as

∂φ

∂x

77777
i

=
φi+1 − φi−1

2∆x
+ O(∆x2) (8.15)

Note that due to the fact that the physical distance between the grid points, ∆x, is small
(∆x � 1), and that the central difference is of second order ( ∆x2) nature, the central
difference approximation leads to a much better solution than the first order backward and
forward difference solutions.

A way to generalize the finite difference technique for any PDE is to use a Taylor table.
For any PDE such as

∂(n)φ

∂x(n)
= . . . + ai−2φi−2 + ai−1φi−1 + aiφi + ai+1φi+1 + ai+2φi+2 + . . . (8.16)

we construct a table where the columns correspond to the derivatives from the Taylor-series
and the rows to the coefficients ai used in the finite difference expression in eqn. (8.16).
Table 8.1 shows the Taylor table for this equation.

The last row of the table will be used to generate equations needed to obtain the ai

coefficients. The sum of all the columns to the left of the sought derivative ∂(n)φ/∂x(n)
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Table 8.1: Taylor-Series Table

φi
∂φ

∂x
· · · ∂(n)φ

∂x(n)

∂(n+1)φ

∂x(n+1)
· · ·

...
...

...
...

...
...

...

φi−2 ai−2 ai−2(−2∆x) · · · ai−2
(−2∆xn)

n!
ai−2

(−2∆xn+1)

(n + 1)!
· · ·

φi−1 ai−1 ai−1(−∆x) · · · ai−1
(−∆xn)

n!
ai−1

(−∆xn+1)

(n + 1)!
· · ·

φi ai - - - - · · ·

φi+1 ai+1 ai+1(∆x) · · · ai+1
(∆xn)

n!
ai+1

(∆xn+1)

(n + 1)!
· · ·

φi+2 ai+2 ai+2(2∆x) · · · ai+2
(2∆xn)

n!
ai+2

(2∆xn+1)

(n + 1)!
· · ·

...
...

...
...

...
...

...
0 0 · · · 1 ? · · ·
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Table 8.2: Equation (8.18) Taylor-Series Table

φi
∂φ

∂x

∂2φ

∂x2

∂3φ

∂x3

∂4φ

∂x4

φi−1 a a(−∆x)
a(−∆x)2

2!

a(−∆x)3

3!

a(−∆x)4

4!

φi b - - - -

φi+1 c c(∆x)
c(∆x)2

2!

c(∆x)3

3!

c(∆x)4

4!

0 0 1 ? ?

must be zero, while the column for the derivative of interest must add up to one, i.e.,

0 = · · · + ai−2 + ai−1 + ai + ai+1 + ai+2 + · · ·
0 = · · · + ai−2(−2∆x) + ai−1(−∆x) + ai+1(∆x) + ai+2(2∆x) + · · ·

0 = · · · + ai−2
(−2∆x)2

2!
+ ai−1

(−∆x)2

2!
+ ai+1

(∆x)2

2!
+ ai+2

(2∆x)2

2!
+ · · ·

...
...

...
...

...
...

...
...

...

1 = · · · + ai−2
(−2∆x)n

n!
+ ai−1

(−∆x)n

n!
+ ai+1

(∆x)n

n!
+ ai+2

(2∆x)n

n!
+ · · ·

(8.17)

The columns to the right are used to complete the system of equations (sum equals zero) or
to obtain the order of the approximation by calculating, after the coefficients ai are obtained,
the first column to the right whose sum is not zero.

EXAMPLE 8.1.

Second order finite difference for a second order derivative. Let’s illustrate the
Taylor-series by finding a finite difference for the second derivative

∂2φ

∂x2
= aφi−1 + bφi + cφi+1 (8.18)

We have three unknowns (a, b, c) and the Taylor Table 8.2 can be generated.
In the Taylor table, the rows correspond to the interpolation variable coefficients

for the PDE approximation and the columns to the terms of the Taylor-series of the
corresponding coefficient. For this particular case, we need three equations that result
from the sum over the columns. The sum over columns 2 to 4 will give the following
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equations

a + b + c = 0

a(−∆x) + c(∆x) = 0 (8.19)

(∆x)2

2!
(a + c) = 1

which can be solved to give a = c = 1/∆x2 and b = −2/∆x2. The finite differences
representation of eqn. (8.18) can now be written as

∂2φ

∂x2
=

φi−1 − 2φi + φi+1

∆x2
+ O(∆xn) (8.20)

In order to obtain the order of approximation n, we first replace the values of
(a, b, c) in the column corresponding to ∂3φ/∂x3 of Table 8.2

a
−∆x3

3!
+ c

∆x3

3!
= 0 (8.21)

Since no extra information of the approximation is given, we must proceed to the next
column to the right of Table 8.2

a
∆x4

4!
+ c

∆x4

4!
�= 0 (8.22)

which indicates that the above approximation of eqn. (8.20) is of the order O(∆x2).

EXAMPLE 8.2.

Using 4 grid points to represent ∂φ/∂x Instead of using the first order (backward
or forward) or the second order (central) finite difference approximation for the first
derivative, let us calculate the derivative using four grid points (see Fig. 8.2)

∂φ

∂x

77777
i

= aφi−2 + bφi−1 + cφi + dφi+1 (8.23)

Again, we use the Taylor table (Table 8.3).
Note that in this particular example, we need to include two additional columns

to the right of the desired derivative column because we have four unknowns. The
resulting linear set of equations is

a + b + c + d = 0

−2a∆x − b∆x + d∆x = 1

4a∆x2 + b∆x2 + d∆x2 = 0 (8.24)

−8a∆x3 − b∆x3 + d∆x3 = 0

which results in a = 1/6∆x, b = −1/∆x, c = 1/2∆x and 1/3∆x. Substituting this
solution in the 5th column of Table 8.3 we obtain that its sum is not equal to zero,
thus, we can get the order of the approximation from here. The final finite difference
approximation for this case is

∂φ

∂x
=

1

6∆x
(φi−2 − φi−1 + 3φi + 2φi+1) + O(∆x3) (8.25)

with an order of approximation (or error) of O(∆x3).
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Table 8.3: Taylor-Series Table for the 4 Points First Derivative FD

φi
∂φ

∂x

∂2φ

∂x2

∂3φ

∂x3

∂4φ

∂x4

∂5φ

∂x5

φi−2 a a(−2∆x) a
(−2∆x)

2!
a
(−2∆x3)

3!
a
(−2∆x4)

4!
a
(−2∆x5)

5!

φi−1 b b(−∆x) b
(−∆x)

2!
b
(−∆x3)

3!
b
(−∆x4)

4!
b
(−∆x5)

5!

φi c - - - - -

φi+1 d d(∆x) d
(∆x)

2!
d
(∆x3)

3!
d
(∆x4)

4!
d
(∆x5)

5!

0 1 0 0 ? ?

8.2 NUMERICAL ISSUES

There are many numerical issues that we must discuss before proceeding to applications of
FDM when solving polymer processing problems. The most important are,

• Truncation error

• Consistency

• Stability

As we can imagine, most of these issues are directly related to the order of the approx-
imation used in the finite difference representation. In fact, the truncation error (as shown
in Chapter 7) is the difference between the PDE and the FD representation, which is repre-
sented by the terms collapsed in O(∆xn). For problems represented by PDEs with more
than one independent variable the truncation error will be the sum of the truncation error
for each FD representation. For example, for a transient one dimensional PDE, where we
use a first order approximation for the time derivative and a second order for the spatial
derivative, we will have a truncation error that is O(∆t) + O(∆x2), which can also be
written as O(∆t, ∆x2).

The consistency of a finite difference approximation is the behavior of this representation
when the mesh is refined. In a one dimensional case, for example, the mesh will indicate
the value for ∆x, which, as we discussed above, dictates the value of the truncation error.
Thus, a finite difference representation of a PDE is said to be consistent if the truncation
error goes to zero as the grid size (or ∆x) goes to zero.

The stability of a FD representation deals with the behavior of the truncation error as
the calculation proceeds in time or marches in space, typically, transient problems, and
problems with convection-convection derivatives. A stable FD scheme will not allow the
errors to grow as the solution proceeds in time or space. The issue of stability for transient
problems will be analyzed in depth later in this chapter.
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Figure 8.3: Info-travel concept in a 1D diffusion problem.

8.3 THE INFO-TRAVEL CONCEPT

Up to this point, we have discussed how to develop finite difference expressions for PDE’s
with any desired level of accuracy. We expect that the truncation error, the consistency and
stability will be improved as the order of the approximation is increased. However, we have
not mentioned the connection between the physics of the problem under consideration, and
represented by the PDE, and the way we select the points for the finite difference expression,
i.e., i − 2, i − 1, i + 1, or i + 2, as well as the order of the approximation, i.e., first order,
second order, etc. In other words, the points, order and grid size are not arbitrarily chosen
to approximate the derivatives at a point i, but should be chosen according to the physical
principles of the problem. This concept is referred to as info-travel and will be discussed
here.

The balance equations used to model polymer processes have,for the most part,first order
derivatives in time, related with transient problems, and first and second order derivatives
in space, related with convection and diffusive problems, respectively. Let us take the heat
equation over an infinite domain as

∂T

∂t
= α

∂2T

∂x2
(8.26)

For this diffusive (conductive) problem, any perturbation in the temperature will move, or
diffuse, symmetrically along the (x) axis. In other words the information will travel in all
directions in space. Therefore, to approximate the second derivatives in space at a point i,
we must use points that are symmetrically distributed in space, as shown in Fig. 8.3.

A good option will be to use a second order approximation for the space derivatives as
follows

∂2T

∂x2
=

Ti+1,j − 2Ti,j + Ti−1,j

∆x2
+ O(∆x2) (8.27)
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To increase the order of the approximation correctly, we must include the same number
of points in any direction. This way we are accommodating, as best as possible, the way
information travels in this problem. If the choice of points had been asymmetric, even
by keeping the second order of the approximation (such as in eqn. (8.27)), the system is
actually considering diffusion with a preferred direction, which is not realistic.

Following the info-travel concept for the time derivative, we can easily see that it would
be unreasonable to use central or forward differences. Such a choice would mean that the
derivative of temperature with respect to time at the kth time step depends on the value of
temperature in the future, or the (k + 1)th step. Hence, the correct way to express a time
derivative should be by using the information in the past only, i.e.,

∂T

∂t
=

T k
i,j − T k−1

i,j

∆t
+ O(∆t) (8.28)

The treatment of transient problems is covered in depth later in this chapter.
First order derivatives in space are not as straight forward as second derivatives, and

must be dealt with according to the situation. We find these derivatives in many situations,
for example, in the continuity equation

∂ui

∂xi
= 0 (8.29)

in convection terms

ui
∂T

∂xi
or uj

∂ui

∂xj
(8.30)

or in boundary conditions,

−k
∂T

∂n
= q0 or

∂ui

∂n
= 0 (8.31)

The info-travel concept dictates the selection of the points and the order of the approxi-
mation for each individual case. The continuity equation comes from a mass balance on a
differential element within the domain. Here, the mass can come and go through all sides
of the differential element; hence, the information can travel in all directions, requiring a
central difference formulation.

The convection terms, on the other hand, have a preferred direction, depending to the
direction of the velocity that drives the convective term. Figure 8.4 presents the same
temperature perturbation as in Fig. 8.3, but with an imposed velocity field, ux.

For this problem, the energy balance with constant properties becomes#
∂T

∂t
+ uj

∂T

∂xj

*
= α

∂2T

∂xj∂xj
(8.32)

The convection term that controls the heat transfer is

ux
∂T

∂x
(8.33)

This velocity will indicate that the information travels from left to right, thus a correct FD
expression will be one that uses the information from points to the left of any point i, where
the derivative is wanted, for example

ux
∂T

∂x
= uxi

Ti − Ti−1

∆x
+ O(∆x) (8.34)
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Figure 8.4: Info-travel concept with a combination of diffusion and convective terms.

Note that the above approximation is a first order approximation. If we were to use a central
difference, we would increase the order, but contrary to what is expected, this choice will
adversely affect the accuracy and stability of the solution due to the fact the information
is forced to travel in a direction that is not supported by the physics of the problem. How
convective problems are dealt will be discussed in more detail later in this chapter. The
following sections will present steady state, transient and moving boundary problems with
examples and applications.

8.4 STEADY-STATE PROBLEMS

This section will illustrate the tools taught in the above sections in the form of examples
applied to steady state problems. Example 8.3 applies the finite difference method to a
simple one-dimensional fin cooling problem and illustrates the nature of the system of
equations that is normally achieved. Example 8.4 present a 2D compression molding
problem where an iterative solution method is introduced.

EXAMPLE 8.3.

Steady-state temperature profile of a fin of uniform cross-sectional area. In a fin
cooling process we want to obtain the temperature profile on the surface of the fin.
The aspect ratio of the fin is large, L/W � 1, as shown in Fig. 8.5.

For a material with constant properties and heat transfer coefficient, the energy
equation is reduced to

d2Θ

dx2
− m2Θ = 0 (8.35)

where Θ = T (x) − T∞, m = hP/kAc, h is the convection heat transfer coefficient,
P = 2w+2t is the convection perimeter and Ac = wt is the cross sectional conductive
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Figure 8.5: Schematic diagram and finite difference grid of a fin cooling problem.

area. The boundary conditions are defined by

Θ(0) = T0 − T∞ = Θ0 (8.36)

hΘ(L) = −k
dΘ

dx

77777
x=L

(8.37)

The analytical temperature profile can be obtained as follows [2, 11]

Θ

Θ0
=

coshm(L − x) + (h/mk) sinhm(L − x)

coshmL + (h/mk) sinhmL
(8.38)

Let’s pretend that this solution is not known and proceed to arrive at a solution using
finite differences. Here, the first step is to create the grid, which is illustrated in
Fig. 8.5. For simplicity, we are going to use only n = 5 points (or nodes). The grid
size is given by ∆x = L/(n − 1). The FD expression of eqn. (8.35) is written as

Θi+1 − 2Θi + Θi−1 − m2∆x2Θi = 0 (8.39)

Here, we are using a second order approximation for the second derivative using the
correct info-travel concept for the conduction term. This equation comes from the
energy balance within the domain, thus it will be used for the internal nodes n = 2, 3
and 4. The boundary condition for the first node is the temperature at the wall to
which the fin is attached to

Θ1 = Θ0 (8.40)

The boundary condition at x = L or n = 5 has a first derivative that comes from the
balance between the conduction and the convection at the end of the fin. We can use
a backward finite difference to approximate this derivative, i.e.,

(Θ5 − Θ4) +
h∆x

k
Θ5 = 0 (8.41)
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Table 8.4: Example 8.3 Data

Parameter Value
L 20.0 cm
w 20.0 cm
t 1.0 cm
h 1.0 W/K/m2

k 10.0 W/m/K

which violates the info-travel concept for this specific boundary, but for very small
∆x, the error introduced will be small. However, we can also use a central difference

(Θ6 − Θ4) +
2h∆x

k
Θ5 = 0 (8.42)

which implies the generation of what is commonly called a fictitious node. This new
node will introduce an additional unknown and therefore a new equation is required.
This is done by considering node 5 as an internal node, for which eqn. (8.39) can be
used.

The system of equations is as follows,

Θ1 − Θ0 = 0

Θ1 − (2 + m2∆x2)Θ2 + Θ3 = 0

Θ2 − (2 + m2∆x2)Θ3 + Θ4 = 0 (8.43)

Θ3 − (2 + m2∆x2)Θ4 + Θ5 = 0

−Θ4 + (1 + h∆x/k)Θ5 = 0

which in matrix form is⎡⎢⎢⎢⎢⎣
1 0 0 0 0
1 a 1 0 0
0 1 a 1 0
0 0 1 a 1
0 0 0 −1 b

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

Θ1

Θ2

Θ3

Θ4

Θ5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Θ0

0
0
0
0

⎞⎟⎟⎟⎟⎠ (8.44)

where a = −(2 + m2∆x2) and b = 1 + h∆x/k. Note the tri-diagonal nature of
the matrix for this linear system; in fact, this is a common characteristic of finite
difference formulations for problems involving second derivatives. Such equation
systems can be solved rapidly, using solution schemes such as the Thomas algorithm
[19].

Figure 8.6 shows a comparison between the analytical solution and several dis-
cretizations for this problem using the data from Table 8.4.

As expected, the solution improves as the number of nodes increases (∆x de-
creases). Figure 8.7 shows how the truncation error decreases with ∆x. The solid
line in the figure is ∆x2 and the dots are the value of the truncation error from the
simulation. The graph clearly indicates that the method is of second order accuracy
in space.



398 FINITE DIFFERENCE METHOD

Figure 8.6: Steady state FDM and analytical temperature distribution along the cooling fin.

Figure 8.7: Error in the FD temperature distribution prediction along the cooling fin as a function
of grid size ∆x.
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Figure 8.8: Schematic diagram of the compression molding of a rectangular charge.

Table 8.5: Example 8.4 Data

Parameter Value
η 10000 Pa-s
Lx 0.2 m
Ly 0.4 m
h 0.005 m
ḣ 0.01 m/s

EXAMPLE 8.4.

Solution of the two-dimensional Poisson’s equation: compression molding. In
this example. we want to calculate the instantaneous pressure and velocity fields for
the compression molding charge shown in the Fig. 8.8 with dimensions and parameters
summarized in Table 8.5.

For the solution of this problem we will assume a Newtonian and isothermal flow.
The Hele-Shaw approximation gives an expression for the mean velocity profile as a
function of the pressure as follows (see Chapter 5)

ūx = − h2

12η

∂p

∂x
(8.45)

ūy = − h2

12η

∂p

∂y
(8.46)
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Figure 8.9: 2D FDM discretization.

Substituting these velocities into the integrated continuity equation results in Poisson’s
equation for the pressure as the governing equation

∂2p

∂x2
+

∂2p

∂y2
= −12η

ḣ

h3
(8.47)

with the corresponding boundary conditions at the flow front

p(x, y) = 0 for x, y ∈ front (8.48)

Using a second order approximation for the x- and y-directions, the FD expression
of eqn. (8.47) is written as

pi−1,j − 2pi,j + pi+1,j

∆x2
+

pi,j−1 − 2pi,j + pi,j+1

∆y2
= −12η

ḣ

h3
(8.49)

which for the isometric mesh (∆x = ∆y), shown in Fig. 8.9, can be rearranged as

pi−1,j + pi+1,j + pi,j−1 + pi,j+1 − 4pi,j = −12η
ḣ

h3
∆x2 (8.50)

One possible way to solve this problem is by obtaining a system of linear equations
in a similar way as in Example 8.3. However, the equations must be organized
carefully because the equations are coupled in the two directions. To avoid the
complications given by the generation of the matrix for the linear system of equations,
some iterative methodologies have been developed to solve for this type of problems.
Such techniques solve the system of equations without the need of cumbersome matrix
manipulation, such as LU-decomposition, matrix inversion, etc. [19].
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Figure 8.10: Schematic representation of the Jacobi iterative scheme.

An iterative method consists basically of first guessing a solution (a pressure field,
p0

i,j in our example) and continuously replacing this guess until some convergence
criterion is reached, i.e.,77pk

i,j − pk+1
i,j

77 < % (8.51)

There are three common schemes that can be used to improve the initial guess and
the successive solutions. These are

• Jacobi iteration scheme

• Gaus-Seidel iteration scheme

• Successive over-relaxation (SOR).

Equation (8.50) can be rewritten to express pi,j as a function of the values of
pressure at the neighboring nodes, resulting in the non-homogeneous function of
Poisson’s equation,

pi,j =
1

4
(pi−1,j + pi+1,j + pi,j−1 + pi,j+1) + fi,j (8.52)

where fi,j = 3ηḣ∆x2/h3. The Jacobi iteration scheme is the slowest method because
it uses old information for the improvement of the guess. It requires two arrays, one
with the old iteration field, pk

i,j , and one with the new improved guess, pk+1
i,j , where

k symbolizes the iteration number. The Jacobi iteration is as follows,

pk+1
i,j =

1

4

"
pk

i−1,j + pk
i+1,j + pk

i,j−1 + pk
i,j+1

)
+ fi,j (8.53)

Figure 8.10 illustrates the mechanism of iteration for the Jacobi iterative scheme
(Algorithm 1).

Gauss-Seidel iteration is faster than Jacobi, because it uses new information from
the already improved points, i.e., the points to the left and below i, j

pk+1
i,j =

1

4

"
pk+1

i−1,j + pk
i+1,j + pk+1

i,j−1 + pk
i,j+1

)
+ fi,j (8.54)
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Algorithm 1 Jacobi iteration

program jacobi two arrays pold(nx,ny) and pnew(nx,ny)

pold = 0 initialization, initial guess and boundary conditions

pnew = 0

error = 1e6

do while (error > tol) Iteration loop

error=0

do j = 2,ny-1 only for internal nodes

do i = 2,nx-1

pnew(i,j) = 0.25*(pold(i-1,j)+pold(i+1,j)+

pold(i,j-1)+pold(i,j+1))+f

error = error + (pnew(i,j)-pold(i,j))**2

enddo

enddo

pold=pnew

error = sqrt(error)/nx/ny

enddo

end program jacobi

i,j

i+1,ji-1,j

i,j-1

i,j+1

i,j

i+1,ji-1,j

i,j-1

i,j+1

kth-iteration (k+1)th-iteration

jj

Figure 8.11: Schematic representation of the Gauss-Seidel iterative scheme.

Algorithm 2 Gauss-Seidel iteration

program gauss one array p(nx,ny)

p = 0 initialization, initial guess and boundary conditions

error = 1e6

do while (error > tol) Iteration loop

error = 0

do j = 2,ny-1 only for internal nodes

do i = 2,nx-1

pold = p(i,j)

p(i,j) = 0.25*(p(i-1,j)+p(i+1,j)+p(i,j-1)+p(i,j+1))+f

error = error + (p(i,j)-pold)**2

enddo

enddo

error = sqrt(error)/nx/ny

enddo

end program gauss
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this is shown schematically in Fig. 8.11 (Algorithm 2).
SOR introduces a relaxation parameter, ω, into the iteration process. The correct

selection of this parameter can improve the convergence up to 30 times when compared
with Gauss-Seidel. SOR uses new information as well and starts as follows,

pk+1
i,j = pk

i,j + ω

�
1

4

"
pk+1

i−1,j + pk
i+1,j + pk+1

i,j−1 + pk
i,j+1

)
+ fi,j − pk

i,j

�
(8.55)

When ω < 1, we have so-called under-relaxation technique, often used with non-
linear problems. For example, when solving for the non-linear velocity distribution
using a shear thinning power law model, the fastest solution is achieved when ω = n
since n < 1. When ω > 1, SOR becomes an over-relaxation technique.

After the pressure field is obtained, we can use a central FD expression to calculate
the instantaneous velocity profile, i.e.,

ūxi,j = − h2

12η

pi+1,j − pi−1,j

2∆x
(8.56)

ūyi,j = − h2

12η

pi,j+1 − pi,j−1

2∆y
(8.57)

Figure 8.12(b) shows the instantaneous pressure distribution and velocity profile for
the top half of the geometry.

All three methods eventually arrived at the same result; however, each used dif-
ferent number of iterations to achieve an accurate solution. Figure 8.13 shows a
comparison between the convergence process between Jacobi and Gauss-Seidel. The
error plotted in in the Fig. 8.13 was computed using,

|ERROR| =

3442 N5
i,j

(pk
i,j − pk−1

i,j )2 (8.58)

where N is the number of grid points in the finite difference discretization. The
convergence of SOR for different values of the relaxation parameter, ω, is illustrated
in Fig. 8.14 According to this analysis, the optimum value for ω was 1.8.

EXAMPLE 8.5.

One dimensional convection-diffusion problem. One problem illustrating issues
that arise with combinations of conduction and convection is the one-dimensional
problem in Fig. 8.15. Here, we have a heat transfer convection-diffusion problem,
where the conduction which results from the temperature gradient and the flow ve-
locity are both in the x-direction.

For the case where D � L and assuming a material with constant properties, the
energy balance reduces to

ρCpux
∂T

∂x
= k

∂2T

∂x2
(8.59)

with the hypothetical forced boundary conditions T (0) = T0 and T (L) = T1. The
energy balance equation can be written in dimensionless form as

Pe
∂Θ

∂ξ
=

∂2Θ

∂ξ2
(8.60)
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Figure 8.12: Predicted pressure and velocity fields for the compression molding FDM Example 8.4
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Figure 8.13: Convergence for the Jacobi and Gauss-Seidel iterative solution schemes for the FD
compression molding problem.
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Figure 8.15: Schematic diagram of the convection-conduction problem.

where the Peclet number is defined by Pe = ρCpuxL/k, the dimensionless tem-
perature by Θ = (T − T0)/(T1 − T0), and ξ = x/L. The boundary conditions in
dimensionless form are

Θ(0) = 0 and Θ(1) = 1 (8.61)

There are general solutions for this problem, which are dictated by the value of the
Peclet number. A problem dominated by diffusion (pure conduction), where Pe � 1,
eqn. (8.60) reduces to

∂2Θ

∂ξ2
≈ 0 (8.62)

which can be integrated to become Θ = ξ. The second type of problem is one where
the convective term becomes significang, Pe � 1, where

∂Θ

∂ξ
=

1

Pe

∂2Θ

∂ξ2
≈ 0 (8.63)

Here, Θ �= constant, because it cannot satisfy the boundary conditions. Thus, there
is a boundary layer solution [3, 6, 21] given by

Θ =
ePeξ − 1

ePe − 1
(8.64)

Figure 8.16 presents the temperature profile for different values of Pe as predicted
by eqn. (8.64). The figure demonstrates how an increase in Peclet number leads to
deviations in the temperature profile of the pure conductive problem. As a matter
of fact, for Pe � 1 we will have an additional length scale in the problem, δ, the
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Figure 8.16: Temperature profile for the 1D convection-diffusion problem.

boundary layer thickness. We can use this length as the characteristic length for
eqn. (8.59),

Peδ
∂Θ

∂ζ
=

∂2Θ

∂ζ2
(8.65)

where Peδ = ρCpuxδ/k and ζ = x/δ. Analyzing this equation we know that
Peδ ∼ 1 in the boundary layer, i.e., convection and diffusion are of the same order,
hence, δ/L ∼ 1/Pe.

Let us proceed to generate a FD discretization of this problem using second order
finite differences for the first and second derivative as follows

Pe
Θi+1 − Θi−1

2∆ξ
=

Θi+1 − 2Θi + Θi−1

∆ξ2
(8.66)

which can be written as#
Pg

2
− 1

*
Θi+1 + 2Θi −

#
Pg

2
+ 1

*
Θi−1 = 0 (8.67)

where Pg = Pe∆ξ is the grid Peclet number. As boundary conditions we use
Θ1 = 0 and Θn = 1. The tri-diagonal matrix that is generated by applying the above
equation to every internal grid point, can be solved for by back-substitution solution
to give the value of Θi explicitly as

Θi =

1 −
#

1 + Pg/2

1 − Pg/2

*i

1 −
#

1 + Pg/2

1 − Pg/2

*n (8.68)
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Figure 8.17: FD Temperature profile for the 1D convection-diffusion problem with a central
difference convection term.

Note that Pg > 2 is critical, because the solution presents a sign change, which
means the solution becomes unstable (see Figure 8.17). The root of the problem is
explained by the info-travel concept. To generate the difference equation (eqn. (8.66))
we used a central finite difference for the convective derivative, which is incorrect,
because the information of the convective term cannot travel in the upstream direction,
but rather travels with the velocity ux. This means that to generate the FD equation
of a convective term, we only take points that are up-stream from the node under
consideration. This concept is usually referred to as up-winding technique. For low
Pe the solution is stable because diffusion controls and the information comes from
all directions.

By using a backward finite differences, essentially up-winding the convective term,
we get

Pe
Θi − Θi−1

∆ξ
=

Θi+1 − 2Θi + Θi−1

∆ξ2
(8.69)

with the explicit solution

Θi =
1 − (1 + Pg/2)

i

1 − (1 + Pg/2)
n (8.70)

This equation does not present sign changes and the solution is free of spurious
oscillations. However, the numerical and analytical results are noticeable different,
due to an artificial diffusion that the FD expression introduces to the solution (see
Fig. 8.18). This artificial diffusion is commonly known as numerical diffusion.



TRANSIENT PROBLEMS 409

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

Θ

Analytical
FDM

Pe=5
Pg=0.55

Pe=50
Pg=5.55

Figure 8.18: Temperature profile for the 1D convection-diffusion problem with an up-winded
convection term.

8.5 TRANSIENT PROBLEMS

Transient problems begin with an initial condition and march forward in time in discrete time
steps. We have discussed space derivatives, and now we will introduce the time derivative,
or transient, term of the differential equation. Although the Taylor-series can also be used,
it is more helpful to develop the FD with the integral method. The starting point is to take
the general expression

dφ

dt
= f(φ, t) (8.71)

and integrate with respect to time in a small interval from t to t + ∆t� t+∆t

t

dφ

dt

dt
 =

� t+∆t

t

f(φ, t
)dt


φ(t + ∆t) − φ(t) =

� t+∆t

t

f(φ, t
)dt
 (8.72)

In order to approximate the remaining integral, we compute the product, as schematically
depicted in Fig. 8.19, f(φ(t), t)∆t which simplifies eqn. (8.72) to

φ(t + ∆t) − φ(t) = f(φ(t), t)∆t + O(∆t2)

φ(t + ∆t) − φ(t)

∆t
= f(φ(t), t) + O(∆t) (8.73)
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Figure 8.19: Explicit Euler time marching scheme.
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Figure 8.20: Implicit Euler time marching scheme.

or

φk+1 − φk

∆t
= fk + O(∆t) (8.74)

where the superscript k indicates time t and k + 1 time t + ∆t. Equation (8.74) implies
that the function at the right hand side is calculated in the past, making it a first order
approximation method in ∆t, known as explicit Euler.

Instead of using the function evaluated at the past, k, we can also construct a product
based on the function evaluated at a future point of time, k +1, as shown in Fig. 8.20. With
this we obtain,

φk+1 − φk

∆t
= fk+1 + O(∆t) (8.75)

which is also a first order method in time and due to the fact that the right hand side is
evaluated in the future, it is called implicit Euler.

Both methods are first order in time but for practical purposes the explicit Euler is the
easiest to apply due to the fact that the only unknown is the value φk+1; all other terms are
evaluated in the kth time step, and due to prescribed initial conditions are always known.
Hence, the value of φk+1 can easily be solved for using eqn. (8.74), by marching forward
in time. In the implicit Euler case, the whole right hand side of the equation is evaluated in
the future, and must therefore be generated and solved for every time step. When marching
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Figure 8.21: Crank-Nicholson time marching scheme.

forward in time, there is also the issue of stability that we must worry about. Since we
are dealing with problems that evolve in time, we must assure that the truncation error
does not grow in time. Explicit Euler has the problem of being conditionally stable, i.e.,
there are requirements that need to be fulfilled in order to make the scheme stable. On the
other hand, implicit Euler is unconditionally stable. The conditions for stability in explicit
Euler depends on the value of ∆t and the nature of the function f(φ, t); details for this can
be found in several references [10, 23, 26] and are discussed in the subsequent example
problem.

If instead of implementing the values of the parameters either in the past or the future,
we evaluate them at both t and t + ∆t and average the results as schematically depicted in
Fig. 8.21, the results in an FD expression are given by,

φk+1 − φk =
1

2
(fk+1 + fk)∆t + O(∆t3) (8.76)

or

φk+1 − φk

∆t
=

1

2
(fk+1 + fk) + O(∆t2) (8.77)

These equations are semi-implicit second order in time typically called Adams-Moulton
(AM2) method or Crank-Nicholson (CN), when applied to diffusion problems, and due to
the implicit nature of the procedure, the scheme is also unconditionally stable.

EXAMPLE 8.6.

Explicit Euler finite difference solution for a cooling semi-crystalline polymer
plate. The cooling process is the dominating factor in many processes, which is also
true for injection molding. In this example, we will illustrate how the explicit finite
difference technique can be used to predict the cooling of a plate from temperatures
above the melting point to the mold temperature. Such a solution is extremely useful,
and with temperature dependent properties does not have an analytical solution. To
simplify the problem somewhat, we assume that the polymer melt is injected fast
enough into the cavity that it remains isothermal until the cavity is full. Although
a fast injection speed would probably lead to viscous heating, we also neglect those
effects. Hence, as an initial condition, we assume a constant temperature throughout
the thickness of the plate, Tinj , and that Tinj > Tm, where Tm is the melting
temperature.



412 FINITE DIFFERENCE METHOD

100 150 200 250 300
2000

4000

6000

8000

10000

12000

T (oC)

C
p

(J
/k

g−
K

)

T
m

Figure 8.22: Specific heat as a function of temperature for a semi-crystalline thermoplastic (PA6).

The crystallization is modeled by an abrup increase in the specific heat, Cp around
the melting temperature, as shown in Fig. 8.22. Assuming that the density, ρ, and
thermal conductivity, k, remain constant1, the one-dimensional energy equation be-
comes

ρ
∂

∂t
(Cp(T )T (t, x)) = k

∂2T (t, x)

∂x2
(8.78)

with T (0, x) = Tinj and T (t, 0) = T (t, L) = Tmold as initial and boundary condi-
tions, respectively.

For simplicity, we will assume that ∂Cp/∂t = 0 and by using

Θ =
T − Tmold

Tinj − Tmold
and ξ =

x

L
(8.79)

we can write eqn. (8.78) as

∂Θ

∂t
=

α(Θ)

L2

∂2Θ

∂ξ2
(8.80)

where α(T ) = k/ρCp(T ) is the thermal diffusivity of the thermoplastic and α(Θ)/L2

is the inverse of the Fourier number (Fo), a characteristic cooling time for the given
material and geometry. The explicit Euler scheme for this equation reduces to

Θj+1
i = Θj

i +
αj

i

αg

 
Θj

i+1 − 2Θj
i + Θj

i−1

'
(8.81)

1In a numerical solution, we can include temperature dependent density and thermal conductivity. The temperature
dependent density can be modeled interpolating throughout a pvT diagram. The temperature dependence of the
thermal conductivity is not always available, as is the case for many properties used in modeling. Chapter 2
presents the Tait equation, which can be used to model the pvT behavior of a polymer.
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Figure 8.23: Stable solutions α/αg < 0.5.

where i = 2, ..., n − 1. Here, the subscript i represents the spatial grid node and
the superscript j the time step, αj

i = k/ρCp(T
j
i ) and αg = (∆ξL)2/∆t is the grid

diffusivity. The initial condition will be Θ0
i = 1 for i = 1 and n, and the boundary

conditions are Θj
1 = Θj

n = 0 for j = 0, 1, 2, ....
Before solving the complete problem,we need to explore the conditions that makes

our explicit Euler expression eqn. (8.81) unstable. To do this, let’s assume for the
moment that the Cp is constant, and therefore αj

i = α. Figure 8.23 shows how the
center-line temperature evolves when many α/αg steps are performed for different
values of α/αg. Figure 8.23 illustrates stable solutions, while Fig. 8.24 shows in-
stabilities from the beginning of the simulation that grow with α/αg steps. These
instabilities are aggravated as α/αg > 0.5. This is a well known limit for stability of
explicit Euler schemes in transient diffusive problems [26]. Replacing the definitions
of α and αg , the stability condition is given by

α

αg
< 0.5 =⇒ ∆t <

∆x2

2α
(8.82)

To solve correctly, the cooling of our the semi-crystalline material, i.e., includ-
ing temperature effect such as Cp(T ) or α(T ), every time step we must verify that
eqn. (8.82) is satisfied. Figure 8.25 shows the evolution of the temperature with
time for the properties and conditions given in Table 8.6 and Fig. 8.22 The delay in
the temperature drop due to the crystallization can be clearly seen in Fig. 8.25, and
Fig. 8.26, which illustrates the evolution of the center-line temperature. It should be
pointed out here that the solution neglects the finite nucleation rate at the beginning
of the cooling, and therefore overpredicts the speed of cooling.
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Figure 8.24: Evolution of the center line temperature for a constant Cp thermoplastic.

Table 8.6: Example 8.6 Data

Parameter Value
ρ 1130 kg/m3

k 0.135 W/m/K
Tm 220 oC
Tinj 260 oC
Tmold 30 oC

L 0.01 m
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Figure 8.25: Evolution of the temperature profile for a cooling semi-crystalline plate.
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Figure 8.26: Evolution of the center-line temperature for a cooling semi-crystalline plate with
variable Cp(T ).
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EXAMPLE 8.7.

Implicit Euler finite difference solution for a cooling amorphous polymer plate.
To illustrate the usage of implicit finite difference schemes, we will solve the cooling
process of an amorphous polymer plate. Since an amorphous polymer does not
go through a crystallization process we will assume a constant specific heat2. The
implicit finite difference for this equation can be written as,

Θj+1
i − ω

α

αg

 
Θj+1

i+1 − 2Θj+1
i + Θj+1

i−1

'
=

Θj
i + (1 − ω)

α

αg

 
Θj

i+1 − 2Θj
i + Θj

i−1

' (8.83)

for i = 2, ..., n − 1 and where 0 � ω � 1 is a factor that will determine the time
scheme to be used. These are,

• ω = 1 fully implicit Euler

• ω = 1/2 Crank-Nicholson

• ω = 0 fully explicit Euler

For implicit schemes, we will obtain a system of linear algebraic equations that
must be solved. As mentioned in Example 8.1, one-dimensional diffusion problems
generate tri-diagonal matrices, that can be solved for using the Thomas algorithm or
other fast matrix routines. Equation (8.83) can be written as

aΘj+1
i−1 + bΘj+1

i + aΘj+1
i−1 = f j

i (8.84)

for i = 2, .., n − 1 and where

a = −ω
α

αg

b = 1 + 2ω
α

αg
(8.85)

f j
i = Θj

i + (1 − ω)
α

αg

 
Θj

i+1 − 2Θj
i + Θj

i−1

'
and the initial and boundary conditions Θ0

i = 1 for i = 1 and n, and Θj
1 = Θj

n = 0
for j = 0, 1, 2, ..., respectively.

Implicit schemes are unconditionally stable, this is shown in Fig. 8.27 where the
evolution of the temperature, in α/αg steps, for values of α/αg higher than 0.5 is
shown. Higher values of α/αg mean that we can use higher ∆t, which at the end
implies lower computational cost and faster solutions. The results in Fig 8.27 were
obtained with the fully implicit Euler scheme, i.e., ω = 1. The comparison between
the implicit Euler and the Crank-Nicholson, ω = 0.5 is illustrated in Fig. 8.28 for
the center line temperature evolution. Although there is no apparent significance
difference, we expect that the CN scheme is more accurate due to its second order
nature.

2Typically, the specific heat of amorphous thermoplastics changes as it goes though the glass transition temperature,
but for this specific application we will assume an average value. However, introducing a changing specific heat
simply requires the use of an if statement that checks if the value of specific heat above or below Tg should be
chosen.
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Figure 8.27: Implicit Euler solutions for a cooling amorphous thermoplastic plate.
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Figure 8.29: Evolution of the temperature profile for the cooling of an amorphous thermoplastic
plate.

The evolution of the temperature profile as a function of time is illustrated in
Fig. 8.29 for α/αg = 5. As can be seen, due to the absence of crystallization, no
delay is present in the cooling curves. If we are seeking the steady-state temperature
profile of the thermoplastic after injection, and we want to achieve the steady-state
profile in a few calculations, implicit methods are the correct choice because they
allow the use of very large time steps, i.e., high values of α/αg . Figure 8.30 shows
the rapid evolution towards steady-state using implicit Euler with α/αg = 200. This
solution only requires 10 steps. When the same conditions are used with a CN scheme,
although stable, the solution gives spurious oscillations, as shown in Fig. 8.31.

EXAMPLE 8.8.

Heat transfer during the curing process of a thermoset resin. In the previous
examples we showed, how the finite difference technique can be used to predict
cooling of thermoplastic materials. The technique can also be used to predict the
curing reaction during solidification of thermosetting resins. Here, we present the
work done by Barone and Caulk [1], who used an explicit finite difference technique
to solve for the heat transfer and cure kinetics to predict the temperature and curing
fields during processing of fiber reinforced unsaturated polyester during compression
molding. When dealing with curing themosets, the energy equation has an exothermic
heat generation, Q̇. For curing thermosets, we can represent the exotherm with [1]

Q̇ = QT
dc

dt
(8.86)
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Figure 8.31: Steady-state temperature development using an implicit Crank-Nicholson scheme.
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Figure 8.32: Comparison between measured (DSC) and computed (Kamal-Sourour) model of the
heat generation during cure for two heating rates [1].

where dc/dt is the rate of curing, which can be represented with a reaction kinetic
semi-empirical model, such as the one developed by Kamal and Sourour [13, 14]

dc

dt
= (k1 + k2c

m) (1 − c)
n (8.87)

where m and n are the reaction order, k1 and k2 contain the temperature dependence
of the curing reaction rate

k1 = a1e
−b1/RT

k2 = a2e
−b2/RT (8.88)

Here, R is the gas constant and b1, b2, a1 and a2 are constants that can be obtained by
fitting the above equations to data measured with a differential scanning calorimeter
(DSC) [9, 17].

Figure 8.32 presents the DSC scans for 10 and 20 K/min heating rates for an
unsaturated polyester, with the theoretical prediction from the above equations [1].
Table 8.7 lists the properties and fitted parameters found by Barone and Caulk for a
SMC material.

With these properties and values the finite difference technique was used to model
the curing process in sheet molding compound (SMC) plates using a heat balance
with an exothermic reaction as

ρCp
∂T

∂t
= k

∂2T

∂x2
+ ρQ̇ (8.89)

The above equation is solved similarly to the equations in the previous examples with
the added exothermic reaction term. As mentioned earlier, Barone and Caulk used
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Table 8.7: Sample Kinetic Parameters of Cure and Properties for SMC

Parameter Value
a1 4.9 1014s−1

a2 6.2 105s−1

b1 140.0 kJ/mol
b2 51.0 kJ/mol
m 1.3
n 2.7

QT 84.0 kJ/kg
ρ 1900.0 kg/m3

Cp 1000.0 kJ/kg/K
k 0.53 W/m/K
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Figure 8.33: Temperature distribution for a curing 10 mm thick unsaturated polyester plate [1].

an explicit finite difference technique. Figs. 8.33 and 8.34 present the temperature
and curing distributions across the thickness of a 10mm thick plate, respectively.
The material constants presented in Table 8.7 were used for the calculations, with an
initial temperature of 24oC and a mold temperature of 150oC. As can be seen, for this
relatively thick part, the exotherm plays a significant role in the curing reaction, where
the center of the plate has gone 40 K above the mold temperature, and curing variation
through the thickness is significant. For a 2 mm plate thickness and the same mold
temperature, Barone and Caulk demonstrated that the exotherm gives only a slight
rise in part temperature and that the curing progresses evenly across the thickness.

Barone and Caulk performed the same calculation for several plate thicknesses
and mold temperatures to predict the time for demolding. They defined demolding
time as the time it takes for every point in the plate to have reached at least 80% cure.
Figure 8.35 presents the processing window generated, where the time for demolding
is plotted as a function of plate thickness and mold temperature. In addition, the
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Figure 8.34: Degree of cure distribution for a curing 10 mm thick unsaturated polyester plate [1].

shaded area shows the region where the exotherm causes the center-temperature to
exceed 200oC.

8.5.1 Higher Order Approximation Techniques

There are several methods that we can use to increase the order of approximation of the
integral in eqn. (8.72). Two of the most common higher order explicit methods are the
Adams-Bashforth (AB2) and the Runge-Kutta of second and fourth order. The Adams-
Bashforth is a second order method that uses a combination of the past value of the function,
as in the explicit method depicted in Fig. 8.19, and an average of the past two values, similar
to the Crank-Nicholson method depicted in Fig. 8.21, and written as� t+∆t

t

fdt
 = fk∆t +
1

2
(fk − fk−1)∆t + O(∆t3) (8.90)

which gives

φk+1 − φk

∆t
=

3

2
fk − 1

2
fk−1 + O(∆t2) (8.91)

The method increases the order but the stability is compromized due to the extrapolation
done by the the linear approximation between the previous times. This stability issue can
be improved by adding an extra implicit step using an Adams-Moulton (AM2) as follows

Step 1: AB2 φ∗ = φk + (3fk − fk−1)
∆t

2
+ O(∆t2) (8.92)

Step 2: AM2 φk+1 = φk + (f∗ + fk)
∆t

2
+ O(∆t2) (8.93)

where φ∗ is a prediction of φn+1, and with f∗ = f(φ∗, t + ∆t) is a correction of this
prediction. This method is called Adams-Predictor-Corrector (APC2), keeping the integral
a second order approximation.
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Runge-Kutta of the second (RK2) and fourth (RK4) order do not use an extrapolation
between k − 1 and k to find k + 1, instead they use future points to do the extrapolation.
The methodology is straight forward and can be summarized for the Runge-Kutta of second
order (RK2) as [10]

K1 =f(φk, t)

K2 =f(φk + ∆tK1, t + ∆t) (8.94)

φk+1 =φk + (K1 + K2)
∆t

2
+ O(∆t2)

and for the Runge-Kutta of fourth order (RK4) as

K1 =f(φk, t)

K2 =
1

2
f(φk + ∆tK1, t + 1/2∆t)

K3 =
1

2
f(φk + ∆tK2, t + 1/2∆t) (8.95)

K4 =
1

2
f(φk + 2∆tK3, t + ∆t)

φk+1 =φk + (K1 + 2K2 + 2K3 + K4)
∆t

3
+ O(∆t4)

These Runge-Kutta methods do not require information from the past, and are very versatile
if the time steps need to be adjusted as the solution evolves. The stability of the RK2 is
similar to the APC2, while the RK4 has less strong conditions for stability [10]. Both are
ideal for initial value problems in time or in space,

EXAMPLE 8.9.

Fully developed flow in screw extruders. To illustrate the type of problem that can be
solved using higher order approximation techniques we will present the work done by
Griffith [9] in 1962. Grittith developed the governing equations for the fully developed
flow of non-Newtonian fluids in the metering section of a screw. As discussed in
Chapter 6 of this book, the flow in the metering section is a complex three-dimensional
flow, that, when modeled with a non-Newtonian, shear thinning viscosity, does not
have an analytical solution. Even if we simplify the flow into two components, a
cross-channel and a down-channel component, the coupling of these two components
through the rate of deformation dependent viscosity requires numerical techniques to
arrive at a solution. Griffith used the usual unwrapped screw geometry schematically
depicted in Fig. 8.36. Note that here we are using the coordinate system used by
Griffith, not the one used in Chapter 6.

For the flow components that are significant in the present geometry, the important
components of the stress tensor σij = −δijp + τij , can be expressed as,

σxy =η(γ̇)
∂uy

∂x

σxz =η(γ̇)
∂uz

∂x
(8.96)
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Figure 8.36: Unwrapped screw channel with conditions and dimensions [9].

where γ̇ is the magnitude of the shear rate tensor defined by

γ̇ =

34421

2

!#
∂uy

∂x

*2

+

#
∂uz

∂x

*2
(

(8.97)

Neglecting the inertial terms and using eqn. (8.96), the momentum equations are
reduced to

−∂p

∂y
+

∂σxy

∂x
= 0

−∂p

∂z
+

∂σxz

∂x
= 0 (8.98)

(x − x3)
∂p

∂y
− η

∂2uy

∂x2
= 0

(x − x4)
∂p

∂z
− η

∂2uz

∂x2
= 0 (8.99)

with the velocity boundary conditions

uy = uz = 0 for x = 0

uy = u2 sin φ and uz = u2 cosφ for x = h (8.100)

Two other conditions, which relate to the places (x = x3 and x = x4) where the two
velocity gradients equal zero, are

∂uy

∂x
= 0 for x = x3

∂uz

∂x
= 0 for x = x4 (8.101)



426 FINITE DIFFERENCE METHOD

Since the analysis of extrusion usually deals with steady state conditions, the energy
equation reduces to a balance between heat conduction and viscous dissipation

−k
∂2T

∂x2
= σxi

∂ui

∂x
= σxx

∂ux

∂x
+ σxy

∂uy

∂x
+ σxz

∂uz

∂x
(8.102)

or,

−k
∂2T

∂x2

77777
x

− k
∂2T

∂x2

77777
xc

= σxi
∂ui

∂x

77777
x

+ σxi
∂ui

∂x

77777
xc

(8.103)

Here, the position x is the location of the streamline located near the barrel, and
xc the position of the same streamline located near the root of the screw. If the flow
is fast enough, we can assume that the temperature along the streamline is constant
as it travels near the barrel and returns to near the root of the screw. Hence, for the
barrel surface we must take the boundary condition

T =
T1 + T2

2
for x = h

∂T

∂x
= 0 for x = 0 (8.104)

where T1 and T2 are the temperatures at the root of the screw and the inside diameter
of the barrel, respectively. Rearranging somewhat we can write

−k
∂2T

∂x2

77777
x

− k
∂2T

∂x2

77777
xc

= 2ηγ̇2

77777
x

+ 2ηγ̇2

77777
xc

(8.105)

We can relate x and xc by performing a mass balance in the y-direction, for which
the net flow must be zero3

� x

0

uydx = −
� h

xc

uydx (8.106)

Summarizing, the model of the screw channel flow is governed by eqns. (8.99),
(8.105) and (8.106) with boundary conditions eqns. (8.100), (8.101) and (8.104).
The constitutive equation that was used by Griffith is a temperature dependent shear
thinning fluid described by

η(T, γ̇) = me[−bn(2T−T1−T2)/2]γ̇(n−1) (8.107)

The momentum balance now becomes

∂uy

∂x
= eΘGy(x − x3)

�
G2

y(x − x3)
2 + G2

z(x − x4)
2
�(1−n)/2

∂uz

∂x
= eΘGz(x − x4)

�
G2

y(x − x3)
2 + G2

z(x − x4)
2
�(1−n)/2

(8.108)

3This assumption is not fully valid since, due to the flight clearance, there is leakage flow over the flight of the
screw.
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where the new dimensionless parameters, Θ for temperature and Gi for pressure
gradient, are defined as

Θ =b (2T − T1 − T2) /2

Gy =

#
∆p

λ

*
hn+1 (mun

2 )−1 (8.109)

Gz =∆phn+1 sin φ2 (Lmfγfd)
−1

(πD2N)
−n

In the above equations, h = (D1 − D2)/2 is the channel height, L is the axial length
of the screw, fγ is a curvature correction4 and fd is a correction for the wall effect
given in Chapter 6.

To complete the dimensionless form of the eqn. (8.108), the lengths and coordinates
are normalized with the channel depth, x̂ = x/h and the velocities with πND2,
ûy = uy/πND2 and ûz = uz/πND2. The boundary conditions for eqn. (8.108) are

ûy = ûz = 0 for x̂ = 0

ûy = sin φ and ûz = cosφ for x̂ = 1 (8.110)

for the velocities and

∂ûy

∂x̂
= 0 for x̂ = x̂3

∂ûz

∂x̂
= 0 for x̂ = x̂4 (8.111)

for the velocity gradients. The energy equation is

∂2Θ

∂x2

�
1 − ∂x

∂xc

�
− ∂Θ

∂x

∂xc

∂x

∂2x

∂x2
c

=

− BreΘ{�
G2

y(x − x3)
2 + G2

z(x − x4)
2
�(n+1)/2n

− ∂xc

∂x

�
G2

y(x − x3)
2 + G2

z(x − x4)
2
�(n+1)/2n}

(8.112)

where Griffith defined the Brinkman number as

Br =
mun+1

2 h1−n

kb−1
(8.113)

The dimensionless boundary conditions for the energy balance are given by

Θ = 0 for x = 1

∂Θ

∂x
= 0 for x = xc (8.114)

and the material balance becomes� x̂

0

ûydx̂ = −
� 1

x̂c

ûydx̂ (8.115)

4For shallow channels this correction factor is 1.
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Assuming that a streamline has a constant temperature and that all viscous dissipation
goes into local heating instead of being conducted to the screw and barrel, the energy
equation becomes

ûyPe
∂Θ

∂ŷ
= BreΘ

�
G2

y(x − x3)
2 + G2

z(x̂ − x̂4)
2
�(n+1)/2n

(8.116)

where the Peclet number Pe = hu2/α and α is the thermal diffusivity.
Using the above assumptions, the adiabatic temperature rise for the material is

given by

∆Θ

Br
=

#
W

Pe

* �
(6x − 2)2

|x(3x − 2)| +
(6xc − 2)2

|xc(3xc − 2)|
�

(8.117)

where W is the channel width normalized width of the extruder channel, W ≈ πD/h.
Griffith solved the equations for chosen values of Br, Gz , φ and n. The values

of Gy , x3, x4 and Θ were estimated and an initial approximate velocity field was
solved using Runge-Kutta integrations of the momentum balance. The temperatures
were then obtained by solving the energy equation using Runge-Kutta integration,
using the first solution of the velocity field. The new approximation of Θ was used
to compute new viscosities and a new velocity field was solved for by solving the
momentum balance equation once more. When integrating the energy equation, the
previous approximation of Θ was used in the exponential term. After the computa-
tions converged, the model gave fluid throughput as a function of pressure gradients,
temperature and velocity fields across the thickness, values of x3 and x4, as well as
velocity derivatives and temperature gradients at the barrel surface, x̂ = 1.

Figures 8.37 and 8.38 [9] present velocity and temperature fields across the thick-
ness, respectively, for various values of Br, and for n = 1 and n = 0.6. Griffith
calculated the screw characteristic curves for Newtonian and non-Newtonian shear
thinning fluids using various power law indices. Figure 8.39 presents these results and
compares them to experiments performed with a carboxyl vinyl polymer (n = 0.2)
and corn starch (n = 1).

8.6 THE RADIAL FLOW METHOD

To aid the polymer processing student and engineer in finding required injection pressures
and clamping forces, Stevenson [22] derived the non-isothermal non-Newtonian equations
for the flow in a disc and solved them using finite difference techniques. The outcome was
a set of dimensionless groups and graphs that can be applied to any geometry after a lay-flat
approximation. In his analysis, Stevenson represented the flow inside the cavity with a
radial flow between two parallel plates. In order to use this representation, we must first
lay flat the part to find the longest flow path as schematically depicted in Fig. 8.40.

Since the longest flow path may exceed the radius of the projected area that causes
mold separating pressures, we must also find the radius of equivalent projected area, Rp,
to compute a more accurate mold clamping force. However, to perform the calculations to
predict velocities and pressure fields, we assume a disc geometry of radius R and thickeness
h, schematically depicted in Fig. 8.41.

As a constitutive model for the momentum balance, Stevenson chose a temperature
dependent power law model represented by

η(γ̇, T ) = me−a(T−T1)γ̇n−1 (8.118)
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Figure 8.37: Temperature distributions across the thickness of the channel for various Brinckman
numbers [9].
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Figure 8.40: Schematic diagram of an injection molding item with its projected area and its lay-flat
representation.
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Figure 8.41: Schematic of the disc representation and nomenclature for an injection molded item.

The momentum balance for the disc geometry simplifies to

∂p

∂r
= −∂τrz

∂z
(8.119)

where the deviatoric stress tensor is defined by

τrz = −η
∂u

∂z
(8.120)

The energy balance for the geometry represented in Fig. 8.41 results in transient and con-
vective terms, conduction through the thickness and viscous dissipation caused by the
through-the-thickness shear components

ρCp

#
∂T

∂t
+ u

∂T

∂r

*
= k

∂2T

∂z2
+ η

#
∂u

∂z

*2

(8.121)

Assuming a characteristic viscosity of η̄ = me−aT1 ¯̇γn−1, where the characteristic rate of
deformation is taken as ¯̇γ = ū/b, where tf is the fill time and ū = R2/tf the characteristic
velocity, we can write the viscosity in dimensionless form as

η̂(ˆ̇γ, Θ) =
η

η̄
= eβ(1−Θ)ˆ̇γn−1 (8.122)

where

β = a(T1 − Tw) (8.123)

The dimensionless number β determines the intensity of the coupling between the energy
equation and the momentum balance. With the dimensionless viscosity, and assuming a
characteristic pressure of p̄ = η̄ūR2/b2 (R2 was chosen as the characteristic r-dimension
and b as the characteristic z-dimension), the momentum balance can also be written in
dimensionless form as

∂p̂

∂r̂
=

∂

∂ẑ

�
(eβ(1−Θ))

#
∂û

∂ẑ

*n�
(8.124)

which can be used in the region 0 > ẑ > −1 where the velocity gradient is positive.
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Similarly, the energy balance can also be written in dimensionless form as

∂Θ

∂τ
+ û

∂Θ

∂r̂
= τ

�
∂2Θ

∂ẑ2
+ Breβ(1−Θ)

#
∂û

∂ẑ

*n+1
�

(8.125)

where the dimensionless time is defined by

τ =
tfα

b2
(8.126)

the dimensionless temperature is

Θ =
T − Tw

T1 − Tw
(8.127)

and the Brinkman number is

Br =
me−aT1b2

k(T1 − Tω)

#
r2

tfb

*n+1

(8.128)

The boundary conditions for the dimensionless governing equations are given by

−1 < ẑ < 1 r̂ = 0 ûr̂ = (ûr̂)I Θ = 1

−1 < ẑ < 1 r̂ = r̂int p̂ = 0
∂Θ

∂r̂
= 0

0 < r̂ < r̂int ẑ = 0
∂û

∂ẑ
= 0

∂Θ

∂ẑ
= 0

0 < r̂ < r̂int ẑ = ±1 û = 0 Θ = 0

(8.129)

where rint is the interfacial radius or free flow front location during filling. The pressure and
the clamping forces can be non-dimensionalized with the isothermal prediction of injection
pressure and force as

∆p

∆pI
= f(τ, β, Br, n) (8.130)

and

F (R2)

FI(R2)
= g(τ, β, Br, n) (8.131)

respectively. The analytical equations for the injection pressure and clamping force for the
isothermal case are given by

∆pI =
me−aT1

1 − n

�
1 + 2n

2n

R2

tfb

�n
R2

b
(8.132)

and

FI(R2) = πR2
2

#
1 − n

3 − n

*
∆pI (8.133)
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Table 8.8: Material Properties of ABS Used in the Experiments

Parameter Value
ρ 1020 kg/m3

k 0.184 W/m/K
Cp 2,343 J/kg/K
α 7.7×10−7m2

/s
m 29 MPasn

n 0.29
a 0.01369/K

respectively. The functions f(τ, β, Br, n) and g(τ, β, Br, n) are the solutions of the dimen-
sionless momentum and energy balance equations. Stevenson solved these equations using
the finite difference formulation with a uniform grid in the r- and z-directions [28]. The
time steps were chosen such that rint concides with the r-direction grid points rk. Hence,
for a constant flow rate Q

∆tk−1 = 2πb

�
r1+(k−1)∆r

�2 − [r1 + (k − 2)∆r]
2

Q
(8.134)

When solving for the energy equation an implicit FDM was used with a backward (up-
winded) difference representation of the convective term. The viscous dissipation term was
evaluated with velocity components from the previous time step. The equation of motion
was integrated using a trapezoidal quadrature. Stevenson tested his model by comparing it
to actual mold filling experiments of a disc with an ABS polymer. Table 8.8 presents data
used for the calculations.

Figure 8.42 presents a comparison of predicted and experimental pressures as a function
of volumetric flow rate, Q, for two injection temperatures and two mold thicknesses. The
figure shows that the model over-predicts the injection pressure requirements by 20-30%.
Stevenson stated that one possible source of error is that his model used the plasticating
unit heater temperatures as the inlet temperature into the cavity, neglecting the effects of
viscous heating in the sprue and runner system. Nevertheless, these predictions are good
enough for most estimates of pressure and clamping force requirements. Stevenson also
performed various analyses to see what effect viscous dissipation, convection and non-
isothermal assumptions had on the solution of the problem. Figure 8.43 presents results
from these analyses. It is clear that all the effects included in the model are important and
should be incorporated when modeling injection molding.

The clamping force is solved for by integrating the pressure distribution as,

F (r) = 2π

� r

0

p(r
)dr
 (8.135)

and in dimensionless form using

F̂ (r̂) = 2

� r̂

0

p̂(r̂
)dr̂
 (8.136)

Figures 8.44, 8.45, 8.46 and 8.47 present the dimensionless injection pressures and
clamping forces. Values from these graphs can be used to estimate injection pressure and
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Figure 8.42: Comparison between theoretical predictions with experimental measurements of mold
filling pressure requirements as a function of injection speed [28].
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Figure 8.44: Dimensionless injection pressure as a function of β, Br and τ for n = 0.3.

clamping force using,

∆p =

�
∆p

∆pI

�
∆pI (8.137)

and

F (Rp) =

�
F (R2)

FI(R2)

� �
F (Rp)

F (R2)

�
FI(R2) (8.138)

where the ratio F (Rp)/F (R2) is found in Fig. 8.48.

EXAMPLE 8.10.

Sample application of the radial flow method. In this sample application, we are
to determine the maximum clamping force and injection pressure required to mold
an ABS suitcase shell with a filling time, tf =2.5 s. For the calculation we will
use the dimensions and geometry schematically depicted in Fig. 8.49, an injection
temperature of 227oC (500 K), a mold temperature of 27oC (300 K) and the material
properties given in Table 8.8.

We start this problem by first laying the suitcase flat and determining the required
geometric factors (Fig. 8.50). From the suitcase geometry, the longest flow path, R2,
is 0.6 m and the radius of the projected area, Rp, is 0.32 m. Using the dimensions
of the part and the conditions and properties given above, we can compute the four
dimensionless groups that govern this problem

• β = 0.01369/ K(500 K − 300 K) = 2.74

• τ =
2.5 s(0.184 W/m/K)

(0.001 m)2(1020 kg/m3)(2, 343 J/kg/K)
=0.192
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Figure 8.45: Dimensionless injection pressure as a function of β, Br and τ for n = 0.5.
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Figure 8.46: Dimensionless clamping force as a function of β, Br and τ for n = 0.3.
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Figure 8.47: Dimensionless clamping force as a function of β, Br and τ for n = 0.5.
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Figure 8.48: Clamping force correction for the projected area.
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Figure 8.49: Suitcase geometry.

Figure 8.50: Layed-flat suitcase geometry.

• Br =
29 × 106 Pa-sne−0.01369/ K(500 K)(0.001 m2)

0.184 W/m/K(500 K − 300 K)

�
0.6 m

2.5s(0.001 m)

�0.29+1

=0.987

The isothermal injection pressure and clamping force are computed next,

• ∆pI =
29 × 106e−0.01369/K(500 K)

1 − 0.29

�
(1 + 2 × 0.29)0.6 m

2(0.29)(2.5 s(0.001 m))

� �
0.6 m

0.001 m

�
=171 MPa

• π(0.6 m2)
1 − 0.29

3 − 0.29
(171 × 106 Pa)=50.7 × 106 N

We now look up ∆p/∆pI and F/FI in Figs. 8.44, 8.45, 8.46 and 8.47 Since
the change between n=0.3 and n=0.5 is very small, we choose n=0.3. However,
for other values of n we can interpolate or extrapolate. For β=2.74, we interpolate
between β=1 and β=3. For β=1 we get ∆p/∆pI=1.36 and F/FI=1.65, and for β=3
we get ∆p/∆pI=1.55 and F/FI=2.1. Hence, for β=2.74 we get ∆p/∆pI=1.53 and
F/FI=2.04. Taking the product with the isothermal predictions, we get ∆p=262 MPa
and F=10.3×107 N or 10,300 metric tons.

Since the part exceeds the projected area, Fig. 8.48 can be used to correct the
computed clamping force. The clamping force can be corrected for Rp= 0.32 m



FLOW ANALYSIS NETWORK 439

Gate

Mold cavityPolymer melt

Melt front

x

z y

h(x,y)

Figure 8.51: Schematic of a filling mold cavity with variable thickness.

using Rp/R2=0.53 in the figure. Hence we get Fp=(0.52)10,300 metric tons = 5,356
metric tons.

For our suitcase cover, where the total volume is 1,360 cm3 and total part area
is 0.68 m2, the above numbers are too high. A useful rule-of-thumb is a maximum
allowable clamping force of 2 tons/in2. Here, we have greatly exceeded that number.
Normally, around 3,000 metric tons/m2 are allowed in commercial injection molding
machines. For example, a typical injection molding machine with a shot size of 2,000
cm3 has a maximun clamping force of 630 metric tons with a maximun injection
pressure of 1,400 bar. A machine with much larger clamping forces and injection
pressures is suitable for much larger parts. For example, a machine with a shot
size of 19,000 cm3 allows a maximum clamping force of 6,000 metric tons with a
maximum injection pressure of 1,700 bar. For this example, we must reduce the
pressure and clamping force requirements. This can be acomplished by increasing
the injection and mold temperatures or by reducing the filling time. Recommended
injection temperatures for ABS are between 210 and 240oC and recommended mold
temperatures are between 40 and 90oC. As can be seen, there is room for improvement
in the processing conditions, so one must repeat the above procedure using new
conditions.

8.7 FLOW ANALYSIS NETWORK

The Flow Analysis Network (FAN) developed by Broyer, Gutfinger and Tadmor in the
1970’s [4, 24] is the finite difference precursor of today’s mold filling simulations. The
technique works well to predict mold filling patterns, injection pressures and clamping
forces of two-dimensional or non-planar layed-flat part geometries. The method takes a
geometry as the one depicted in Fig. 8.51 and represents it with a finite difference grid as
shown in Fig. 8.52. Each finite difference grid point or node has its own control volume
and each one of these control volumes, i, is assigned a fill factor, fi. The fill factor is the
fraction of the control volume that is filled with polymer.

As referenced in Fig. 8.52, at any given point during the mold filling process there are
five different types of nodes. These are,

• Gate nodes (a). These nodes are full at the beginning of the mold filling simulation
at which point they are assigned a fill factor of 1 (fa = 1). They are either assigned a
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Figure 8.52: FAN discretization of a filling mold cavity with variable thickness.

pressure(controlled pressure) boundary condition or a flow rate (controlled injection
speed).

• Full nodes (b). These nodes are the ones that have already filled during the mold
filling process (fb = 1). When solving the governing equations at any given time
step, the pressure is unknown inside these control volumes.

• Mold edge nodes (c). These nodes have less than 4 neighbors. A neighbor that is
missing on one side implies no flow across that edge, taking care of the ∂p/∂n = 0

boundary condition (natural or Neumann boundary condition).

• Melt front node (d). These are the nodes that are temporarily on the free flow front
during mold filling, and are therefore partially filled (0 < fd < 1). During that
specific time step this node is assigned a zero pressure boundary condition, pd = 0
(essential or Dirichlet boundary condition).

• Empty nodes (e). All nodes, except for the gate nodes,begin as empty nodes (fe = 0).
As the mold fills, these nodes change to type (d) and eventually to type (b). Empty
nodes are assigned a zero pressure boundary condition, pe = 0.

The Hele-Shaw model was used to describe the flow in the FAN formulation. For a
Newtonian case, the flow is described by

ūx =
h(x, y)2

12µ

∂p

∂x
(8.139)

ūy =
h(x, y)2

12µ

∂p

∂y
(8.140)
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Figure 8.53: Local system used for mass balance.

The continuity equation is satisfied by performing a mass (volume) balance around each
control volume, i. Using the notation found in Fig. 8.53 the mass balance is written as

qij + qil + qik + qim = 0 (8.141)

where the volumetric flow rate, qij is given by

qij = ūij(∆x)hij =
h3

ij∆x

12µ

pi − pj

∆x
=

h3
ij

12µ
(pi − pj) (8.142)

Equation (8.141) now becomes

1

12µ
(h3

ij + h3
il + h3

ik + h3
im)pi+

(− h3
ij

12µ
)pj + (− h3

ik

12µ
)pk + (− h3

il

12µ
)pl + (−h3

im

12µ
)pm = 0

(8.143)

If we perform a mass balance on all the control volumes in the system, we can write

[a]{p} = 0 (8.144)

where

aii =
1

12µ
(h3

ij + h3
il + h3

ik + h3
im) (8.145)

and

aij = − h3
ij

12µ
(8.146)

Note that all other entries in martrix [a] are zero, ain = 0. This matrix is symmetric and
banded. The size of the band, if the cells are properly numbered, is very small compared to
the size of a problem. We will discuss matrix storage, manipulation and solution in more
detail in Chapter 9 of this book. Once the matrix system has been assembled, we can store
and re-use it every time step. Every time step we apply the boundary conditions by setting
all the pressures of the empty and partially filled nodes to zero. If the pressure on node i
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is set to zero, pi = 0, we eliminate the row and the column values that pertain to node i,
(aij = aji = 0) and set the diagonal that pertains to that control volume to one (aii = 1).
The natural boundary conditions along the mold edges are automatically taken into account.

The unknown pressures are acquired by solving the system of algebraic equations,
eqn. (8.144), after the boundary conditions are applied. With a known pressure field we
can solve for the flow rates between the nodes and a the fill factor in the partially filled
nodes can be updated using the smallest time step required to fill the next node. How to
determine the appropriate time step is shown in Algorithm 3. The flow fronts are advanced
in Algorithm 4. At that point, new boundary conditions are applied to the set of algebraic
equations to solve for the new pressure and flow fields. This is repeated until all control
volumes are full.

Algorithm 3 FAN-∆t calculation

subroutine timestep

Dt = 1E10 initialize time step size to a large number

do while (f(i)<1))

Qtotal(i)=q(i,j)+q(i,k)+q(i,l)+q(i,m)

Dti=(V(i)-f(i)*V(i))/Qtotal(i)

if(Dti.lt.Dt)Dt=Dti return the smallest time step

required to fill a control volume

enddo

end subroutine timestep

Algorithm 4 FAN- Flow front advancement

subroutine newflowfront

do i=1,N

f(i)=(f(i)*V(i)+Qtotal(i)*Dt)/V(i)

enddo

end subroutine newflowfront

Tadmor [25] compared the flow analysis network to injection molding experimental
results obtained by Krueger and Tadmor [15]. Tadmor and Krueger’s experiments were
performed injecting polystyrene into thin flat molds with inserts and variable thickness as
shown in Fig. 8.54 The mold size was 3.8×15.2 cm with thicknesses of 3.35 mm in the
thick sections to 1.68 mm in the thin sections. As can be seen, the experiments and the
simulation agree quite well, within experimental error and control volume size. Although
the above procedure was presented for the injection molding process, it can also be used to
model compression molding by modifying eqn. (8.141) to

qij + qil + qik + qim = −ḣi(∆x)2 (8.147)

The whole equation system can also be modified to model the flow of non-Newtonian
shear thinning fluids. This results in a set of non-linear algebraic equations that must be
solved by using iterative techniques. Non-planar parts can also be modeled using this
procedure, by simply orienting the grid in space according to mid-plane surface of the
injection molded part. However, note that we have used mold sides that align with the
x- and y-coordinates. Although curved and slanted sides are also possible to simulate
using FAN, the coefficients aij need to be adjusted accordingly, making the technique
cumbersome and more difficult to implement than the more versatile finite element control
volume approach discussed in the next chapter.
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Experimental melt front

Predicted (FAN) melt front

Mold insert Weld line

Figure 8.54: Experimental and simulated (FAN) melt front advancement in a shallow rectangular
mold.

8.8 PREDICTING FIBER ORIENTATION − THE FOLGAR-TUCKER MODEL

The state of particle orientation at a point can be fully described by an orientation distribution
function, ψ(φ, x, y). The distribution is defined such that the probability of a particle,
located at x and y at time t, being oriented between angles φ1 and φ2, is given by

P (φ1 < φ < φ2) =

� φ2

φ1

ψ(φ, x, y)dφ (8.148)

This is graphically depicted in Fig. 8.55. For simplicity, the x, y, and t from the orientation
distribution function can be dropped.

Since one end of a particle is indistinguishable from the other, the orientation distribution
function must be periodic:

ψ(φ) = ψ(φ + π) (8.149)

Since all particles are located between −π/2 and π/2, the orientation distribution function
must be normalized such that� π/2

−π/2

ψ(φ)dφ = 1 (8.150)

The orientation distribution function changes constantly as the particles travel within a
deforming fluid element. Assuming the fiber density is homogeneous throughout the fluid
and remains that way during processing, a balance around a differential element in the
distribution function can be performed. This is graphically represented in Fig. 8.56. Here,
the rate of change of the fiber density of the differential element, shown in the figure,
should be the difference between the number of particles that move into and out of the
control volume in a short time period ∆t. This can be written as

ψ(φ)∆φ

∆t
= ψ(φ)φ̇(φ) − ψ(φ + ∆φ)φ̇(φ + ∆φ) (8.151)
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Figure 8.55: Orientation distribution functions.

Figure 8.56: Differential element in an orientation distribution function.

Letting ∆t and ∆φ → 0 reduces eqn. (8.151) to

∂ψ

∂t
=

∂

∂φ
(ψφ̇) (8.152)

This expression is known as the fiber density continuity equation. It states that a fiber,
which moves out of one angular position must move into a neighboring one, conserving the
total number of fibers. If the initial distribution function, ψ0, is known, an expression for
the angular velocity of the particle, φ̇, must be found to solve for eqn. (8.152) and determine
how the distribution function varies in time. The motion of the fibers can often be described
by the motion of a rigid single rod in a planar flow.
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A classic model that describes the motion of a rigid rod of finite aspect ratio and dilute
suspensions is Jeffey’s model [12]. In polymer processing, the dilute assumption is usually
not a valid assumption. In compression molding, for example, in a charge with 20-50%
fiber content by volume, the fibers are so closely packed that one cannot see through a
resinless bed of fibers, even for very thin parts. This means that as a fiber rotates during
flow, it bumps into its neighbors making the fiber-fiber interaction a major inhibitor of
fiber rotation. Folgar and Tucker [7] derived a model for the orientation behavior of fibers
in concentrated suspensions. For the case of planar flow Folgar and Tucker’s model that
describes the fiber rotation is written as

φ̇ =
CI γ̇

ψ

∂ψ

∂φ
−cosφ sin φ

∂ux

∂x
−sin2 φ

∂ux

∂y
+cos2 φ

∂uy

∂x
+sinφ cos φ

∂uy

∂y
(8.153)

Here, γ̇ is the magnitude of the strain rate tensor and CI is a phenomenological coefficient
which models the interactions between the fibers, usually referred to as the Folgar-Tucker
interaction coefficient. The coefficient varies between 0, for a fiber without interaction with
its neighbors, and 1, for a closely packed bed of fibers. For a fiber reinforced polyester
resin mat with 20-50% volume fiber content, CI is usually between 0.03 and 0.06. When
eqn. (8.153) is substituted into eqn. (8.152), the transient governing equation for fiber
orientation distribution with fiber interaction built-in, becomes

∂ψ

∂t
= − CI γ̇

∂2ψ

∂φ2
− ∂ψ

∂φ

#
−sc

∂ux

∂x
− s2

∂ux

∂y
+ c2 ∂uy

∂x
+ sc

∂uy

∂y

*
− ψ

∂

∂φ

#
−sc

∂ux

∂x
− s2

∂ux

∂y
+ c2 ∂uy

∂x
+ sc

∂uy

∂y

* (8.154)

where s and c represent sinφ and cosφ, respectively.
The Folgar-Tucker model can easily be solved using finite difference methods. The

above equation was solved using a Crank-Nicholson method for a uni-axial flow during
compression molding process of sheet molding compound (SMC), where the only non-zero
velocity gradient term is ∂ux/∂x. Assuming random initial fiber orientation distribution,
ψ0 = 1/π, the fiber orientation distribution functions were computed for different ini-
tial mold coverage and compared to experimental results. The model worked well when
compared to the experiments. Figures 8.57, 8.58 and 8.59 compare the measured fiber
orientation distributions to the calculated distributions using the Folgar-Tucker model for
cases with 67%, 50%, and 33% initial charge mold coverage.

To illustrate the effect of fiber orientation on material properties of the final part, Fig. 8.60
[5] shows how the fiber orientation distributions that correspond to 67 50 and 33% initial
mold coverage affect the stiffness of the finished plates. The Folgar-Tucker model has been
implemented into various, commercially available compression mold filling simulation
programs and successfully tested with several realistic compression molding applications.

8.9 CONCLUDING REMARKS

Although the finite difference method is a straight forward, easy method to numerically
solve partial differential equations in transport phenomena, there are many problems when
applying FDM to irregular geometries, moving boundaries, and complex three-dimensional
systems. FDM is ideal when analyzing problems with simple geometries and it is often
used in conjunction with other techniques such as finite elements. For example, mold filling



446 FINITE DIFFERENCE METHOD

Figure 8.57: Predicted and experimental fiber orientation distribution function for a plate molded
with an initial mold coverage of 67%.

Figure 8.58: Predicted and experimental fiber orientation distribution function for a plate molded
with an initial mold coverage of 50%.
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Figure 8.59: Predicted and experimental fiber orientation distribution function for a plate molded
with an initial mold coverage of 33%.

Figure 8.60: Stress-strain curves of 65% glass by volume SMC for various degrees of compression
mold coverage[5].
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simulations use the finite difference method to solve for the temperature profile needed in
the Hele-Shaw approximation essentially solving a one-dimensional problem. On the other
hand, the more complex 2D non-planar mold filling problem is solved for using the finite
element method.

Problems

8.1 Use the Taylor tables to generate finite difference expressions for
du

dx
and

d2u

dx2
.

a) Generate a third order approximation.
b) Generate a fourth order approximation.

8.2 Using the central difference approximation given by
du

dx
≈ ui+1/2 − ui−1/2

∆x
do the

following:
a) Use a second order polynomial interpolation to find ui±1/2.
b) Use the Taylor table and determine the order of the approximation.

8.3 Using a power law model, determine the velocity profile in a pressure driven slit flow.
Use ∆p =1000 Pa, m =1000 Pa-sn, h = 1 mm and a distance from entrance to exit
of 1000 mm. Solve the problem using a 1D steady state finite difference solution for
n = 1, 0.8, 0.6, 0.4, and 0.2.

8.4 Solve a coupled heat transfer and flow system of a temperature dependent viscosity
melt that is driven by a pressure between two parallel plates. The viscosity is given
by η = η0e

−a(T−T0). Use the dimensions given in the previous problem, where
η0 = 1000 Pa-s, a = 0.04 K−1, the bottom plate temperature, T0, of 140oC and the
upper plate temperature of 160oC.

a) Find the temperature and velocity distributions between the plates.
b) Is viscous dissipation important in this problem?

8.5 Write a finite difference program that will compute the pressure and velocity fields for
the 1 cm thick L-shaped charge depicted in Fig. 10.42. Assume a Newtonian viscosity
of 500 Pa-s.

a) Plot the pressure distribution. You may use a software package or you may sketch
it by hand.

b) Draw the nodal velocity vectors.
c) Will a knitline form in the re-entrant corner?

8.6 Write a small finite difference program to solve the one dimensional convection-
diffusion example (8.59).

a) Use 10 (as in example), 20, 50 and 100 grid points and compare the error in the
various solutions.

b) For the convection term, use grid points i, i − 1 and i − 2. How does the error
compare to the simple backward difference solution?

8.7 Write an explicit finite difference program to compute the cooling of a 2 mm thick
polystyrene ruler. Assume a thermal conductivity, k, of 0.15 W/m/K, a density, ρ,
of 1050 kg/m3 and a specific heat, Cp, before Tg of 800 J/kg/K and above Tg of
1,200 J/kg/K. Assume Tg =100oC, and initial temperature, T0, of 150oC and a mold
temperature, Tc, of 40oC.

a) Solve the problem with an average Cp=1000 J/kg/K.
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Figure 8.61: Schematic diagram of the compression molding of an L-shaped charge.

b) Solve the problem with a variable specific heat. How important is it to include
the change in specific heat as the material goes through the glass transition tem-
perature?

8.8 Write an explicit finite difference program to compute the cooling of a 2 mm thick
polypropylene part. Assume a thermal conductivity, k, of 0.24 W/m/K, a density, ρ,
of 905 kg/m3 and a specific heat, Cp, of 1,930 J/kg/K. The melting temperature, Tm,
is 160oC and the heat of fusion, λ, is 200 kJ/kg. Use the model that includes the heat
of fusion, presented in Fig. 8.62, to compute the specific heat during the computation.
Assume an initial temperature, T0, of 180oC and a mold temperature, Tc, of 40oC.

a) Solve the problem with the model presented in the figure.
b) Solve the problem with a model for specific where the jump starts at 155oC and

ends at 165oC. Compare the results.

8.9 Write a short explicit finite difference program to compute the fiber orientation function
in a compression molding process with stretching only in the x−direction. Test the
program with an example, where a 3 mm thick 50×50 cm plate is compression molded
with an initial mold coverage of 50%. Assume an interaction coefficient CI = 0.05.
Assume initial fiber orientation distribution that is random.

a) Determine the time step that will render an accurate solution.
b) Solve the problem with interaction coefficients of 0.01 and 0.1. How important

is this factor?
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T

Cp

160oC150oC 170oC

1,930 J/kg/K

11,930 J/kg/K

Figure 8.62: Model for the specific heat that includes the heat of fusion. Note that the gray area is
equivalent to λ.

c) Solve for the interaction coefficient with initial mold coverages of 33%, 10% and a
very thick charge with an initial mold coverage of 5%. Comment on your results.

8.10 Rework Example 8.10 to find clamping forces that are more realistic. Use an injection
temperature of 240oC and a mold temprature of 90oC. Are your results reasonable?
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CHAPTER 9

FINITE ELEMENT METHOD

A round man cannot be expected to fit in
a square hole right away. He must have
time to modify his shape.

—Mark Twain

The finite element method (FEM) was first developed in 1956 to numerically analyze
stress problems [16] for the design of aircraft structures. Since then it has been modified
to solve more general problems in solid mechanics, fluid flow, heat transfer, among others.
In fact, due to its versatility, the method is being used to study coupled problems for
applications with complex geometries where the solutions are highly non-linear.

9.1 ONE-DIMENSIONAL PROBLEMS

Instead of starting with a rigorous and mathematical development of the finite element
technique, we proceed to present the finite element method through a solution of one-
dimensional applications. To illustrate the technique, we will first find a numerical solution
to a heat conduction problem with a volumetric heat source

k
∂2T

∂x2
= Q̇ (9.1)
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Figure 9.1: One dimensional finite element discretization.
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Figure 9.2: Schematic of a two-noded 1D linear element.

with a Dirichlet boundary condition, T (0) = T0, and a Neumann boundary condition
q(L) = ∂T/∂x = 0. The internal heat source can be viscous dissipation during shear flow
in a single screw extruder, as will be illustrated with an example at the end of this section.

9.1.1 One-Dimensional Finite Element Formulation

Our first step in the development of the technique is to discretize the domain by creating a
mesh. Here, we will divide the domain into elements as illustrated in Fig. 9.1. The figure
presents nodes and elements (element numbers are shown inside circles).

Since we chose a discretization with two-noded elements, we are assuming that within
each element the unknown temperature function T (x) is a simple linear polynomial that
can be written as

T e = a + bx (9.2)
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If we assume that each individual element has its own local numbering, as depicted in
Fig. 9.2, we can evaluate eqn. (9.2) for each node using their respective nodal coordinates
x1 and x2, with their corresponding temperatures T1 and T2

T1 = a + bx1

T2 = a + bx2 (9.3)

Equation (9.3) can be written in matrix form as#
T1

T2

*
=

�
1 x1

1 x2

� #
a
b

*
(9.4)

which can be inverted to become#
a
b

*
=

�
1 x1

1 x2

�−1 #
T1

T2

*
=

1

x2 − x1

�
x2 −x1

−1 1

� #
T1

T2

*
(9.5)

If we write eqn. (9.2) in matrix form

T e =
�
1 x

� #
a
b

*
(9.6)

we can substitute eqn. (9.5) into (9.6), and letting 3 = x2 − x1, we get

T e =
�
1 x

� ⎡⎣ x2

3
−x1

3

−1

3

1

3

⎤⎦#
T1

T2

*
(9.7)

The above equation can be written in terms of Lagrange interpolation formula (Chapter 7)

T e = N1T1 + N2T2 (9.8)

where the interpolation functions N1 and N2 are defined by

N1 =
x2 − x

3

N2 =
x − x1

3
(9.9)

These functions, which are commonly referred to as shape functions, have the unique
properties that they equal 1 when evaluating them at their corresponding node, and zero
when evaluating them at the opposite node, as shown in Fig. 9.3.

Now, that we have an expression of the approximated element temperature in terms
of geometric parameters and the nodal values for temperature, we proceed to insert this
approximation into the original governing equation, i.e.,

k
∂2T e

∂x2
≈ ˙Q(x) (9.10)

or

k
∂2

∂x2

#�
N1 N2

�#
T1

T2

**
≈ ˙Q(x) (9.11)
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Figure 9.3: Shape functions in a two-noded 1D linear element.

Theorem 9.1.1. Galerkin’s Theorem: Galerkin’s theorem of
weighted residuals. To generate n equations for the n unknowns
in the function F(φ1, φ2, φ3...φn) we must,�

V

F(φ1, φ2, φ3...φn)WidV

where W1, W2, W3, ...Wi are independent weighting functions.

When we inspect this equation we realize that there are two functional problems. First,
there is one equation per element with two unknowns. Second, we are using a linear
approximation for the temperature; however, we have second spatial derivatives of tem-
perature. The first problem is solved by using Garlekin’s method of weighted residuals
(Theorem (9.1.1)).

Hence, we integrate eqn. (9.11) over the domain, V , and use two weighting functions
W1 and W2, which results in

k

�
∂2

∂x2

#�
N1 N2

� #
T1

T2

**
Widx ≈

�
˙Q(x)Widx (9.12)

where i = 1, 2. A set of ideal weighting functions that satisfy Garlerkin’s theorem of
weighted residuals are the shape functions, Ni, described above. The above equation can
now be written as

k

�
∂2T e

∂x2
Nidx ≈

�
˙Q(x)Nidx (9.13)

which for each element represents two equations with two unknowns. The second problem
is solved by applying the Green-Gauss transformation (Theorem (9.1.2)).

Using the Green-Gauss transformation, eqn (9.13) can be transformed to

k

�
∂2T e

∂x2
Nidx = −k

�
∂T e

∂x

∂Ni

∂x
dx +

�
S

Ni
∂T

∂x
nxdS (9.14)

Examining the last integral of this equation we deduce that it is equal to zero since at x = 0
temperature is known and no FEM equation is required, and at x = L, ∂T/∂x = 0. The
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Theorem 9.1.2. Green’s Theorem: Integration by parts�
V

φ
∂ψ

∂x
dV = −

�
V

∂φ

∂x
ψdV +

�
S

φψnxdS�
V

φ
∂ψ

∂y
dV = −

�
V

∂φ

∂y
ψdV +

�
S

φψnydS�
V

φ
∂ψ

∂z
dV = −

�
V

∂φ

∂z
ψdV +

�
S

φψnzdS

The above can be written in generalized form as,�
V

φ
∂ψ

∂n
dV = −

�
V

∂φ

∂n
ψdV +

�
S

φψ · ndS

finite element equation for this problem becomes

k

�
∂T e

∂x

∂Ni

∂x
dx = −

�
Q̇Nidx (9.15)

Since we dropped the last term in the equation, we are satisfying the adiabatic boundary
condition (Neumann), q(L) = 0. On the other hand, we still must consider the Dirichlet
boundary condition, T (0) = T0. Since the Neumann boundary conditions is automatically
satisfied, while the Dirichlet must be enforced, in the finite element language they are
usually referred to as natural and essential boundary conditions.

Equation (9.15) is the final finite element expression of the one-dimensional heat equation
problem. The temperature gradient in that equation can be expressed as

∂T e

∂x
=

�
∂N1

∂x

∂N2

∂x

� #
T1

T2

*
(9.16)

which can be written as,

∂T e

∂x
= B

#
T1

T2

*
(9.17)

where B is simply referred to as the B-matrix, and by differentiating the shape functions
with respect to x, for the linear 1D element used here, is defined by

B =

�
−1

3

1

3

�
(9.18)

Equation (9.15) can now be written as

k

��
BT Bdx

� #
T1

T2

*
= −

�
Q̇

#
N1

N2

*
dx (9.19)

At this point, we have finished formulating the finite element to solve the problem of interest.
Table 9.1 summarizes the steps that were followed to develop this finite element model.
The scheme applies for all finite element derivation.
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Table 9.1: Procedure to develop a finite element model

Governing equations: Lφ = b(x, t)

Initial and boundary conditions: φ(x, 0) = φ0

φ(x, t) = φ̄ for x ∈ S1 (Essential)
∂φ(x, t)/∂n = q̄ for x ∈ S2 (Natural)

1. Choose an element to divide the domain into Shape functions Ni

2. Approximate the element variables: φe =
6

φiNi

3. Galerkin-weighted residual expression:
�

V (Lφe − b)NidV = 0
Theorem (9.1.1)

4. Green-Gauss transformation Theorem (9.1.2)

9.1.2 Numerical Implementation of a One-Dimenional Finite Element
Formulation

Once a finite element formulation has been implemented in conjunction with a specific
element type − either 1D, 2D or 3D − the task left is to numerically implement the technique
and develop the computer program to solve for the unknown primary variables − in this case
temperature. Equation (9.19) is a form that becomes very familiar to the person developing
finite element models. In fact, for most problems that are governed by Poisson’s equation,
problems solving displacement fields in stress-strain problems and flow problems such as
those encountered in polymer processing, the finite element equation system takes the form
presented in eqn. (9.19). This equation is always re-written in the form

[Ke] · (Te) = (fe) (9.20)

where Ke is called the element stiffness matrix, Te the displacement vector and fe the force
vector, according to the original applications of FEM in the field of elasticity. In relation
to eqn. (9.19), the terms are defined as

[Ke] =k

�
[B]T [B]dx

(fe) =

�
Q̇Ndx (9.21)

Fron the definition of B in eqn. (9.18) we can see that for our linear element all the terms
in the stiffness matrix are constants, and can be easily integrated

[Ke] = k

� xnode-2

xnode-1

�
1/l2e −1/l2e

−1/l2e 1/l2e

�
dx = k

�
1/le −1/le

−1/le 1/le

�
(9.22)

The next step in the numerical implementation is to find a relation between each individ-
ual element stiffness matrix, element displacement vector and element force vector and
the global system. Hence, we must generate a global stiffness matrix, global displace-
ment vector and global force vector. This step in the implementation is actually only data
management or book keeping.

To illustrate this concept, we make use of the small system with 4 elements and 5 nodal
points, schematically presented in Fig. 9.4. To better demonstrate the data management
techniques when assembling the global system of equations we have not enumerated the
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Figure 9.4: Schematic of a 1D domain finite element discretization with 4 linear elements and 5
nodal points.

nodes sequentially, as needed to reduce storage requirements and consequently computation
time.

The next step is to generate the element stiffness matrices and force vectors. Symboli-
cally, the 4 element stiffness matrices are written as

[K1] = k

�
1/31 −1/31

−1/31 1/31

�
, [K2] = k

�
1/32 −1/32

−1/32 1/32

�
[K3] = k

�
1/33 −1/33

−1/33 1/33

�
, [K4] = k

�
1/34 −1/34

−1/34 1/34

�

and the element force vectors as

(F1) =

⎛⎜⎝ c31

2
c31

2

⎞⎟⎠ (F2) =

⎛⎜⎝ c32

2
c32

2

⎞⎟⎠
(F3) =

⎛⎜⎝ c33

2
c33

2

⎞⎟⎠ (F4) =

⎛⎜⎝ c34

2
c34

2

⎞⎟⎠
To use computer storage more efficiently, the vector of unknown temperatures will

eventually be stored in the global force vector, f . The next steps in the finite element
procedure (Table 9.1) will be to form the global stiffness matrix and force vector, and to
solve the resulting linear system of algebraic equations, as presented in Algorithm 5.

The characteristics of our 1D problem serve to generalize the finite element methodol-
ogy, because, as we can imagine, for a complex two- or three-dimensional geometry it is
impossible to generate isotropic meshes with nodes in sequential order. The heart of the
data management schemes used by finite element programs is the so-called connectivity
matrix, nee(i,j). This matrix describes, which nodes form a specific element − essentially
giving the element connectivity. For the mesh presented in Fig. 9.4 the connectivity matrix
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Algorithm 5 FE program

program FEM

call input(xi,nee,bc) coordinates, connectivity and

boundary conditions

call assem-global(kglobal,fglobal) Assemble global stiffness matrix

and force vector

call boundary-conditions

call solve(kglobal,fglobal,solution)

call out-file

end program FEM

is written as

nee(i, j) =

⎡⎢⎢⎣
1 2
2 5
5 4
4 3

⎤⎥⎥⎦ (9.23)

where the row number denotes the element number and the two numbers on that row
represent node 1 and node 2 for that specific element. For example, element 3 is formed
by nodes 5 and 4. The number of columns will vary according to the number of nodes in
the element. A three-noded triangle will have 2 columns, a 20-noded brick, 20 columns,
and so forth. Thus, subindex i varies according to the element number, (i = 1, ..., 4), and j
according to the number of nodes per element, i.e., (j = 1, 2). Hence, this matrix is general
for any type of element and any dimensional order.

The global stiffness matrix and force vector, which represent our equation system are
formed by direct addition of the element stiffness matrices and force vectors. The corre-
sponding position of an element component in the global system is given by the connectivity
matrix. In two- or three-dimensional problems the positions are related to the connectivity
matrix as well as the direction under consideration. The global stiffness matrix and force
vector assembly technique is presented in Algorithm 6.

Although this algorithm is clear and simple, it presents the most ineffective way of storing
the global stiffness matrix since it results in a full sparse matrix. Later in this section we
will discuss how the storage space and computation time is minimized by using alternative
storing schemes such as banded matrices.

For the 4 element system presented in Fig. 9.4, the global stiffness is given by

[K] = k

⎡⎢⎢⎢⎢⎣
31/2 −31/2 0 0 0

−31/2 31/2 + 32/2 0 0 −32/2
0 0 34/2 −34/2 0
0 0 −34/2 33/2 + 34/2 −33/2
0 −32/2 0 −33/2 32/2 + 33/2

⎤⎥⎥⎥⎥⎦ (9.24)
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Algorithm 6 Global stiffness matrix and force vector assembly

subroutine assem-global(kglobal,fglobal)

kglobal = 0; fglobal = 0

do i = 1,ne Loop all elements

call elem-k-f(kelem,felem) element stiffness matrix and

force vector

The following do loop adds the element

stiffness matrices into the global stiffness

The addition algorithm presented results

in a full matrix

do j = 1, nelem nelem = nodes per element

irow = nee(i,j)

fglobal(irow) = fglobal(irow) + felem(j) force vector addition

do k = 1,nelem

icol = nee(i,k)

kglobal(irow,icol) = kglobal(irow,icol) + kelem(j,k) stiffness matrix

addition

enddo

enddo

enddo

end subroutine assem-global

and the global force vector is

(F) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c31

2
c31

2
+

c32

2
c33

2
c33

2
+

c34

2
c32

2
+

c33

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9.25)

At this point, it is important to point out that the equations are coupled only in those
locations where two nodes share the same element. Nodes that do not share the same
element are uncoupled and their corresponding positions in the global stiffness matrix is
zero. Systems discretized into a large number of elements result in a large number of
nodes that are uncoupled, which leads to very sparce matrices, i.e., matrices filled with
many non-diagonal zeros. This is a well known attribute of FE equation systems and
contributes to reduced computation times during the solution process. Consequently, the
number of non-zero non-diagonal terms can be reduced as much as possible by maintaining
the element nodal point numbers as close as possible, i.e., optimizing the connectivity
matrix, eqn. (9.23), in such a way that the difference between the numbers in a specific row
is minimized. This way the matrix will have most of the non-zero terms collapsed within
a band near the diagonal. This type of matrix is very common when dealing with finite
elements and is generally referred to a banded matrix. As will be discussed below, there are
very efficient banded matrix storage schemes and solvers, minimizing computation times.

Before we proceed to our discussion of global stiffness matrix storage schemes, we will
discuss the last aspect of the finite element implementation, namely, the application of the
boundary conditions. As discussed earlier, the natural boundary conditions are imbedded
in the finite element equation system − it is implied that every boundary node without an
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Figure 9.5: Schematic diagram of a Couette device.

essential boundary condition has a natural boundary condition. In our case, the essential
boundary condition is the prescribed temperature on node 1. However, in two- and three-
dimensional systems there may be many nodes (at least one), at which essential boundary
conditions must be applied. For such nodes, the equations must be modified by adding the
product of the known temperatures and their corresponding coefficients to the global force
vector. Finally, the rows and columns of the corresponding nodes are eliminated by setting
them to zero (since they already exist in the force vector), the diagonal is set to one and the
component of the force vector is set equal to the applied boundary condition. The scheme
that is used to apply boundary conditions is presented in Algorithm 7.

Algorithm 7 Boundary Conditions

subroutine boundary-conditions

do k = 1,nbc

i = ibc(k)

fglobal = fglobal - kglobal(:,i)*bc(k) modify the force vector

kglobal(i,:) = 0.0; kglobal(:,i) = 0.0 eliminate the columns and rows

of the known boundary condition

kglobal(i,i) = 1.0; fglobal(i) = bc(k) boundary condition is T =bc(k)

enddo

end subroutine boundary-conditions

EXAMPLE 9.1.

Temperature distribution in a polymer confined in a narrow-gap Couette device.
To illustrate the techniques presented in the last sections, in this example we will
model the heat transfer within a Couette device shown in Fig. 9.5. In the analysis we
will assume that viscous dissipation plays a significant role and we are seeking the
temperature profile across the gap with the effects of viscous heating.

If we assume a small gap, h � R, the energy equation is reduced to a one-
dimensional balance between the conduction and the viscous dissipation, schemati-
cally depicted in Fig. 9.6. The governing equation becomes

k
d2T

dx2
+ Q̇viscous heating = 0 (9.26)
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Figure 9.6: Simplified model of the Couette device of Fig. 9.5 with its finite element discretization.

where the viscous heating is given by

Q̇viscous heating = η

#
duy

dx

*2

(9.27)

This problem has an analytical solution (see Chapter 5) defined by

T (x) = Tm +
η

2k

u2
0

h2

"
2hx − x2

)
(9.28)

where u0 = RΩ.
The dimensions, properties and processing variables are h = 0.04 m, η = 1000

Pa-s, k = 0.2 J/m/K, u0 = 0.2 m/s and Tm = 200oC, respectively. Viscous heating
can be estimated from the above values as

Q̇ ≈ η

#
∆uy

∆x

*2

= 25.000 W/m3 (9.29)

The element stiffness matrix, Ke, for the two elements in this problem are given by

[Ke] = k

�
1/3 −1/3

−1/3 1/3

�
=

�
10 −10

−10 10

�
(9.30)

and the element force vector is calculated as

(fe) =

⎛⎜⎝ Q̇3e

2
Q̇3e

2

⎞⎟⎠ =

#
250
250

*
(9.31)

Using the connectivity matrix for this system given by

nee(i, j) =

�
1 2
2 3

�
(9.32)
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Figure 9.7: Comparison between analytical and finite element temperature distributions across the
gap in a Couette devise with viscous heating .

and the algorithms presented above, we can assemble the global stiffness matrix and
the force vector to become⎡⎣ 10 −10 0

−10 20 −10
0 −10 10

⎤⎦⎛⎝T1

T2

T3

⎞⎠ =

⎛⎝250
500
250

⎞⎠ (9.33)

Since the Dirichlet (essential) boundary condition is that T1 = 200, and we must
complete the system above by implementing this condition applying the boundary
condition algorithm⎡⎣1 0 0

0 20 −10
0 −10 10

⎤⎦⎛⎝T1

T2

T3

⎞⎠ =

⎛⎝ 200
500 − (200)(−10)
250 − (200)(0)

⎞⎠
⎡⎣1 0 0
0 20 −10
0 −10 10

⎤⎦⎛⎝T1

T2

T3

⎞⎠ =

⎛⎝ 200
2500
250

⎞⎠ (9.34)

The Neumann (natural) boundary condition qx = 0 is automatically satisfied. The
above system of algebraic equations can easily be solved to give T1 = 200, T2 = 275
and T3 = 300. A comparison between the analytical finite element solutions is shown
in Fig. 9.7. As can be seen, the agreement is excellent.

9.1.3 Matrix Storage Schemes

There are many matrix storage schemes that can be used to minimize computer storage
usage and computation time. One that is widely accepted is the banded matrix storage
scheme. Here, we will restrict our discussion to this scheme. However, some problems
in polymer processing, especially when dealing with three-dimensional flows, require very
large amounts of storage, and consequently computation time. The latter is especially
true when core memory has been exceeded and the computer is forced to physically swap
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Figure 9.8: Finite element mesh with 4 elements and 10 nodes.

memory back and forth between core and hard disc. Once the computer is resorting to
memory swapping, the computational efficiency of a system is compromised.

Finite element stiffness matrices are always symmetric and banded. For example, the
mesh presented in Fig. 9.8 has a stiffness matrix given by

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 0 0 0 0 0 0
K21 K22 K23 K24 0 0 0 0 0 0
K31 K32 K33 K34 K35 K36 0 0 0 0
K41 K42 K43 K44 K45 K46 0 0 0 0
0 0 K53 K54 K55 K56 K57 K58 0 0
0 0 K63 K64 K65 K66 K67 K68 0 0
0 0 0 0 K75 K76 K77 K78 K79 K710

0 0 0 0 K85 K86 K87 K88 K89 K810

0 0 0 0 0 0 K97 K98 K99 K910

0 0 0 0 0 0 K107 K108 K109 K1010

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.35)

The matrix presented in the above equation is clearly a banded matrix, with a bandwidth
of 4. Note that the bandwidth is the maximum difference between node numbers of the
elements of a given mesh times the number of degrees of freedom per node. Algorithm 8
computes the bandwidth of any mesh with nelem nodes per element.

Algorithm 8 Compute the bandwidth of a banded Global Stiffness matrix

subroutine band(nee)

nband = 0

do i = 1, ne Loop all elements

do j = 1, nelem nelem = nodes per element

do k = 1, nelem

idiff = abs(nee(i,j) - nee(i,k))

if ( idiff .gt. nband ) nband = idiff

enddo

enddo

enddo

nband = nband + 1

end subroutine band

By examining the matrix it becomes obvious that within the upper part of the matrix,
above or to the right of the bandwidth, all terms are zero and therefore do not need to be
stored, or operated on during the solution process. In addition, since the stiffness matrix
is symmetric, we do not need to store the stiffness matrix components that are below the
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diagonal. Hence, a more effective way of storing the above matrix is as

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14

K22 K23 K24 0
K33 K34 K35 K36

K44 K45 K46 0
K55 K56 K57 K58

K66 K67 K68 0
K77 K78 K79 K710

K88 K89 K810 0
K99 K910 0 0

K1010 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.36)

With a known bandwidth, it is quite straight forward to add the element stiffness matrices
into the global system using the scheme presented in Algorithm 9.

Algorithm 9 Global stiffness matrix and force vector assembly for a banded matrix

subroutine assem-global(kglobal,fglobal)

kglobal = 0; fglobal = 0

do i = 1,ne Loop all elements

call elem-k-f(kelem,felem) element stiffness matrix and

force vector

do j = 1, nelem nelem = nodes per element

irow = nee(i,j)

fglobal(irow) = fglobal(irow) + felem(j) force vector addition

do k = 1,nelem

icol = nee(i,k)-irow+1 Add only upper part of the matrix

if ( icol .gt. 0) kglobal(irow,icol) = kglobal(irow,icol) + kelem(j,k)

stiffness matrix

enddo

enddo

enddo

end subroutine assem-global

9.1.4 Transient Problems

The most common methodology when solving transient problems using the finite element
method, is to perform the usual Garlerkin weighted residual formulation on the spatial
derivatives, body forces and time derivative terms, and then using a finite difference scheme
to approximate the time derivative. The development, techniques and limitations that we
introduced in Chapter 8 will apply here. The time discretization, explicit and implicit
methods, stability, numerical diffusion etc., have all been discussed in detail in that chapter.

For a general partial differential equation, we can write

∂

∂t
u(x, t) + Lu(x, t) = f(x, t) (9.37)

where
∂

∂t
u(x, t) represents the time derivative of the primary variables u(x, t), L operates

on u(x, t), such as spatial derivatives and f(x, t) is a forcing function such as an internal
heat generation or body forces. With a transient problem, we must also divide the domain
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into finite elements and approximate the variables within the element using interpolation
functions, or shape functions

ue ≈
5

i

Ni(x)ui(x, t) (9.38)

and substitute the approximated representation of the variables into the governing equations,
and apply Garlerkin’s weighted residual to eqn. (9.37) as�

V

#
∂ue

∂t
+ Lue − f

*
NidV = 0 (9.39)

At this point, the time derivative is implemented using a finite difference scheme as�
V

1

∆t

"
ue,j+1 − ue,j

)
NidV +

��
V

(Lue − f)NidV

�k

= 0 (9.40)

In this equation, the superscripts j and k represent the time steps. If k = j it will result in
an explicit Euler, and if k = j + 1 we have an implicit Euler time transient finite difference
technique.

We can illustrate this technique with a transient one-dimensional cooling (or heating)
problem. Let’s assume that the initial condition is a constant temperature across the thick-
ness of T0. In addition, we assume the physical properties such as density, ρ, specific heat,
Cp, thermal conductivity, k, remain constant during the thermal process. This results in the
following governing equation

ρCp
∂T

∂t
= k

∂2T

∂x2
+ Q̇ (9.41)

with T (0, x) = T0 an initial condition, and for example T (t, 0) = T (t, L) = Tmold as
boundary conditions at both boundaries. Our first step is to discretize the domain. To
illustrate this, we assume the same two-noded linear element used in the previous sections,
hence approximating the temperature distribution along the element using

T e = N1T1 + N2T2 (9.42)

where the interpolation functions N1 and N2 are given in eqn. (9.9). At this point we apply
Garlerkin’s method to each finite element (eqn.9.39), which results in

ρCp

� x2

x1

∂T e

∂t
Nidx − k

� x2

x1

∂2T e

∂x2
Nidx =

� x2

x1

Q̇Nidx (9.43)

Again, we must apply a Green-Gauss transformation described in Theorem (9.1.2) to
the second spatial derivative terms to get

ρCp

� x2

x1

∂T e

∂t
Nidx + k

� x2

x1

∂T e

∂x

∂Ni

∂x
dx = 0 (9.44)

We apply the finite difference scheme to the first integral of the above equation and treat
the second integral in the same way as we did in the steady-state problem of the previous
section. This results in

ρCp

∆t

� x2

x1

"
T j+1 − T j

) �
N1

N2

�
dx+

ωk

� x2

x1

[B]T [B]dx

�
T1

T2

�j

+ (1 − ω)k

� x2

x1

[B]T [B]dx

�
T1

T2

�j+1

= 0

(9.45)
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Figure 9.9: Schematic diagram of an injection molding cooling problem.

where ω is a constant that determines whether we are using an explicit Euler (ω = 1),
implicit Euler (ω = 0) or a Crank-Nicholson (ω = 0.5) approach. Note that the terms T j+1

and T j are temperature fields represented by

T j+1 = N1T
j+1
1 + N2T

j+1
2 (9.46)

and

T j = N1T
j
1 + N2T

j
2 (9.47)

respectively. This results in a set of linear algebraic equations represented by

[Me] · (Te
j+1) − [Me] · (Te

j )+ ω[Ke] · (Te
j )+ (1 − ω)[Ke] · (Te

j+1) = (fe) (9.48)

where [Me] is the element mass matrix defined by

[Me] =
ρCp

∆t

� x2

x1

�
N1N1 N1N2

N2N1 N2N2

�
dx (9.49)

After integrating eqn. (9.49) we get

[Me] =
ρCp

∆t

�
3/3 3/6
3/6 3/3

�
(9.50)

EXAMPLE 9.2.

Transient one dimensional heat transfer problem. To illustrate the transient one-
dimensional heat transfer problem, the above formulation was used to solve the cool-
ing of a thick injection molded part depicted in Fig. 9.9. In this problem we are
assuming that the cooling line is maintained at 30oC and it is located 4 mm away
from the mold surface. The polystyrene is injected at 220oC and we neglect cooling
and viscous heating effects during mold filling.

Using the properties given in Table 9.2 and a 40 linear element (41 nodes) mesh, the
temperature field as a function of time was computed and is presented in Figs. 9.10
and 9.11 Figure 9.10 shows the temperature profile the first second of cooling at
time intervals of 0.05 seconds. At the beginning, the steel rapidly approaches the
temperature of the polymer and forces the surface to cool down to nearly the cooling
line temperature. Figure 9.11 presents the results after the first second, for a time
span of 8 minutes, with time intervals of 10 seconds.
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Table 9.2: Steel and Polystyrene Material Properties

Property Value
ρPS 1100 kg/m3

kPS 0.16 W/m/K
CpPS 1500 J/kg/K
ρSteel 7800 kg/m3

kSteel 70 W/m/K
CpSteel 1000 J/kg/K
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Figure 9.10: First second of cooling of a thick polystyrene part inside a steel mold. Lines represent
the first second of cooling with 0.05 second time intervals.
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Figure 9.11: Cooling of a thick polystyrene part inside a steel mold. Lines represent 8 minutes of
cooling with 10 second time intervals.

9.2 TWO-DIMENSIONAL PROBLEMS

In the last section we presented the finite element method using one-dimensionalgeometries
as an example. Although in principle the technique is the same in two- and three-dimensions,
this section will present two-dimensional problems using two types of finite elements. First,
we will present the constant strain triangle, which is the simplest two-dimensional element
and one that, as the name suggests, originated in the field of elasticity, but that has been
widely used to solve governing equations in various field problems. The second element
that will be used in the finite element implementation is the isoparametric element, which
is much more flexible because it is used in conjunction with numerical integration, easily
allowing the introduction of physical properties that vary in space.

9.2.1 Solution of Posisson’s equation Using a Constant Strain Triangle

In this section, we will proceed to develop a finite element formulation for the two-
dimensional Poisson’s equation using a linear displacement, constant strain triangle. Pois-
son’s equation has many applications in polymer processing, such as injection and com-
pression mold filling, die flow, potential problems, heat transfer, etc. The general form of
Poisson’s equation in two-dimensions is

∂2φ

∂x2
+

∂2φ

∂y2
= f(x, y, φ) (9.51)
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Figure 9.12: Schematic diagram of a two-dimensional domain and corresponding boundaries.
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Figure 9.13: Finite element mesh using constant strain, or gradient, triangles for the domain
presented in Fig. 9.12

throughout the domain, with essential and natural boundary conditions

φ = φ0 on S0 (9.52)

∂φ

∂n
= q1 on S1 (9.53)

respectively, as schematically depicted in Fig. 9.12.
The first step when formulating the finite element solution to the above equations, is

to discretize the domain of interest into triangular elements, as schematically depicted in
Fig. 9.13. In the constant strain triangles, represented in Fig. 9.14, the field variable within
the element is approximated by,

φe = a + bx + cy (9.54)

which is a linear approximation for the field variable within the element and the gradient
of this field variable is constant throughout the element.
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Figure 9.14: Schematic diagram of a two-dimensional triangular element with corresponding nodal
coordinates and linear field variable approximation.

We can use eqn. (9.54) to evaluate the field variable, φ at every node location to get,⎛⎝φ1

φ2

φ3

⎞⎠ =

⎡⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤⎦⎛⎝a
b
c

⎞⎠ (9.55)

The above equation can be used to solve for the coefficient vector⎛⎝a
b
c

⎞⎠ = [X]−1

⎛⎝φ1

φ2

φ3

⎞⎠ (9.56)

where

[X]−1 =
1

|X|

⎡⎣2(x2y3 − x3y2) 2(x3y1 − x1y3) 2(x1y2 − x2y1)
y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

⎤⎦ (9.57)

In the above equation |X| is the determinant of the X matrix and it is defined as

|X| = (x2y3 + x1y2 + x3y1) − (x2y1 + x3y2 + x1y3) = 2Areae (9.58)

where, Areae is the area of the element under consideration.
We can now rewrite eqn. (9.54) in terms of the nodal values of φ

φe =
�
1 x y

�
[X]−1

⎛⎝φ1

φ2

φ3

⎞⎠ (9.59)

or

φe =
�
N1 N2 N3

� ⎛⎝φ1

φ2

φ3

⎞⎠ (9.60)
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The gradients can now be obtained by differentiating eqns. (9.59) or (9.60) with respect to
x and y. The x-gradient is given by

∂φe

∂x
=

�
0 1 0

�
[X]−1

⎛⎝φ1

φ2

φ3

⎞⎠ =

�
∂N1

∂x

∂N2

∂x

∂N3

∂x

� ⎛⎝φ1

φ2

φ3

⎞⎠ (9.61)

where1

∂Ni

∂x
=

1

|X| (yj − yk) (9.62)

Similarly, the gradient with respect to y is given by

∂φe

∂y
=

�
0 0 1

�
[X]−1

⎛⎝φ1

φ2

φ3

⎞⎠ =

�
∂N1

∂y

∂N2

∂y

∂N3

∂y

� ⎛⎝φ1

φ2

φ3

⎞⎠ (9.63)

where

∂Ni

∂y
=

1

|X| (xj − xk) (9.64)

We can now substitute the approximated linear function of the field variable into the
governing eqn. (9.51), and form the weighted residual Galerkin finite element expression
as �

V

#
∂2φe

∂x2
+

∂2φe

∂y2
− f

*
NidV = 0 (9.65)

The first two terms of the above equation are transformed using the Green-Gauss Theo-
rem (9.1.2) which results i�

V

#
∂φe

∂x

∂Ni

∂x
+

∂φe

∂y

∂Ni

∂y

*
dV =

�
V

fNidV +

�
S

∂φe

∂n
NidS (9.66)

Equation (9.66) can also be written in terms of the B matrix

�
V

[B]T [B]dV

⎛⎝φ1

φ2

φ3

⎞⎠ = −
�

V

fNidV +

�
S

∂φe

∂n
NidS (9.67)

where

[B] =
1

Areae

�
y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

�
(9.68)

The second integral on the right hand side of eqn. (9.67) can be evaluated for problems with
a prescribed Neumann boundary condition, such as heat flow when solving conduction
problems. For the Hele-Shaw approximation used to model some die flow and mold filling
problems, where ∂p/∂n = 0, this term is dropped from the equation.

1The usual notation is used ijk, jki, kij, or 123, 231, 312.
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9.2.2 Transient Heat Conduction Problem Using Constant Strain Triangle

Following the procedure used with the one-dimensional FEM model and using the constant
strain triangle element developed in the previous section, we can now formulate the finite
element equations for a transient conduction problem with internal heat generation rate per
unit volume of Q̇. The governing equation is given by

∂T

∂t
= α

∂2T

∂x2
+

∂2T

∂y2
+ Q̇ (9.69)

If we use an implicit finite difference time stepping procedure, we must evaluate the spatial
derivatives in the next time step j +1. In order to arrive at a linear set of algebraic equations
that can be solved using standard matrix routines, we would the like the final set of equation
to be of the form

[K̄e] · (Te
j+1) = (̄fe) (9.70)

where [K̄e] is a combined stiffness and mass matrix, given by

[K̄e] = α[Ke] − 1

∆t
[Me] (9.71)

where the element mass matrix [Me] is defined by

[Me] =

⎡⎣ Areae/6 Areae/12 Areae/12
Areae/12 Areae/6 Areae/12
Areae/12 Areae/12 Areae/6

⎤⎦ (9.72)

The element force vector (̄fe) is formed by the internal heat generation term and the
temperatures in the previous time steps as

(fe) = − 1

∆t
[Me] · (Te

j ) + (Q̇e) (9.73)

where the internal heat generation term is given by

(Q̇e) =

⎛⎜⎜⎜⎜⎜⎝
Q̇Areae

3
Q̇Areae

3
Q̇Areae

3

⎞⎟⎟⎟⎟⎟⎠ (9.74)

9.2.3 Solution of Field Problems Using Isoparametric Quadrilateral
Elements.

The previous section used the constant strain three-noded element to solve Poisson’s equa-
tion with steady-state as well as transient terms. The same problems, as well as any field
problems such as stress-strain and the flow momentum balance, can be formulated using
isoparametric elements. With this type of element, the same (as the name suggests) shape
functions used to represent the field variables are used to interpolate between the nodal
coordinates and to transform from the xy coordinate system to a local element coordi-
nate system. The first step is to discretize the domain presented in Fig. 9.12 using the
isoparametric quadrilateral elements as shown in Fig. 9.15.
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Figure 9.15: Finite element mesh using isoparametric quadrilateral elements for the domain
presented in Fig. 9.12
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Figure 9.16: Isoparametric quadrilateral element in the xy-coordinate system.

If we pick an arbitrary element we can see that it is represented by the xy-coordinates
of the four nodal points, as depicted in Fig. 9.16. The figure also shows a ξη-coordinate
system embedded within the element. In the ξη, or local, coordinate system, we have a
perfectly square element of area 2 × 2, where the element spreads between −1 ≥ ξ ≤ 1
and −1 ≥ η ≤ 1. This attribute allows us to easily allows us to use Gauss quadrature as a
numerical integration scheme, where the limits vary between −1 and 1. The isoparametric
element described in the ξη-coordinate system is presented in Fig. 9.17.

If we assume nodal shape functions Ni that are equal 1 at (ξi, ηi) and zero at the other
three nodes (ξj , ηj), we can define the field variable and the nodal coordinates in term of
those shape functions and the nodal values of the parameters, i.e.,

φe =N1φ1 + N2φ2 + N3φ3 + N4φ4

xe =N1x1 + N2x2 + N3x3 + N4x4 (9.75)

ye =N1y1 + N2y2 + N3y3 + N4y4
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Figure 9.17: Isoparametric quadrilateral element in the ξη-coordinate system.

where the shape functions, Ni, are defined as

N1 =
1

4
(1 + ξ)(1 + η)

N2 =
1

4
(1 − ξ)(1 + η)

N3 =
1

4
(1 − ξ)(1 − η)

N4 =
1

4
(1 + ξ)(1 − η) (9.76)

The finite element expression for a problem using isoparametric finite elements will be
similar to the ones developed in previous examples. For example, a problem governed by
Poisson’s equation will result in the following finite element equation,

� �
[B]T [B]dxdy

⎛⎜⎜⎝
φ1

φ2

φ3

φ4

⎞⎟⎟⎠ = −
� �

fNidxdy (9.77)

where f represents a forcing function, such as internal heat generation, transient terms, etc.
If we examine the above equation carefully, we note that the shape functions are in terms
of ξ and η, but the derivatives of these functions as well as the integrations are in terms of
x and y. Hence, the terms in the B Matrix, B, which contains the derivatives of the shape
functions with respect to x and y, can be transformed into derivatives of the shape functions
with respect to ξ and η with the use of the Jacobian transformation matrix given by

∂Ni

∂x
= [J]−1 ∂Ni

∂ξ
(9.78)

where the Jacobian transformation matrix in two dimensions is defined by

[J] =

⎡⎢⎣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤⎥⎦ (9.79)
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The second problem encountered is that we are integrating over x and y functions in the
ξη system, hence, the terms dxdy must be changed to dξdη. To do this, we use a special
form of the Jacobian transformation given by

|J|dξdη = dxdy (9.80)

where |J|d is the determinant of the Jacobian matrix and is computed as

|J| =
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η
(9.81)

Using these transformations, eqn. (9.77) becomes

� 1

−1

� 1

−1

[B]T [B]|J|dξdη

⎛⎜⎜⎝
p1

p2

p3

p4

⎞⎟⎟⎠ = −
� 1

−1

� 1

−1

fNi|J|dξdη (9.82)

As explained earlier, the limits of integration of the above equation make it ideal for applying
a Gauss integration scheme, discussed in Chapter 7. Equation (9.82) can therefore be
approximated as

⎡⎣NGauss5
i=1

NGauss5
j=1

[B]Tij [B]ij |J|ijwiwj

⎤⎦
⎛⎜⎜⎝

φ1

φ2

φ3

φ4

⎞⎟⎟⎠ = −
NGauss5

i=1

NGauss5
j=1

fNk|J|i,jwiwj

(9.83)

where NGauss are the number of Gauss points for each direction, and wi and wj are
the weights for the corresponding Gauss points. For example, if we choose NGauss =
2 we would have a 2 × 2 Gauss points integration schemes with 4 integration stations.
The following example presents an algorithm that illustrates how the above integrals are
evaluated.

EXAMPLE 9.3.

Solution of the two-dimensional Poisson’s equation: compression molding. To il-
lustrate the use of the four-noded isoparametric element, we can solve for the pressure
distribution and velocity field during compression molding of an L-shaped polymer
charge, shown in Fig. 9.18, with the physical and numerical data presented in Ta-
ble 9.3.

As discussed in Chapter 8 of this book, the momentum balance and the continuity
equation lead to the Hele-Shaw approximation given by

∂2p

∂x2
+

∂2p

∂y2
= −12µ

ḣ

h3
(9.84)

with homogeneous Dirichlet boundary conditions at the flow front

p(x, y) = 0 for x, y ∈ front (9.85)
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Figure 9.18: Schematic diagram of the compression molding of an L-shaped charge.

Table 9.3: Example 9.3 Data

Parameter Value
µ 10,000 Pa-s
Lx 0.4 m
Ly 0.4 m
h 0.005 m
ḣ 0.01 m/s
ne 300
nn 341

Ngauss 2
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Figure 9.19: Four-noded isoparametric finite element mesh for the L-shape charge.

The average velocities are obtained from the pressure gradients as follows (see
Chapter 5),

ūx = − h2

12µ

∂p

∂x

ūy = − h2

12µ

∂p

∂y
(9.86)

A finite element program with four-noded isoparametric elements was used to
solve the above governing equations and boundary conditions. Algorithm 10 presents
the scheme used to evaluate the element stiffness matrices and force vectors using
numerical integration.

Figure 9.19 presents the mesh used for the solution and Fig. 9.20 illustrates the
pressure field for the charge, the instant when both mold halves make contact with the
charge and squeezing begins. Figure 9.21 presents the instantaneous velocity field
the moment the charge starts flowing at the beginning of squeezing flow.

9.2.4 Two Dimensional Penalty Formulation for Creeping Flow Problems

The isoparametric element works quite well to formulate the finite element equations for
flow problems, such as flows with non-Newtonian shear thinning viscosity. Due to the
flexibility that exists to integrate variables throughout the elements, the method lends itself
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Algorithm 10 Computing the element stiffness matrix and force vector for a four-noded
isoparametric element by numerical integration

subroutine elem-k-f

do i = 1,NGauss integration loops

do j = 1,NGauss

xi = xg(i); eta = xg(j) xg(i) and xg(j) store the Gauss points, i.e.,

xg(1)=-0.5773502691 and xg(2)=0.5773502691

when NGauss=2

n(1) = 0.25(1+xi)(1+eta) shape functions

n(2) = 0.25(1-xi)(1+eta)

n(3) = 0.25(1-xi)(1-eta)

n(4) = 0.25(1+xi)(1-eta)

dn(1,1) = 0.25(1+eta) shape function derivatives with respect to ξ
dn(1,2) = -0.25(1+eta)

dn(1,3) = -0.25(1-eta)

dn(1,4) = 0.25(1-eta)

dn(2,1) = 0.25(1+xi) shape function derivatives with respect to η
dn(2,2) = 0.25(1-xi)

dn(2,3) = -0.25(1-xi)

dn(2,4) = -0.25(1+xi)

do k =1,4 Gauss point position

x = x+n(k)pe(1,k) pe: element nodal coordinates

y = y+n(k)pe(2,k)

enddo

do k1 = 1,2 Jacobian

do k2 = 1,4

jac(1,k2) = jac(1,k2)+dn(1,k2)pe(k1,k2)

jac(2,k2) = jac(2,k2)+dn(2,k2)pe(k1,k2)

enddo

enddo

det = jac(1,1)jac(2,2)-jac(1,2)jac(2,1)

invjac(1,1)=jac(2,2)/det inverse of the Jacobian matrix

invjac(1,2)=-jac(1,2)/det

invjac(2,1)=-jac(2,1)/det

invjac(2,2)=jac(1,1)/det

do k=1,4 B matrix

b(1,k)=invjac(1,1)dn(1,k)+invjac(1,2)dn(2,k)

b(2,k)=invjac(2,1)dn(1,k)+invjac(2,2)dn(2,k)

enddo

bt = TRANSPOSE(b)

kelem = kelem + MATMUL(bt,b)*det*w(i)*w(j)

felem(:) = felem(:) - 12*mu*hdot*n(:)*det*w(i)*w(j)/h**3

w(i) and w(j) are the weights,

i.e., w(1)=1 and w(2)=1 when NGauss=2

enddo

enddo

end subroutine elem-k-f
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Figure 9.20: Pressure distribution within the L-shape charge the instant when both mold halves
make contact with the charge.
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Figure 9.21: Instantaneous velocity field for the L-shape charge at the beginning of flow.
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to simulate systems with variable and non-linear physical properties, as well as coupled
flow and heat transfer problems. Here, we will restrict our discussion to non-Newtonian
Stokes flow with a rate of deformation dependent viscosity. For such a general case, the
continuity and momentum equations are given by

∂ux

∂x
+

∂uy

∂y
= 0 (9.87)

− ∂p

∂x
+

�
∂τxx

∂x
+

∂τyx

∂y

�
= fx (9.88)

− ∂p

∂y
+

�
∂τxy

∂x
+

∂τyy

∂y

�
= fy (9.89)

Using the generalized Newtonian constitutive equation,the deviatoric stress tensor is defined
as

τij = ηγ̇ij (9.90)

where γ̇ij is the shear rate defined as

γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
(9.91)

The momentum equations can therefore be written in terms of velocities

− ∂p

∂x
+

�
∂

∂x

#
2η

∂ux

∂x

*
+

∂

∂y

#
η

#
∂ux

∂y
+

∂uy

∂x

**�
= fx (9.92)

−∂p

∂y
+

�
∂

∂y

#
2η

∂uy

∂y

*
+

∂

∂x

#
η

#
∂ux

∂y
+

∂uy

∂x

**�
= fy (9.93)

This results in a system of three equations with three variables: ux, uy and p. It is
very common to eliminate the pressure from the set of equations by introducing a slight
compressibility to the fluid. This approach is often referred to as the penalty formulation.The
compressibility factor γ is introduced in the continuity equation as

∂ux

∂x
+

∂uy

∂y
=

p

γ
(9.94)

When γ → ∞, the fluid is considered incompressible and eqns. (9.92) and (9.93) are fully
satisfied. Replacing the continuity equation (9.94) in the momentum equations we get

−γ
∂

∂x

#
∂ux

∂x
+

∂uy

∂y

*
+

�
∂

∂x

#
2η

∂ux

∂x

*
+

∂

∂y

#
η

#
∂ux

∂y
+

∂uy

∂x

**�
= fx

(9.95)

−γ
∂

∂y

#
∂ux

∂x
+

∂uy

∂y

*
+

�
∂

∂y

#
2η

∂uy

∂y

*
+

∂

∂x

#
η

#
∂ux

∂y
+

∂uy

∂x

**�
= fy

(9.96)

At this point, we can proceed to the finite element formulation of the above governing
equations. For this, we will use the isoparametric element presented in the last sections.
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Using the same shape function definitions we can approximate the velocity field across the
element using

ue
x = N1ux1 + N2ux2 + N3ux3 + N4ux4

ue
y = N1uy1 + N2uy2 + N3uy3 + N4uy4 (9.97)

Next, we apply Galerkin’s weighted residual method and reduce the order of integration of
the various terms in the above equations using the Green-Gauss Theorem (9.1.2) for each
element. For a simpler presentation we will deal with each term in the above equations sep-
arately. The terms of the x-component (eqn. (9.95)) of the penalty formulation momentum
balance become

Term 1: �
V

∂

∂x

#
2η

∂ue
x

∂x

*
NidV = −2

�
V

η
∂ue

x

∂x

∂Ni

∂x
dV + 2

�
S

η
∂ue

x

∂x
nxNidS

Term 2: �
V

∂

∂y

�
η(

∂ue
x

∂y
+

∂ue
y

∂x
)

�
NidV = −

�
V

η(
∂ue

x

∂y
+

∂ue
y

∂x
)
∂Ni

∂y
dV

+

�
S

η

#
∂ue

x

∂y
+

∂ue
y

∂x

*
NinydS

Term 3:

− γ

�
V

∂

∂x

#
∂ue

x

∂x
+

∂ue
y

∂y

*
NidV = γ

�
V
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x

∂x
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∂ue
y
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)
∂Ni

∂x
dV

− γ

�
S

#
∂ue

x
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+

∂ue
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*
NinxdS

which results in

− 2

�
V

η
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x
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∂Ni

∂x
dV −

�
V
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∂ue

x

∂y
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∂Ni
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dV
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V
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∂ue

x

∂x
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∂ue
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∂Ni
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S

η
∂ue
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nxNidS −
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S

η

#
∂ue

x

∂y
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∂ue
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∂x

*
NinydS

+

�
S

texNidS +

�
V

fxNidV

(9.98)

where t = pn = (pnx, pny). An expression for the y-momentum can be obtained in a
similar way.

The integrals of the shape function derivatives lead to the following matrices

S11
ij =

� �
∂Ni

∂x

∂Nj

∂x
dxdy

S12
ij =

� �
∂Ni

∂x

∂Nj

∂y
dxdy (9.99)

S22
ij =

� �
∂Ni

∂y

∂Nj

∂y
dxdy
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which can be used to define components of the stiffness matrix as

[K̄11] = 2η[S11] + η[S22] (9.100)

[K̄12] = η[S12] (9.101)

[K̄22] = 2η[S22] + η[S11] (9.102)

This results in an element stiffness matrix of

�
[K11] [K12]
[K12]T [K22]

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ux1

ux2

ux3

ux4

uy1

uy2

uy3

uy4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F x
1

F x
2

F x
3

F x
4

F y
1

F y
2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where

[K11] = [K̄11] + γ[S11] (9.104)

[K12] = [K̄12] + γ[S12] (9.105)

[K22] = [K̄22] + γ[S22] (9.106)

and

F x
i =

� �
fxNidxdy +

�
txNidS (9.107)

F y
i =

� �
fyNidxdy +

�
tyNidS (9.108)

The above equations can be broken down into terms that contain the viscosity, η, and which
pertain to the momentum balance, and those terms that contain the compressibility factor,
γ, which pertain to the continuity equation�

η[K1] + γ[K2]
�
(u) = (F) (9.109)

In order to solve a flow problem, we must weaken the continuity equation portion of
the final finite element system. This is done by under-integrating the terms that pertain
to the continuity equation. By using only one Gauss integration station when integrating
the continuity equation portion of the equation, and four Gauss integration stations (2 × 2)
when integrating the momentum balance portion of the equation, we are able to soften the
equations and solve them with a slight penalty on the pressure solution. If we use the same
integration order on all the terms of the equation, we would arrive at the trivial solution that
satisfies the equations, of zero velocity throughout the system.

The above equations can be used to simulate the flow of non-Newtonian fluids with a shear
thinning viscosity. This requires an iterative under-relexation scheme where a Newtonian
solution is found first. The initial velocity field is used to compute rates of deformation and
viscosity. Next, a corrected velocity field is computed with the updated velocities, at which
point an under-relaxation is performed using

(u)relaxed
k+1 = ω(u)relaxed

k + (1 − ω)(u)k+1 (9.110)
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Figure 9.22: Preferential flow during flow SMC after 20 seconds of one-sided heating [12].

where k and k + 1 denote the previous and current iteration steps, respectively. It has been
found that when using a power law model, the power law index, n, works best as the re-
laxation parameter, ω = n. The above finite element model can also be implemented with
thermal effects by solving the momentum balance and energy equation simultaneously. If
diffusion dominates when solving the energy equation (small Peclet number), the imple-
mentation is straight forward. However, when convection dominates diffusion, the solved
temperature fields will present spurious oscillations, as discussed in Chapter 8, where a
1D convection-diffusion was solved with and without up-winding techniques. Later in this
chapter we will present a 3D formulation with convective and diffusive terms. In the exam-
ple that follows, the conduction occurs primarily through the thickness, and the convection
in the planar direction of the part. Hence, no special treatment is necessary.

EXAMPLE 9.4.

Non-isothermal non-Newtonian flow during compression molding To study the
non-isothermal effect during squeezing of sheet molding compound (SMC), Osswald
et.al [12] solved the momentum and energy equations simultaneously using four
noded isoparametric elements and the formulation presented above. Primarily, they
wanted to study the effects that one-sided heating had on the flow front development
of SMC charges during mold filling. One-sided heating occurs from the time when
the SMC charge is laid on the mold surface and the time when the upper mold half
makes contact with the top surface of the charge. During this period, a layer of hot
material forms in the lower part of the SMC charge. This hot, and consequently low
viscosity fluid, is squeezed out from under the charge,causing what is often referred to
as preferential flow. Preferential flow leads to air entrapment, fiber-matrix separation,
and, as a result, to SMC parts with weak edges. Figure 9.22 shows a photograph of
an SMC flow front moving towards a mold opening. The picture clearly shows how
the preferential flow is creating a swirl in the free flow front. This type of flow can be
problematic since the edges, especially corners, are subjected to higher stresses and
often give rise to cracks in SMC parts such as automotive body panels.
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h=-10mm/s

Tm=150oC

Tm=150oC

T0=25oC

Figure 9.23: Finite element mesh of the cross-section of an SMC charge [12].

Figure 9.24: Velocity field during isothermal squeezing of an SMC charge [12].

The work by Osswald et.al [12] was done to understand this phenomenon. To
simulate the effect shown in the photograph, they used the two-dimensional mesh
and processing conditions presented in Fig. 9.23. Note that in order to better see
the set-up and results, the mesh is shown distorted in the thickness direction of the
charge. Since the thickness-to-length (L/D) ratio is very small, the heat transfer in
the non-isothermal solution reduces to a 1D problem, and was solved using the finite
difference technique.

Figure 9.24 presents the predicted velocity field for an isothermal flow. Here, the
charge and the mold surfaces have the same temperature of 150oC. Using the velocity
field, Osswald et.al [12] moved the nodes by a small time ∆t. A new velocity field
was computed using the updated mesh. These steps were repeated until the mesh
became too distorted, leading to unreasonable values in the velocity field. Excessive
element distortion is often detected when the determinant of the Jacobian matrix, |J |,
is less or equal to zero.
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during non-isothermal flow
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Figure 9.25: Flow front shape after isothermal (left) and non-isotheramal (right) flows. Non-
isothermal flows are a result of a 20 second one-sided heating [12].

Figure 9.25 presents the shape of the flow front for the isothermal flow case, as
well as for a non-isothermal case where a 20 second one-sided heating was used.
Other cases showed that one-sided heating times larger than 10 seconds resulted in a
preferential flow that formed a swirl in front of the charge. One-sided heating times
less than 10 seconds led to preferential flow that eventually disappeared as the rest of
flow front caught up with the faster moving melt.

9.3 THREE-DIMENSIONAL PROBLEMS

When modeling a system, we try to reduce the problem to a two-, and if possible, to a
one-dimensional model. However, often it is not possible to reduce the dimensionality of a
problem, forcing us to solve a full three-dimensional model. In principle, solving a problem
in 3D using a finite element formulation work the same way as in 1D or 2D. However, set-up
effort, and therefore engineering time, as well as computational costs go up drastically when
a problem is solved using a full three dimensional model. Most developments as described
for 1D and 2D finite element formulations are also valid for 3D. In this section, we will
present several finite elements and formulations.

9.3.1 Three-dimensional Elements

Figure 9.26 illustrates two types of three-dimensional elements, the prisms and the tetrahe-
drals. The prisms shown are of the serendipity family and the coordinates for these elements
are normalized the same way as the rectangular two-dimensional elements and the shape
functions are just simple extensions of the 2D elements. The tetrahedral elements have
volume normalized coordinates, which again are an extension of the 2D area normalized
coordinates.

The shape functions for the prism linear elements (8 nodes) are

Ni =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0) (9.111)
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Figure 9.26: Three dimensional prism (left) and tetrahedral (right) elements.

and for the quadratic (20 nodes)

Ni =
1

8
(1 + ξ0)(1 + η0)(1 + ζ0)(ξ0 + η0 + ζ0 − 2) Corner nodes (9.112)

Ni =
1

4
(1 − ξ2)(1 + η0)(1 + ζ0) typical mid-side node: ξi = 0,ηi = ±1 and ζi = ±1

The volume normalized coordinates for the tetrahedral elements are defined as

x =L1x1 + L2x2 + L3x3 + L4x4

y =L1y1 + L2y2 + L3y3 + L4y4

z =L1z1 + L2z2 + L3z3 + L4z4 (9.113)

1 =L1 + L2 + L3 + L4

where the Li area coordinates are defined below. The shape functions for the linear and
quadratic elements are defined in the same way as eqns. (9.111) and (9.112).

Similar to the two-dimensional isoparametric element, for three dimensional elements
we use a mapping of the normalized coordinates, ξ, η, ζ, (Li volume coordinates for a
tetrahedral element), in such a way that the cartesian coordinates will appear as a curvilinear
set.

As in 2D, this mapping is achieved providing a one-to-one relationship between the
Cartesian and the curvilinear coordinates, i.e.,

⎛⎝ x
y
z

⎞⎠ = f

⎛⎝ ξ
η
ζ

⎞⎠ or g

⎛⎜⎜⎝
L1

L2

L3

L4

⎞⎟⎟⎠ (9.114)

As with 2D, the coordinates can be transformed using

xe = N1x1 + N2x2 + ... + Nnxn =

n5
i=1

Nixi (9.115)
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where i = 1, .., n are the element nodes and Ni are the shape functions.
In 3D we also need the two transformations used with the 2D isoparametric element.

In the first place, the global derivatives of the formulation, ∂Ni/∂x, must be expresses in
terms of local derivatives, ∂Ni/∂ξ. Second, the integration of volume (or surface) needs
to be performed in the appropriate coordinate system with the correct limits of integration.
The global and local derivatives are related through a Jacobian transformation matrix as
follows⎛⎜⎜⎜⎜⎜⎝

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

⎞⎟⎟⎟⎟⎟⎠ = J

⎛⎜⎜⎜⎜⎝
∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

⎞⎟⎟⎟⎟⎠ (9.116)

where the Jacobian matrix is defined as,

J =

⎛⎜⎜⎜⎜⎜⎝
∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
6 ∂Ni

∂ξ
xi

6 ∂Ni

∂ξ
yi

6 ∂Ni

∂ξ
zi6 ∂Ni

∂η
xi

6 ∂Ni

∂η
yi

6 ∂Ni

∂η
zi6 ∂Ni

∂ζ
xi

6 ∂Ni

∂ζ
yi

6 ∂Ni

∂ζ
zi

⎞⎟⎟⎟⎟⎟⎠ (9.117)

The transformation of the variables and the region with respect to which the integration is
made involves the determinant of the Jacobian, detJ = |J|. For instance, a volume element
becomes

dV = dxdydz = |J|dξdηdζ (9.118)

where |J|is the determinant of Jacobian matrix.The limits of integration for three-dimensional
brick elements will be from −1 to +1� 1

−1

� 1

−1

� 1

−1

f |J|dξdηdζ (9.119)

and for the tetrahedral elements� 1

0

� 1−η

0

� 1−η−ξ

0

f |J|dξdηdζ (9.120)

The isoparametric coordinates are related to Li by the following relations

ξ = L1 (9.121)

η = L2

ζ = L3

1 − ξ − η − ζ = L4

9.3.2 Three-Dimensional Transient Heat Conduction Problem With
Convection

There are many ways of solving the energy equation with convection effects. One that
will be presented here is the widely accepted streamline upwind Petrov-Galerkin method
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Figure 9.27: Schematic of the shape functions when using upwinding methods.

(SUPG) developed by Brooks and Hughes [3]. Essentially, the finite element equations
remain the same; however, as shown here, modified shape functions are introduced on
the upwind side of a nodal point. Hence, we have two interpolation, or shape, functions
that define the temperature, or convected variable, distribution. One definition uses the
conventional shape functions given by

T e = (N) · (Te) (9.122)

and the other uses a modified shape function that puts a higher weight on the upwind side
of a nodal point and is given by

T e = (W̄) · (Te) (9.123)

The modified weighting functions, W̄i, are given by

W̄i = Ni +
K̄

� u �2
([B] · (û)) (9.124)

where

K̄ =
ξ � û � hK√

15
(9.125)

In the above equation, ξ is a function of the Kth element size, hK and the Peclet number
given by

ξ = coth(Pe) − 1/Pe (9.126)

and where the Peclet number is computed using

Pe =� û � hK/(2α) (9.127)

Figure 9.27 shows a schematic of the weighting functions around a nodal point. It is
clear that the side that lies in the upwind direction of the flow adds more weight that the
side that lies in the down-wind direction.

An implicit finite difference time stepping procedure results in the linear set of algebraic
equations of the form

[K̄e] · (Te
j+1) = (̄fe) (9.128)
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where [K̄e] is a combined stiffness, mass and convective matrix, given by

[K̄e] = α[Ke] − 1

∆t
[M̄e] + [C̄e] (9.129)

The element force vector (̄fe) is formed by the internal heat generation term and the tem-
peratures in the previous time steps as

(fe) = − 1

∆t
[M̄e] · (Te

j ) + ( ˙̄Qe) (9.130)

The terms in the above matrices are defined by

[Ke] =

� � �
[B]T [B]dxdydz (9.131)

[M̄e] =

� � �
[W̄]T [N]dxdydz (9.132)

[C̄e] =

� � �
[W̄]([N]T · (u))[B]dxdydz (9.133)

and the internal heat generation term is defined by

( ˙̄Qe) =

� � �
[W̄](Q̇)dxdydz (9.134)

The three-dimensional mold filling example given below uses this procedure to account for
the energy balance.

9.3.3 Three-Dimensional Mixed Formulation for Creeping Flow Problems

In this chapter, we have derived the two-dimensional finite element penalty formulation
for creeping flows where the pressure was eliminated by assuming a compressible flow.
Here, we will use a mixed formulation, where the pressure is included among the unknown
variables. In the mixed formulation,we use different order of approximation for the pressure
as we will for the velocity. For instance, if tetrahedral elements are used, we can use
a quadratic representation for the velocity (10 nodes) and a linear representation for the
pressure (4 nodes). Hence, we must use different shape functions for the velocity and
pressure. For such a formulation we can write

ux =
5

j

uxjN
1
j (9.135)

ue
y =

5
j

uyjN
1
j (9.136)

ue
z =

5
j=1

uzjN
1
j (9.137)

pe =
5
k=1

pkN2
k (9.138)
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Substituting the approximated velocities and pressures into the governing equations, apply-
ing Galerkin’s method and Green-Gauss transformation where necessary, we arrive at the
set of linear algebraic equations given by⎡⎢⎢⎣

[Sc
11] [Sc

22] [Sc
33] 0

[S11] [S12] [S13] [Sp
14]

[S12]T [S22] [S23] [Sp
24]

[S13]T [S23]T [S33] [Sp
34]

⎤⎥⎥⎦
⎛⎜⎜⎝

ux

uy

uz

p

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Fx

Fy

Fz

0

⎞⎟⎟⎠ (9.139)

Similar to the two-dimensional formulation for creeping flow, the terms in the above
equation are defined by

S11
cij =

� � �
N2

i

∂N1
j

∂x
dxdydz

S12
cij =

� � �
N2

i

∂N1
j

∂y
dxdydz

S13
cij =

� � �
N2

i

∂N1
j

∂z
dxdydz

S11
ij =

� � �
∂N1

i

∂x

∂N1
j

∂x
dxdydz

S12
ij =

� � �
∂N1

i

∂x

∂N1
j

∂y
dxdydz

S13
ij =

� � �
∂N1

i

∂x

∂N1
j

∂z
dxdydz (9.140)

S22
ij =

� � �
∂N1

i

∂y

∂N1
j

∂y
dxdydz

S23
ij =

� � �
∂N1

i

∂y

∂N1
j

∂z
dxdydz

S33
ij =

� � �
∂N1

i

∂z

∂N1
j

∂z
dxdydz

S11
pij =

� � �
∂N1

j

∂x
N2

i dxdydz

S12
pij =

� � �
∂N1

j

∂y
N2

i dxdydz

S13
pij =

� � �
∂N1

j

∂z
N2

i dxdydz

and the force vector is computed using

F x
i =

� � �
fxNidxdydz +

�
txN1

i dS (9.141)

F y
i =

� � �
fyNidxdydz +

�
tyN1

i dS (9.142)

F y
i =

� � �
fzNidxdydz +

�
tzN

1
i dS (9.143)
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Figure 9.28: Schematic diagram of a control volume in a three-noded element mesh.

9.4 MOLD FILLING SIMULATIONS USING THE CONTROL VOLUME
APPROACH

As discussed in Chapter 8, where we presented the flow analysis network (FAN), mold
filling is an important aspect of injection and compression molding processes. During
mold filling, the flow fronts will form weldlines (knitlines in compression molding), air
pockets (which can lead to dieseling), molecular or fiber orientation, among others. The
orientation in turn leads to anisotropic thermo-mechanical properties, which control the
properties of the final part, as well as shrinkage and warpage. Consequently, mold filling
simulation presents the information required to understand and optimize a process and the
performance of a final product.

9.4.1 Two-Dimensional Mold Filling Simulation of Non-Planar Parts (2.5D
Model)

Based on the flow analysis network, Wang et al., [18] and Osswald [11] developed the finite
element/control volume appproach (FEM-CVA) for injection and compression molding,
respectively. Similar to FAN, FEM-CVA assigns a fill factor to every nodal point or nodal
control volume. The nodal control volumes are constructed by connecting element centroids
to element midsides, as shown in Fig. 9.28.

The control volumes are defined as follows:

• Gate nodes - Node through which the melt will enter the cavity. At the beginning of
mold filling, entrance nodes start as full (fi = 1)

• Filled nodes - Nodes which lie behind the flow front are considered filled (fi = 1)

• Melt front nodes - Nodal control volumes containing the free flow front (0 < fi < 1)
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• Empty nodes - Node whose control volume lies ahead of the flow front and are still
empty (fi = 0)

The boundary conditions are defined in the same way as with the flow analysis network.
The nodes whose control volumes are empty or partially filled are assigned a zero pressure,
and the gate nodes are either assigned an injection pressure or an injection volume flow
rate. Just as is the case with flow analysis network, a mass balance about each nodal control
volume will lead to a linear set of algebraic equations, identical to the set finite element
formulation of Poisson’s or Laplace’s equation. The mass balance (volume balance for
incompressible fluids) is given by

N5
j=1

qij = 0 (9.144)

for injection molding, or

N5
j=1

qij = −Aiḣi (9.145)

for compression molding.
The intra-nodal flow rates, qij are given by

qij =
Sij

hij

pj − pi

Lij
(hijXij) (9.146)

where Sij is the flow conductance for the Hele-Shaw model defined in Chapter 5, pi and pj

are nodal pressures, hij is the average gap height between nodes i and j, Lij is the distance
between nodes i and j and Xij is the width of the effective window between the two nodes
under consideration given by

Xij = BaBbÛab + BbBcÛbc (9.147)

where points Ba, Bb and Bc are defined in Fig. 9.28 along with the other geometric param-
eters used in the above equations and where Ûab and Ûbc are defined by

Ûab = dij · nab

Ûbc = dij · nbc

where dij represents a unit vector between nodes i and j and, nab and nbc, represent unit
normal vectors of lines BaBb and BbBc, respectively.

Once the boundary conditions are applied, the pressure field can be solved using the
appropriate matrix solving routines. Note that for mold filling problems, there is a natural
boundary condition that satisfies no flow across mold boundaries or shear edges, ∂p/∂n =
0. Once the pressure field has been solved, it is used to perform a mass balance using
eqn. (9.144) or (9.145). Once the flowrates across nodal control volume boundaries are
known, a simulation program updates the nodal control volume fill factors using

fk+1
i V k+1

i = fk
i V k

i +
5

j

qij∆t (9.148)

where ∆t is the time step and the subscripts k and k +1 denote the time level. Note that the
volume has been assigned a time step because, when modeling compression molding, the
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Figure 9.29: Triangular and tubular finite element representation of rectangular mold cavity with
3 inserts [18].

old and the new volumes, V k
i and V k+1

i are different since the element gap heights change
with time. This accounts for the squeezing motion of the mold.

The optimum time step in a FEM-CVA simulation is the one that fills exactly one new
control volume. Once the fill factors are updated, the simulation proceeds to solve for a
new pressure and flow field, which is repeated until all fill factors are 1. While the FEM-
CVA scheme does not know exactly, where the flow front lies, one can recover flow front
information in post-processing quite accurately. One very common technique is for the
simulation program to record the time when a node is half full, fi = 0.5. This operation is
performed when the nodal fill factors are updated; if the node has fk

i < 0.5 and fk+1
i > 0.5

then the time at which the fill factor was 0.5 is found by interpolating between tk and tk+1.
These half-times are then treated as nodal data and the flow front or filling pattern at any
time is drawn as a contour of the corresponding half-times, or isochronous curves.

EXAMPLE 9.5.

Injection molding filling of a two-gated rectangular mold. Wang and co-workers
[18] implemented this technique into a simulation program to predict the non-Newtonian,
non-isothermal injection mold filling process. They tested their technique with a two-
gated rectangular mold with three inserts and variable runner diameters. They chose
an unbalanced runner system on purpose to better illustrate the simulation program.
In addition to the above formulation, they used two-noded elements to represent the
runner system. Figure 9.29 presents the finite element mesh employed by Wang et
al. [18] with the dimensions and location of the pressure transducers used to record
pressure during mold filling. The fan gates were of variable thickness as pointed out
in the figure, and the mold cavity was of constant thickness.

The material used in the experiments was an ABS polymer, whose viscosity was
approximated with a shear thinning temperature dependent power law model. Fig-
ure 9.30 presents the experimental as well predicted filling pattern. Both filling
patterns show relatively good qualitative agreement. Similar agreement was found in
the predicted and measured pressure traces. Transducers 1 and 3 present very good
agreement, whereas the predictions for transducer 2 seem to be consistently lower by
about 20%. This discrepancy is explained by the fact that at the beginning, the flow
rate out of the left runner is under-predicted. Such a discrepancy was attributed by
Wang and co-workers to the fact that the juncture losses in the bends of the runner
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Experimental filling pattern
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Figure 9.30: Comparison between experimental and FEM-CVA predicted filling patterns. [18].
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Figure 9.31: Comparison between experimental and FEM-CVA predicted pressure history at three
pressure transducer locations. [18].

system, as well as the runner-gate and gate-cavity, interfaces were not taken into
account by the simulation program.

EXAMPLE 9.6.

Compression Mold Filling of an Automotive Hood. The FEM-CVA was also
implemented by Osswald and Tucker [11] and [12] to solve for the mold filling during
compression molding of sheet molding compound. They used the Barone and Caulk
model for compression molding of thin SMC parts. The Barone and Caulk model for
thin charges results from a momentum balance where the dominant forces are driving
pressures and a hydrodynamic friction coefficient, KH , between the charge and the
upper and lower mold surface. The momentum balance is written as

ux = − h(t)

2KH

∂p

∂x
(9.149)
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and,

uy = − h(t)

2KH

∂p

∂y
(9.150)

for the x- and y-directions, respectively. Substituting these equations in an integrated
continuity equation (as done in the Hele-Shaw model) we get

∂2p

∂x2
+

∂2p

∂x2
= −2KH(−ḣ)

h(t)2
(9.151)

Osswald and Tucker [12] compared their simulation with the mold filling process
of a compression molded automotive hood. The final thickness of the hood was
approximately 2.8 mm, but only 1.27 mm in the headlight area. Since the part is
symmetric only half was simulated. In the experiments, short shots were produced
by placing sheet metal shims on the mold stops. The shims prevented the mold from
completely closing, causing the flow to stop at intermediate stages of mold filling.
Figure 9.32 presents a comparison between the experimental and the predicted filling
pattern. It should be noted that although the hood in the figure appears to be flat, a
three-dimensional mesh was used to represent the curved hood geometry. However,
each element within the mesh represented a local two-dimensional flow as presented
in eqns. (9.149) to (9.151), oriented in 3D space. This type of approximation to model
the flow in non-planar parts (2D flow in 3D space) is referred to as 2.5D flow. The
figure shows excellent agreement between experimental and predicted filling patterns.

9.4.2 Full Three-Dimensional Mold Filling Simulation

Based on the control volume approach and using the three-dimensional finite element for-
mulations for heat conduction with convection and momentum balance for non-Newtonian
fluids presented earlier, Turng and Kim [10] and [17] developed a three-dimensional mold
filling simulation using 4-noded tetrahedral elements. The nodal control volumes are de-
fined by surfaces that connect element centroids and sides as schematically depicted in
Fig. 9.33.

The element side surfaces are formed by lines that connect the centroid of the triangular
side and the midpoint of the edge. Kim’s definition of the control volume fill factors are the
same as described in the previous section. Once the velocity field within a partially filled
mold has been solved for, the melt front is advanced by updating the nodal fill factors. To
test their simulation, Turng and Kim compared it to mold filling experiments done with the
optical lenses shown in Fig. 9.34. The outside diameter of each lens was 96.19 mm and the
height of the lens at the center was 19.87 mm. The thickest part of the lens was 10.50 mm
at the outer rim of the lens. The thickness of the lens at the center was 6 mm. The lens was
molded of a PMMA and the weight of each lens was 69.8 g.

The finite element mesh and boundary conditions used to represent the lens mold are
presented in Fig. 9.35 [10]. The finite element mesh was generated using 90,352 four-noded
tetrahedral elements with 17,355 nodal points, with 4 to 5 element rows across the thickness
of the mold. Since the ram speed was constant during the mold filling process, the flow rate
was assumed constant during the filling of the cavity. The filling time was approximately
4.9 seconds. Based on the surface area of the gate, a uniform inlet velocity of 120 mm/s was
used as a boundary condition in order to have a 4.9 second fill time. The inlet temperature
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Figure 9.32: Comparison between experimental and FEM-CVA predicted filling patterns during
compression molding of an automotive hood [12].
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i

Element centroid

Side centroid

Edge center

Figure 9.33: Contribution of a tetrahedral element to nodal control volume i [10].

Figure 9.34: Photograph of optical lens parts molded by a four-cavity mold [10] (courtesy of 3M
Precision Lens).
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Figure 9.35: Finite element mesh of one half of the lens geometry and associated boundary
conditions [10].

was assumed to be 505.37 K and a heat transfer coefficient of 4,000 W/m2/K was applied
at the mold surfaces.

The polymer melt viscosity was simulated using a cross-model given by

η(γ̇, T, p) =
η0(T, p)

1 +

#
η0γ̇

τ∗

*1−n (9.152)

where n is the power law index and τ∗ is the stress level at which the viscosity is during the
transition between zero shear-rate viscosity and the shear thinning region. For amorphous
thermoplastics, it is common to use a WLF equation for the temperature dependence as

η0(T, p) = D1e
−

A1(T − T ∗)
A2 + (T − T ∗) (9.153)

when T > T ∗ and η0 = ∞ when T ≤ T ∗, where T ∗ is the glass transition temperature. In
the above equation

T ∗ = D2 + D3p (9.154)

and

A2 = Â2 + D3p (9.155)

Turng and Kim used the material properties listed in Table 9.4.
Figure 9.36 presents a comparison of the experimental and numerical filling pattern.

As can be seen, the agreement is excellent. It must be pointed out that the solution was
dependent of the heat transfer coefficient between the mold wall and the flowing polymer
melt.

Figure 9.37 presents the position of the flow front before the mold fills. It is evident
from the shape of the flow front at that stage of filling that an intricate weldline is forming
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Table 9.4: Material Properties for PMMA

Property Value
ρ 1185kg/m3

k 0.21 W/m/K
Cp 2300 J/kg/K
n 0.264
τ∗ 9.9338×104

A1 42.565
Â2 51.6 K
D1 5.86 × 1016

D2 377.15 K
D3 0 K/Pa

Figure 9.36: Experimental and predicted melt front advancement at fill times of 1.2, 2.4 and 3.6
seconds [10].

Figure 9.37: Melt front prediction at 4.6 seconds filling time, and weld line location in the final
part [10].
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Figure 9.38: Melt front prediction at the end of filling after raising the mold temperature by 50 K
[10].

in that region. The predicted temperature fields reflected up to 20 K of temperature rise due
to viscous dissipation.

The same simulation was used to find the optimal conditions that would eliminate the
weldline that formed during the end of filling. It was found that the flow was significantly
affected when increasing the mold temperature by 50 K. This change not only created a
flow that eliminated the weldline location, but also further reduced birefringence effects,
a desirable factor when manufacturing optical lenses. Figure 9.38 presents the simulated
flow front location at the end of filling after raising the mold temperature by 50 K. Here,
we can clearly see the reduction in the race-tracking effect, that was pronounced with the
original process conditions.

9.5 VISCOELASTIC FLUID FLOW

In general, as discussed in Chapter 5, the total stress tensor is defined by

σ = −pδ + τ

σij = −pδij + τij (9.156)

where δ is the unit tensor and δij is the Kronecker delta. With this total tensor, the conser-
vation laws for an incompressible isothermal fluid flow yields

∂ui

∂xi
= 0 (9.157)

∂2σij

∂xj
+ ρfi = ρ

Dui

Dt
(9.158)

where f is the body force per unit mass. Here, we need to close the system of equations with
a constitutive equation, which will relate the stress, τ , to the deformation experienced by the
fluid. In some applications it is better to split these stress into a purely viscous component,
τN , which is usually interpreted as the solvent contribution to the stress in the polymeric
solution, or as the stress response associated with fast relaxation modes [2, 6, 13, 15], and
an extra-stress which contains all the elastic components of the stress tensor. This split
stress has a lot of impact on the mathematical nature of the full set of governing equations,
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making the equations numerically more stable [14]. The stress tensor can now be written
as

τ = τN + τV

τij = τNij + τV ij (9.159)

where τV denotes the viscoelastic stress, while τN is the Newtonian component defined
by

τN = ηN γ̇ (9.160)

For the viscoelastic stress, we can use differential or integral constitutive models (see
Chapter 2). For differential models we have the general form

Y τV + λ1τV (1) + λ2 (γ̇ · τV + τV · γ̇) + λ3 (τV · τV ) = ηV γ̇ (9.161)

where the upper-convective derivative τV (1) is defined as

τV (1) =
DτV

Dt
− "

τV · ∇u + ∇uT · τV

)
(9.162)

In order to solve viscoelastic problems, we must select the most convenient model for
the stress and then proceed to develop the finite element formulation. Doue to the excess in
non-linearity and coupling of the viscoelastic momentum equations, three distinct Galerkin
formulations are used for the governing equations, i.e., we use different shape functions for
the viscoelastic stress, the velocity and the pressure

τ e
V =

nτ5
k1=1

τV iN
1
i

ue =

nu5
k2=1

uiN
2
i (9.163)

pe =

np5
k3=1

piN
3
i

where N1
i , N2

i and N3
i represent the three different finite element shape functions and nτ ,

nu and np will be the order of the element for each variable.
The next step will be to formulate the Galerkin-weighted residual for each of the gov-

erning equations�
V

�
∂ue

i

∂xi

�
N3

k3dV = 0 (9.164)�
V

�
∂

∂xi

"−pδij + ηN γ̇e
ij + τe

V ij

)
+ ρ

#
fe

i − Due
i

Dt

*�
N2

k2dV = 0 (9.165)�
V

�
YτV ij + λ1(τV ij)(1) + λ2 (γ̇ilτV lj + τV ilγ̇lj)+

λ3 (τV ilτV lj) − ηV γ̇ij ] N
1
k1 = 0 (9.166)
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Applying the Green-Gauss Theorem (9.1.2) to the residual of the momentum eqn. (9.165)
we get

�
V

�
N2

j ρ

#
Due

i

Dt
− fe

i

*
+

∂N2
j

∂xk
(−peδik + ηN γ̇e

ik + τe
V ik)

�
dV =�

S

N2
j σe

iknkdS (9.167)

where nk is the outward unit normal, S the arc length measured along the boundary and
σijnj is the traction at the boundary, which can be specified with this type of formulations.
Formulations like this have been used widely in the literature to analyze viscoelastic flow
problems [1, 4, 9, 14].

Using the upper-convective Maxwell fluid eqn. (9.166) it reduces to

�
V

�
τV ij + λ1(τV ij)(1) − ηV γ̇ij

�
N1

k1 = 0 (9.168)

For a two-dimensional problem, we can define the following set of matrices and tensors
that will help arrange the FE system

Aij =

�
V

N1
i N1

j dxdy,

Bx
ij =

�
V

N1
i

∂N2
j

∂x
dxdy, By

ij =

�
V

N1
i

∂N2
j

∂y
dxdy,

Cx
ij =

�
V

N3
i

∂N2
j

∂x
dxdy, Cy

ij =

�
V

N3
i

∂N2
j

∂y
dxdy,

Dx
ijk =

�
V

N1
i N3

j

∂N1
k

∂x
dxdy, Dy

ijk =

�
V

N1
i N2

j

∂N1
j

∂y
dxdy,

Ex
ijk =

�
V

N1
i N1

k

∂N2
k

∂x
dxdy, Ey

ijk =

�
V

N1
i N1

j

∂N2
j

∂y
dxdy,

Fij =

�
V

�
2
∂N2

i

∂x

∂N2
j

∂x
+

∂N2
i

∂y

∂N2
j

∂y

�
dxdy

Gij =

�
V

�
2
∂N2

i

∂y

∂N2
j

∂y
+

∂N2
i

∂x

∂N2
j

∂x

�
dxdy

Hij =

�
V

∂N2
i

∂x

∂N2
j

∂y
dxdy

Ix
ijk =

�
V

N2
i N2

j

∂N2
k

∂x
dxdy, Iy

ijk =

�
V

N2
i N2

j

∂N2
k
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Using these definitions, the Galerkin finite element formulation for the stress equations
will be

Aijτ
j
V 11 + λ

� 
Dx

ijkuj
1 − 2Ex

ijkuj
1 + Dy

ijkuj
2

'
τk
V 11 − 2Ey

ijkuj
1τ

k
V 12

�
= 2ηV Bx

iju
j
1

(9.169)

Aijτ
j
V 22 + λ

� 
Dx

ijkuj
1 − 2Ey

ijkuj
2 + Dy

ijkuj
2

'
τk
V 22 − 2Ex

ijkuj
2τ

k
V 12

�
= 2ηV By

iju
j
2

(9.170)

Aijτ
j
V 12 + λ

��"
Dx

ijk − Ex
ijk

)
uj

1 +
 
Dy

ijk − Ey
ijk

'
uj

2

�
τk
V 12 − Ey

ijkuj
1τ

k
V 22−

Ex
ijkuj

2τ
k
V 11

�
= ηV

 
By

iju
j
1 + Bx

iju
j
2

'
(9.171)

and for the momentum equation

Bx
jiτ

j
V 11 + By

jiτ
j
V 12 + ηNFiju

j
1 + ηNHiju

j
2 − Cx

ijp
j+

ρ
 
Ix
ijkuj

1 + Iy
ijkuj

2

'
uk

1 = fx
i (9.172)

Bx
jiτ

j
V 12 + By

jiτ
j
V 22 + ηNHiju

j
1 + ηNFiju

j
2 − Cy

ijp
j+

ρ
 
Ix
ijkuj

1 + Iy
ijkuj

2

'
uk

2 = fy
i (9.173)

The continuity equation is given by

− Cx
iju

j
1 − Cy

iju
j
2 = 0 (9.174)

Here, τ j
V 11, τ j

V 12, τ j
V 22, uj

1, uj
2 and pj represent the nodal values of the stress,velocity and

pressure. Finally, the right hand side of the momentum equations contain the contribution
of the body forces and the tractions imposed at the boundary

fx
i =

�
V

N2
i ρfxdxdy +

�
S

N2
i (σ1jnj) dS (9.175)

fy
i =

�
V

N2
i ρfydxdy +

�
S

N2
i (σ2jnj) dS (9.176)

The convective terms in a viscoelastic flow become dominant at heigh Weissenberg numbers
and must be dealt with in a similar manner as with diffusion problems that have large ad-
vective effects. Hence, the streamline upwind Petrov-Garlerkin (SUPG) method must also
be used. In such problems, the conventional shape functions used as weighting functions
are replaced by those that put larger weight on the elements that lie in the upwind side of a
node.

EXAMPLE 9.7.

Viscoelastic flow effects in polymer coextrusion. In this example we will present
work done by Dooley [7, 8] on the viscoelastic flow in multilayer polymer extrusion.
Dooley performed extensive experimental work where he coextruded multilayer sys-
tems through various non-circular dies such as the teardrop channel presented in
Fig. 9.39. For the specific example shown, 165 layers were coextruded through a
feedblock to form a single multiple-layer structure inside the channel.
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Figure 9.39: 165-layer polystyrene structure near the end of a tear drop channel geometry [8, 7].

For the solution of this problem, the momentum and continuity equations for the
steady-state flow of an incompressible viscoelastic fluid are given by

− ∂p

∂xi
+

∂τij

∂xj
= 0 (9.177)

∂ui

∂xi
= 0 (9.178)

where τ is the viscoelastic stress tensor which can be decomposed as a discrete
spectrum of N relaxation times as follows

τ =

N5
i=1

τi (9.179)

For each τi, a constitutive equation must be selected. Dooley and Dietsche [5]
evaluated the White-Metzner, the Phan-Thien Tanner-1, and the Giesekus models,
given by,

τi + λiτi(1) = ηiγ̇ (9.180)

exp

�
%iλi

ηi
tr(τi)

�
τi + λi

�
(1 − ξi

2
)τi(1) +

ξi

2
τ

(1)
i

�
= ηiγ̇ (9.181)

and

τi +
αiλi

ηi
τi · τi + λiτi(1) = ηiγ̇ (9.182)

respectively. The finite element technique was used to solve the above equations
using quadratic elements for the velocities, while the stress and the pressure were
approximated using linear interpolation functions. Figure 9.40 presents the mesh
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Figure 9.40: Finite element mesh used to simulate the teardrop channel geometry [7].

Figure 9.41: Predicted flow patterns for an elastic material in a teardrop channel geometry [7].

used to represent the teardrop channel geometry. When more than one relaxation
time was used the split between the viscous and viscoelastic stress was performed.

Figure 9.41 presents the predicted secondary flow patterns that result from the
vicoelastic flow effects. The Giesekus model with one relaxation time was used for
the solution presented in the figure. For the simulation, a relaxation time, λ, of 0.06
seconds was used along with a viscosity, η, of 8,000 Pa-s and a constant α of 0.80.
Similar results were achieved using the Phan-Thien Tanner-1 model. As expected,
when the White-Metzner model was used, a flow without secondary patterns was
predicted. This is due to the fact that the White-Metzner model has a second normal
stress difference, N2 of zero.

Problems

9.1 Integrate eqn. (9.49) to derive the terms in the one-dimensional element mass matrix
given in eqn. (9.50).

9.2 Derive the equations that result in the element mass matrix for the constant strain
triangle given in eqn. (9.72).

9.3 Write a 1D FEM program using 2-noded tube elements to balance complex runner
systems in injection molding. Compare the simulation to the runner system presented
in Chapter 6.

9.4 Derive the equations that result in the constant strain triangle element force vector that
represents the internal heat generation term Q̇ given in eqn. (9.72).

9.5 What would the constant strain finite element equations look like for the transient heat
conduction problem with internal heat generation if you were to use a Crank-Nicholson
time stepping scheme?
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100 mm

10 mm

10 mm

Figure 9.42: Ribbed part molded with unsaturated polyester.

9.6 Write a two-dimensional finite element program, using constant strain triangles and
1D tube elements, to predict the flow and pressure distribution in a variable thickness
die. Use the Hele-Shaw model. Compare the FEM results with the analytical solution
for an end-fed sheeting die.

9.7 Write a two dimensional FEM program using 2D 4-noded isoparametric elements to
model compression molding of a non-Newtonian (power law) fluid. Use the geometry
and parameters given for the L-shaped charge given in Fig. 9.18.

9.8 In your university library, find the paper Barone, M.R. and T.A. Osswald, J. of Non-
Newt. Fluid Mech., 26, 185-206, (1987), and write a 2D FEM program to simulate the
compression molding process using the Barone-Caulk model presented in the paper.
Compare your results to the BEM results presented in the paper.

9.9 Write a two-dimensional finite element program, using constant strain triangles, to
predict the curing reaction of unsaturated polyester parts. Use the Kamal-Sourour
model and the kinetic constants given in Chapter 8. Predict the degree of cure as
a function of time of the ribbed cross-section given in Fig. 9.42 Assume an initial
temperature of 25oC and a mold temperature of 150oC.

REFERENCES

1. G. Astarita and G. Marrucci. Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill,
London, 1974.

2. R. Byron Bird, Charles Curtiss, F. Robert C. Armstrong, and Ole Hassager. Dynamics of Polymer
Liquids: Kinetic Theory, volume 2. John Wiley & Sons, 2nd edition, 1987.

3. A.N. Brooks and T.J.R. Hughes. Streamline upwind-Petrov-Garlerkin formulation for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp.
Meth. Appl. Mech. Eng., 32:199, 1982.

4. M.J. Crochet, A.R. Davis, and K. Walters. Numerical Simulation of Non-Newtonian Flow.
Elsevier, Amsterdam, 1984.

5. L. Dietsche and J. Dooley. In SPE ANTEC, volume 53, page 188, 1995.

6. M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Oxford University Press, 1986.

7. J. Dooley. Viscoelastic Flow Effects in Multilayer Polymer Coextrusion. PhD thesis, TU Eind-
hoven, 2002.



REFERENCES 509

8. J. Dooley and K. Hughes. In SPE ANTEC, volume 53, page 69, 1995.

9. M. Kawahara and N. Takeuchi. Mixed finite element method for analysis of viscoelastic fluid
flow. Comput. Fluids., 5:33, 1977.

10. S.-W. Kim. Three-Dimensional Simulation for the Filling Stage of the Polymer Injection Molding
Process Using the Finite Element Method. PhD thesis, University of Wisconsin-Madison, 2005.

11. T.A. Osswald. Numerical Methods for compression mold filling simulation. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, Urbana-Champaign, 1986.

12. T.A. Osswald and C.L. Tucker III. Compression mold filling simulation for non-planar parts.
Intern. Polym. Proc., 5(2):79–87, 1990.
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CHAPTER 10

BOUNDARY ELEMENT METHOD

Do not worry about your difficulties in
Mathematics. I can assure you mine are
still greater.

—Albert Einstein

The two main advantages of the boundary element method (BEM) over FDM and FEM
are, first, that the integral equations generated when applying the method fully satisfy the
partial differential equations that govern the problem, and second, that the integral represen-
tation generated for linear problems is a boundary-only integral formula. The limitations
that result from the volume discretization of the other techniques, especially when dealing
with complex geometries, which may include free surfaces, moving boundaries and solid
inclusions, are not present when using linear BEM to solve a problem.

The BEM has been limited to linear problems because the fundamental solution or
Green’s function is required to obtain a boundary integral formula equivalent to the original
partial differential equation of the problem. The non-homogeneous terms accounting for
nonlinear effects and body forces are included in the formulation by means of domain
integrals, making the method lose its boundary-only character. Techniques have been
developed to approximate these domain integrals directly such as cell integration [12, 43],
Monte Carlo integration [54], or indirectly by approximation of domain integrals to the
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boundary and then solving these new boundary-only integrals such as dual reciprocity
[3, 17, 18, 43], and particular integral technique [3].

10.1 SCALAR FIELDS

bem,scalar field An effective method of formulating the boundary-value problems of po-
tential theory is to represent the harmonic function by a single-layer or a double-layer
potential generated by continuous source distributions, of initially unknown density, over
the boundary S, and forcing these potentials to satisfy the prescribed boundary conditions
of the problem. This procedure leads to the formulation of integral equations which define
the source densities concerned. This method is usually called indirect method, and can be
formulated in terms of a single-layer potential (equation of the first kind) or a double-layer
potential (equation of a second kind) [21, 50, 51].

In engineering applications it is often convenient to obtain integral representations which
directly involve the field and its fluxes, rather than equations for single- or double-layer
densities. This methodology is commonly called the direct method. For Poisson’s equation
this can be done using the Green’s identities for scalar fields. As we already know, Poisson’s
equation is widely used in transport phenomena and polymer processing, and it is defined
as,

∇2u(x, t) =
∂2u(x, t)

∂xj∂xj
= b(x, t) (10.1)

For example, for a constant thermal conductivity, k, the energy conservation equation can
be written in this form for the temperature, i.e.,

∇2T =
∂2T

∂xj∂xj
= b(x, t) (10.2)

where the non-homogeneous term b(x, t) is defined by

b(T,x, t) =
ρ

k

D(CpT )

Dt
− 1

2k
η(γ̇) (γ̇ : γ̇) +

Q̇

k
(10.3)

where ρ is the density, Cp is the specific heat, η the viscosity and Q̇ the heat generation per
unit volume.

10.1.1 Green’s Identities

Let V be a region in space bounded by a closed surface S (of Lyapunov-type [24, 50]), and
f(x) be a vector field acting on this region. A Lyapunov-type surface is one that is smooth.
The divergence (Gauss) theorem establishes that the total flux of the vector field across the
closed surface must be equal to the volume integral of the divergence of the vector (see
Theorem 10.1.1).

Defining f = φ∇ψ into Gauss theorem and using the chain rule for the divergence of
the vector, the so-called Green’s first identity is obtained (Theorem (10.1.2)). This identity
is also valid when we use it for a vector g = ψ∇φ, when we substract the fist identity for
g to the first identity of f we obtain the Green’s second identity (Theorem (10.1.3)).
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Theorem 10.1.1. Divergence (Gauss) Theorem�
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Figure 10.1: Schematic of the domain of interest divergence theorem nomenclature.

EXAMPLE 10.1.

Green’s identities for a 2D Laplace’s equation (heat conduction) Here, we will
demonstrate how to develop Green’s identities for a two-dimensional heat conduction
problem, which for a material with constant properties is described by the Laplace
equation for the temperature, i.e.,

∇2T = 0 (10.4)

Using the domain definition and nomenclature presented in Fig. 10.1, the divergence
theorem for a 2D vector f can be written as�

V

#
∂fx

∂x
+

∂fy

∂y

*
dV =

�
S

(fxnx + fyny) dS (10.5)

To obtain the Green’s identities, or integral representations, of the Laplace equa-
tion, we define the vectors f = φ∇T and g = T∇φ. Here, φ is an additional function
that we will define later. For now, the only requirement for this function is to be two
times differentiable in space. Substituting our new definition of the vector f , we get�

V

�
∂

∂x

#
φ

∂T

∂x

*
+

∂

∂y

#
φ

∂T

∂y

*�
dV =

�
S

#
φ

∂T

∂x
nx + φ

∂T

∂y
ny

*
dS (10.6)

The chain rule of differentiation will give us the Green’s first identity for vector
f = φ∇T ,�

V

φ

#
∂2T

∂x2
+

∂2T

∂y2

*
dV +

�
V

#
∂φ

∂x

∂T

∂x
+

∂φ

∂y

∂T

∂y

*
dV

=

�
S

#
φ

∂T

∂x
nx + φ

∂T

∂y
ny

*
dS

(10.7)
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The first integral is zero, because the function T satisfies Laplace’s equation, therefore�
V

#
∂φ

∂x

∂T

∂x
+

∂φ

∂y

∂T

∂y

*
dV =

�
S

#
φ

∂T

∂x
nx + φ

∂T

∂y
ny

*
dS (10.8)

This is Green’s first identity for the vector f = φ∇T . If we follow the same method-
ology, we will get the Green’s first identity for g = T∇φ�

V

T

#
∂2φ

∂x2
+

∂2φ

∂y2

*
dV +

�
V

#
∂φ

∂x

∂T

∂x
+

∂φ

∂y

∂T

∂y

*
dV

=

�
S

#
T

∂φ

∂x
nx + T

∂φ

∂y
ny

*
dS

(10.9)

Here, we will not make the function φ satisfy Laplace’s equation, therefore, we will
conserve the first integral.

Subtracting the first identities for the two vectors will result in

−
�

V

T∇2φdV =

�
S

(φ∇T − T∇φ) · ndS (10.10)

Notice that this is an integral representation of Laplace’s equation for temperature. We
will need to specify the extra function φ so it can become a complete representation. It
is important to point out here that we have not made any approximation when deriving
this formulation, making it an exact solution of the differential equation, ∇2T = 0.

10.1.2 Green’s Function or Fundamental Solution

The final result of Example 10.1 is Green’s second identity for two vectors defined by
f = φ∇T and g = T∇φ. The only aspect that remains to be resolved is a correct selection
of the extra function φ. The best selection is a function that satisfies a special form of
Poisson’s equation given by

∇2φ = −δ(x − x0) (10.11)

where δ(x−x0) is the Dirac delta function with its peak at the pointx0 [14]. This choice has
the added advantage that it will reduce even further our integral representation of Laplace’s
equation

−
�

V

T (−δ (x − x0)) dV =

�
S

(φ∇T − T∇φ) · ndS

T (x0) =

�
S

(φ∇T − T∇φ) · ndS (10.12)

for a point x0 located inside the domain V . We have now reduced the integral formulation
for Laplace’s equation to a boundary-only expression.

The function φ that satisfies eqn. (10.11) is called the fundamental solution or Green’s
function. Mathematically, the fundamental solution of a problem is the solution of the
governing differential equation when the Dirac delta is acting as a forcing term [39, 52, 53].
Due to the infinite nature of the problem, no boundary conditions are needed and, providing
that the Dirac delta or delta function is of a singular nature, Green’s function or fundamental
solution is also singular. In general, it is defined by

Lφ∗ = −δ(x, ξ) (10.13)
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where L is a scalar differential operator and ξ is the source point. The physical interpre-
tation of a Green’s function in the case of Laplace’s equation is that φ∗ is the temperature
distribution, for example, corresponding to an infinite heat source at ξ.

Additionally, we can now make use of two useful properties of the delta function,

lim
V →0

�
V

δ(x, ξ)dV = 1 and�
V

f(x)δ(x, ξ)dV = f(ξ) if ξ ∈ V (10.14)

Basically, when integrating the product of a function and the Dirac delta function, the Dirac
delta function acts like a filter, resulting in the value of that function evaluated at the point
where the Dirac delta function is applied.

The most common technique for the derivation of fundamental solutions is to use integral
transforms, such as, Fourier, Laplace or Hankel transforms [29, 39]. For simple operators,
such as the Laplacian, direct integration and the use of the properties of the Dirac delta are
typically used to construct the fundamental solution. For the case of a two-dimensional
Laplace equation we can use a two-dimensional Fourier transform, F [], to get the funda-
mental solution as follows,

F
�∇2φ∗� = F [−δ]

s2F [φ∗] = −1

F [φ∗] = − 1

s2

and the inverse Fourier

φ∗ = F−1

�
− 1

s2

�
= − 1

2π
ln r

∂φ∗

∂n
=

1

2πr

∂r

∂n

where r is the Euclidean distance between the location of the source and any point in the
domain. Table 10.1 presents the most common Green’s functions which can be used as
basis for many problems in transport phenomena.

10.1.3 Integral Formulation of Poisson’s Equation

We can now generate an equivalent integral formulation for Poisson’s equation

∇2u(x, t) =
∂2u

∂xj∂xj
= b(u,x, t) (10.15)

in a domain V with a closed surface S (of the Lyapunov type [29, 40]), (see Fig. 10.2),
which can have Neumann (i.e., constant temperature), Dirichlet (i.e., constant heat flux),
Robin (i.e., convection heat condition), or any other type of boundary conditions on S.

The integral formulation for Poisson’s equation is found the same way as for Laplace’s
equation (using Green’s second identity, Theorem (10.1.3)), except that now the second vol-
ume integral is kept in Green’s second identity. For a point x0 ∈ V the integral formulation
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Table 10.1: Green’s Function for Commonly Used Operators.

Equation 2Da 3D
Laplace

∇2φ∗ = −δ(x, ξ) φ∗ =
−1

2πr
ln r φ∗ =

−1

4πr

Helmholtz

(∇2 + λ2)φ∗ = −δ(x, ξ) φ∗ =
−1

4i
H(1)(λr) φ∗ =

−1

4πr
e−iλr

Modified Helmholtz

(∇2 − λ2)φ∗ = −δ(x, ξ) φ∗ =
−1

4π
K0(λr) φ∗ =

−1

4πr
eλr

Bi-harmonic

∇4φ∗ = −δ(x, ξ) φ∗ =
−1

8π
r2 ln r φ∗ =

−r

8πr

aHere, H(1) and K0 are the Hankel and Bessel functions respectively [1].

n

y

x

S1

S2

∆

2u(x,t)=b

Figure 10.2: Schematic of the domain of interest.
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will be

u(x0) =

�
S

φ∗(x,x0)
∂u(x)

∂n
dS −

�
S

u(x)
∂φ∗(x,x0)

∂n
dS+�

V

φ∗(x,x0)b(u,x, t)dV (10.16)

In the mathematical literature this equation is interpreted in the following way:

• The function u(x0) is a superposition of a single-layer potential of density ∂u/∂n

(first boundary integral),

• A double-layer potential of density u(x) (second boundary integral) and

• A volume potential of density b(u,x, t) [29, 50, 51].

The use of this terminology reflects the fact that, as the point x0 approaches the surface
of the domain, the double-layer potential has a discontinuity and it must be taken it into
account by multiplying the field u(x0) by a coefficient.

In terms of heat transfer this can be physically interpreted that, if the infinite heat source
is at the boundary (the infinite character is given by the delta function), then for a smooth
surface only half of the delta function must be included. The general integral representation
of Poisson’s equation becomes,

c(x0)u(x0) =

�
S

φ∗(x,x0)
∂u(x)

∂n
dS −

�
S

u(x)
∂φ∗(x,x0)

∂n
dS+�

V

φ∗(x,x0)b(u,x, t)dV (10.17)

where c = 1 for points inside the domain (x0 ∈ V), c = 1/2 for points in a smooth surface
(x0 ∈ S), and c = 0 for points outside the domain and surface.

For two-dimensional non-smooth surfaces, like the one shown in Fig. 10.3, the coefficient
can be calculated by,

c(x0) =
β

2π
(10.18)

This becomes cumbersome when we want to apply the method to any geometry. Fortunately
there is a way to overcome the direct calculation of this coefficients as we will demonstrate
in the numerical implementation.

10.1.4 BEM Numerical Implementation of the 2D Laplace Equation

Consider the two-dimensional Laplace equation for temperature in the domain presented in
Fig. 10.4

∇2T = 0 (10.19)

where we have boundaries with Dirichlet, T = T̄ , in S1 and Neumann boundary conditions,
q = ∂T/∂n = q̄, in S2, where we define S = S1 + S2 as the boundary of the domain
V . Since with BEM we are required to apply both boundary conditions, the Dirichlet and
Neumann boundary conditions, in the BEM literature they are not referred to as "essential"
and "natural."
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β

Figure 10.3: Corner and angle definition in a 2D domain.

n

y

x

S1

S2

∆

2T=0

q=q=
∂T
∂n

T=T

V

Figure 10.4: Schematic of the domain of interest with governing equation and boundary type
definition.
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Figure 10.5: Schematic of the discretized domain of interest.

Constant field variable
Linear field variable Quadratic field variable

S SS

V VV

Figure 10.6: Schematic of 1D element types to represent 2D domains.

By using Green’s identities and Green’s functions, an equivalent integral equation is
obtained as

c(x0)T (x0) =

�
S

φ∗(x,x0)q(x)dS −
�

S

q∗(x,x0)T (x)dS (10.20)

where q∗ = ∂φ∗/∂n. It is impossible to find an exact general solution for the above integral
equation, requiring us to approximate the integrals. The first step, as usual, is to divide the
surface into smaller surface elements, or boundary elements. Similar to FEM, the selection
of the element is related to the order of the approximation. Figure 10.5 shows a typical
mesh for the domain in Fig. 10.4, while Fig. 10.6 illustrates three common two-dimensional
elements that can be used for the discretization. If the surface is divided into NE elements,
eqn. (10.20) can be written as

1

2
Ti =

NE5
j=1

�
Sj

φ∗qjdS −
NE5
j=1

�
Sj

q∗T jdS (10.21)
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for any node, i, in the surface, where a smooth surface was assumed (we will generalize
later), and where the superscript j = 1, ..., NE indicate the elements on the boundary.

If we use constant elements (one node), the value of the temperature and heat are con-
sidered constant and equal to the value at the mid point of the element. Therefore, we can
place the values for temperature and heat flow outside of the integrals in eqn. (10.21) to get

1

2
Ti +

NE5
j=1

Tj

�
Sj

q∗dS =

NE5
j=1

qj

�
Sj

φ∗dS (10.22)

Here, we change the element superscript j by a subscript j because, for the constant ele-
ments, each node actually represents an element. This equation can be written in compact
form as

1

2
Ti + h̄ijTj = gijqj (10.23)

where the matrices h and g are the integrals of the Green’s functions from each node i to
all the other points in the boundary j defined by

h̄ij =

�
Sj

q∗(xi,xj)dS gij =

�
Sj

φ∗(xi,xj)dS (10.24)

we can also collapse the coefficients in the small matrix h as follows

hij = h̄ij +
1

2
δij (10.25)

which, once we apply eqn. (10.23) to every node i = 1, ..., N on the surface, will allow us
to write

HT = Gq (10.26)

Each of these matrices are of dimension N × N , and the vectors u and q are of dimension
N , because with constant elements, the number of nodes and elements is the same. In
eqn. (10.26), we have 2N unknowns with only N equations. In order to complete the
system, we must use N boundary conditions,which can be all temperatures or heat fluxes,or
combinations of heat fluxes and temperatures. The methodology of including the boundary
conditions is simple and consists in an exchange of columns between the known values and
the unknowns. After the exchange, eqn. (10.26) reduces to

Ax = b (10.27)

where the vector x has all the remaining unknown boundary values of temperature and heat
fluxes.

Equation (10.27) can be solved by using the usual solution schemes for linear algebraic
equations. Once these values are obtained, the integral representation of Laplace’s equation,
eqn. (10.20), can be used to find the value of the temperature at any point within the domain,
i.e.,

Ti =
N5

j=1

Gijqj −
N5

j=1

Hijuj (10.28)
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Here, the coefficients of the matrices H and G are calculated from the internal point or
node i to the boundary nodes j = 1, ..., N . If the values of the fluxes are needed in some
internal points, we just calculate them by using the derivatives of the temperature from the
integral representation, i.e.,

qx
i =

�
∂T

∂x

�
i

=

�
S

∂φ∗

∂x
qdS −

�
S

∂q∗

∂x
udS (10.29)

qy
i =

�
∂T

∂y

�
i

=

�
S

∂φ∗

∂y
qdS −

�
S

∂q∗

∂y
udS (10.30)

Algorithm 11 shows the steps for a general boundary element calculation.

Algorithm 11 Boundary Element Method (BEM).

program BEM

call input(x,y,nee,bc) reading nodes’ coordinates, element connectivity and

boundary conditions

call BEM-assemble BEM H and G matrices

call boundary-condition column exchange

call solve x = A
−1

b

end program BEM

10.1.5 2D Linear Elements.

In order to increase the accuracy of the element and therefore reduce the number of boundary
elements we must increase the order of the interpolation functions across the element. If
we choose a linear element, similar to FEM, we can approximate any variable within the
element with the use of a linear isoparametric interpolation as follows

xe(ξ) = N1(ξ)x1 + N2(ξ)x2 (10.31)

where the interpolation or shape functions are defined as

N1(ξ) =
1

2
(1 − ξ)

N2(ξ) =
1

2
(1 + ξ) (10.32)

for ξ ∈ [−1, 1]. Figure 10.7 shows a schematic of the linear 2D isoparametric element.
The values of the temperature, T , and the normal heat flux, q, are then interpolated using

eqn. (10.31) as,

T e(ξ) =N1(ξ)T1 + N2(ξ)T2 =
�
N1 N2

� #
T1

T2

*
qe(ξ) =N1(ξ)q1 + N2(ξ)q2 =

�
N1 N2

�#
q1

q2

*
(10.33)

The integral formulation is the same as for the constant element, i.e.,

1

2
Ti =

NE5
j=1

�
Sj

φ∗qjdS −
NE5
j=1

�
Sj

q∗T jdS (10.34)
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Figure 10.7: Isoparametric linear element difinition.

Using the interpolation eqn. (10.33) we get

1

2
Ti =

NE5
j=1

�
Sj

φ∗ �
N1 N2

�
dS

#
qj
1

qj
2

*
−

NE5
j=1

�
Sj

q∗
�
N1 N2

�
dS

#
T j

1

T j
2

*
(10.35)

which again can be compacted to

1

2
Ti =

NE5
j=1

�
g1

ij g2
ij

� #
qj
1

qj
2

*
−

NE5
j=1

�
h̄1

ij h̄2
ij

� #
T j

1

T j
2

*
(10.36)

where

gk
ij =

�
Sj

φ∗(xi,x
j)NkdS h̄k

ij =

�
Sj

q∗(xi,x
j)NkdS (10.37)

Figure 10.8 shows a schematic of the juncture between two elements j − 1 and j, where
we can see that node 1 of element j − 1 is the same as node 2 of element j. According
to the definition of the normal heat flux, q = ∂T/∂n, we can have two different values of
the normal heat flux because the normal vector can be different for the two elements (as
shown in the Fig. 10.8). However, we must assure the continuity of the temperature from
one element to another, which implies that the value of the temperature is the same for node
1 of element j − 1 and node 2 of element j, i.e., T j−1

1 = T j
2 . It is important to note that we

have N values of temperatures and 2N values of normal heat fluxes. The integral equation
for a specific node i will look as

1

2
Ti +

�
h̄i1 h̄i2 ... h̄iN

�⎛⎜⎜⎝
u1

u2

...
uN

⎞⎟⎟⎠ =

�
g1

i1 g2
i1 g1

i2 g2
i2 ... g1

iNE g2
iNE

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
1

q1
2

q2
1

q2
2

...
qNE
1

qNE
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10.38)
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Figure 10.8: Linear element connectivity.

where h̄ij = h̄j−1
i1 + h̄j

i2, and the system can be written as

HT = Gq (10.39)

where H = H̄ + 1/2δ. Now, matrix G is rectangular, of dimension N × 2NE and vector
q of dimension 2NE.

At this point, we can proceed with applying the boundary conditions. For the case of
a smooth surface with a continuous normal vector, the values of the normal heat flux will
be continuous and matrix G will be calculated in the same way that matrix H was found,
which will reduce the system to N equations with 2N unknowns. This requires N boundary
conditions. As with the constant element, the columns will be exchanged, forming a linear
system of algebraic equations. For the case of surfaces with a discontinuous normal vector,
we will have the following situations:

• the value of the heat flux is known for the two elements and the temperature is
unknown,

• the temperature and one element flux are known and the remainder heat is unknown,

• the temperature is known and both heat element fluxes are unknown.

The two first cases, although cumbersome, will close the system of equations. However,
the third case will imply the use of an extra equation or the use of a discontinuous element.
When equivalent integral equations to partial differential equations are developed, it is
required that the surface is of a Lyapunov type [29, 40]. For the purpose of this book,
we will assume that this type of surfaces have the condition of having a continuous normal
vector. The integral formulation also can be generated for Kellog type surfaces, which allow
the existence of corners that are not too sharp. To avoid complications, we can assume that
even for very sharp corners the normal vector is continuous, as depicted in Fig. 10.9.

This assumption, which is not very significant from the physical point of view, will
reduce the system to two N × N matrices H and G. With N boundary conditions, the
system of equations will be closed.

Numerical calculation of the c coefficients. Even if we assume that the normal
vector is locally continuous, we cannot assume that always the angle between elements is
always π, resulting in c = 1/2 for every boundary nodal point. As we discussed before,
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n

Figure 10.9: Continuous corner definition.

in two-dimensional problems we can use the angle β to directly calculate the coefficients
(eqn. (10.18)). However, this will complicate the formulation since for every surface nodal
point we must compute the angle, making it even worse for 3D.

A different way to obtain these coefficients is using the fact that the integral formulation
developed from Green’s identities does not have any restriction to have a uniform potential
on the surface (such as a constant temperature). A constant potential will imply that the
normal derivatives, q, must be zero, and the integral formulation reduces to

HT = 0 (10.40)

where T is the vector of constant potential (temperature). This equation implies that the
sum of all the column values of matrix H must be zero. Therefore, the diagonal terms of
the H matrix can be calculated using,

Hii =

N5
j=1

Hij for i �= j (10.41)

which saves us the problem of calculating the coefficients c directly.

10.1.6 2D Quadratic Elements

To reduce the number of surface elements, to better represent the curvature, for more
complicated geometries it is better to use quadratic elements to approximate the variables
within the elements. The integral formulation will be the same with an additional term in
the smaller matrices h̄ and g. The potential and fluxes become

T j(ξ) =
�
N1 N2 N3

�⎛⎝T j
1

T j
2

T j
3

⎞⎠
qj(ξ) =

�
N1 N2 N3

�⎛⎝qj
1

qj
2

qj
3

⎞⎠ (10.42)
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Figure 10.10: Schematic diagram of a square domain with dimensions, governing equations and
boundary conditions.

where

N1 =
1

2
ξ(ξ − 1)

N2 =(1 − ξ)(1 + ξ) (10.43)

N3 =
1

2
ξ(ξ + 1)

With this interpolation, the small matrices will be defined by

gk
ij =

�
Sj

φ∗(xi,xj)NkdS h̄k
ij =

�
Sj

q∗(xi,xj)NkdS (10.44)

for k = 1, 2, 3.
However, in eqn. (10.44), dS = dxdy, which requires us to change coordinates, similar

to the isoparametric formulation in FEM

dS =

/#
∂x

∂ξ

*2

+

#
∂y

∂ξ

*2

dξ = |J|dξ (10.45)

Here, |J| is the Jacobian of the transformation from x − y to ξ.

EXAMPLE 10.2.

Heat equation in a square geometry with linear elements. Using the square section
depicted in Fig. 10.10, we want to solve the steady-state conduction equation for a
material of constant conductivity.

For such a case, the energy equation is reduced to Laplace’s equation for temper-
ature

∇2T = 0 (10.46)
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Figure 10.11: Schematic diagram of the square domain discretization.

with Dirichlet boundary conditions T = T0 at y = 0 and T = TL at y = L, and
adiabatic boundary conditions q = q̄ at x = 0 and q = 0 at x = L. Using L as the
characteristic length and ∆T = TL − T0 as the characteristic temperature gradient,
eqn. (10.46) is written as

∂2Θ

∂ξ2
+

∂2Θ

∂η2
= 0 (10.47)

where

ξ =
x

L
η =

y

L
Θ =

T − T0

TL − T0
(10.48)

with the corresponding boundary conditions

Θ(ξ, 0) = 0 Θ(ξ, 1) = 1

q(0, η) =
q̄

qc
q(1, η) = 0 (10.49)

where qc = k(TL − T0)/L is the characteristic heat flux at the left wall.
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We now generate a mesh using linear elements. A typical mesh is shown in
Fig. 10.11, according to this mesh, the elements have a connectivity matrix given by

nee(i, j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10.50)

Similar to FEM, we must take care of how the nodes are numbered to avoid having
normal vectors pointing in the wrong direction −the inside of the domain in this case.
Here, we selected a positive normal vector pointing out of the domain, a notation that
must be consistent. The terms in the matrices h̄ and g are defined as

gk
ij =

� +1

−1

φ∗(xi,x
j)Nk|J|dξ h̄k

ij =

� +1

−1

q∗(xi,x
j)Nk|J|dξ (10.51)

here, i = 1, ..., N represents the equation node, j = 1, ..., NE the element and
k = 1, 2 the shape function. Gaussian quadratures can be used and the integrals are
approximated by

gk
ij =

ngauss5
ix=1

φ∗(xi,x
j(ix))Nk(ix)|J|ixw(ix)

h̄k
ij =

ngauss5
ix=1

q∗(xi,x
j(ix))Nk(ix)|J|ixw(ix) (10.52)

where ix = 1, ..., ngauss is the location of the Gaussian point and w is the Gaussian
weight vector. Algorithm 12 illustrates the methodology of assembling the matricesH
and G, whereas Algorithm 13 performs the calculation of the matrices in eqn. (10.52).

Figure 10.12 illustrates the dimensionless temperature distribution for a 1 × 1
square geometry with T0 = 100 K, TL = 500 K, q(0, y) = 40 W/m2 and a thermal
conductivity k = 0.1W/m/K. The results in this figure are calculated with 100 nodes
and 20 Gauss points. Figures 10.13 and 10.14 show a comparison between the BEM
solution, with 5 and 20 Gauss points, and the analytical solution for the mid-plane
temperatures, x = L/2 and y = L/2.

10.1.7 Three-Dimensional Problems

For three-dimensional problems the integral formulations previously obtained are also valid
and are implemented into two-dimensional elements that cover the domain surface as shown
in Fig. 10.15. Here, we use triangular and rectangular elements as used with FEM. Again,
depending on the number of nodes per element, we can have constant, linear and quadratic
elements. To be able to represent any geometry it is best to use curvilinear isoparametric
elements as schematically illustrated in Fig. 10.16.

The curvilinear elements will require, as in FEM, a transformation of coordinates from
the cartesian (x, y, z) to the isoparametric (ξ1, ξ2, η), where ξ1 and ξ2 are the isoparametric
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Algorithm 12 Assembling Boundary Element Matrices.

subroutine BEM-assemble

Hbig = 0; Gbig = 0

do i = 1,N+NIP equation node i,
for boundary (N) and internal nodes (NIP)

xo = x(i); yo = y(i) x(NN+NIP), y(NN+NIP) contain the nodes coordinates

do j = 1,NE loop over elements

do k = 1,2

xe(k) = x(nee(j,k)) element nodes’ coordinates

ye(k) = y(nee(j,k))

enddo

call small-bem(xo,yo,xe,ye,g,h) h(1,2) and g(1,2)

do k = 1,2

jj = nee(j,k) element node position in the matrices

Hbig(i,jj) = Hbig(i,jj) + h(1,k)

Gbig(i,jj) = Gbig(i,jj) + g(1,k) using the continuous normal

enddo

enddo

enddo

do i = 1, N+NIP make H diagonal zero

Hbig(i,i) = 0

enddo

do i = 1,N calculation of the H diagonal terms

do j = 1, N

if (i /= j) Hbig(i,i) = Hbig(i,i) - Hbig(i,j)

enddo

enddo

do i = N+1, N+NIP internal nodes coefficient

Hbig(i,i) = 1

enddo

end subroutine BEM-assemble

Algorithm 13 Assembling Small Boundary Matrices with Linear Elements.

subroutine small-bem(xo,yo,xe,ye,g,h)

h = 0; g = 0

do ix = 1,ngauss integration in ξ
xi = gp(ix)

n(1) = 0.5*(1-xi) interpolation functions

n(2) = 0.5*(1+xi)

xgp = n(1)*xe(1) + n(2)*xe(2) gauss point coordinates

ygp = n(1)*ye(1) + n(2)*xe(2)

dn(1) = -0.5 interpolation functions derivatives

dn(2) = 0.5

dxde = dn(1)*xe(1) + dn(2)*xe(2) gauss point coordinate derivatives

dyde = dn(1)*ye(1) + dn(2)*xe(2)

jacobian = sqrt( dxde**2 + dyde**2 ) Jacobian

norm(1) = dxde/jacobian normal vector

norm(2) = dyde/jacobian

dx = xgp - xo

dy = ygp - yo

r = sqrt( dx**2 + dy**2 )

drdn = dx*norm(1) + dy*norm(2)

phi = -log(r)/2/pi fundamental solutions

qq = -drdn/2/pi/r/r

g = g + n*phi*jacobian*w(ix) Integral

h = h + n*qq*jacobian*w(ix)

enddo

end subroutine small-bem
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Figure 10.12: BEM Dimensionless temperature profile.
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Figure 10.13: Comparision between the BEM solution and the exact solution for the temperature
at η = 0.5.



SCALAR FIELDS 531

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

Θ

Fourier 100 modes
20 Gauss points
5 Gauss points

Figure 10.14: Comparision between the BEM solution and the exact solution for the temperature
at ξ = 0.5.

Figure 10.15: 3D single screw extruder barrel and mixing head discretization. White element
delineations define the mixing head surface, and the black lines define the barrel surface representation.
The mixing head surface is represented with triangular as well as quadrilateral elements.
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Figure 10.16: Schematic of 2D elements used to represent 3D geometries.

coordinates and η is the direction of the normal vector (Fig. 10.16). For a variable u, the
transformation is given by⎛⎜⎜⎜⎜⎜⎝

∂u

∂ξ1
∂u

∂ξ2
∂u

∂η

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
∂x

∂ξ1

∂y

∂ξ1

∂z

∂ξ1
∂x

∂ξ2

∂y

∂ξ2

∂z

∂ξ2
∂x

∂η

∂y

∂η

∂z

∂η

⎤⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎝

∂u

∂x
∂u

∂y
∂u

∂z

⎞⎟⎟⎟⎟⎠ (10.53)

or ⎛⎜⎜⎜⎜⎜⎝
∂u

∂ξ1
∂u

∂ξ2
∂u

∂η

⎞⎟⎟⎟⎟⎟⎠ = [J]

⎛⎜⎜⎜⎜⎝
∂u

∂x
∂u

∂y
∂u

∂z

⎞⎟⎟⎟⎟⎠ (10.54)

Extra transformations are needed for the differential elements in the integrals. For the
differential volume we have

dV = |J|dξ1dξ2dη (10.55)

where |J| is the determinant of the Jacobian matrix defined by

|J| =
77 ∂r

∂ξ1
× ∂r

∂ξ2
· ∂r

∂η

77 (10.56)

The differential area element will be

dS = |G|dξ1dξ2 (10.57)

where |G| is the magnitude of the reduced Jacobian vector defined by

|G| =
77 ∂r

∂ξ1
× ∂r

∂ξ2

77 (10.58)
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This magnitude vector is calculated from the surface parametrization as follows [9, 29]

|G| =
.

G2
1 + G2

2 + G2
3 (10.59)

where

G1 =

#
∂y

∂ξ1

∂z

∂ξ2
− ∂y

∂ξ2

∂z

∂ξ1

*
(10.60)

G2 =

#
∂z

∂ξ1

∂x

∂ξ2
− ∂z

∂ξ2

∂x

∂ξ1

*
(10.61)

G3 =

#
∂x

∂ξ1

∂y

∂ξ2
− ∂x

∂ξ2

∂y

∂ξ1

*
(10.62)

10.2 MOMENTUM EQUATIONS

The momentum balance equations can be written in a form that is valid for the Navier-Stokes
equations as well as low Reynolds number non-Newtonian flow equations:

∂ui

∂xi
= 0 (10.63)

− ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
= gi (10.64)

where u is the velocity field, p the pressure or the modified pressure, depending if gravity is
included in the analysis [30]. Equation (10.63) is the continuity equation for incompressible
fluids [5, 41]. For the Navier-Stokes equations, the pseudo-body force term g in eqn. (10.64)
is defined as

gi = ρ

#
∂ui

∂t
+ uj

∂ui

∂xj

*
(10.65)

while for the low Reynolds number flow of non-Newtonian fluids it is

gi = −∂τ
(e)
ij

∂xj
(10.66)

where τ (e) is the extra stress tensor that represents the non-Newtonian effects in the stress
tensor. For inelastic generalized Newtonian fluids, this stress tensor is defined as

τ
(e)
ij = (η(γ̇) − µ) γ̇ij (10.67)

In this case, µ is an arbitrary constant, chosen as the zero shear rate viscosity. The expression
for the non-Newtonian viscosity is a constitutive equation for a generalized Newtonian fluid,
like the power law or Ostwald-de-Waele model [6]

η(γ̇) = mγ̇n−1 (10.68)

where m is the consistency index and n ∈ [0, 1] the power law index.



534 BOUNDARY ELEMENT METHOD

Theorem 10.2.1. Green’s First Identity for a Flow Field (u, p)

µ

2

�
V

#
∂ui

∂xj
+

∂uj

∂xi

* #
∂vi

∂xj
+

∂vj

∂xi

*
dV +�

V

#
∂2ui

∂xj∂xj
− ∂p

∂xi

*
vidV =

�
S

σijvjnidS

where n is an outward unit vector with respect to the surface S and v is an
additional divergence-free velocity field.

10.2.1 Green’s Identities for the Momentum Equations

In order to obtain Green’s identities for the flow field (u, p), a vector z is defined as the dot
product of the stress tensor σ(u, p) and a second solenoidal vector field v (divergence-free).
The divergence or Gauss’ Theorem (10.1.1) is applied to the vector z�

V

∂σijvj

∂xi
dV =

�
S

σijvjnidS (10.69)

where, for an incompressible Newtonian fluid the stress tensor σ(u, p) is defined by

σij = −pδij + µ

#
∂ui

∂xj
+

∂uj

∂xi

*
(10.70)

The chain rule for differentiating the volume integral of eqn. (10.69) and the following
identities [50]

∂σij

∂xj
vi =

#
∂2ui

∂xj∂xj
− ∂p

∂xi

*
vi (10.71)

σij
∂vi

∂xj
=

µ

2

#
∂ui

∂xj
+

∂uj

∂xi

* #
∂vi

∂xj
+

∂vj

∂xi

*
(10.72)

give Green’s first identity for the flow field (u, p) shown in Theorem (10.2.1). Similar to
Green’s second identity for scalar fields, the second identity for the momentum equations
is obtained by applying Green’s first identity to a flow field (v, q) and subtract it from the
first identity of the flow field (u, p) (see Theorem (10.2.2)).

10.2.2 Integral Formulation for the Momentum Equations

Similar to scalar field problems, in order to obtain an integral representation for the momen-
tum eqns. (10.63) and (10.64) for the flow field (u,p), Green’s formulae for the momentum
equations (Theorems (10.2.1) and (10.2.2)) are used together with the fundamental singular
solution of Stokes’ equations, i.e.,

∂uk
i

∂xi
= 0

− ∂qk

∂xi
+ µ

∂2uk
i

∂xj∂xj
= −δ(x − x0)δik (10.73)
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Theorem 10.2.2. Green’s Second Identity for a Flow Field (u, p) and
(v, q)�

V

�#
∂2ui

∂xj∂xj
− ∂p

∂xi

*
vi −

#
∂2vi

∂xj∂xj
− ∂q

∂xi

*
ui

�
dV =�

S

�
σijvjni − σ∗

ijujni

�
dS

where

σ∗
ij = −qδij + µ

#
∂vi

∂xj
+

∂vj

∂xi

*

Here uk
i (x − x0) represents the velocity field generated by a point force in the k-direction

at a point x0 and qk is the corresponding pressure.
With this we obtain an integral representation for the momentum eqns. (10.63) and

(10.64), which was first developed by Ladyzhenskaya in 1963 [40]. For a point x0 ∈ V
we obtain

uk(x0) =

�
S

σ∗
ij(x,x0)ui(x)nj(x)dS−�

S

uk
i (x,x0)σij(x)nj(x)dS +

�
V

uk
i (x,x0)gi(x)dV (10.74)

where

uk
i (x,x0) = − 1

8πµr

#
δik +

(x − x0)i(x − x0)k

r2

*
(10.75)

is the fundamental singular solution of the Stokes system of equations or Green’s funda-
mental solution, known as the Stokeslet, located at the point x0 and oriented in the k-th
direction, with a corresponding pressure

qk(x,x0) =
1

4π

∂

∂nk

#
1

r

*
= − 1

4π

(x − x0)k

r3
(10.76)

and

σ∗(x,x0) = − qkδij + µ

!
∂uk

i

∂xj
+

∂uk
j

∂xi

(

= − 3

4π

(x − x0)i(x − x0)j(x − x0)k

r5
(10.77)

is the symmetric component of a Stokes doublet, which is a fundamental singularity called
Stresslet [29, 50]. The inner product between the Stresslet and the normal vector gives the
traction fundamental solution,

Kij(x,x0) = − 3

4π

(x − x0)i(x − x0)j(x − x0)k

r5
nk (10.78)



536 BOUNDARY ELEMENT METHOD

which simplifies eqn. (10.74) to

ui(x0) =

�
S

Kij(x,x0)uj(x)dS−�
S

uj
i (x,x0)tj(x)dS +

�
V

uj
i (x,x0)gj(x)dV (10.79)

where we define t = σ ·n as the traction vector at the surface. Again, we define the surface
integrals as hydrodynamic single- and double-layer potentials, while the domain integral is
called a hydrodynamic volume potential. The use of this terminology is again due to the
fact that the hydrodynamic double-layer potential is discontinuous as the point x0 crosses
the surface S, thus we must complete the integral formulation as

cij(x0)uj(x0) =

�
S

Kij(x,x0)uj(x)dS−�
S

uj
i (x,x0)tj(x)dS +

�
V

uj
i (x,x0)gj(x)dV (10.80)

where cij(x0) is a second order tensor defined as

cij =

⎛⎝ci 0 0
0 ci 0
0 0 ci

⎞⎠ (10.81)

10.2.3 BEM Numerical Implementation of the Momentum Balance
Equations

Similar to scalar problems, the first step of the BEM is to discretize the boundary into a
series of elements over which the velocity and traction are assumed to vary according to
some interpolation functions.

Once the boundary is divided into NE elements, eqn. (10.80) will be equivalent to

cijuj =
5

k

�
Sk

KijujdS −
5

k

�
S

uj
i tjdS (10.82)

where k = 1, ..., NE. Each element is defined by a number of points or nodes where the
unknown values of the velocity or traction are sought. For our implementation here, we
will use eight-noded isoparametric quadratic elements (Fig. 10.17).

The value of any variable at any point within the element is defined in terms of the node’s
values according to the isoparametric interpolation. As with finite elements, the coordinates
and the velocity field for each element can be written as follows

x =
5

i

Nixi (10.83)

u =
5

i

Niui (10.84)

where i = 1, ..., 8 and Ni are interpolation or shape functions given in terms of the local
coordinates. For the 8-noded quadratic element the interpolation or shape functions for the
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Figure 10.17: 2D isoparametric element definition.

corner nodes are defined by [34, 68, 67],

Ni =
1

4
(1 + ξ10)(1 + ξ20)(ξ10 + ξ20 − 1) corner nodes

Ni =
1

2
(1 − ξ2

1)(1 + ξ20) mid-side nodes with ξ1,i = 0 (10.85)

Ni =
1

2
(1 + ξ10)(1 − ξ2

2) mid-side nodes with ξ2,i = 0

where ξ10 = ξ1ξ1,i and ξ20 = ξ2ξ2,i. Equation (10.83) can be written in matrix form as

⎛⎝ x
y
z

⎞⎠ =

⎡⎣N1 0 0 N2 0 0 ... N8 0 0
0 N1 0 0 N2 0 ... 0 N8 0
0 0 N1 0 0 N2 ... 0 0 N8

⎤⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

x2

y2

z2

...
x8

y8

z8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10.86)

or in more compact form,

x = Nxj (10.87)

where N is the matrix of isoparametric shape functions and xj = (xj , yj , zj) is the vector
of nodal coordinates of the eight element nodes, where j denotes the node. Similarly, the
velocity and traction fields can be expressed as

u =Nuj (10.88)

t =Ntj (10.89)
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For any point in the domain and boundary, the fundamental solutions in the boundary
integrals of eqn. (10.82) can be written in matrix form as

Kij = h =

⎡⎣K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤⎦ (10.90)

and

uj
i = g =

⎡⎣u1
1 u2

1 u3
1

u1
2 u2

2 u3
2

u1
3 u2

3 u3
3

⎤⎦ (10.91)

By substitution of eqns. (10.88) to (10.91) into eqn. (10.82), the boundary integral formula
can be written as follows

cui = H̄iju
j − Gijt

j (10.92)

where

H̄ij =

�
Sj

hNdSj (10.93)

Gij =

�
Sj

gNdSj (10.94)

Here, similar to the scalar fields, the velocity is a continuous function; therefore there is a
unique value of u in every node. Generally, this is not true for the traction vector. However,
for a Lyapunov surface, where the normal is continuous, the tractions are also continuous.
Equation (10.92) becomes

Hu = Gt (10.95)

where H = H̄ − c.
For a problem with N boundary nodes and NIP internal points

H ∈ M (3(N + NIP ), 3(N + NIP ))

and

G ∈ M (3(N + NIP ), 3N)

Consequently, there are 3(N +NIP ) velocity unknowns and 3N traction unknowns. This
makes eqn. (10.95) a system of 3(N +NIP ) equations with 3(N +NIP )+3N unknowns.
Each boundary nodal point has either traction or velocity specified for each direction as a
boundary condition, thus the system in eqn. (10.95) can ultimately be arranged into a
solvable system of linear algebraic equations as

Ax = b (10.96)

where the coefficient matrixA contains columns of matricesHorG; it is fully populated and
non-symmetric. The vector x has unknown traction or velocity and b is the vector obtained
from the multiplication of the boundary conditions with the corresponding coefficients in
H or G.
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10.2.4 Numerical Treatment of the Weakly Singular Integrals

It is easily seen that the Green functions or fundamental solutions in the matrices H and
G go to infinity as the distance between the source and field point decreases, i.e., the
Euclidean distance r → 0. We already saw how the singular coefficients in the H matrix
can be calculated from a constant potential over the surface or a rigid body motion. In
other words, these terms are included in the calculation of the diagonal that includes the
coefficient matrix c. However, the weak singularity of the fundamental solutions in matrix
G needs a special treatment. In particular, the weak singularity of the Stokeslet is of the
order O(r log r) which can be dealt with a self-adaptive coordinate transformation called
the Telles’ transformation [64]. For example, consider the evaluation of an integral� +1

−1

f(x)dx (10.97)

where the function f(x) is weakly singular at x0. The singularity can be cancelled off by
forcing its Jacobian to be zero at the singular point in a new Telles space defined as [64]

x = aγ3 + bγ2 + cγ + d (10.98)

where the constants in this third order polynomial are given by

a =
1

Q
b = −3γ̄

Q

c =
3γ̄2

Q
d =

3γ̄

Q

(10.99)

with

Q =1 + 3γ̄2

γ̄ =(x0x
∗ + |x∗|)1/3 + (x0x

∗ − |x∗|)1/3 + x0 (10.100)

x∗ =x2
0 − 1

The integral is now calculated in terms of γ as follows� +1

−1

f

�
(γ − γ̄)3 + γ̄(γ̄2 + 3)

Q

�
3(γ − γ̄)2

Q
dγ (10.101)

which can be evaluated using the standard Gauss quadrature. After the transformation, all
standard Gauss points of the numerical quadrature are biased towards the singularity where
the Jacobian is zero.

EXAMPLE 10.3.

Poiseuille flow of a Newtonian fluid in a circular tube. For a pressure driven flow
of a Newtonian fluid in a circular tube, we can obtain an analytical solution as we
already did in Chapter 5. Ignoring the entrance effects, the solution for the velocity
field as a function of the radial direction (see Fig. 10.18) is as follows

u(r) =
τRR

2µ

�
1 −

 r

R

'2
�

(10.102)
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Figure 10.18: Schematic diagram of pressure flow through a tube.
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Figure 10.19: Typical BEM mesh and internal nodes location.

where µ is the Newtonian viscosity, R the tube radius and τR the shear stress at the
tube walls defined by

τR =
p0 − pL

2L
R (10.103)

where p0 is the pressure at the entrance, pL the pressure at the end and L is the tube
length.

To find a solution to this problem using BEM, we must solve the Stokes system
of equations with their corresponding equivalent integral formulation eqn. (10.82)
with traction boundary conditions at the entrance and end of the tube and with no-slip
boundary conditions at the tube walls. We start by creating the surface mesh and
by selecting the position of the internal points where we are seeking the solution.
Figure 10.19 shows a typical BEM mesh with 8-noded quadratic elements.
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The BEM methodology listed in Algorithm 11 will be applied again with the ex-
ception of the matrices dimensions. The BEM matrices assembly will be performed
in a similar way as in the scalar case. Algorithms 14 and 15 show the new assem-
bly methodology for the matrices and the integral calculation of the components,
including Telles’ transformation for matrix G.

Algorithm 14 Assembling Boundary Element Matrices for the Stokes Momentum Equa-
tions.

subroutine BEM-assemble

Hbig = 0; Gbig = 0

do i = 1,N+NIP equation node i,
for boundary (N) and internal nodes (NIP)

ii = 3*i

xo = xi(ii - 2:ii) xo(3) and xi(3*(NN+NIP)) contains

the nodes coordinates

do j = 1,NE loop over elements

telles = .false. logical variable to check if Telles is needed

do k = 1,8 8 nodes per element

kk = 3*nee(j,k); telles = ii.eq.kk.or.telles

xe(3*k - 2:3*k) = xi(kk - 2:kk) element nodes’ coordinates xe(8*3)

enddo

call small-bem(telles,xo,xe,g,h) h(3,8*3) and g(3,8*3)

do k = 1,8

jj = 3*nee(j,k) element node position in the matrices

Hbig(ii - 2:ii,jj - 2:jj) = Hbig(ii - 2:ii,jj - 2:jj) + h(:,3*k - 2:3*k)

Gbig(ii - 2:ii,jj - 2:jj) = Gbig(ii - 2:ii,jj - 2:jj) + g(:,3*k - 2:3*k)

using the continuous normal

enddo

enddo

enddo

do i = 1, N+NIP make H diagonal zero

ii = 3*i

Hbig(ii - 2:ii,ii - 2:ii) = 0

enddo

do i = 1,N calculation of the H diagonal terms

do j = 1, N

ii = 3*i; jj = 3*j

if (i /= j) Hbig(ii - 2:ii,ii - 2:ii) = Hbig(ii - 2:ii,ii - 2:ii) - &

Hbig(ii - 2:ii,jj - 2:jj)

enddo

enddo

do i = 1, NIP internal nodes coefficient

ii = 3*NN + 3*i

Hbig(ii - 2,ii - 2) = 1

Hbig(ii - 1,ii - 1) = 1

Hbig(ii,ii) = 1

enddo

end subroutine BEM-assemble

Figure 10.20 shows a comparison between the BEM and the analytical solution
for the velocity profile. As we can see, the results are satisfactory; as a matter of fact,
Fig. 10.21 shows the error for two different discretizations. The error is always less
than 1% for the relatively coarse mesh, while is less than 0.2% for the finer mesh.
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Algorithm 15 Small Boundary Element Matrices (Integrals).

subroutine small-bem(telles,xo,xe,g,h)

if (telles) call telles-position(xo,xe,epsis,nus) it return the value of the

isoparametric coordinates depending

on the location of the element

do ix = 1,ngauss integral in xi1

do iy = 1,ngauss integral in xi2

if (telles) then Telles’ transformation

ep1s = epsis*epsis-1.; ep2s = nus*nus-1.

gam1 = (epsis*ep1s+abs(ep1s))**(1/3)+(epsis*ep1s-abs(ep1s))**(1/3)+epsis

gam2 = (nus*ep2s+abs(ep2s))**(1/3)+(nus*ep2s-abs(ep2s))**(1/3)+nus

xjac = 3.*(gp(i)-gam1)**2/(1.+3.*gam1**2)

yjac = 3.*(gp(j)-gam2)**2/(1.+3.*gam2**2)

zjac = xjac*yjac

xi1 = ((gp(i)-gam1)**3+gam1*(gam1**2+3.))/(1.+3.*gam1**2)

xi2 = ((gp(j)-gam2)**3+gam2*(gam2**2+3.))/(1.+3.*gam2**2)

else

zjac = 1.; xi1 = gp(ix); xi2 = gp(iy) regular Gauss point

endif

dn(5) = 0.5*(-2.*xi1)*(1.-xi2); dn(6) = 0.5*(1.-xi2**2)

dn(7) = 0.5*(-2.*xi1)*(1.+xi2); dn(8) = 0.5*(-1.)*(1.-xi2**2)

dn(1) = 0.25*(-1.)*(1.-xi2)-0.5*(dn(5)+dn(8))

dn(2) = 0.25*(1.-xi2)-0.5*(dn(5)+dn(6))

dn(3) = 0.25*(1.+xi2)-0.5*(dn(6)+dn(7))

dn(4) = 0.25*(-1.)*(1.+xi2)-0.5*(dn(7)+dn(8))

phi = 0.; phi(1,1::3) = dn; phi(2,2::3) = dn; phi(3,3::3) = dn

dxde1 = matmul(phi,xe) derivatives dxde1

dn(5) = 0.5*(1.-xi1**2)*(-1.); dn(6) = 0.5*(1.+xi1)*(-2.*xi2)

dn(7) = 0.5*(1.-xi1**2); dn(8) = 0.5*(1.-xi1)*(-2.*xi2)

dn(1) = 0.25*(1.-xi1)*(-1.)-0.5*(dn(5)+dn(8))

dn(2) = 0.25*(1.+xi1)*(-1.)-0.5*(dn(5)+dn(6))

dn(3) = 0.25*(1.+xi1)-0.5*(dn(6)+dn(7))

dn(4) = 0.25*(1.-xi1)-0.5*(dn(7)+dn(8))

phi = 0.; phi(1,1::3) = dn; phi(2,2::3) = dn; phi(3,3::3) = dn

dxde2 = matmul(phi,xe) derivatives dxde2

n(5) = 0.5d0*(1.d0-epsi**2)*(1.d0-nu); n(6) = 0.5d0*(1.d0+epsi)*(1.d0-nu**2)

n(7) = 0.5d0*(1.d0-epsi**2)*(1.d0+nu); n(8) = 0.5d0*(1.d0-epsi)*(1.d0-nu**2)

n(1) = 0.25d0*(1.d0-epsi)*(1.d0-nu)-0.5d0*(n(5)+n(8))

n(2) = 0.25d0*(1.d0+epsi)*(1.d0-nu)-0.5d0*(n(5)+n(6))

n(3) = 0.25d0*(1.d0+epsi)*(1.d0+nu)-0.5d0*(n(6)+n(7))

n(4) = 0.25d0*(1.d0-epsi)*(1.d0+nu)-0.5d0*(n(7)+n(8))

phi = 0.d0; phi(1,1::3) = n; phi(2,2::3) = n; phi(3,3::3) = n

x = matmul(phi,xe) Gauss point coordinates

Jacobian, normal vector and "r"

ee = dot-product(dxde1,dxde1); gg = dot-product(dxde2,dxde2)

ff = dot-product(dxde1,dxde2); jac = sqrt(ee*gg-ff*ff)

norm(1) = (dxde1(2)*dxde2(3)-dxde2(2)*dxde1(3))/jac

norm(2) = (dxde2(1)*dxde1(3)-dxde1(1)*dxde2(3))/jac

norm(3) = (dxde1(1)*dxde2(2)-dxde1(2)*dxde2(1))/jac

dx = x - xo; r = sqrt(dot-product(dx,dx)); drdn = dot-product(dx,norm)

do i = 1,3 Green’s function

do k = 1,3

uf(i,k) = ( (DELTA(i,k)/r) + dx(i)*dx(k)/r**3 )/(8.d0*pi*visc)

tf(i,k) = -3.d0*( dx(i)*dx(k)*drdn )/(4.d0*pi*r**5)

enddo

enddo

g = g + matmul(uf,phi)*jac*zjac*gw(ix)*gw(iy) Integral summation

h = h + matmul(tf,phi)*jac*w(ix)*w(iy)

enddo

enddo

end subroutine small-bem
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Figure 10.20: Comparision between the BEM and the analytical solution for the velocity.
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10.2.5 Solids in Suspension

Low Reynolds number flows with boundary integral representation have been used to de-
scribe rheological and transport properties of suspensions of solid spherical particles, as
well as for numerical solution of different problems, including particle-particle interaction,
the motion of a particle near a fluid interface or a rigid wall, the motion of particles in a
container, and others.

Boundary element methods can be used for particulate flows where direct1 formulations
can be used. The surface tractions on the solids are integrated to compute the hydrodynamic
force and torque on those particles, which for suspended particles must be zero.

EXAMPLE 10.4.

Fiber motion − Jeffery orbits. The motion of ellipsoids in uniform, viscous shear
flow of a Newtonian fluid was analyzed by Jeffery [32, 33] in 1922. For a prolate
spheroid of aspect ratio a (defined as the ratio between the major axis and the minor
axis) in simple shear flow,u∞ = (zγ̇), the angular motion of the spheroid is described
by

tan θ =
Ka0

a2 cos2 φ + sin2 φ
(10.104)

and

tan φ = a tan

#
2π

t

T

*
(10.105)

where θ is the angle between the fiber’s major axis and the vorticity axis, i.e. y-axis, φ
is the angle between the z-axis and the xz-projection of the fiber axis (see Fig. 10.22),
T is the orbit period

T =
2π

γ̇

#
a +

1

a

*
(10.106)

and K is the orbit constant, determined by the initial orientation using

K = tan θ0

/
cos2 φ0 +

sin2 φ0

a
(10.107)

These equations predict that the spheroid will repeatedly rotate through the same
orbit, the particle will not migrate across the streamline, and that the orbit period is
independent of the initial orientation.

The BEM was implemented for the motion of a single rigid cylindrical fiber in
simple shear. To avoid discontinuities in the normal vector, semi-spheres of the same
cylinder radius were used to cap the cylinder, as schematically depicted in Fig. 10.23.
The aspect ratio for the fiber is redefined as,

a =
L + D

D
(10.108)

1Direct means that we relate in the integral equation velocities and tractions directly. There are some indirect
integral formulations, because the velocity and the tractions are related indirectly by means of hydrodynamic
potentials [29].
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Figure 10.22: Prolate spheroid in shear flow.

The fiber is suspended in the liquid, which means that due to small time scales
given by the pure viscous nature of the flow, the hydrodynamic force and torque on the
particle are approximately zero [26, 51]. Numerically, this means that the velocity and
traction fields on the particle are unknown, which differs from the previous examples
where the velocity field was fixed and the integral equations were reduced to a system
of linear equations in which velocities or tractions were unknown, depending on the
boundary conditions of the problem. Although computationally expensive, direct
integral formulations are an effective way to find the velocity and traction fields for
suspended particles using a simple iterative procedure. Here, the initial tractions are
assumed and then corrected, until the hydrodynamic force and torque are zero.

For the BEM simulations, the fiber length was set to 2 length units, the diameter
to 0.2 length units and the shear rate to 2.0 reciprocal time units. These data imply an
aspect ratio a = 11 and an orbit period T = 843.34 time units. Figure 10.24 shows
the evolution of θ and φ in time for a fiber initially perpendicular to the vorticity axis,
i.e., θ0 = π/2. This simulation requires a large number of elements on the fiber
surface (500 elements with 1200 nodes) and a small time step (0.01 time units); it
is computationally expensive (10 minutes per time step); however, the results agree
with Jeffery’s prediction. The path of the fiber during the simulation is illustrated in
Fig. 10.25. Figures 10.26 and 10.27 show the evolution of the orientation angles as
a function of time and the fiber path θ0 = π/6(30o).

EXAMPLE 10.5.

Viscosity of a sphere’s suspension. The basic problem of suspension mechanics is
to predict the macroscopic transport properties of a suspension, i.e., thermal conduc-
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Figure 10.23: Fiber representation for the BEM simulation.
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Figure 10.24: BEM and Jeffery orientation angles for θ0 = π/2.
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Figure 10.25: BEM predicted path for θ0 = π/2.
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Figure 10.26: BEM and Jeffery orientation angles for θ0 = π/6.
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Figure 10.27: BEM predicted path for θ0 = π/6.
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tivity, viscosity, sedimentation rate, etc., from the micro-structural mechanics. These
flows are governed by at least three length scales: the size of the suspended particles,
the average spacing between the particles, and the characteristic dimension of the
container in which the flow occurs. A number of excellent reviews of the general
subject of suspension rheology are available [16, 26]. Of special interest is the hy-
drodynamic treatment of the problem by Frisch and Simha [16] and Hermans [27].
Numerous models have been proposed to estimate the suspension viscosity. Most of
them are a power series of the form

µ

µ0
= 1 + a1φ + a2φ

2 + ... (10.109)

where φ is the volume concentration of the suspended solids. For dilute systems of
spheres of equal size, where interaction effects are neglected, Einstein [15] arrives at
the following formula

µ

µ0
= 1 + 2.5φ (10.110)

Einstein’s formula holds for any type of linear viscometers, and can be derived by
different methods [10, 26, 31]. For dilute systems, considering the first-order effect
of the spheres interacting with one another, Guth and Simha [25] gave

µ

µ0
= 1 + 2.5φ + 14.1φ2 (10.111)

The direct boundary integral formulation was used to simulate suspended spheres
in simple shear flow. The viscosity was then calculated by integration of the surface
tractions on the moving wall. Figure 10.28 shows a typical mesh for the domain and
spheres for these simulations; in this mesh, the box has dimensions of 1 × 1 × 1
(Length units)3 and 40 spheres of radius of 0.05 length units.

Initially, the spheres are positioned randomly in the box, periodic boundary con-
ditions are used in the x- and y-direction and no-slip on the z-direction. The spheres
move according to the flow field and the viscosity is calculated for several time steps,
and for each configuration an average suspension viscosity is obtained. The box is
divided into 216 elements with 650 nodes, and each sphere into 96 elements with
290 nodes. The computational time depends, as for any particulate simulation, on
the number of spheres. Two different sphere radii were used in the simulations: 0.05
length units and 0.07 length units. In the same way, the box dimensions were set to
1×1×1 (length units)3 and 0.8×0.8×0.8 (length units)3. Each case was simulated
with 10, 20, 30 and 40 spheres.

After 1000 strain units, the recorded viscosity was fitted to give

µ

µ0
= 1 + 2.5463φ + 11.193φ2 (10.112)

The numerical correlations given by the direct BEM simulations are similar to the
expressions given earlier. In fact, the first coefficient in the power expansion is close
to the one predicted by Einstein [15]. The second coefficient in the power expansion
is between the value suggested by Guth and Simha [25] and one suggested by Vand
[65, 66]. In Figure 10.29, the calculated BEM relative viscosity is collapsed for all
cases.
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Figure 10.28: Spheres suspended in simple shear flow.

Figure 10.29: Calculated BEM relative viscosity.
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10.3 COMMENTS OF NON-LINEAR PROBLEMS

When non-linearities are included in the analysis, we must also solve the domain integral
in the integral formulations. Several methods have been developed to approximate this
integral. As a matter of fact, at the international conferences on boundary elements, or-
ganized every year since 1978 [43], numerous papers on different and novel techniques to
approximate the domain integral have been presented in order to make the BEM applicable
to complex non-linear and time dependent problems. Many of these papers were pointing
out the difficulties of extending the BEM to such applications. The main drawback in most
of the techniques was the need to discretize the domain into a series of internal cells to deal
with the terms not taken to the boundary by application of the fundamental solution, such
as non-linear terms.

Some of these methods approximate the domain integrals to the boundary in order to
eliminate the need for internal cells, i.e., boundary-only formulations. The dual reciprocity
method (DRM) introduced by Nardini and Brebbia [42] is one of the most popular tech-
niques. The method is closely related to the method of particular integrals technique (PIT),
introduced by Ahmad and Banerjee [2], which also transforms domain integrals to boundary
integrals. In the PIT method, a particular solution satisfying the non-homogeneous PDE
is first found and then the remainder of the solution, satisfying the homogeneous PDE, is
obtained by solving the corresponding integral equations. The boundary conditions for the
homogeneous PDE must be adjusted to ensure that the total solution satisfies the boundary
conditions of the original problem [2, 4, 44, 45]. The DRM also uses the concept of particu-
lar solutions, but instead of obtaining the particular solution and the homogeneous solution
separately, it applies the divergence theorem to the domain integral terms and converts the
domain integral into equivalent boundary integrals [43].

Two major disadvantages were encountered when applying the DRM and PIT to non-
linear flow problems. First, the lack of convergence as the non linear terms in the problem
become dominant. For the Navier-Stokes equations, Cheng et al.[11] and Power and Par-
tridge [48, 49] reported problems when the Reynolds number was higher than 200. For
non-Newtonian fluid flow, Davis [12] and Hernández [28] faced problems when the shear-
thinning exponent was lower than 0.8. Finally, for thermal problems with natural convection
problems (non-isothermal) when the Rayleigh number was higher than 103 [46, 47, 57, 58].
Second, in the PIT and DRM the resulting algebraic system consists of a series of matrix
multiplications of fully populated matrices, which generates expensive computing times for
complex problems.

When dealing with the BEM solution of large problems, it is common to use the method
of domain decomposition, in which the original domain is divided into subregions, and
finding the full integral representation formula to each region. At the interfaces between
adjacent subregions, continuity conditions are enforced. Some authors refer to the subregion
BEM formulation as the Green element method (GEM; see Taigbenu [62] and Taigbenu
and Onyejekwe [63]). Popov and Power [44, 45] found that the DRM approximation
of the volume potential of a highly nonlinear problem can be substantially improved by
using the domain decomposition scheme. This decomposition technique solved the prob-
lems that were previously encountered in the DRM and PIT, i.e., high Reynolds number
[17, 18, 46, 47], low shear-thinning exponents [19] and high Rayleigh numbers [20]. Al-
though the method keeps the boundary-only character, it is necessary to construct internal
divisions in the domain, which tends to become similar to a finite element mesh. The corre-
sponding matching conditions, that are necessary to keep the system closed, i.e., continuity
of the velocity and equilibrium of tractions between adjacent sub-domains, will lead to
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cumbersome over-determined systems or complicated discontinuous elements, which will
require an internal mesh [44, 45, 46, 47]. In simple two- dimensional problems, the dis-
continuous elements will not be an impediment, while in full three-dimensional domains,
the domain decomposition will be a difficult task.

As a consequence, the application of these types of methods for complex non-linear
problems is limited. Both methods intend to keep the boundary-only character, which
is perfect for small order nonlinearities, but require domain decomposition (complicated
internal meshes) when dealing with high order nonlinearities. Techniques that directly ap-
proximate the domain integral have been developed over the years: Fourier expansions, the
Galerkin vector technique, the multi reciprocity method, Monte Carlo integration and cell
integration. In the early boundary element analysis, the evaluation of the domain integrals
was mostly done by cell integration. The technique is effective and general, but causes the
method to lose its boundary-only nature. It is the simplest way of computing the domain
term by subdividing the domain into a series of internal cells, on each of which a numerical
integration scheme, such as Gauss quadratures, can be applied. Several authors applied the
technique for Newtonian, non-Newtonian and non-isothermal problems with very accurate
results and without the restrictions finded by the techniques that approximate the domain
integrals into boundary integrals [12, 35, 36, 38, 60, 61]. The domain discretization for
the Cell-BEM technique is done by dividing the boundary into a specific type of elements,
while the domain will have a different type of mesh. The internal cells are not required to
be discretized all the way to the boundary in order to avoid the discontinuity of the kernels
in the boundary and to avoid the necessity of recording which nodes are in the boundary
and domain at the same time. As reported by several authors [7, 8, 12, 3], this does not
affect the accuracy of the technique, in fact it is considered an advantage.

The difference between boundary and domain discretization increases the time needed
for pre-processing of a specific problem. In addition, in moving boundary problems there is
the necessity of re-meshing the internal cells, which implies the record of internal solutions
and interpolations for transient problems. In the cell-BEM, the integral formulation is
applied for both, the boundary and internal nodes, and for every node, the internal cells are
used to approximate the domain integral (volume potential). A set of nonlinear equations is
formed for the boundary and internal unknowns, and the equations are solved by successive
iterations or by Newton’s method [12, 17, 18, 28, 54]. In conclusion, the big inconvenience
of the cell-BEM technique is the cumbersome pre-processing, two different meshes, and
the re-meshing in moving boundary problems.

10.4 OTHER BOUNDARY ELEMENT APPLICATIONS

Numerous problems in polymer processing have been solved in the past years with the use
of the boundary element method. In all these solutions, the complexity of the geometry was
the primary reason why the technique was used. Some of these problems are illustrated in
this section.

Gramann, Osswald and Rios [22, 23, 54] used BEM to simulate various mixing processes
in two and three dimensions, an example of which is presented in Figs. 10.30 and 10.31.
In both these systems the velocity and velocity gradients were computed as particles were
tracked while traveling through the system.

The velocity gradients were used to compute the rate of deformation tensor, the mag-
nitudes of the rate of deformation and vorticity tensors. The magnitudes of the rate of
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Figure 10.30: Deforming drop inside a rhomboidal mixing section.

Figure 10.31: Flow patterns inside a section of a static mixer.
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Figure 10.32: Flow patterns inside a section of a static mixer.

deformation and vorticity tensors were used to compute the flow number given by

λ =
γ̇

γ̇ + ω
(10.113)

where λ denotes the flow number and equals 1 when the flow generated is elongational
(ideal for dispersive mixing), 0.5 when the flow is dominated by shear, or 0 for rigid
motion or pure rotational (a sign of poor mixing). From their studies it was found that
although these mixers are excellent distributive mixers, they are primarily dominated by
shear (λ = 0.5). In addition, when tracking the particles through the system, Gramann and
Osswald recorded the time when the particles left the system at the outlet of the mixers.
The ratio of number of points that have emerged from the mixer at an arbitrary point in
time to the total number of points is the cumulative residence time distribution function.
Figure 10.32 presents the cumulative residence time distribution function (CRTD) of the
Kenics static mixer presented in Fig. 10.31 for a Newtonian polymer and a shear thinning
polymer with a power law viscosity of n = 0.7. To simulate the power law behavior of the
melt using BEM, Rios [54] developed a Monte Carlo technique where random points were
sprinkled throughout the domain to account for the non-Newtonian non-linearities.

Rios and Osswald [56] used the boundary element to perform a comparative study of
rhomboidal mixing sections. Rhomboidal mixing sections are defined by the pitch of the
two cuts performed when machining the elements. For example, a 1D3D rhomboidal mixer
has a cut with a pitch of one diameter per turn, and a second cut with a pitch of 3 diameters
per turn as shown in Fig. 10.33. Rios and Osswald studied 9 different configurations. For
each configurations they computed the CRTD and the weighted average total strain (WATS)
defined by

WATS =

6N
i γi

N
(10.114)
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Figure 10.33: Geometric definition of a rhomboidal mixing head.
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Figure 10.34: Flow patterns inside a rhomboidal distributive mixing head.

where N is the total number of points being tracked and γi is the total strain a particle i
will undergo, given by

γi =

� ttotal

0

γ̇(t)dt (10.115)

As an example of the particle tracking procedure, Figure 10.34 presents the particle paths
through the -1.6D1.6D rhomboidal mixing section. Figure 10.35 presents the cumulative
residence time distribution for the -1.6D1.6D, 1D3D and 1D6D rhomboidal mixing heads.
The picture shows that the neutral -1.6D1.6D (pineapple mixer) by far outperforms the other
mixing heads. Table 10.2 presents the WATS for the the three rhomboidal sections. Here,
too, it is clear that the pineapple mixer applies the largest amount of deformation on the
melt.

Rios et al. [55] performed an experimental study with the above rhomboidal mixing
section configurations using a 45 mm diameter single screw extruder. The mixing sections
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Figure 10.35: Cumulative residence time distribution inside three different rhomboidal mixing
heads.

Table 10.2: Weighted Average Total Strain (WATS) for Three Rhomboidal Mixing Heads

Mixing head WATS
-1.6D1.6D 178

1D6D 109
1D3D 81

are shown in Fig. 10.36. Their experimental study was performed with a PE-HD2 They
introduced a yellow masterbatch pigment in the hopper of the extruder and micrographs were
taken of the extrudate for each mixing sections. Figure 10.37 presents the 3 micrographs
pertaining to the 3 mixing sections. The micrographs show the superiority of the -1.6D1.6D
pineapple mixing section. Also, the most visible striations are seen in the micrograph
pertaining to the 1D3D rhomboidal mixing section. Clearly the numerical predictions are
qualitatively in agreement with the experimental results.

Similarly, Osswald and Schiffer [59] studied the mixing, deformation of drops, and
residence time in single screw extruder rhomboidal mixing sections. Using a boundary
element simulation, they were able to modify and optimize an existing mixing section,
eliminating the long tail in the residence time distribution. Figure 10.38 presents a drop and
its flow line as it travels through the elements of a rhomboidal mixing section. The drop
surface was represented with points that were individually tracked as they moved inside the
mixer.

Krawinkel et al. [37] used the boundary element technique to simulate the flow in co-
rotating, double flighted, self cleaning twin screw extruders. Figure 10.39 presents the
boundary discretization of the screws along with the pressure distribution on the screw
surfaces. Once the surface pressures were solved for, the necessary information for particle
tracking was at hand. Figure 10.40 presents several flow lines generated from particle
tracking. In order to allow better presentation of these flow lines, they were plotted using

2Fitting a power law model to rheological measurements done on the HDPE resulted in a power law index, n, of
0.41 and a consistency index, m, of 16624 Pa-sn.



OTHER BOUNDARY ELEMENT APPLICATIONS 559

1D3C

1D6C

-1.6D1.6C

Figure 10.36: Rhomboidal mixing sections studied experimentally.
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Figure 10.37: Extrudate micrographs (× 50) for the three different mixing sections.
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Figure 10.38: Flow line and droplet deformation inside a rhomboidal mixing section.

a moving coordinate system. This moving coordinate system is equivalent to the apparent
movement of the flights as they rotate. Using the boundary, it is possible to compute the
internal values of velocity, rate of deformation and flow number, to better assess the quality
of mixing. Figure 10.41 presents the axial velocity distribution at an arbitrary cross-section
along the z-axis. The figure clearly reveals that most of the material conveying, determined
by the material transport in the z-direction, occurs near the apex between the screws, in
agreement with experimental observation from several other researchers.

Problems

10.1 Determine the velocity profile and traction profiles in a pressure driven slit flow of a
Newtonian fluid. Use ∆p =1000 Pa, µ =1000 Pa-s, h = 1 mm and a distance from
entrance to exit of 1000 mm. Solve the problem using isoparametric 2D quadratic
elements and different gauss points,compare your solutions with the analytical solution
for slit flow.

10.2 Write a boundary element program that will predict the pressure and velocity fields for
the 1 cm thick L-shaped charge depicted in Fig. 10.42. Assume a Newtonian viscosity
of 500 Pa-s. Note that for this compression molding problem the volume integral must
be included in the analysis.

a) Plot the pressure distribution.
b) Draw the nodal velocity vectors.
c) Comparing with FDM and FEM solutions of the same problem, what are your

thoughts regarding the BEM solution?

10.3 In your university library, find the paper Barone, M.R. and T.A. Osswald, J. of Non-
Newt. Fluid Mech., 26, 185-206, (1987), and write a 2D BEM program to simulate the
compression molding process using the Barone-Caulk model presented in the paper.
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Figure 10.39: Pressure distribution on the screw surfaces of a co-rotating double flighted twin
screw extruder.

Figure 10.40: Particle tracking inside a co-rotating double flighted twin screw extruder. In order
to plot the flow lines, the system is viewed from a coordinate system that moves in the axial direction
at a speed of RΩsinφ.



562 BOUNDARY ELEMENT METHOD

Highest uz

Lowest uz

Figure 10.41: Velocity field in the axial direction (uz) at an arbitrary position along the z-axis.
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Figure 10.42: Schematic diagram of the compression molding of an L-shaped charge.
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Pick one of the geometries and compare your results to the results presented in the
paper.

10.4 Consider a drop of a fluid of Newtonian viscosity µ1 submerged in a Newtonian fluid
of viscosity µ2 with a surface tension, σ.

a) Develop an integral equation for the flow inside the drop (fluid with viscosity µ1)
b) Develop an integral equation for the flow outside the drop (fluid with viscosity

µ2)
c) Take the limit of these two integral equations when the point approaches the

surface of the drop. Note that the velocity field is continuous across the drop
surface, but the tractions present a jump given controlled by surface tension.
Be careful with the sign and direction of the normal vector. You will obtain a
Fredholm integral equation of the second kind for drop deformation.

d) Go to your university library and find the paper Rallison, J.M. and A. Acrivos, J.
Fluid Mech., 89, 191, (1978), and compare your equations to those given in the
paper.

10.5 Develop the corresponding integral equations for Poisson’s equation,

∇2T = b

The non-homogeneous term b(x0) can be expressed as a linear combination of known
basis functions fR(x0,xi) as follows,

b(x0) =
N5
i

αifR(x0,xi)

With the known functions we can define a set of particular solutions of the following
non-homogeneus system,

∇2T̂i = fR(x0,xi)

a) Substitute the definitions of the particular solutions and the non-homogeneous
term and find an equivalent boundary-only integral formulation. This is the com-
monly known Dual Reciprocity Method.

b) What type of functions are a good selection for fR?

10.6 Develop a Dual Reciprocity boundary-only integral equation for the Navier-Stokes
system of equations.

10.7 Do a literature search and find alternative ways of simulating non-linear equations
using BEM. How does the technique compare to other numerical methods.

10.8 What is the indirect BEM formulation? How does it compare to the direct method.
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CHAPTER 11

RADIAL FUNCTIONS METHOD

It ain’t over till it’s over.

—Yogi Berra

Radial functions method (RFM)1, often referred to as radial basis functions collocation
method (RBFCM) has gained significant attention in recent years, but compared to FDM,
FEM and even BEM, it is a relatively new method. Radial basis functions were originally
used by Hardy in 1970 [10, 11] to interpolate topography in maps using sparse and scattered
data points. In 1990, Kansa [12, 13] first used the method to solve partial differential
equations when studying problems in fluid dynamics. Since then, Kansa and many other
researchers have helped promote and advance the technique, making it an accepted tool to
solve partial differential equations. Mai-Duy and Tanner [16] used the technique to model
non-Newtonian fluid flow of shear thinning and viscoelastic liquids. In their work, they
solved flows using a power law shear thinning model, and Ericksen-Filbey and Oldroyd-B
viscoelastic models, all with satisfactory results. More recently, Estrada [4], Estrada et
al. [6, 7] and López and Osswald [5] successfully used the technique to represent coupled
energy and momentum balances to model non-Netwonian flows during polymer processing.

The main advantage of the radial functions method (RFM) is that it is a technique
that does need neither domain nor boundary meshes as required with FEM and BEM, or

1This chapter was written with contributions from O.A. Estrada-Ramı́rez and I.D. López-Gómez
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Figure 11.1: Schematic diagram a domain with collocation points.

homogeneous grid points as FDM, to solve partial differential equations. Essentially, it is
a meshless technique based on collocation methods. The method has proven to be very
accurate compared to other numerical techniques, even for a small number of collocation
points [12] and for problems with a large advective components [5], making it an alternative
technique to FDM, FEM and BEM. However, one disadvantage of RBFM is that it generates
full unsymmetric matrices that require large amounts of storage and computation times. As
an alternative, symmetric radial basis functions techniques have been implemented, which
reduce storage requirements and computation costs [8]. However, the implementation is
more complex, especially for non-linear systems and it presents accuracy problems for nodes
that are close to the boundaries [14]. This chapter gives an overview of the radial functions
method along with the implementation of the technique, presenting several examples in
polymer processing.

11.1 THE KANSA COLLOCATION METHOD

Collocation techniques are based on the fact that a field variable in a continuous space can be
approximated with linear interpolation coefficients and basic functions located on discreet
points sprinkled on the domain of interest, as schematically presented in Fig. 11.1.

When the value of the field variable is known in some locations, it is possible to determine
the field variable at any location in space. A general collocation expression for a two-
dimensional space is given by

f(xi, yi) ≈
N5

j=1

g(xj , yj)αj (11.1)

where the function f(xi, yi) is represented at any collocation point i using N bi-dimensional
functions g(xj , yj), evaluated at collocation points j, and their corresponding interpolation
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coefficients αj that are adjusted to match the field variable of interest. Similar to the general
collocation relation, eqn. (11.1), we can represent the field variable f(xi, yi) using radial
basis function collocation as

f(xi, yi) ≈
N5

j=1

φ(rij)αj (11.2)

where rij is the distance between collocation points i and j, and for 2D2 is given by

rij =
.

(xi − xj)2 + (yi − yj)2 (11.3)

If we apply a differential operator L[] on eqn. (11.2), we can interpolate between operated
field variables

L[f(xi, yi)] =

N5
j=1

L[φ(rij)]αj (11.4)

This allows us to represent partial differential equations as found in the balance equations
using the collocation method. Equation (11.47) is a solution to a partial differential equation
represented by a system of linear algebraic equations, formed by the interpolation coeffi-
cients, αj , and the operated radial functions. The interpolation coefficients are solved for
using matrix inversion techniques to approximately satisfy the partial differential equation
L[f ].

The sum of the terms in eqn. (11.47) can be regarded as a mathematical series, whose
convergence is controlled by the number of terms. Therefore, the accuracy of the solution
of an operated system of governing equations is directly linked to the number of collocation
points within the domain [2].

There are many choices of radial basis function. Past research has demonstrated that
polyharmhonic thin plate splines of various order a work best to represent systems governed
by the balance equations [4]. A polyharmhonic thin plate spline is given by

φ(rij) = rij
2a ln(rij) (11.5)

where a can be chosen according to the type of problem being solved. Note that when
rij → 0, the function φ(rij) as well as its derivatives go to zero. Using the above equation
we can define the derivative of the RBF with respect to r as

∂φ(rij)

∂r
= rij

2a−1(2a ln(rij) + 1) (11.6)

When L[] is the Laplacian Operator, with d being the dimensionality of the problem, we
get

∇2φ(rij) =
∂2φ(rij)

∂r2
+

∂φ(rij)

∂r
· d − 1

rij
(11.7)

and

∂2φ(rij)

∂r2
= rij

2(a−1)(4a2 ln(rij) + 4a − 2a ln(rij) − 1) (11.8)

2One- and three-dimensional implementations are similar, where the definition of rij changes accordingly.
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11.2 APPLYING RFM TO BALANCE EQUATIONS IN POLYMER
PROCESSING

When solving the balance equations, our primary variables are the temperature, pressure
and velocity fields throughout the domain. For example, the temperature at any position
(xi, yi), Ti, can be represented using

Ti =
N5

j=1

φT (rij)αj (11.9)

For pressure, the number of nodes can be lower, due to the fact that, when applying
velocity Dirichlet boundary conditions, the pressure remains unknown. For pressure we
can write

pi =

Np5
j=1

φp(rij)βj (11.10)

The velocity field in a three-dimensional domain is represented using

uxi
=

N5
j=1

φu(rij)λj (11.11)

uyi
=

N5
j=1

φu(rij)ξj (11.12)

uzi
=

N5
j=1

φu(rij)χj (11.13)

Furthermore, we can also use radial functions to interpolate the magnitude of the rate of
deformation tensor using

|γ̇| =
N5

j=1

ςjφγ(rij) (11.14)

11.2.1 Energy Balance

In this section, we implement the radial basis function method in the energy equation and
apply the technique to an example problem. We begin with a steady-state energy balance
given by

ρCp

#
uxi

∂Ti

∂x
+ uyi

∂Ti

∂y

*
= k∇2Ti + ηiγ̇

2
i (11.15)

To approximate this form of the energy balance, we must first define the differential operators
applied to the temperature field

∂Ti

∂x
=

N5
j=1

∂φT (rij)

∂r

∂rij

∂x
αj (11.16)
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∂Ti

∂y
=

N5
j=1

∂φT (rij)

∂r

∂rij

∂y
αj (11.17)

and

∇2Ti =
N5

j=1

∇2φT (rij)αj (11.18)

The resulting RFM form of the steady-state energy balance becomes

N5
j=1

�
ρCp

∂φT (rij)

∂r

#
uxi

∂rij

∂x
+ uyi

∂rij

∂y

*
− k∇2φT (rij)

�
αj = ηiγ̇

2
i (11.19)

The boundary conditions must also be written in RFM form. The Dirichlet temperature
boundary condition, given by

Ti = Ta; i ∈ ΓD (11.20)

is written as

N5
j=1

φT (rij)αj = Ta (11.21)

Furthermore, the Neumann temperature boundary condition

−k

#
∂Ti

∂x
nxi

+
∂Ti

∂y
nyi

*
= q̇; i ∈ ΓN (11.22)

becomes

−k

N5
j=1

�
∂φT (rij)

∂r

#
∂rij

∂x
nxi

+
∂rij

∂y
nyi

*�
αj = q̇ (11.23)

and the Robin temperature boundary condition

−k

#
∂Ti

∂x
nxi

+
∂Ti

∂y
nyi

*
= h (Ti − T∞) ; i ∈ ΓR (11.24)

is written as

N5
j=1

�
k

∂φT (rij)

∂r

#
∂rij

∂x
nxi

+
∂rij

∂y
nyi

*
+ hφT (rij)

�
αj = hT∞ (11.25)

Similarly to the above derivation, we can also use the technique to predict transient
temperature fields. Again, as with finite elements and boundary elements, the time stepping
is done using finite difference techniques. For a Crank-Nicholson transient energy equation
formulation given by

ρCp

�
T l

i − T l−1
i

∆t
+

1

2

!
ul

xi

∂T l
i

∂x
+ ul

yi

∂T l
i

∂y
+ ul−1

xi

∂T l−1
i

∂x
+ ul−1

yi

∂T l−1
i

∂y

(�
=

1

2

�
k∇2T l

i + ηl
i

"
γ̇l

i

)2
+ k∇2T l−1

i + ηl−1
i

"
γ̇l−1

i

)2
�
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(11.26)

the RFM solution takes the form

N5
j=1

�
φT (rij) +

∆t

2

#
ρCp

∂φT (rij)

∂r

#
ul

xi

∂rij

∂x
+ ul

yi

∂rij

∂y

*
− k∇2φT (rij)

*�
αl

j =

∆t

2

�
k∇2T l−1

i + ηl−1
i

"
γ̇l−1

i

)2
+ ηl

i

"
γ̇l

i

)2 − ρCp

!
ul−1

xi

∂T l−1
i

∂x
+ ul−1

yi

∂T l−1
i

∂y

(�
+ T l−1

i

(11.27)

where l denotes the time step number. As will be shown in the next section, material
properties that vary in space can also be interpolated throughout the domain with the use
of radial functions.

EXAMPLE 11.1.

Viscous heating temperature rise due to a combined drag-pressure flow between
two parallel plates. Using RFM, Estrada [4] computed the temperature rise of a
fluid subjected to a combination of drag and pressure flow between parallel plates and
compared the results of an anlytical and a boundary element dual reciprocity (BEM-
DRM) solutions presented by Davis et al. [3]. Figure 11.2 presents a schematic of
the problem with dimensions, physical properties and boundary conditions.

The fluid that is confined between the parallel plates flows due to a drag flow
caused by an upper plate velocity, u0, and a pressure flow caused by a pressure drop
in the x-direction of ∆p. The combined analytical velocity field is given by

ux = − 1

2η

#
∆

L

*
y2 + u0

u0

h
+

h

2η

#
∆p

L

*
y (11.28)

and is presented in Fig. 11.3. Using this velocity profile, the analytical steady-state
temperature rise due to viscous heating is given by

∆T = T − T0 = − 1

12ηk

#
∆p

L

*2

y4 +
1

6k

#
∆p

L

* �
2u0

h
+

h

η

#
∆p

L

*�
y3

− 1

2k

�
ηu2

0

h2
+ u0

#
∆p

L

*
+

h2

4η

#
∆p

L

*2
�

y2

+
� h3

12ηk

#
∆p

L

*2

− h2

6k

#
∆p

L

* #
2u0

h
+

h

η

#
∆p

L

**
+

h

2k

!
ηu2

0

h2
+ u0

#
∆p

L

*
+

h2

4η

#
∆p

L

*2
(�

y

(11.29)

The RFM solution was compiled using 1029 collocation points (Fig. 11.2) and
second order (a = 2) thin-plate splines. Figure 11.4 presents a comparison between
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Figure 11.2: Schematic diagram of the viscous dissipation problem with combination drag-pressure
flow between parallel plates, and collocation points for the RF method solution.
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Figure 11.3: Combined drag-pressure velocity field between two parallel plates.
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Figure 11.4: Comparison between RFM temperature rise and analytical and BEM-DRM solutions.

the analytical solution and the numerical RFM and BEM-DRM solutions. It is clear
from the figure that the RFM solution perfectly captures the viscous dissipation effect
in this problem. The average error was 0.296% with a maximum error just under
1%, as expected in the regions of low velocity. The results were comparable with a
BEM-DRM solution with fourth order radial polyharmonic polynomic splines [3].

EXAMPLE 11.2.

One dimensional convection-diffusion problem. As mentioned in Chapter 8, one
heat transfer problem that is clearly difficult to solve involves combinations of con-
duction and convection as the one-dimensional problem illustrated in Fig. 11.5. Here,
we have a heat transfer convection-diffusion problem, where the conduction, which
results from the temperature gradient, and the flow velocity are both in the x-direction.

As pointed out in Chapter 8, for the case where D � L the dimensionless energy
balance reduces to

Pe
∂Θ

∂ξ
=

∂2Θ

∂ξ2
(11.30)

where the Peclet number is defined by Pe = ρCpuxL/k, the dimensionless tem-
perature by Θ = (T − T0)/(T1 − T0), and ξ = x/L. The boundary conditions in
dimensionless form are

Θ(0) = 0 and Θ(1) = 1 (11.31)

This problem was solved using a one-dimensional RFM with 200 collocation
points, evenly distributed along the x-axis using Algorithm 16. Figure 11.6 compares
the analytical solution with computed RBFM solutions up to Pe=100. As can be seen,
even for convection dominated cases, the technique renders excellent results. It is
important to point out here that for the radial functions method no up-winding or
other special techniques were required.
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Figure 11.5: Schematic diagram of the convection-conduction problem in dimensionless form.
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Figure 11.6: Comparison between analytical and RFM solutions for a one-dimensional convection-
diffusion heat transfer problem for several Peclet numbers.
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Algorithm 16 Convection-diffusion with RFM

program RFMconvdiff RBF and EQ are matrices of NxN and alfa, b and Theta are

vectors of size N

deltaXi = 1d0/(N-1)

do i = 1, N

do j = 1, N

r = abs((i-1)*deltaXi-(j-1)*deltaXi)

if(r==0d0) then

RBF(i,j) = 0d0

else

RBF(i,j) = (r**(2*a))*log(r)

end if

if(i == 1) then

b(i) = 0d0

Eq(i,j) = RBF(i,j)

Else if (i == N) then

b(i) = 1d0

Eq(i,j) = RBF(i,j)

Else

if(r==0d0) then

Eq(i,j)=0d0

Else

dphi dr = r**(2*a-1)*(2*a*dlog(r)+1)

Lapl phi = r*(2*(a-1))*(4*a**2*dlog(r)+4*a - 2*a*dlog(r)-1)

dr dXi = ((i-1)*deltaXi-(j-1)*deltaXi)/r

Eq(i,j) = Pe*(dphi dr*dr dXi) - Lapl phi

End If

b(i) = 0d0

End If

End Do

End do

call solve-system(Eq,b,alfa) solve-system is any subroutine to solve linear

systems (AX = b)
Theta = matmul(RBF,alfa)

end program RFMconvdiff
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11.2.2 Flow problems

In a similar fashion as with the energy equation, we can also approximate the continuity
equation and the equation of motion using radial basis functions. The continuity equation,
written as

∂uxi

∂x
+

∂uyi

∂y
= 0 (11.32)

can be approximated using the RFM by re-writting the above equation as

N5
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�
ξj = 0 (11.33)

Similarly, if we write the x-component of the equation of motion for a 2D and 2 1/2D3

solution as
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the RFM approximation is written as
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(11.35)

For the y-component of the equation of motion
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we can write
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3Within this discussion it is understood that the 2 1/2D solution is a 3D flow where the velocity field does not
change in the z-direction. Such a can be flow through a channel such as an unwrapped screw channel of constant
cross-section as encountered in the metering section of a single screw extruder.
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In a 2 1/2D flow case we must also include the z-component
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which can be approximated using radial basis functions collocation with
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As mentioned earlier, space or field dependent material properties can also be represented
with radial functions. This is the case with rate of deformation- or velocity-dependent
viscosity. Here, we present two alternatives to represent viscosity and viscosity gradients.
The first and simpler form, also referred to a the direct method, simply applies the RFM to
the viscosity itself as

ηi =

N5
j=1

φη(rij)ωj (11.40)

where the gradients are represented by
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and
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The second alternative, or indirect method, applies the RFM to a temperature and rate of
deformation dependent function given by

ηi = f (Ti, γ̇i) (11.43)

where the gradient in the x-direction becomes
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This gradient can be approximated using RFM as
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Similarly, the y-gradient of the viscosity is written as
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and can be represented with RFM using
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Although the indirect method is more difficult to implement, it renders better results because
the rate of deformation and temperature fields are smoother and better bounded than the
viscosity field. For example, when using the power law shear thinning model, the viscosity
goes to infinity when the rate of deformation goes to zero.

The Dirichlet velocity boundary conditions, given by

uxi
= uax

; i ∈ ΓDu (11.48)

and

uyi
= uay

; i ∈ ΓDu (11.49)

are approximated using
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and
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The pressure Dirichlet boundary condition, for a fully developed velocity, can be written
as

pi = pa; i ∈ ΓDp (11.52)

which is terms of RBF is represented using
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The above approach can be used to model non-Newtonian flows with a relatively high
degree of accuracy. For example, Fig. 11.7 presents a comparison between a RFM solution
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Figure 11.7: Comparison between a semi-analytical and predicted RFM velocity distribution for a
pressure flow through a slit for a shear thinning polymer melt.

and a semi-analytical solution for the pressure driven slit flow of a shear thinning melt with
a Carreau viscosity model defined by,

η(γ̇, T ) =
K1

(1 − K2γ̇)
K3

(11.58)

with constants K1 = 24000 Pa-s, K2 = 1.9 s and a shear thinning constant, K3, of 0.94.
The geometry used to solve the problem was a 0.015 m long slit with a 0.015 m gap and
pressure drop of 5000 Pa. As can be seen, the agreement between the solutions is excellent,
even for a fluid with relatively high shear thinning behavior. It should be pointed out that
the solution of this problem was achieved using a 1D discretization.

EXAMPLE 11.3.

Simulation of cavity flow with a Reynolds number of 100. The closed cavity flow
is a classical problem used to validate the accuracy of the solution of the equation of
motion for a Newtonian fluid flow with inertia effetcs. Here, we present the solution
of this problem as presented by Estrada [4]. The geometry and conditions simulated
by Estrada are schematically depicted in Fig. 11.8.

Here, the boundary conditions used are all Dirichlet conditions on the walls of the
cavity; ux = 1m/s and uy = 0 on the upper wall of the cavity, and the remaining
three walls with ux = uy = 0. Estrada used a viscosity of 1 Pa-s and a density of
100 kg/m3. Using the above data and dimensions the characteristic Reynolds number
for this flow problem is 100. To test the RFM solution, Estrada set up three different
geometries with 729 (27×27), 1369 (37×37) and 1849 (43×43) collocation points
as depicted in Fig. 11.9 The RFM solutions were compared to FEM solutions. In a
similar study, Roldán compared a cavity flow without convective effects to FEM as
well as BEM solutions and presented great agreement between the three solutions
[17].

Figure 11.10 presents the velocity field inside the cavity for the intermediate size
problem with 1369 collocation points. Note that not all collocation points are pre-

4A Carreau model constant K3 of 0.9 is equivalent to a power law index, n, of 0.1.
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Figure 11.8: Schematic diagram of the cavity flow problem.
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Figure 11.9: Geometry and collocation points for the cavity flow RF method solution.
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a Reynolds number of 100.
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Figure 11.11: Comparison between the predicted velocity distribution in the x-direction at y = 0
using RFM and FEM for a cavity flow a Reynolds number of 100.

sented in the graph. The figure also shows the location of the vortex center at the (xy)
location of (0.131, 0.239). This location is in agreement with the finite difference
solution of the same problem, reported by Liao, of (0.133, 0.248) [15]. The differ-
ence in the center location position was only 2 and 4%, in the x- and y-directions,
respectively.

Figures 11.11 and 11.12 present the x- and y-velocity components, respectively,
along the x-axis (y = 0) inside the box, computed using RFM and FEM. The FEM
solution is one done with 729 (27×27) and1849 (43×43) nodal points. As can be
seen, the solutions are all in good agreement.
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Figure 11.12: Comparison between the predicted velocity in the y-direction at y = 0 using RFM
and FEM for a cavity flow a Reynolds number of 100.
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Figure 11.13: Schematic diagram of the flow problem with a fully coupled energy equation and
momentum balance.

EXAMPLE 11.4.

Coupled energy and momentum balances for a pressure flow between parallel
plates. In many flows in polymer processing, viscous dissipation is significant (Br >
1), with a resulting temperature rise that significantly affects the flow through a
temperature dependent viscosity (Na > 1). With these types of flows, we have
fully coupled energy and momentum equations. In order to test such a flow, Estrada
[4] and Lopez and Osswald [5] simulated the pressure flow between two parallel
plates for a rate of deformation and temperature dependent polymer melt, η(γ̇, T ).
The geometry used is a 0.015 m ×0.015 m square, with a fully developed flow,
schematically depicted in Fig. 11.13.

The boundary conditions for the momentum balance were ux = uy = 0 on the
upper and lower plates, p = 105, 000 Pa at the left wall (x = 0) and p = 0 at the
right wall (x = 0.015m). The thermal boundary conditions were T = 200oC on
the upper and lower plates, and insulated boundary conditions (∂T/∂x=0) on both
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Table 11.1: Thermal Properties for the Coupled Heat Transfer Flow Problem

Parameter Value
ρ 700 kg/m3

Cp 2,100 J/kg/K
k 10.0 W/m/K

Table 11.2: Carreau and Arrhenius model constants for the Coupled Heat Transfer Flow
Problem

Parameter Value
K1 2859.4 Pa-s
K2 0.077 s
K3 0.661
E0 42048.3 J/mol
T0 200oC

vertical walls. The thermal properties were considered constant and are given in
Table 11.1.

The viscosity was modeled using a Carreau model with an Arrhenius temperature
dependence given by

η(γ̇, T ) =
aT K1

(1 − aT K2γ̇)
K3

(11.59)

where the temperature shift, aT , is given by

aT = e

E0

R

�
1

T
−

1

T0

!
(11.60)

The constants for the viscosity model are given in Table 11.2.
In order to solve the coupled equation system, Estrada used RFM with a third

order thin plate spline function and 740 collocation points arranged in a grid, while
Lopez and Osswald also used 740 collocation points randomly arranged throughout
the domain5 (Fig. 11.14). The RFM solution was compared to an FDM solution.
Four different cases were analyzed:

• Slit flow with a constant viscosity, η = µ, (Newtonian),

• Slit flow with an Arrhenius temperature dependent viscosity, η(T ), (Newtonian-
Arrhenius),

• Slit flow with a rate of deformation dependent viscosity, η(γ̇), (Carreau), and

• Slit flow with a rate of deformation and Arrhenius temperature dependent viscosity,
η(γ̇, T ) (Carreau-Arrhenius).

5Lopez and Osswald prescribed a minimum distance of half the lengths found in the grid by Estrada. The minimum
distance requirement is necessary to avoid a linear dependence between nodes that are too close to each other,
making it difficult to distinguish them from nodes that are far from the clusters, leading to ill-conditioning in the
linear set algebraic of equations. In addition, a minimum distance requirement avoids the existence of empty
pockets void of collocation points.
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Figure 11.14: Geometry and collocation points for the coupled flow-heat transfer problem RF
method solution, with grid-like and randomly arranged collocation points.
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Figure 11.15: Comparison between the temperature field predicted using RFM with arranged and
random collocation points and by FDM for the coupled flow-heat transfer problem.

Figures 11.15 and 11.16 compare the temperature and velocity profiles, respec-
tively, for the steady-state, fully developed flow of the coupled flow-heat transfer
pressure driven slit flow problem, using RFM and FDM. The agreement between the
two solutions is excellent.
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Figure 11.16: Comparison between the velocity distribution predicted by RFM and by FDM for
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Figure 11.17: Schematic diagram of a calendering process fed with a finite sheet.

EXAMPLE 11.5.

Modeling the calendering process for Newtonian and shear thinning polymer
melts. Using the RF method, López and Osswald [5] modeled the calendering pro-
cess for Newtonian and non-Newtonian polymer melts. They used the same dimen-
sions and process conditions used by Agassant et al. [1], schematically depicted in
Fig. 11.17.

The problem was first solved for a Newtonian fluid (µ = 1000 Pa-s) with bank
or fed-sheet-thickness to nip ratios, hf/h0, of 2, 5, 10 and 50. The geometry and
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Figure 11.18: Geometry and collocation points for the calendering problem with a bank to nip
ratio, hf/h0 of 10.

collocation points for hf/h0 = 10 are shown in Fig. 11.18. The boundary conditions
are given by the velocity on the roll surfaces, a zero pressure at the entrance and
exit surfaces as well as a zero stress at the entrance surface given by ∂un/∂n = 0.
This boundary condition is imposed by setting the velocity of the first two collocation
points of each row equal to each other. Furthermore, this problem must be manually
iterated, since the final sheet thickness is not known a priori. Hence, a sheet separation
and thickness is assumed for the first solution. This results in a pressure field with
unrealistic oscillations and a point where p = 0 that does not coincide with the sheet
separation. After the first solution, the separation point is moved to the same x-
coordinate where p = 0. After a couple of iterations the correct sheet thickness and
separation point are achieved, along with a smooth pressure distribution.

Figure 11.19 presents the pressure distribution along the x-axis for a Newtonian
solution using several bank-to-nip ratios. The solutions are presented with the ana-
lytical predictions using McKelvey’s lubrication approximation model presented in
Chapter 6. The graph shows that the two solutions are in good agreement. Fig. 11.20
presents a sample velocity field for the Newtonian case with a bank-to-nip ratio of
10. As can be seen, the velocities look plausible and present the recirculation pattern
predicted by McKelvey’s lubrication approximation model and seen in experimental
work done in the past [18].

The same collocation points and geometry for a bank-to-nip ration, hf/h0, of 50
were used to solve for the velocity fields and pressure distributions for non-Newtonian
shear thinning polymer melts. A power law model with a consistency index, m, of 104

Pa-sn and several power law indices, n, of 0.7, 0.5 and 0.3 were used. The pressure
distribution along the x-axis for the shear thinning melt is presented in Fig. 11.21 for
various power law indices and in Fig. 11.22 for a power law index of 0.3. Again, the
RFM results were compared to analytical solutions presented in Chapter 6. As can
be seen, the agreement is excellent. The FEM results presented by Agassant [1] are
also in agreement with the RFM. The FEM results predict a slightly higher pressure
than the analytical lubrication approximation prediction, whereas the RFM pressure
predictions are slightly lower.

EXAMPLE 11.6.

Fully developed flow in an unwrapped screw extruder channel. To illustrate
the type of problems that can be solved, using a 2 1/2D RFM formulation, López
and Osswald [5] modeled the fully developed flow in an unwrapped screw channel
as done by Griffith using FDM [9] in 1962. As discussed in Chapters 6 and 8,
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Figure 11.19: Comparison of lubrication approximation solution and RFM solution of the pressure
profiles between the rolls for several values of bank, or fed sheet, to nip ratio for Newtonian viscosity
model.

the flow in the metering section is a complex three-dimensional flow, that when
modeled with a non-Newtonian, shear thinning viscosity, does not have an analytical
solution. For their simulation, López and Osswald used the usual unwrapped screw
geometry schematically depicted in Fig. 11.25 They used 626 collocation points,
evenly distributed on the screw channel cross-section (Fig. 11.26).

A 60 mm×6 mm channel geometry with a barrel velocity, u, of 0.5 m/s was
used. The polymer melt was assumed as a shear thinning melt with a power law
behavior. A consistency index, m, of 28000 Pa-sn and a power law index, n, of
0.28 were used. López and Osswald solved for the flow field using different die
restriction pressures between open discharge and a pressure high enough (50 MPa/m)
that led to a negative volumetric throughput. Figure 11.27 presents the down-channel
velocity field for a die restriction pressure gradient, ∂p/∂z, of 20 MPa/m (200 bar/m).
The combination of pressure and drag flow can be seen in the figure. Figure 11.28
presents the velocity field caused by the cross-channel component of the flow. Since
leakage was neglected in this analysis, as expected, the net cross-flow throughput
was zero. Finally, Fig. 11.29 presents a dimensionless throughput versus pressure
build-up for the metering section of the screw. The results are compared to Griffith’s
FDM predictions. As can be seen, the curve computed using RFM with a power law
index, n, of 0.28 falls between Griffith’s FDM curves for n = 0.2 and n = 0.4.
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Figure 11.20: RFM solution of the velocity field during calendering of a Newtonian melt for a
bank to nip ratio of 10.
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Figure 11.21: Comparison of lubrication approximation solution and RFM solution of the pressure
profiles between the rolls for a bank-to-nip ratio of 10, and several power law indices using power
law viscosity model.
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Figure 11.22: Comparison of lubrication approximation solution and RFM solution of the pressure
profile between the rolls using a power law viscosity model with a power law index, n, of 0.3.
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Figure 11.23: RFM rate of deformation profile (1/s units) between the rolls using a power law
viscosity model with a power law index, n, of 0.5.
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Figure 11.24: RFM viscosity profile (Pa-s units) between the rolls using a power law viscosity
model with a power law index, n, of 0.5.
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Figure 11.26: Geometry and collocation points to model the unwrapped screw channel.
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Figure 11.27: Down-channel velocity field for the unwrapped screw channel with a down-channel
pressure gradient of 20MPa/m.
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Figure 11.28: Cross-channel velocity field for the unwrapped screw channel with a down-channel
pressure gradient of 20MPa/m.

n=1

n=0.8

n=0.6

n=0.4

n=0.2

Qz/Cosφ

Gz/Cosφ

0 7654321

0

0.1

0.5

0.4

0.3

0.2

n=0.28 RBFCM

Figure 11.29: Comparison between the dimensionless screw characteristic curve computed using
RFM and curves computed using FDM.
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Figure 11.30: Schematic diagram of the NAFEMS benchmark test.

Problems

11.1 Estimate ∂f(x,y)
∂x , ∂f(x,y)

∂y and ∇f(x, y) using radial basis functions for the field de-

scribed by f(x, y) = 30(y · sin(3xπ) + exp(x−2)(y−1)) + 80. Use a square domain
of size 1×1. Compare the numerical results againts the analytical solution.

a) Use a thin plate spline of order two (a = 2), and 200 nodes uniformily arranged.

b) Use thin plate spline of order two (a=2) and a random distribution of 200 nodes
following the rule of the minimum distance between points. Use 0.01925, 0.03850
and 0.05775 as the minimun distance values.

11.2 The International Association for the Engineering Analysis Community (NAFEMS)
defines a test for the evaluation of the diffusive term of the energy equation using
Dirichlet, Neumann and Robin boundary conditions. In this test, the domain defined
in the Fig. 11.30 has as boundary conditions, T = Ta in C̄D, −k ∂T

∂x = 0 in ĀC

and −k ∂T
∂x = h(T − T∞) in ĀB and B̄D, where Ta=100oC, k=52 W/mK, h=750

W/m2K and T∞=0oC. According to the benchmark test, the exact temperature for point
E(0.6,0.2) is 18.25375654◦C. Write a program using RFM to solve for the temperature
field. Use a node distribution that does not include the point (0.6,0.2), and after
the simulation, obtain that value using the interpolation with RBFs. Compare the
numerical solution with the analytical one.

11.3 The non-isothermal Couette flow between concentric cylinders depicted by Fig. 11.31,
has an analytical solution when the viscosity is considered as a constant. The analytical
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Figure 11.31: Schematic diagram of the Couette flow between concentric cylinders.

solution for the velocity and temperature fields are described by,

uθ = ωR1

�
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Write a program to solve by means of RFM the equation of motion and using the
velocity field, calculate viscous dissipation and solve for the energy equation. Ne-
glect inertial and convective effects. Consider T0=200oC, T1=150oC, µ=24000 Pa-s,
k=0.267 W/mK, R0=0.1 m, R1=0.13 m, κ=0.769, ω=0.496 rad/s. Compare the nu-
merical results with the analytical solution. Hint: The couette flow is constant along
the angular direction, hence, it is no necessary to use the whole domain.

11.4 Express the x- and y-components of the transient equation of motion using RFM.
Consider an explicit formulation. Include the same terms of the steady state formu-
lation presented in this chapter. Consider the viscosity as a function of the rate of
deformation.

11.5 For the coupled heat transfer and flow problem (slit flow) presented in this chapter the
solution of the energy and equation of motion was obtained considering a two dimen-
sional domain. However, none of the primary variables changes in the x-direction, and
the velocity only has a component along the x-axis. Simplify the equations and condi-
tions using a 1D formulation. Recall that the pressure is constant along the y-direction
and has a constant drop (∆P/L) along the x-axis. Write a program to simulate the
same cases as in the example, but using the one-dimensional formulation.
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radial flow method 428 
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residual stress 166 
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Reynolds number 171 174 
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saturation capacity constant 96 
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truncation error 392 
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tube flow  227 
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twin screw 

 co-rotating 139 
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under-relaxation technique 403 

unidirectional flow 225 
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