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Abstract

This Ph.D. thesis investigates fundamental aspects of phase separation in polymer-
blend thin films by unifying 1D phase equilibria with film evolution phenomena. It
begins by extending a Hamiltonian phase portrait method, useful for visualising and
calculating phase equilibria of polymer-blend films, allowing the method to be
applied to systems with no convenient symmetries. Consideration of equilibria
suggests a thermodynamic mechanism of film roughening, whereby laterally
coexisting phases could have different depths in order to minimise free energy.
Then by use of phase portraits it is demonstrated that simulations of lateral phase
separation via a transient wetting layer, which conform very well with experiments,
can be satisfactorily explained by 1D phase equilibria and a surface bifurcation
mechanism involving effective boundary conditions caused by the film surfaces.
Lastly, to tie together the aforementioned work, a novel 3D model of coupled phase
separation and dewetting is introduced, for which the problem of including a
general non-uniform composition profile in the depth direction between the film
surfaces is solved. Pattern formation, in which surface roughening shadows the
phase separation, seems to be determined by an interplay between dewetting
kinetics and underlying phase equilibria.
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Chapter 1
Introduction

1.1 What Is Fundamental About This Work?

What is meant by the title “Fundamentals of Phase Separation in Polymer Blend Thin
Films?” Before explaining the title by the research content, I would like to explain
the principle behind the questions I asked during my PhD: “Everything should be
made as simple as possible, but no simpler.” Dubiously attributed to Einstein, the
principle is effectively Occam’s Razor—given the same explanatory ability, simpler
theories are preferable to more complex ones—but with a built in warning against
overzealous simplification—a theory that ignores data in the name of simplicity is too
simple. Although I made many assumptions and simplifications in my research, the
principle reminded me that a more complicated explanation should have the burden
of proof to justify its additional complexity. When trying to choose a title, I realised
that I had always been asking some form of the same basic question: “Is the currently
proposed mechanism really necessary to explain what this other much simpler and
more universal mechanism can also explain?” At least in this way, I can say that
I was trying to research “fundamentals” of phase separation in polymer blend thin
films. Whether my title is justified by my research results, as opposed to my research
method, is another matter, and I hope I will have made a convincing case for my title
by the end of my thesis, if not by the end of this introduction.

1.2 What Are Polymer Blend Thin Films?

Polymers are molecules consisting of repeated units called monomers. Usually
macromolecules, they tend to form glasses and semi-crystalline structures, and there-
fore belong to thefield of ‘softmatter’ physics, as opposed to the ‘hardmatter’ physics
of crystalline structures. Everyday examples of polymers are plastics, and it is com-
mon to refer to polymer-based electronics as plastic electronics. Polymers are also
found abundantly in nature e.g. DNA and proteins. A polymer blend is a mixture
of different polymers. Polymer blends tend to be thermodynamically immiscible,
and rather than remaining mixed will phase separate into phases rich in the different
blend components. A polymer blend thin film is, quite simply, a thin film of polymer
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2 1 Introduction

blend. Polymer films are lightweight and usually flexible, and can potentially be
printed using roll-to-roll solution processing, allowing the possibility of cheap, mass
production.

Applications of polymers for plastic electronics include polymer solar cells and
organic LEDs, in which a thin film of polymer blend is used as the active layer
of the device. Organic LED’s are already being used to make display screens, and
polymer solar cells offer an attractive alternative to conventional ‘inorganic’ cells,
despite much lower efficiencies: they are much cheaper to produce and install. This
is promising for local energy production, in which efficiencymay not be as important
as it would first seem to be, for one can potentially make up for a lower efficiency
by covering a larger area. Polymer solar cells have various limitations, most notably
short-lifetimes, but this is something that low costs and recycling might overcome.

So why is phase separation in polymer blend thin films an important area of
research? In order to obtain film morphologies that allow plastic electronic devices
to function, and to guide research and development to improve such devices, under-
standing and control of the phase separation process is vital. For the sake of both
brevity and personal interest, I will focus only on polymer solar cells here as an
example of the need for optimising device morphology. In solar cells, photons of
light are absorbed to create excitons. For the device to function, these excitons must
be dissociated into electrons and holes, and these charges must subsequently reach
the device contacts. Keeping things quite simple, there are two large obstacles (con-
cerning device morphology) for efficient solar cells: dissociation of the excitons at an
interface between donor (hole conductor) and acceptor (electron conductor) before
the exciton recombines, and subsequent transport of the charges to the contacts before
recombination occurs in some other way.

Phase separation of a binary polymer blend under the right conditions leads to
formation of a bicontinuous morphology, consisting of continuous interconnected
regions of each phase. Such a film consisting of conducting materials can then be
used as a ‘bulk heterojunction’ in a polymer solar cell, in which case the morphology
consists of donor-rich and acceptor-rich phases. In a bulk heterojunction, there is
a lot of donor-acceptor interface for exciton dissociation, and the distance between
where excition generation occurs and this interface is potentially very small. Both
of these factors improve the odds of exciton dissociation into free charges, and
the bicontinuous morphology also assists charge transport to the contacts in such a
way that the free charges are spatially separated. Understanding phase separation in
polymer blend thin films is then quite important for optimising polymer solar cells,
since the device morphology alone is a very important factor for efficiency. A very
similar argument could of course be made for organic LEDs.

The original proposal for my PhD focussed on the study of charge percolation
through a phase separatedmorphology, such as a bulk heterojunction, in order to gain
insight into how morphology effects solar cell performance. However, the course of
my research took me towards the study of ‘thin’ films, where ‘thin’ is meant in a
quite specific sense in that the films do not undergo bulk-like phase separation. Phase
separation is dominated by the narrow geometry and influence of the film surfaces,
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and the resulting morphology is either layers of phases parallel to the surfaces or
columns of phases perpendicular to the surfaces. In order to explore more of the
physics of polymer blend thin films in this introduction, I will explain the three
main research questions that I formed during my PhD, and why they are important
questions to ask.

I began my PhD by following work on a Hamiltonian phase portrait method to
study the equilibrium composition profiles (phase equilibria) of polymer blend thin
films with preferentially attracting surfaces. In fluid blend films, it is often the case
that there are different interactions between the film surfaces and different blend
components, such that a surface ‘prefers’ a particular blend component. This can be
true whether a surface is a substrate or a free surface in contact with air or a vacuum.
Preferentially attracting surfaces will then, of course, effect the phase separation
process and therefore the final morphology of the film. An important example in
binary polymer blend films is the formation of a bilayer which subsequently breaks
up to give a laterally segregated film consisting of columns of laterally coexisting
phases. Termed “lateral phase separation via a transient wetting layer”, this phenom-
ena is at the centre of my research. Studying the equilibrium composition profiles
in the dimension between the film surfaces is important for understanding processes
that occur in film manufacture, since systems will evolve towards equilibrium states.

Previous work studying phase equilibria was usually restricted to systems with
certain simplifying symmetries of the polymer blend and surface energies, and the
first question I set out to solve was: If the symmetries of the system are broken,
such that the laterally coexisting phases that can be calculated are no longer
(anti)symmetric, what might be expected to happen? This research is the basis of
Chap.4: “Hamiltonian Phase Portraits for Polymer-Blend Thin Films”. After adapt-
ing the Hamiltonian phase portrait method to be suitable for asymmetric systems,
I found that the broken symmetry of the laterally coexisting phases might lead to a
mechanism of surface roughening, driven by a reduction in free energy achieved if
the coexisting phases have different heights. In this case, the suggested mechanism
of roughening was based only upon a consideration of the phase equilibria of the
system. These phase equilibria are most likely to appear only in thin films in which
bulk-like morphology does not form, but the phase equilibria nevertheless corre-
spond to the lowest energy configurations of films of any thickness. This should be
an important consideration in film manufacture, as roughening of the free surface
is commonplace and usually attributed to dewetting forces. My research suggests,
though, that roughening of the film surface is much more general.

Returning to the problem of lateral phase separation via a transient wetting layer,
studying only the phase equilibria in 1D (in the dimension between the surfaces)
does not necessarily explain how the process is observed to occur. In the majority
of academic experimental studies of thin films, a polymer blend is combined with
solvent which is spread on a plate and spun very rapidly. As the solvent is reduced, the
decreased miscibility induces phase separation to occur. Creating films in this way
is called spin-casting. Understanding and controlling solvent evaporation in order to
produce desiredmorphologies is extremely important.My consideration of the phase

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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equilibria of a polymer blend did not include solvent, and even though there is no
solvent left in the film after spin-casting, the effects of solvent evaporation cannot be
understated. Lateral phase separation via a transient wetting layer was, at that point,
best understood to be determined by solvent gradients caused by solvent evaporation
during the spin-casting process.

The gap between a study of phase equilibria and experiment prompted a new ques-
tion: Do 1D phase equilibria actually determine the phase separation process
in polymer blend thin films, or are other mechanisms necessary? The research
into this question is the subject of Chap. 5: “Lateral Phase Separation via Surface
Bifurcation”, in which I studied lateral phase separation via a transient wetting layer
using diffusion simulations. I found that the phase separation process could be satis-
factorily explained entirely by the phase equilibria and by how the composition of the
polymer blend is pinned by the surfaces due to effective boundary conditions. The
simulations reproduced experimental observations attributed to solvent evaporation
and solvent gradients, and yet the simulations did not include solvent at all. This
strongly suggested that the entire process of lateral phase separation via a transient
wetting layer can be explained thermodynamically using phase equilibria. This is
quite an important insight: solvent evaporation may effect the dynamics in the film
in various ways, but the phase separation process is still driven by the evolution
towards and between equilibrium states.

In the manufacture of very thin polymer blend thin films, dewetting forces, which
will cause a non-uniform height profile, should be an important consideration. At
this point, it seemed sensible to try to bring my research full circle, and pose the
question: How does the roughening mechanism predicted by consideration of
phase equilibria interact with dewetting? I decided to develop a new model that
coupled diffusionwith dewetting and also included a vertical composition profile that
would allow the equilibrium phases to be represented in the model (other models did
not include a suitable general vertical dependence of composition). The dewetting
dynamics, while being the mechanism by which the film roughens in the model,
might then be driven by the phase separation. This work is the subject of Chap.6:
“Coupled Surface Roughening and Phase Separation”. The results showed that a
kinetic consideration of the dewetting process is as important as a thermodynamic
consideration when it comes to the morphology of the roughened surface, although
evolution towards and between different phase equilibria did indeed drive the process.
Roughening of the film surface becomes prominent as the film begins to laterally
phase separate, since roughening in this way provides a route to lower the free energy.

Although I have explained the title “Fundamentals of Phase Separation in Poly-
mer Blend Thin Films” in terms of the principle I followed during my research, I can
now explain it by actual research content. The mechanisms and explanations I used
to explain phenomena were all based around phase equilibria and simple thermody-
namic considerations, in other words asking “How might the system lower its free
energy?” In my opinion, this qualifies as addressing the “Fundamentals” of phase
separation in polymer blend thin films. Hopefully, understanding the phase separa-
tion process in polymer blend thin films in terms of phase equilibria will assist in

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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tailoring film morphologies. Experimentalists can perhaps consider that processes
like solvent evaporation may indeed provide the kinetic route to achieve certain film
morphologies in the time-span of film processing, but that underlying the whole
process may simply be the phase equilibria of the system.

1.3 Outline of This Thesis

This thesis is organised as follows. Chapters2 and 3 provide a chronological overview
of the development of the base theory for phase separation in polymer-blend films
used in this thesis. Chapter 2 focusses on the theory of bulk polymer systems, explain-
ing the origin of a suitable form of free energy, phase diagrams and spinodal decom-
position. Chapter 3 follows the extension of bulk theory to include preferentially
attracting surfaces, including the origin of a form of surface energy, wetting of sur-
faces, and coexisting phases in films. Together, Chaps. 2 and 3 cover the primary
literature required to theoretically study polymer-blend thin films from a thermody-
namic perspective.

Chapter 4 introduces the problem of solving for equilibrium profiles in polymer-
blend thin films. A Hamiltonian phase portrait method, previously only suitable for
systems with particular symmetries, is extended to the general case of asymmetric
polymer films, and a qualitative demonstration of how phase portraits can be used to
study how equilibria change with film depth and temperature is given. A thermody-
namic mechanism of surface roughening, whereby the depth of coexisting profiles
can be different to reduce the free energy, is introduced.

In Chap.5, Hamiltonian phase portraits and simulations of polymer-blend thin
films are used to explain the phenomenon of lateral phase separation via a transient
wetting layer. It is shown that films evolve first towards a metastable state (the
lowest energy independently-existing equilibria) and then evolve towards global
equilibrium (laterally coexisting phases). A novel ‘surface bifurcation’ mechanism,
in which surface boundary conditions determines the particular way in which the
transient wetting layer breaks up, is introduced to explain the observations from the
simulations and spin coating experiments.

In Chap.6, a novel 3D model of a phase separating polymer film that can undergo
surface roughening via a dewetting mechanism is formulated. This formulation is
made possible by solving the problem of including a general vertical dependence of
the film composition in a dewetting model. This model is used to investigate surface
roughening for films with different surface-blend interaction regimes, suggesting
that surface pattern formation in polymer-blend thin films is general because surface
roughening shadows the underlying phase separating morphology. The kinetics of
dewetting appear to be as important as the underlying phase equilibria. I conclude
this thesis with a summary and outlook.

I hope that I have written this thesis to be useful to another Ph.D. student. I have
tried to include only the most relevant and primary literature, since it is my sincere
opinion that broad and non-specific referencing is unhelpful to anyone new in the

http://dx.doi.org/10.1007/978-3-319-19399-1_2
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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field. I hope that my schematics and explanations will transfer some of the imagery
by which I negotiated this field to someone else. I have also included appendices on
some technical aspects, namely the calculation of functional derivatives from first
principles and implementations of diffusion simulations on Graphical Processing
Units. Perhaps these will save someone else the time and energy of reinventing the
wheel when they could be doing new physics research.



Chapter 2
Development of Theory for Bulk Polymer
Blend Systems

I follow the development of theory for solutions and blends of polymers. I take
a minimal historical approach by focussing on the primary literature in which the
theory was developed, and show how the work culminated ultimately in the Flory-
Huggins-de Gennes free energy of mixing, which is the base theory for the study of
spinodal decomposition in polymer blends.

2.1 Introduction

The aim of this chapter is to provide an overview of the development of theory for
bulk polymer1 systems, which came from a drive to understand the behaviour of
solutions2 and blends3 of polymers, which differed significantly from the behaviour
of non-polymer systems. I take a minimal historical approach to this, using what I
regard to be the most important literature in which the theory was developed, to give
a narrative to the development of the theory. This chapter can be summarised in the
following. The behaviour of polymers in solution prompted the development of an
entropy of mixing valid for long chain molecules. To fit the theory to data required
an empirical term to account for the heat of mixing, the form of which was quickly
grounded theoretically. The entropy of mixing and heat of mixing can be combined,
along with a term accounting for energy contributions from compositional gradients,
to give the Flory-Huggins-de Gennes free energy of mixing, which can be used to
understand and study spinodal decomposition of polymer blends.

It is useful at this point to introduce the Gibbs free energy, which is appropri-
ate when considering incompressible systems (although the assumption of constant

1Polymer: a molecule consisting of repeated units, like a string of beads or a chain. These repeat
units are called monomers. A chain segment usually refers to a single monomer.
2Solution: a liquid mixture of solvent (e.g. water, toluene) and solute (e.g. sugar, polymer), in which
the solute is dispersed in the solvent.
3Blend: a liquid mixture of two components (e.g. a blend of two polymers).

© Springer International Publishing Switzerland 2015
S. Coveney, Fundamentals of Phase Separation in Polymer Blend Thin Films,
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volume is of course not general). Since the subject matter of this chapter is mainly
changes upon mixing, we can consider the Gibbs free energy change, given by

�G = �H − T �S, (2.1)

where �H is the Heat (Enthalpy) of Mixing, �S is the Entropy of Mixing, and
T is the Temperature. I will refrain from elaboration of standard thermodynamics
terminology throughout.

Terminology

I will briefly introduce terms as they appear, but more detailed definitions of Termi-
nology are given on page 167. There are several terms that are used in passing while
discussing literature in this section, and those that are not specifically important to
this thesis will not be explicitly defined; definitions can be found elsewhere and in
the corresponding citations.

2.2 Entropy of Mixing

By 1940 there was a substantial body of evidence showing that polymer solutions
deviated significantly from Raoult’s law [Eq. (2.8)], which describes how the vapour
pressure of an ideal solution (zero heat of mixing �H = 0) depends on the vapour
pressure of the pure components of the solution and the molar fraction of those
components in the solution. These deviations were initially, and almost exclusively,
put down to enthalpic effects: it was assumed that a non-zero heat of mixing was
causing the deviations fromRaoult’s Law. However, careful experiments showed that
deviations from Raoult’s Law were significant even when the heat of mixing really
was zero. The first successful efforts to explain these deviations were undertaken by
Huggins [1, 2] and Flory [3], who derived a form for the entropy of mixing suitable
for polymers.

2.2.1 Entropy of Ideal Solutions

Consider a mixture AB of fluids A and B, consisting of equal sized simple mole-
cules.4 An ideal solution has zero heat of mixing, which means that there is no
difference in the enthalpic interactions U between molecules of the pure compo-
nents (A-A and B-B interactions) and between molecules of different components
(A-B interactions) i.e. 2UAB = UAA + UB B . This means that the molecules will

4Simple Molecules: molecules that can be treated as spheres, because they consist of a few atoms
at most and their internal structure need not be explicitly considered.
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Fig. 2.1 A blend AB on a
quasi-solid lattice. There are
n = 4 simple molecules,
n A = 2 and nB = 2, hence
the number of
distinguishable
configurations is � =
4!/2!2! = n!/n A!nB ! = 6.
All six distinguishable
configurations are shown

randomly mix to maximise entropy, since there are no particularly favourable or
unfavourable interactions that would prevent an entirely random mixing.

The entropy of the mixture is given by the Boltzmann equation

S = kB ln�, (2.2)

where � is the number of distinguishable configurations of the mixture. To calculate
�, we can place each molecule on a quasi-solid lattice. If the molecules of fluids A
and B are the same size, then the number of configurations available to n = n A +nB

molecules is n!, but the number of distinguishable configurations is

� = (n A + nB)!/n A!nB !. (2.3)

A schematic of a set of available configurations is shown in Fig. 2.1.
Using Eq. (2.2), we can find the change of entropy upon mixing as the difference

in entropy between the mixture and the pure components, �Smix = SAB − SA − SB ,
giving the entropy of mixing per molecule as

�Smix = −kB [xA ln xA + xB ln xB] , (2.4)

where xA = n A/n and xB = nB/n are molar fractions of A and B respectively.
The entropy change �Smix is a configurational entropy, because it only accounts for
entropy changes due to the change of available configurations upon mixing. Strictly
speaking this expression only applies to mixtures in which the molecules of both
species are interchangeable, i.e., equal sizes and interaction energies; this means a
molecule of A can be swapped with a molecule of B with no penalty.

A regular solution is one in which the entropy of mixing is given by Eq. (2.4),
as for an ideal solution, but with �H �= 0. That polymer solutions do not obey
Raoult’s Law even when there was zero heat of mixing meant that polymer solutions
are non-regular solutions.
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2.2.2 Entropy of Polymer Solutions

The derivation of an entropy of mixing appropriate for polymer solutions was under-
taken separately by Huggins [2] and Flory [3], and although both derivations were
published in 1942, it was Huggins who published a brief letter of his results the
previous year [1], in which it was stated that “in solutions of long, flexible chain
molecules, deviation in the entropy of mixing from that given by [Eq. (2.4)] may
be even more important (than the enthalpy of mixing effects)”. Meyer is credited
by Flory with the suggestion that the entropy of mixing for polymer containing sys-
tems must be responsible for these discrepancies, due to the intrinsic connectivity of
polymer chains [3].

Flory explicitly laid down the assumptions required for the derivation [3]:

(i) assume a quasi-solid lattice in the liquid and interchangeability of polymer
segments with solvent molecules [same assumptions used to derive equation
(2.4)]. A segment is defined as being equal in volume and shape to a solvent
molecule;

(ii) all polymer molecules are the same size (although in 1944 Flory showed that
“heterogeneity can be disregarded”, since using a number average of chain
lengths in a distribution will include the effects of heterogeneity [4]);

(iii) “the average concentration of polymer segments in cells adjacent to cells unoc-
cupied by the polymeric solute is taken to be equal to the over-all average
concentration”, which is a mean-field assumption (this can let the theory down
severely under certain conditions e.g. in very dilute solutions in which solute
can clump together);

(iv) we don’t consider that the chain might curve around and cross itself once again,
which Flory noted would “(obviously) lead to computation of too many config-
urations”.

Here I will give a simplified explanation in the spirit of the aforementioned ref-
erences. Figure2.2 is a schematic to assist in following the explanation. We assume
a polymer chain to consist of x segments (x = 6). Given ns solvent molecules

Fig. 2.2 A schematic of a
quasi-solid lattice, on
which 3 polymer chains
(6 segments longs) have been
placed, and the remaining
lattice cells filled with
solvent molecules. The
polymer chains require
connectivity
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(ns = 27) and n p polymer molecules (n p = 3), we require ns + xn p lattice cells
(ns + xn p = 27 + (3 × 6) = 45). We then place, at random, the end segment of a
single polymer chain on a lattice cell, hence there are ns + xn p possible configura-
tions for this move. The next segment from the same chain has much less freedom,
of course, because it is connected to the first segment. Given this restriction, this
segment has z sites to choose from, where z is the coordination number. This gives
the second segment z sites to choose from (in this case, perhaps z = 5, since there are
five neighbouring sites to choose from; this drops out of the resulting expression).
However, this second segment doesn’t really have this much choice, since if the poly-
mer chain were part of a filled lattice, there might already be segments from another
chain next to the first segment of the chain we are considering. Using assumptions
(iii) and (iv), we assume that we may put the number of configurations for the second
segment to be z(1 − f p) where f p is the probability that a cell is already occupied
( f p also drops out of the final expression). Once all polymer chains have been placed
on the lattice, the remaining sites are filled with solvent molecules. Counting up all
the configurations available, and subtracting the entropy of the pure states of both
polymer and solvent, we arrive at

�Smix = −kB

[
ns ln

ns

ns + xn p
+ n p ln

xn p

ns + xn p

]

= −kB
[
ns ln (φ) + n p ln (1 − φ)

]
, (2.5)

where φ is the volume fraction of solvent, therefore 1 − φ is the volume fraction of
polymer.

Although in (i), we defined a segment as being equal in size to a solvent molecule,
it may be necessary that a segment in the polymer chain is necessarily the size of
several solvent molecules, since a segment must be at least so big as to allow the
chain complete flexibility around these segments. In this case, we should define the
lattice cell to be the size of the segment, and have several solvent molecules to one
cell. Flory addressed this [3], arguing that this can be accounted for by the rescaling
ns → ns/β, x → x/β where β is the number of solvent molecules that will fill a cell
the volume of a single polymer segment. This simply re-enforces the requirement
to correctly measure the polymer chains in terms of segment lengths/lattice spacing
(so a polymer chain may consist of 15 repeat units/monomers, but a segment may
consist of 3 monomers, hence the chain is 5 segments long).

It is more natural to express this equation per ‘molecule’, where the number of
molecules equals the number of lattice cells ns + xn p. We arrive at

�Smix = −kB

[
φ ln (φ) + (1 − φ)

x
ln (1 − φ)

]
, (2.6)

where�Smix has been redefined as the entropy ofmixing permolecule. This equation
canbe generalised to polymer-polymermixtures. If the solvent is replacedbypolymer
species A with y number of segments, then the factor of φ can be replaced by φ/y
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in the first term. It is more natural to replace y with NA and x with NB , where Ni

represents the number of segments in species i (the segment size of both species
being chosen to be equal in the definitions of Ni ). This gives

�Smix = −kB

[
φ

NA
ln (φ) + (1 − φ)

NB
ln (1 − φ)

]
. (2.7)

Equation (2.7) is known as the Flory-Huggins Entropy of Mixing. Notice that unlike
Eq. (2.4), the logarithm terms contain volume fractions. If NA = NB = 1 then
Eq. (2.7) reduces to Eq. (2.4) for ideal solutions.

Although any lattice parameters do not strictly appear in (2.7), it is worth noting
again that the ‘length’ of a polymer species should be counted in units of lattice
size. So if species A and B have the same number of monomer units and are both
flexible around these units, then if the size of A-monomers are twice the size of
B-monomers, we have NA = 2NB (assuming the lattice cells are the size of the
A-monomers, which is required to allow the A-chains to be flexible). Working in
volume fractions φ accounts for the other mathematical difference due to B-chains
having half the volume of A-chains.

2.3 Heat of Mixing

Although deviations from Raoult’s law could be shown to derive from the entropy
of mixing given by Eq. (2.5), fits to the activities data still require a term that took
the heat of mixing into account [5]. Of course, generally a heat of mixing term for
polymers will be required, because the heat of mixing is rarely zero.

2.3.1 Activities Data

Raoult’s law relates the vapour pressure of an ideal solution to the vapour pressure
of each solution-component and the mole fraction of that component. Huggins used
an expression essentially equivalent to Raoult’s Law, writing the chemical potential
μi of species i in a solution as [5]

μi = μo
i + RT ln ai , (2.8)

where the reference statewith chemical potentialμo
i may refer to the pure component,

for simplicity. The ‘activity’ is defined as ai = pi/po, where pi and po are the vapour
pressures of component i in the solution and as pure component, respectively. An
expression for the difference in chemical potential can be found from the entropy of
mixing:
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�μp = −∂(T �S)

∂n∗
p

, (2.9)

where n∗
p is now the number of moles of polymer, and�μp = μp −μo

p. The entropy
of mixing (2.5) in terms of the number of moles of solvent and polymer is then

�Smix = −R

[
n∗

s ln
n∗

s

n∗
s + xn∗

p
+ n∗

p ln
xn∗

p

n∗
s + xn∗

p

]
. (2.10)

Using Eq. (2.9) and converting back into volume fractions, we arrive at

�μp

RT
= ln ap = ln φp + (1 − x)φs . (2.11)

From the way the number of segments x in the polymer molecules is defined, x
can be written in terms of a ratio of volumes of the polymer and solvent molecules
x = V̄p/V̄s . Generalising to polymer-polymer systems (since we can always choose
N = 1 for either polymer for it to be a simple solvent), there are two expressions for
a binary mixture

ln aA = ln φA +
(
1 − V̄A

V̄B

)
φB,

ln aB = ln φB +
(
1 − V̄B

V̄A

)
φA, (2.12)

where either A or B could be a polymeric solute or a solvent.
The osmotic pressure of the solvent can be related to the activity by

�

cs
= − RT

c2s
ln as, (2.13)

where cs is the concentration of polymer solute or equivalently (given different units)
the partial molar volume. In order to account for how, in polymer solutions, �/cs

increases with cs Huggins needed to include an empirical term in Eq. (2.12) which
“takes care of the heat of mixing, deviations from complete randomness of mixing,
and other factors” [5]:

ln aA = ln φA +
(
1 − V̄A

V̄B

)
φB + μAφ2

B,

ln aB = ln φB +
(
1 − V̄B

V̄A

)
φA + μBφ2

A. (2.14)

Using Eqs. (2.13) and (2.14) Huggins showed that the expression for the entropy,
Eq. (2.7), fit data on polymer solutions, providing the empirical constants μA and μB
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are chosen suitably for a particular solution (with the condition that μAV̄A = μB V̄B ,
which is natural since the heat of mixing is a mutual interaction between opposing
species and must be balanced). In hindsight, the need for the empirical constants to
be included in Eq. (2.14) can be seen to arise from the definition of the chemical
potential (2.9), since the full expression should be �μp = ∂(�G)/∂n∗

p. However,
the form of �H was not yet known.

2.3.2 A van Laar Form for the Heat of Mixing

Flory provided a simple derivation for an appropriate form for the heat of mixing
[4]. The result is the van Laar expression for the heat of mixing of simple molecules,
which has a simple lattice-based explanation [6], which follows. If a fluid A and fluid
B, both consisting of simple molecules, occupy molar volumes v and V respectively,
then for a solution of n moles of A and N moles of B, the internal energy per mole
of solution can be written as

UAB = εAA(vn)2 + 2εAB(vnV N ) + εB B(V N )2

vn + V N
. (2.15)

Subtracting the energy of (the same quantity of) the pure fluids UA = εAAvn, UB =
εB B V N , and gathering terms, gives

�U = �ε
vV nN

nv + N V
, (2.16)

�ε = 2εAB − εAA − εB B . (2.17)

For polymer systems, the argument can be made that the form of interactions
between polymer segments and solvent molecules should be the same as those
between simple molecules. Assuming no volume change upon mixing, �H = �U ,
so the partial molal heat of A, given by �H̄A = ∂�H/∂n, is then

�H̄A = �εφ2
B, (2.18)

which is exactly the same form as the heat of mixing term in Eq. (2.14). However,
Flory was quick to point out that the use of this term provides satisfactory agreement
with experiment, but that it clearly must contain “contributions from other factors the
origins of which are not yet clear” [4]. This could include, of course, entropy effects
due to the heat of mixing and configurational entropy modifications to Eq. (2.7) from
the fact that, given a finite heat of mixing, systems of polymers and solvents will not
be entirely uniform.
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2.3.3 The Flory-Huggins Interaction Parameter

A heat of mixing consistent with Eq. (2.16) can be derived from a general lattice
model with coordination number z, as in Flory’s textbook [7]. However, I found
the latter derivation slightly difficult to follow, so I have opted to derive the heat of
mixing in line with a more modern approach [8].

A mean-field 5 assumption can be applied to a binary polymer mixture AB on a
quasi solid lattice. Assume that the probability that a lattice cell picked at random
will contain a segment of A or B is given by the volume fraction of A or B, denoted
by φA or φB respectively. Also, given this chosen site, the probability that any neigh-
bouring site contains a segment of A or B is also given by φA or φB respectively. If
the interaction energy between two A segments is εAA, then given the probability of
choosing an A-segment when choosing the first site is φA, and given that the prob-
ability of a neighbouring site containing an A-segment is φA, then the contribution
to the average site energy from A-A interactions will be εAAφ2

A. The average energy
of a site can then be given by the general formula

Usite = z
∑

i=A,B

∑
j=A,B

εi jφiφ j , (2.19)

whereas the total energy of the pure states of A and B is given by

Upure = z
∑

i=A,B

εi iφi . (2.20)

Performing Usite − Upure gives the change in internal energy upon mixing per site.
Assuming no volume change, this is the same as the enthalpy of mixing.

�Hmix = kB T χφAφB,

χ = z�ε/kB T, (2.21)

�ε = 2εAB − εAA − εB B .

Equation (2.21) is almost exclusively used to represent the heat of mixing. The
dimensionless parameter χ is called the Flory-Huggins interaction parameter. It can
be measured in experiments, and is usually considered to be an experimental para-
meter to describe the heat of mixing without reference to any microscopic effects
or lattice theory model. However, in this particular lattice theory model from which
χ has been explained, χ is purely enthalpic in origin. An entropic contribution is
generally necessary.

5Mean-field: average interactions are used in place of counting up individual interactions, such that
the local behaviour can be written in terms of macroscopic average properties.
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Non-combinatorial Entropy

The entropy of mixing (2.7) represents the combinatorial entropy of mixing, result-
ing only from the change in available configurations for non-interacting chains (in
other words, it arises from the increased volume in which the polymer molecules
can distribute themselves, which allows them access to more configurations [9]).
In general, we should expect χ to have an entropic part too, usually referred to as
a non-combinatorial entropy, and may arise from the non-uniformity of a solution
caused by preferential attraction between like components, or from a change in the
accessibility of energy levels or restriction of certain rotational configurations due to
interactions.

The entropy of mixing can be obtained from Eq. (2.1) as

�S = −∂�G

∂T
, (2.22)

and the enthalpy/heat of mixing as

�H = �G + T �S. (2.23)

Substituting in the entropy of mixing (2.7) and the heat of mixing (2.21), and assum-
ing that it is possible that χ depends on temperature, gives

�S = −kB

[
φ

NA
ln (φ) + (1 − φ)

NB
ln (1 − φ) + φ(1 − φ)

∂(χT )

∂T

]
. (2.24)

From this follows that

�H = �G + T �S = kB T φAφB

(
χ − ∂(χT )

∂T

)
. (2.25)

Comparing this with the heat of mixing (2.21) we see that, in general, the Flory-
Huggins interaction parameter χ has both an enthalpic and entropic part [7, 10],
such that χ = χH + χS , where

χH = χ − ∂(χT )

∂T
= −T

∂χ

∂T
, (2.26)

χS = ∂(χT )

∂T
. (2.27)

Thus in order for the interaction parameter to be purely enthalpic, it must have
temperature dependence χ ∝ 1/T .

Anomalous contributions to the entropy ofmixingwere often put down to changes
in volume which the lattice model used to derive Eq. (2.7) cannot include. Whilst
changes in volumewill of course alter the entropy, numerous experiments under fixed
volume still show that there is a contribution to the entropy upon mixing that cannot
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be accounted for by Eq. (2.7) and thus a non-combinatorial entropy contributionmust
exist [9]. This idea is now a standard part of the literature [11].

Dependence of Heat of Mixing on Volume Fraction

In Flory’s first paper on the subject [3] it was suggested that the agreement between
theory and experiment would be better if the enthalpy term equivalent to �ε in
Eq. (2.18), which acts as an analogue of χ, was given an appropriate dependence on
concentration. For the rubber-toluene solution measurements in question, the theory
was rather accurate for high concentrations of rubber solute, but matched the data
at low rubber concentrations only with an empirical fit for the heat of mixing. In
[4], Flory returned to this matter, mentioning that the fit that Huggins had made
to a benzene-rubber solution (which required no concentration dependence for the
empirical terms containing μi ) was correct, but that the matter was actually more
complicated. Other measurements that separately measured the heat of mixing and
entropy of mixing in this system confirmed that both departed significantly from the
theory, but “when these two somewhat erroneous equations are combined, however, a
satisfactory free energy function is obtained, asHuggins has shown”. Flory suggested
that a finite heat of mixing might be responsible, since this would necessarily lead
to non-uniform mixing (clusters of solute in pure solvent).

This idea was explicitly addressed by Flory in a paper soon after [12], in which
Flory investigated the case of highly diluted polymer solutions. Experiments showed
that the heat of dilution was dependent on the concentration of polymer solute, and
there was a marked difference between dilute and concentrated solutions. The heat
of mixing as given by the van Laar form in Eq. (2.14) could be reconciled with the
data provided that μ is reformulated as

μ = β + α/RT, (2.28)

in which both α and β depend on the concentration. Flory states that the benzene-
rubber system analysed by Huggins is essentially a special case in which the free
energy function does not require μ to depend on concentration, even though the
entropy and heat of dilution equations when considered separately do not match the
data. Flory points out that the value of μ needed for the fit is actually much lower
than theory would predict, which indicates that μ is really just an empirical constant,
and that “in spite of the approximate constancy of μ for rubber in benzene at all
concentrations, it is unlikely that this condition applies to high polymer solutions
in general”. Flory showed that a different μ was required for solutions of high con-
centration than low concentration, and the constant α must change and, generally,
it is “likewise necessary to throw the burden of μ on β in dilute solutions” [12].
Equation (2.28) is essentially equivalent to the modern common expression for the
Flory-Huggins parameter:

χ = A + B

T
. (2.29)
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2.4 Flory-Huggins Free Energy of Mixing

Substituting the Entropy of Mixing (2.7) and the Heat of Mixing (2.21) for polymer
systems into the expression for the Gibbs free energy (2.1), we obtain the Flory-
Huggins Free Energy of Mixing fF H ≡ �Fmix = �Hmix − T �Smix . In units of
kB T , we can write

fF H (φ) = φ

NA
ln (φ) + (1 − φ)

NB
ln (1 − φ) + χφ(1 − φ). (2.30)

The expression fF H (φ) is the ‘bulk’ free energy for a polymer blend, giving the free
energy per lattice site in the Flory-Huggins lattice with spacing a.

Phase Diagram from the Flory-Huggins Free Energy

Equation (2.30) can be used to compute a phase diagram6 for the blend which
separates the one-phase region (the components of the polymer blend remains mixed
together, entropy overcoming enthalpy) from the two-phase region (the polymer
blend de-mixes into two phases, each rich in one component of the polymer blend)
in the plane of composition and temperature. Figure2.3 is a phase diagram for the
polymer blend N = NA = NB , containing a coexistence curve and spinodal line,
explained below.

The limits of stability of a polymer blend can be calculated by consideration of
the first and second derivatives of the free energy (2.30) with respect to composition,
d F/dφ and d2F/dφ2 respectively. To demonstrate, I will consider a blend in which
the two polymers A and B have the same chain lengths (degree of polymerisation)
NA = NB = N , since this is the simplest example. The first derivative is

∂F

∂φ
= 1

N
ln

(
φ

1 − φ

)
+ χ (1 − 2φ) . (2.31)

d F/dφ = 0 corresponds to minima in the free energy, and we can rearrange the
resulting expression so that we can plot a locus of points for which d F/dφ = 0,
giving us the ‘coexistence curve’

χcoex = 1

N

1

2φ − 1
ln

(
φ

1 − φ

)
. (2.32)

(If the blend is not symmetric, then calculating the coexistence curve is more com-
plicated, requiring equating the chemical potentials of both species). The second
derivative is

6Phase Diagram: a diagram, drawn in a space of variables such as composition and temperature,
that separates regions corresponding to different stable phases with lines, which correspond to the
limits of stability of these phases. e.g. for water, a phase diagram in the temperature-pressure plane
separates regions of vapour, liquid and solid.
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Fig. 2.3 Phase diagram in the φ-χ plane (essentially equivalent to composition-temperature) for
a polymer blend N = NA = NB . Below the coexistence curve, it is favourable for the polymer
blend to remain mixed, hence 1-phase is stable. Above the coexistence curve, it is favourable for the
polymer blend to de-mix, hence 2-phases are stable. Between the coexistence curve and the spinodal
line, 1-phase has more energy than 2-phases, but 1-phase is metastable, and so 1-phase may still
exist in this region. So the spinodal line represents the limit of stability for the blend remaining in
the 1-phase state i.e. above the spinodal, 1-phase is unstable. The critical point (φC ,χC ), located
at critical volume fraction φC and critical temperature χC , corresponds to where the coexistence
curve and spinodal line coincide. It is the first point at which the blend becomes unstable upon
increasing χ (assuming χ = A + BT −1, then the critical point marks the highest temperature for
which a blend in the 1-phase region is unstable)

∂2F

∂φ2 = 1

N

1

φ(1 − φ)
− 2χ, (2.33)

d2F/dφ2 = 0 corresponds to minima in the free energy for which the curvature of
the free energy is also zero, and this expression can be rearranged to obtain the locus
of points called the ‘spinodal line’

χS = 1

2N

1

φ(1 − φ)
. (2.34)

Quenching a polymer blend, such that the temperature changes and the blend passes
from the 1-phase region to the 2-phase region, results in ‘spinodal decomposition’
i.e. phase separation induced by crossing the spinodal line. This will be discussed
more in Sect. 2.6.
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2.5 Flory-Huggins-de Gennes Free Energy

In order to studyhowapolymer blendundergoesphase separation, inwhich a1-phase
mixture de-mixes into a 2-phase mixture, we need to take into account energy costs
from different phases being in contact with each other e.g. a phase rich in polymer
A being in contact with a phase rich in polymer B. The interface between these
phases will have a finite width, so this interface is essentially a composition gradient
across which the composition goes from A-rich to B-rich. We need to account for
free energy contributions from composition gradients.

2.5.1 Free Energy of Non-uniform Systems

Cahn and Hilliard [13–16] are probably owed the most credit to development of the-
ory to describe non-uniform systems. Cahn was primarily interested in binary alloys
and mechanisms of phase separation and the interfaces in the resulting structures.
Although the original treatment by Cahn and Hilliard was in the context of a binary
mixture of simple fluids or quasi-solids, the theory is very general, requiring only a
small change to describe polymer systems.

In the first of a series of three papers, all published under the leading title “Free
energy of a non-uniform system” [13–15], Cahn and Hilliard presented “a general
equation for the free energyof a systemhaving a spatial variation in oneof its intensive
scalar properties” [13], which for simplicity was chosen to be a binary solution. Cahn
and Hilliard’s original treatment of the problem was based on expressing the local
free energy f ∗ “as the sum of two contributions which are functions of the local
composition and the local composition derivatives” [13, 15]. For an isotropic system
which has no directionality, it was then supposed that the local free energy f ∗ could
be expressed as

f ∗(c,∇c,∇2c, . . .) = f (c) + κ1∇2c + κ2(∇c)2 + · · · (2.35)

where f is the energy of a uniform system, the derivatives terms represent local
composition gradients and κi are coefficients that may possibly depend on the local
composition. It is noted no assumptions are made about the nature of κi , which of
course could depend on local concentration [15]. The form of Eq. (2.35) is intuitive
for an isotropic system, because only even powers of the gradient term may appear
if direction is not important.

The energy f ∗ refers to the local energy of a volume dV , hence the total free
energy in a system of volume V is given by

F =
∫

V
f ∗dV . (2.36)
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This result, which describes an inhomogeneous system, has two contributions to the
free energy: a local contribution f (c) from the system being held at composition c;
and the energy contribution from a local composition gradient in the system. After a
little re-arranging, we can express this as

F =
∫

V
f ∗(c,∇c,∇2c, . . .)dV,

=
∫

V

[
f (c) + κ(∇c)2 + · · ·

]
dV, (2.37)

κ = −dκ1/dc + κ2. (2.38)

So in general we see that κmay indeed depend on the concentration. Equation (2.37)
is limited to a regime in which the composition gradients are not too steep, or to
be more exact where “the ratio of the maximum in this free energy function to the
gradient energy coefficientκmust be small relative to the square of the intermolecular
distance” [13]. If this is not the case, then higher even powers of the derivatives of
local concentration need to be included in Eq. (2.35).

Cahn and Hilliard used Eq. (2.37) to investigate the properties of the interface
between twocoexisting phases, and applied it to regular solutions of simplemolecules
[13]. The surface and interfacial energies predicted by manipulations of Eq. (2.37)
agreed extremelywell with experimental data andwere in agreement with two empir-
ical expressions for the latter known to generally apply. Furthermore, the theory
produced extremely good agreement with data on the interfacial energy close to the
critical temperature TC (χC ; see Fig. 2.3), which is significant as it validated the
dependence of the surface energy on the distance from the critical temperature that
the theory predicted [13]. As explicitly explained by Cahn, the advantage of this
representation of a non-uniform system is “the splitting of the thermodynamic quan-
tities into their corresponding values in the absence of a gradient and an added term
due to the gradient” [14].

2.5.2 Random Phase Approximation for Polymer Chains

The Random Phase Approximation is a self-consistent field calculation for (dense)
polymer systems, attributed to de Gennes [17–20]. Using the RPA it is possible to
find the form of κ(φ), the coefficient of the gradient term in Eq. (2.37), suitable for
describing polymer systems. I will briefly follow the outline of the derivation for
κ(φ), leaving the full derivation for the citations below.

Self-consistent Field Calculations

The idea behind a self-consistent field calculation (a type of mean-field treatment)
for polymer systems is as follows [17]. We choose a form of interaction between
polymer segments, and then derive a potential based on this interaction and the local
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concentration of segments.We then take an ideal/non-interacting chain and place it in
this potential, and derive the resulting concentration profile. We ask if our profile for
the concentration is consistent with this potential, given the interactions producing
the potential, i.e., we’ve placed our ideal chains, now if we make them non-ideal
(interacting), will the interactions between segments produce the potential? Almost
certainly not, so we update the concentration profile so that it’s appropriate for our
potential. However, since the potential is also dependent on the concentration, we
then update the potential, and then update the concentration again etc. This is an
iterative procedure, and following de Gennes we can describe it as

U (r) = T vφ(r), (2.39)

where T is temperature and v is the excluded volume occupied by a segment. Given
an ideal polymer chain in a potential U (r) we can calculate a new concentration
profile φ′(r), and then calculate a new potential U ′(r) etc. We hope that the potential
and concentration profile converge on a stable fixed solution upon enough iterations.

De Gennes points out that the first application of a self-consistent field treatment
to polymers was by Edwards [21], and I found the explanation given in Edward’s
work to be extremely enlightening. Edwards explains that the probability of finding
a segment at distance L along the chain and distance r from the origin is not simply
a random walk, due to the excluded volume principle—a segment cannot occupy
a certain volume that is excluded by the presence of another segment. Thus the
probability distribution is broadened and Edwards shows that “it will turn out that p
(the probability distribution) will play the role of a potential”. Note that the potential
arises from the excluded volume principle, so we need only know that there is an
interaction which achieves an excluded volume effect.

The Random Phase Approximation

The motivation behind the Random Phase Approximation (RPA) is: we want to
compute a response function that tells us howaweak perturbation at point r will effect
the concentration at a point r ′. We will allow our chains to sit in an overall potential
that is the sum of this weak perturbing potential and a self-consistent potential that
is due to all of the surrounding chains. We wish to find this self-consistent potential,
and this is quite a difficult problem. I will briefly describe the principles behind
the random phase approximation, avoiding the dense mathematics but following the
description in de Gennes book [17].

The change in local concentration at point r due to a weakly perturbing potential
W (r ′) at point r ′ is

δ�n(r) = − 1

T

∑
r′

∑
m

Snm(rr′)Wm(r ′), (2.40)

where the index m represents segment m such that Wm is the perturbing potential
acting on segment m, and Snm is a response function that relates how the perturbation
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on segment m at r ′ affects segment n at r . Thus we see that all perturbations on all
segments have been included. Since we are considering an isotropic system, the
response function may only depend on the separation r − r ′, so we switch to Fourier
space to simplify the treatment

δ�n(q) = − 1

T

∑
m

Snm(q)Wm(q). (2.41)

After some difficult maths, the central result of RPA emerges as

Snm(q) = S0
nm(q) − S0

n (q)S0
m(q)∑

nm S0
nm(q)

,

= S0
nm(q) − S0

n (q)S0
m(q)

NgD(q)
, (2.42)

where S0
nm(q) is the non-interacting response function (which is known, hence allow-

ing the substitution of the Debye scattering gD function for the sum over these
response functions) and S0

n (q) = ∑
m S0

nm(q).
What exactly does Eq. (2.42) mean? The derivation of this result does not involve

introducing specific interactions as such, other than the implied repulsive interaction
that is responsible for excluded volume, so the result really represents the distribution
of polymer segments caused by there being other polymer segments around. For a
detailed derivation, the reader should consult de Gennes book [17]. The main point
here is that we can calculate the response function Snm from quantities that we
already know. We can measure Snm using neutron scattering experiments, using
chains partially labelled with deuterium [19, 20]. The results of these experiments
will tell us the distribution of labelled segments and therefore of the polymer chains,
assuming that the labelling of segments doesn’t introduce additional interactions.

2.5.3 The Flory-Huggins-de Gennes Free Energy

We still need to calculate a coefficient κ of the gradient term in Eq. (2.37) suitable
for polymer systems. A derivation can be found in modern textbooks [8, 10]. We ask
how the local composition changes with respect to a change in the local chemical
potential.When the volumewe consider is very large compared to the chain size, such
that this volume as a whole will not contain fluctuations of concentration, we obtain
from Eq. (2.30) with χ = 0 (such that the polymer mixture is ideal) the chemical
potential of species i as μi = ∂�F/∂φi :

μi = kT

Ni
ln φi + const, (2.43)
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providing we write φ ≡ φi and 1−φ ≡ φ j �=i . We can then easily derive the response
function that we desire

∂φi

∂μi
= φi

Ni

kT
. (2.44)

Using the notation δ(�μ) = δμA − δμB and noting that for a binary mixture we
must have φA + φB = 1, then we obtain with φ = φA

∂φ

∂(�μ)
= 1

kT

(
1

φNA
+ 1

(1 − φ)NB

)−1

. (2.45)

This won’t be correct for small volumes where fluctuations are significant. Working
in Fourier space, we can adapt the latter equation to

∂φ(q)

∂(�μ(q))
= 1

kT

(
1

φSA(q)
+ 1

(1 − φ)SB(q)

)−1

,

= 1

kT
Sni (q), (2.46)

where Sni is the response function for non-interacting chains.
To account for a potential, so as to consider interacting chains, we can then write

1

S(q)
= 1

Sni (q)
− V (q), (2.47)

and we note that for q = 0 this potential must equal 2χ, since by definition this is our
interaction in the FH regime based solely upon the enthalpy between two monomers.
For small q it must be true that

V (q) = 2χ

(
1 − 1

6
q2r20

)
, (2.48)

because this term arises from a first order expansion of a Gaussian distribution
describing a bare response function for a non-interacting chain [17, 20] and r0,
which is of the order of the segment size a (which is therefore equal to the lattice
spacing in the Flory-Huggins lattice), measures the range of inter-segment forces
[8]. Inserting the approximate potential V and the response functions SA and SB into
Eq. (2.47) we obtain an expression for the scattering response function S(q) that is
consistent with a free energy (in units of kB T ) of the form [8]

F =
∫ [

fF H (φ) + κ(φ)(∇φ)2
]

dr, (2.49)
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κ(φ) = χr20
6

+ a2

36φ(1 − φ)
≈ a2

36φ(1 − φ)
, (2.50)

for which it is common practice to neglect the small first term in κ(φ). The result is
the Flory-Huggins-de Gennes free energy for a binary polymer system:

F [φ,∇φ] =
∫ [

fF H (φ) + a2

36φ(1 − φ)
(∇φ)2

]
dr, (2.51)

which is the starting point for studying the kinetics of, and morphology resulting
from, phase separation of polymer blends.

2.6 Spinodal Decomposition

A mixture of two components may exist either as one phase (the entropy of mixing
overcomes the heat of mixing) or as two phases (the heat of mixing overcomes the
entropy of mixing). A phase diagram like Fig. 2.3 separates regions of stability of
blends existing as one-phase and two-phases. Phase separation from one phase into
two phases, caused by the thermodynamic instability of the mixture as it is brought
across the spinodal line from the one-phase to the two phase region, is called Spinodal
Decomposition. I will first discuss an early example involving a crystaline solid, not
only because it is an important example in the development of theory, but because it
is a good introduction to several concepts.

2.6.1 A Crystal with a 1D Inhomogeneity

Hillert considered a crystalline solid consisting of two components A and B, in which
a variation in composition x (the volume fraction of A, 0 < x < 1)was allowed in one
direction along the crystal [22]. This system was modelled by consecutive parallel
2D planes i − 1, i, i + 1..., every plane having some characteristic composition
xi−1, xi , xi+1.... Figure2.4 shows a schematic representation.

Hillert calculated the free energy of this system. For the interaction energy
(heat/enthalpy), it was assumed that an atom in a particular plane i could
interact with Z nearest neighbours in total, with z of these nearest neighbours being
located in the next plane i + 1. The system as a whole has average composition xa ,
interaction strength v, and the total number of atoms within a single atomic plane
is m. The energy of interaction for plane i interacting with next plane i + 1 is then
�U = vm

{
Z(xi − xa)2 − z(xi − xi+1)

2
}
. The change in entropy arising from a

single plane i being at a composition different from the average composition is given

by regular solution theory �S = m
{

x p log
x p
xa

+ (1 − x p) log
1−x p
1−xa

}
. Hence, after

summing across all planes in the system, the energy difference between the inhomo-
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Fig. 2.4 Parallel 2D planes
of a crystal, in which the
composition of each plane
0 < xi < 1 is represented, in
this schematic, by the degree
of transparency of the planes.
The arrow represents the
direction of inhomogeneity
in the crystal

geneous state and the homogeneous (note the direction of consideration of energy
difference, which gives a minus sign) is

�F = − vm
∑

p

{
Z(x p − xa)2 − z(x p − x p+1)

2
}

+ kB T m
∑

p

{
x p log

x p

xa
+ (1 − x p) log

1 − x p

1 − xa

}
. (2.52)

Nature of Stable Solutions

Hillert considered stable (mathematical) solutions to the problem, which requires
calculation of the change in free energy “when atoms are exchanged between two
neighbouring planes p − 1 and p” i.e. what is the functional derivative of the free
energy with respect to composition x p of plane p. For equilibrium (stable solutions)
we require δ�F/δx p = 0. For small amplitude fluctuations around the average
composition xa , stable solutions were found to obey the relation

x p+1 = x p−2 − x p−1 + x p − 2M(x p−1 − x p), (2.53)

where M is a constant given by a combination of parameters (including average
composition xa , the number of nearest neighbours Z and z, the temperature T , and
the interaction energy v).

It turns out that M = 1 corresponds to the spinodal curve for a 1D system:
(one-phase region) |M | > 1 corresponds to states outside the spinodal for which
the only physically relevant solution (in which 0 < x p < 1) was x p = const = xa

i.e. a homogeneous state; (two-phase region) |M | < 1 corresponds to inside the
spinodal, for which relevant solution for small amplitude fluctuations are of the form
x p = xa + C sin pφ where C is a constant. For shallow depths beyond the spinodal,
the wavelength (of the composition variation) extends over many atomic planes, but
as distance into the spinodal increases (|M | → 0) the wavelength becomes of order
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unity (on the order of a few atomic planes). Consideration of large compositional
variations required numerics to be performed on a computer, but the results showed
that again the equilibrium states within the spinodal were sinusoidal in nature.

Wavelengths

Hillert supposed that a kinetic treatment of the problem would give insight into what
composition variation wavelengths might dominate by showing which wavelengths
would grow the fastest. It was also noted that in order for the system to increase the
wavelength of fluctuations (in order to lower energy) a re-arrangement of the sys-
tem is necessary that should also be studied from a kinetic perspective. By deriving
a diffusion equation for the system and applying random fluctuations (fluctuations
with a spectrum of amplitudes and wavelengths), Hillert found that a spectrum of
wavelengths first developed, followed by small wavelength fluctuations decreasing
in amplitude, causing the average wavelength of the system grow with time. Con-
sideration of the fastest growing wavelength is important in spinodal decomposition
studies [22].

2.6.2 Stability of a Solution

Cahn considered the stability of a solid-solution with respect to compositional fluc-
tuations [23], where ‘solution’ is meant in the sense of a binary mixture which may
support composition gradients, and ‘solid’ is meant in the sense that there is an elastic
energy contribution to the free energy (arising from strain in the material when an
initially homogeneous region becomes inhomogeneous). I will leave out the elastic
energy contribution in my discussion here.

Cahn considered the free energy of a two-component solution using Eq. (2.37)
To consider fluctuations requires knowledge of how the free energy changes when
a small amount of one-component is replaced with another, but “in the presence
of a gradient, if we make a local change in composition we also change the local
gradient”, so we must consider the functional derivative of the free energy with
respect to composition. If a functional F is given by

F =
∫

g(r, c(r),∇c(r))dV, (2.54)

then the functional derivative of F with respect to c(r) is given by

δF

δc
= ∂g

∂c
− ∇ · ∂g

∂(∇c)
, (2.55)

as long as the integrand vanishes at the boundaries of integration. Applied to Eq.
(2.37) [such that g is the integrand f ∗ of Eq. (2.37)] we obtain
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δF

δc
= ∂ f

∂c
+ ∂κ

∂c
(∇c)2 − 2κ∇2c. (2.56)

The functional derivative can be used to formulate a diffusion equation which may
be used to study the morphology resulting from spinodal decomposition.

2.6.3 Diffusion Equation

The chemical potential μ can be related to the functional derivative via μ = δF/δc.
Cahn considered the matter current J = −M∇μ, where M is a positive mobility
coefficient, and the continuity equation ∂c/∂t = −∇ · J . Disregarding all terms non-
linear in c, so as to consider infinitesimal compositional fluctuations corresponding
to the initial stages of spinodal decomposition, we have

∂c

∂t
= M

∂2 f

∂c2
∇2c − 2Mκ∇4c, (2.57)

confirming Cahn’s assertion that “the diffusion equation must contain a higher order
term reflecting the thermodynamic contributions of the gradient energy term”. The
first term of Eq. (2.57) allows us to interpret M f ′′ as an interdiffusion coefficient.
The second term accounts for gradients and interfaces.

Wavelengths

For small variations in c about the average c0, the solution to Eq. (2.57) is c − c0 =
A(k, t) cos k · r , where k is the wavevector of a compositional variation and A(k, t)
is an amplification factor depending on the wavelength, which yields

∂ A

∂t
= −Mk2

[
∂2 f

∂c2
+ 2k2κ

]
A, (2.58)

and therefore solutions are of the form

A(k, t) = A(k, 0) exp [R(k)t], (2.59)

R(k) = −Mk2
[
∂2 f

∂c2
+ 2k2κ

]
, (2.60)

Cahn referred to R(k) as a kinetic amplification factor, which if negative means that
the solution is stable to fluctuations of wavevector k, and which if positive means
the the solution is unstable to fluctuations of wavevector k. The critical wavelength
by definition separates these two regimes, and corresponds to the smallest possible
wavelength for which the mixture is unstable, R(kc) = 0. Cahn noted that “surface
tension prevents decomposition of the solution on too fine a scale.” This important
point is why equations like (2.37) and (2.51) are required to study phase separation,
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becausewithout a gradient energy term, themixture could decompose on an infinitely
fine scale. However, since this would yield an enormous amount of gradient energy,
this is not actually energetically favourable, and so does not happen.

Cahn found that the fastest growing wavelength was related to the critical wave-
length

kmax = √
2kc, (2.61)

Fluctuations ofwavelength kmax “will grow the fastest andwill dominate. This princi-
ple of selective amplification depends on the initial presence of thesewavelengths but
does not critically depends on their exact amplitude relative to other wavelengths”.
This is a very important idea in spinodal decomposition.

2.6.4 Morphology from Spinodal Decomposition

To investigate the structures that may result from spinodal decomposition, Cahn used
the solution to Eq. (2.57) given by c − c0 = A(k, t) cos k · r [16]. Since all sums of
all solutions are also possible solutions, due to superposition theory, the most general
solution is

c − c0 =
∑
all k

exp {R(k)t} [A(k) cos(k · r) + B(k) sin(k · r)] . (2.62)

The problem of studying the temporal evolution is much simpler if only the wave-
length with the fastest growing amplitude is considered i.e. kmax

c − c0 ≈ exp {R(kmax)t}
∑
kmax

[A(k) cos(k · r) + B(k) sin(k · r)] . (2.63)

Hence “The predicted structure may be described in terms of a superpositioning of
sinusoidal composition modulations of a fixed wavelength, but random in amplitude,
orientation, and phase” and “at some time after phase separation starts, a description
of the composition in the solution will be a superposition of sine waves of fixed
wavelength, but random in orientation, phase, and amplitude”. The sum in Eq. (2.63)
remains, even though only k = kmax is considered in the sum, because Cahn gener-
ated a predicted morphology by summing over waves with different directions and
amplitudes.

The resulting morphology was a highly interconnected bi-continuous structure,
which resembled that of phase separable glasses believed to have undergone spinodal
decomposition. Cahn stated that “theory of spinodal decomposition has been shown
to predict a two-phase structure”, although strictly speaking this result only applied to
the initial stages of phase separation. Kinetic restrictions would of course mean that
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Fig. 2.5 Shown here only for visualisation purposes are simulation snapshots I produced of a
phase separating symmetric polymer blend (NA = NB = N , average volume fraction φ̄ = 1/2),
created by solving the Cahn-Hilliard-Cook equation (2.65) for a polymer blend. The initially nearly-
homogeneous blend phase separates and coarsens into a highly interconnected bicontinuous mor-
phology, the latter of which is similar to that obtained by Cahn

this structure would indicate the qualitative features that would be expected from the
late stages, since rearrangement ofmaterial at late stages is restricted by the structures
formed at early stages. Figure2.5 shows simulation snapshots of a phase separating
polymer-blend, produced by solving the diffusion equation (2.65) for a polymer-
blend (Eq. (2.65) is essentially Eq. (2.57), but with random thermal noise included
and without limiting to small variations around c0) shown for visualisation purposes:
the final morphology, a bicontinuous structure, is very similar to that obtained by
Cahn.

2.6.5 Random Noise and Spinodal Decomposition

Cahn’s theory of the early stages of spinodal decomposition [16] is known to break
down at later stages, mainly as a result of neglecting higher order terms in the gra-
dient energy that bring in other harmonics [24]. However, Cook noted that it was
not understood why the theory could also break down for the initial stages of spin-
odal decomposition for which it was designed to study. Cook suggested that “the
breakdown at the very early stages of the transformation which is caused by ther-
mal fluctuations is not so widely appreciated” [24]. A strong example of the lack
of understanding was the complete lack of spinodal decomposition in some glass
mixtures, which were practically identical to other glass mixtures which did have
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the features of spinodal decomposition. This could not be accounted for by a theory
that suggested that only the initial amount of decomposition in the glass mixture (the
spectra of composition fluctuations in the initial mixture) would result in different
late-time features.

Supposing that “fluctuations in composition caused by thermal effects whichwere
not included in the original theory”mayhavebeen responsible,CookmodifiedCahn’s
diffusion equation given in Eq. (2.57) to include thermal noise, which should give rise
to Brownian motion of the fluid. This was justified by Cook because it is understood
that “the equilibrium state is dynamic and that, for the case of a stable, single phase,
binary solid solution, an appreciable flux of solute occurs at equilibrium.” To include
this random thermal contribution, Cook modified the matter current equation J =
−M∇μ to include a “quasi-random thermal contribution to the total flux”, denoted
by j , resulting in a material current

J = − M∇μ + j

= − M∇ δF

δc
+ j. (2.64)

Cook’s important contribution to the rate equation for spinodal decomposition lead
to the name “Cahn-Hilliard-Cook” theory for equations of the form

∂c

∂t
= ∇ ·

[
M∇ δF

δc

]
− ∇ · j (r, t) (2.65)

≡ ∇ ·
[

M∇ δF

δc

]
+ η(r, t). (2.66)

The randomly fluctuating field η(r, t) has certain properties, such that its average
value is zero. Using averaging to treat the random term (the average properties are
well defined), the rate of change equation given by Cahn in Eq. (2.58) gains an
extra term, giving d I (k, t)/dt = M(k){[ f ′′ + 2κk2

]
I (k, t) − kB T/�c0(1 − c0)},

where � is the volume per atom. So the rate of change of intensity has two separate
contributions: (a) a thermodynamic driving force “which is proportional to the free
energy associated with the Fourier coefficient of wavevector k”; and (b) a thermal
driving force “which is proportional to the temperature and independent of the wave
vector”.

The inclusion of thermal noise has several non-trivial implications for spinodal
decomposition [24], especially in the early stages of spinodal decompositionwhen the
free energy of the fluctuations is∼kB T “and thus the influence of randomfluctuations
will be pronounced”: (i) the criticalwavevector kC is nowdetermined by the condition
that the thermal driving force (from the thermal noise) is equal to the thermodynamic
driving force (arising from the free energy of the system); (ii) the rate of intensity will
be greater given the thermal driving force, since “every movement in the fluctuation
field...which increase themagnitude of aFourier coefficient is amplified”; and (iii) the
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“thermal driving force indicates early stages of decomposition outside the spinodal...
in this ‘operational’ sense the spinodal, itself, becomes a diffuse boundary”.

2.6.6 Spinodal Decomposition of a Polymer Blend

I will briefly discuss, for completeness, the relaxation of a polymer melt, which is
an important idea of spinodal decomposition, although the concept will not be dis-
cussed in the rest of this thesis. Relaxation concerns, to give a broad definition, how
an unstable mixture ‘relaxes’ into a stable mixture in spinodal decomposition. Relax-
ation can be described by a relaxation time for different wavelengths (lengthscales)
of the decomposition.

De Gennes extended the study of the dynamics of spinodal decomposition to
polymer blends [18]. For polymer blends, there are a variety of length scales that
are important, and so it may be important to have a dependence of the mobility on
the wavelength of fluctuations in a polymer blend. This can be done by introducing
a wavelength dependent Onsager coefficient �(q) into the usual expression for the
matter current J = −M∇μ. This effectively allows a dependence of the constant
M on the wavelength of each Fourier component. The result is a current for each
Fourier component

Jq = −�(q)

kB T
(∇μ)q . (2.67)

We can allow use of the following expression for the relaxation time for a mode of
wavelength q:

1

τq
= − 1

δφq

∂(δφq)

∂t
, (2.68)

where δφ is a small fluctuation away from the homogeneous state φ0, such that we
can express the composition using φ = φ0 + δφ. If wavelengths of fluctuations
produce negative values for τ−1

q , then compositional fluctuations of this wavelength
grow with time.

De Gennes derived a relaxation formula for a symmetric binary polymer blend,
assuming the form �(q) ∝ q2 for polymer blends (based on a scaling ansatz) [18].
The result for the relaxation time “differs from the standard Cahn-Hilliard equation
for spinodal decomposition” for simple molecules, this difference arising from “the
presence of long chains”. It was noted that “the characteristic length l is much smaller
than the coil size... (thus) spinodal decomposition is an excellent probe for fluctua-
tions of short wavelength.” The assumption �(q) ∝ q2 was later found to be false
[25].

Pincus continued the work of de Gennes by taking into account new knowledge
of the nature of the Onsager coefficient [25]. The nature of the relaxation of modes in
a polymer melt leads to a significantly altered dependence of the Onsagar coefficient
on the wave vector q, namely that �(q) ∝ q−2. This gives a very different result for
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the relaxation time [still of the form Eq. (2.68)]. Unlike the results of the earlier work
by de Gennes which showed that spinodal decomposition should probe very short
wavelengths “much smaller than the coil size” [18], it nowappeared that “the unstable
mode has a wavelength comparable to the ideal chain radius and therefore should
vary as N 1/2 with only a weak concentration dependence”. Also, “the corresponding
growth rate is proportional to the reptation diffusion coefficient in a melt and thus
scales as N−2 and has a concentration dependence that reflects the shape of the
spinodal line”. Concerning the latter point, this means that upon going from the one-
phase to the two-phase region, the rate of spinodal decomposition depends on the
concentration.

Mean-Field Treatments of Polymer Systems

Binder later did a similar calculation, but using the chemical potential as calculated
via functional derivatives [26]. Binder notes that mean-field treatments of spinodal
decomposition in fluids of simple molecules can fail due to fluctuation effects that
are not included in mean-field treatments. However, “a simplifying feature due to the
large size of the polymer chains is themean-field character of the unmixing transition,
fluctuation corrections to the mean-field description can be safely neglected.” On the
linearisation approximation φ(r, t) ≡ φ0 + δφ(r, t) used to calculate the relaxation
time, Binder noted that “whilst it is well known that the linearisation approximation
is not valid in the critical region of non-mean-field liquid... its validity in the present
case should be much better justified.” The main result is that “the wavevector qm of
maximal growth in spinodal decomposition is typically of the order of qm ∼ R1”
where R is the polymer coil radius.

2.7 Summary

In this chapter, I discussed the development of theory to describe bulk polymer blend
systems, beginningwith the development of an entropy ofmixing valid for long chain
molecules, followed by a heat of mixing, and an expression for the free energy cost
of compositional gradients. Together, these expressions give the Flory-Huggins-de
Gennes free energy of mixing. I discussed the coexistence curve and spinodal line
for a binary blend system, as well as spinodal decomposition whereby a blend phase
separates into phases rich in either component upon being quenched from the one-
phase to the two-phase region. This chapter has covered the bulk theory required
in this thesis, and the next chapter extends this theory to include surfaces, allowing
films to be studied theoretically.
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Chapter 3
Development of Theory for Polymer-Blend
Thin Films

This chapter follows the development of theory for thin films of binary mixtures
from a chronological perspective. Beginning with the inclusion of a surface into
non-uniform systems, this chapter discusses the origin of the form of surface energy
used in this thesis, covers the concept of wetting of surfaces by a preferred phase,
and discusses how phase separation in films is affected by preferential attraction of
components by surfaces and by finite confinement effects.

3.1 Introduction

The aim of this chapter is to introduce several important concepts about films of
binary fluids that are relevant to the rest of this thesis. I have taken care to follow the
primary literature that developed the relevant theory, much of which is as relevant
to simple fluids and Ising systems as it is to polymer fluids. This chapter can be
summarised as follows. I begin with how a surface can be included into a theory of
non-uniform systems, and follow literature for Ising systems, simple fluid systems,
and polymer systems which utilised specific forms of this surface energy. I then
briefly discuss wetting, whereby a surface can be coated by the preferred phase of
a binary mixture. I then introduce films of multicomponent fluids, namely a binary
mixture bounded by two surfaces, and explain different surface energy configurations
caused by the preferential attraction of components by the two surfaces, and what
effect the surface energy and finite geometry has on phase separation.

It is useful to introduce some terminology here. Figure3.1 shows two schematics
of semi-infinite systems: (a) bulk system of infinite extent in contact with a sur-
face/wall 1 (such that the system spans from z = 0 to z = ∞, where z measures the

1Surface/Wall: the boundary formed by the interface between the fluid and, for example, air or a
vacuum. While the terms will often be used interchangeably, a Wall is specifically meant to be
a rigid planar surface, while a Surface could be non-rigid and deformable. A substrate such as a
silicon wafer, on which a fluid film may rest, is therefore a wall, whereas the fluid-air boundary
may be referred to as either a wall or a surface depending on the context.

© Springer International Publishing Switzerland 2015
S. Coveney, Fundamentals of Phase Separation in Polymer Blend Thin Films,
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36 3 Development of Theory for Polymer-Blend Thin Films

(a) (b)

Fig. 3.1 Two different examples of semi-infinite systems of two-phase mixtures in contact with
surfaces, the degree of shading (colouring) representing composition: a bulk system of infinite
extent in contact with a single surface/wall/substrate;b a film of infinite thicknesswith two bounding
surfaces

distance from a bounding wall at z = 0); and (b) a film of infinite thickness, which
is effectively a film of thickness d in the limit that d → ∞ (usually such that the
system runs from z = −∞ to+∞, the position of the two bounding surfaces/walls).
The work that I discuss prior to Sect. 3.5 considers such semi-∞ geometries.

3.2 Non-uniform Systems with a Surface

In pioneering work, Cahn extended the theory for non-uniform bulk systems, with
two phases α and β, to include a third phase x representing a surface [1]. Later
work concerning similar systems is almost invariably built on these foundations.
Cahn showed that for a two-phase system α-β in contact with a third phase x , near
criticality for the two-phase system the third phase is completely wetted by only one
of the critical phases, the other critical phase being entirely excluded from contact
with the third phase [1]. Figure3.2 is a schematic similar to that given in Cahn’s
work: when the angle that a phase makes with the surface drops to zero, θ → 0,
the surface is wetted by that phase. Applied to a binary fluid (two-phase system) in
contact with a wall (the third phase), which was the context of the work, this means
that near criticality the wall would be wet entirely by a phase rich in one component
of the binary fluid.

Cahn modelled a semi-infinite system, running from z = 0 to z = ∞ as shown
in Fig. 3.1a, of a binary blend of liquid-vapour in contact with a surface. The bulk
composition at an infinite distance from the surface at z = 0 was c∞ ≡ c0. Cahn
assumed that “the interactions between surface and fluid are sufficiently short-range”
and only depend on the local fluid composition cs at the surface. The excess free
energy the system has, due to the presence of the wall, can then be expressed as

�F = �(cs) +
∫ ∞

0
� f + κ

(
dc

dx

)2

dx, (3.1)
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Fig. 3.2 Schematic of a two-phase system α-β in contact with a third phase x , which is in this case
a planar surface. When θ → 0, the surface will be completely wetted by the β phase, such that a
layer of β phase will coat the surface, excluding the α phase from contact with the surface. Here,
the surface is non-wet since θ �= 0, but changing parameters like temperature and surface energy
could cause θ → 0

where � f = f (c) − f (c0) − (c − c0)(∂ f/∂c)|c=c0 is the energy needed to form
a volume of material with composition c differing from the bulk c0, κ(dc/dx)2 is
the energy cost of a composition gradient, and �(cs) is the surface energy. The
surface energy decreased non-linearly with increasing composition of the preferred
component at the wall, such that coating of the wall by that component would be
preferable. Cahn made no other assumptions about the form of �.

The task of finding the equilibrium profile c(z), describing the composition c
with distance z from the wall, requires minimising �F with respect to a boundary
condition imposed by the wall. Setting the functional derivative of the excess free
energy at the wall to zero, Cahn obtained for the boundary condition at z = 0:

d�

dcs
− 2κ

dc

dx

∣∣∣∣
c=cs

= 0. (3.2)

(Calculating equilibrium profiles is the subject of Chap. 4.) I will discuss the impor-
tant results of Cahn’s work, as opposed to only the model, in Sect. 3.4, but Eqs. (3.1)
and (3.2) are ideal to introduce the concept of the surface energy addition to the bulk
free energy.

3.3 Form of the Surface Energy

In this section, I will discuss the form of the surface energy term � in Eq. (3.2),
for which there are many applications to different non-uniform systems, including
Ising-spin systems (magnetic systems), multicomponent fluids of simple molecules,
and polymer blends. It turns out the form of the surface energy is essentially the
same in all these cases, although the meaning of the terms varies slightly between
each case.

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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3.3.1 Magnetic Systems

Lubensky and Rubin studied a semi-infinite system of continuous magnetic spins
using Landau-Ginzberg mean-field theory [2]. Figure3.3 is a schematic, showing
a wall (surface), the layer of spins directly adjacent to the wall, and the next layer
of spins (similar to Fig. 3.1a, these spins extended infinitely away from the wall).
The effect of the wall had two contributions: a surface magnetic field at that wall
(an interaction between the wall and the spins, which would encourage alignment
of the spins with the magnetic field at the wall) and an enhancement of the nearest
neighbour exchange energy at the wall (which would encourage the spins directly
adjacent to the wall to align with each other either more strongly or less strongly than
they would in the bulk). In effect, the enhancement of nearest neighbour exchange
energy represents a change of the nature of interactions between spins at the wall,
which should be possible even if the wall does not exert a surface magnetic field on
the spins.

The presence of the wall resulted in a boundary condition determining the mag-
netisation at the wall, which is in analogy with the boundary condition equation
(3.2). The surface highly perturbs the behaviour of the system. For example, when
the surface field exceeds the bulk field, then surface transitions are possible in which
the surface orders when the bulk is still disordered (the magnetisation decaying with
distance from the wall). Due to the enhancement of nearest neighbour interactions,
it is also possible for the bulk to order before the surface orders.

Pandit and Wortis [3] also studied a semi-∞ Ising system like that in Fig. 3.3,
but with a one-dimensional inhomogeneity allowing the spin-profile to vary with
distance from the wall [3]. They used a phase portrait method (phase portraits are
the topic of Chap. 4) to study the states and transitions of the system. Similar to
Lubensky and Rubin [2], both a surface field and a surface enhancement were used
to represent the wall: the surface term was linear in the magnetisation at the wall
M(0); the surface enhancement, corresponding to an additional interaction between
spins in the immediate vicinity of the surface, provided a term quadratic in M(0).
The particular form is noted here for comparison with that used for simple fluid and
polymer systems, discussed in Sects. 3.3.2 and 3.3.3. Variation of the free energy

Fig. 3.3 Two layers of a
semi-∞ Ising system in
contact with a wall, which
can modify the interactions
between neighbouring spins
in the vicinity of the wall
(left) and apply a magnetic
field to spins adjacent to the
wall (right)

http://dx.doi.org/10.1007/978-3-319-19399-1_4


3.3 Form of the Surface Energy 39

functional at the surface leads to a boundary condition analogous to that found by
Cahn, Eq. (3.2).

3.3.2 Simple Fluid Systems

The form of the wall interaction used by Lubensky and Rubin [2], briefly mentioned
above, turns out to be qualitatively identical to that which became the norm for
binary fluid systems. Nakanishi and Fisher studied the “global phase diagram for
wall and surface critical phenomena” [4]. Their work was a direct extension of that
by Lubensky and Rubin, although leaning towards the context of binary fluid systems
in contact with a surface. The equivalence of the surface field in magnetic systems
and an “incremental chemical potential, δ�μ = h1kB T , which favours one species
and acts only near the wall” was made clear, and as in the case of an Ising system,
a surface enhancement g representing enhanced coupling (a change in the nature
of interactions) near the wall was included. Figure3.4 is a schematic representing
these effects. The surface energy contribution, depending on the magnetisation at the
surface m1, was then

fs(m1) = −h1m1 − 1

2
gm2

1, (3.3)

which is essentially equivalent to that used by Lubensky and Rubin for an Ising
system [2]. Using � = fs and cs = m1 in Eq. (3.2), it is simple to see that the
boundary condition at the surface will be of the form ∂zm1 ∝ h1 + gm1. Hence the
surface enhancement g sets the boundary condition onm1 by relating the composition
gradient to the surface composition. Perhaps theywerefirst towrite the surface energy
in a phenomenological form like in Eq. (3.3).

Fig. 3.4 Three layers of a semi-∞ binary fluid of simple molecules in contact with a wall, which
can modify the interactions between neighbouring molecules in the vicinity of the wall (left) and
apply an incremental chemical potential favouring one component on molecules adjacent to the
wall (right)
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Using the same description of a simple bulk fluid in contact with a surface, Nakan-
ishi and Pincus later studied ‘surface spinodal decomposition’ (where the surface
gives directionality to spinodal decomposition) for fluids near a wall [5], describing
the model as “the simplest model for wetting where an incremental chemical poten-
tial δ�μ = h1kB T is introduced favouring one component, say B, of a binary fluid
mixture near the wall” with an enhancement term describing an “enhancement near
the wall in the effective molecular couplings”.

Jerry and Neumann investigated the criteria for depletion and enrichment of a
component of a binary mixture at a wall, using a nearest-neighbour type interaction
to model interaction with the wall [6]. Using regular solution theory for the binary
mixture, they pointed out that a consistent form for thewall interaction energy�must
be (at least) quadratic in the local composition cs ; the coefficient of the linear term is
a chemical potential and the coefficient of the quadratic term is a based on missing
neighbour interactions caused by the presence of the wall resulting in fewer nearest
neighbour bonds at that wall. Of course, such a surface energy is then equivalent to
Eq. (3.3). They showed the equivalence of various theoretical descriptions of a wall,
including a ‘frozen wall’ consisting of fluid molecules with a fixed phase cs , a free
surface in which the interface can be taken to be a vacuum, and a ‘real wall’ which
included the effects of thewall interactionwith each component in the binarymixture.
A function quadratic in composition proves to describe all of these scenarios, only
the coefficients have different physical meanings, the proposed form being (s ≡ c)

�(s) = −μ1s − 1

2
gs2 + R, (3.4)

where R is a constant, which would of course disappear in the boundary condition
(3.2). One of the most important points they raised was that “the bulk concentration
is important in determining whether enrichment or depletion occurs (at the wall).
This contradicts the conventional understanding that the surface should be enriched
with the component having the lower surface energy” [6].

3.3.3 Polymer Systems

Schmidt and Binder extended the work of Nakanshi and Pincus to binary polymer
blends in the presence of a single wall [7]. Their results showed that polymer sys-
tems should display the same surface phenomena present in simple fluid systems.
They used a quadratic expression for the bare surface energy −μ1φ1 − 1

2gφ
2
1 , in

common with the aforementioned work on systems of simple molecules. Similarly,
g “represents a change of interactions near the surface (including the effects due to
“missing neighbours” etc.).” Using the Flory-Huggins-de Gennes free energy func-
tional, together with a chemical potential difference and the surface energy, they
wrote their free energy functional in the same form as Eq. (3.1):
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F

AkB T
=

∫ ∞

0

{
fF H (φ) + κ(φ)

(
dφ

dz

)2

− �μφ

}
dz − μ1φ1 − 1

2
gφ2

1 . (3.5)

Essentially, the interactions between polymer segments and a wall should be simi-
lar to interactions between simple molecules and a wall. Figure3.5 is a schematic
showing why this ought to be the case. They put forth that, unlike for simple fluids in
which fluctuations can make artefacts of mean-field predictions, “polymer mixtures
would be an excellent candidate of systems to observe (phenomena like) critical wet-
ting” which are predicted by such theories, since polymer mixtures should be better
described by mean-field theories.

Interpretation of the Quadratic Wall Interaction for a Polymer System

Although a quadratic expression for the free energy of the boundary is mainly phe-
nomenological, one can make a simple argument based on bond counting that shows
that a quadratic dependence is fairly general. Jones proceeds as follows [8]: Consider
a binary polymer mixture A-B laid out on a lattice. The probability of a particular
lattice site being occupied by a segment of A is φ, which is the total volume fraction
of A in the blend. If the bond energy between components i and j on neighbouring
lattice sites is εi j , then the energy contribution from A monomers in contact with A
monomers will be the probability of a site being occupied by A, which is φ, mul-
tiplied by the probability that a neighbouring site is also occupied by A, which is
also φ, multiplied by εAA, the energy of an A-A bond. A similar argument applies to
interactions between B-B segments, and between A-B segments. We can then form
a surface in the blend, such that several bonds will have to be cut. If forming the
surface requires that we cut z′ such bonds on a lattice of spacing b, then the energy
of forming that surface turns out to be

Fig. 3.5 Schematic of polymer chains in the vicinity of a surface/wall. The presence of the wall
can modify the interactions between neighbouring segments on different chains (centre), whether
these chains are of the same species or of a different species, and apply an incremental chemical
potential near the wall which favours segments of one polymer species (right). The interactions
between different monomers, and between monomers and the wall, ought to be of the same nature
and magnitude as the interactions of simple molecules
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f (b)
s (φ) = z′b

2

[
φ2εAA + (1 − φ)2εB B − 2φ(1 − φ)εAB

]
. (3.6)

So we should expect the surface energy to be at least quadratic in φ. Reference [8]
discusses how the phenomenological parameters expressing the surface energy (μ1
and g in Sect. 3.3.3) may be related to other variables, whichmight be experimentally
measured/estimated, by such a bond counting argument.

3.4 Wetting in Semi-infinite Geometries

In this section, the term semi-infinite geometry is meant to mean a system of infinite
extent but with a bounding wall or surface, like that shown in Fig. 3.1a, such that the
system spans from z = 0 to z = ∞, where z measures the distance from a bounding
wall at z = 0.

3.4.1 Wetting in a Three Phase System

Cahndid the earliest systematic study ofwetting,which I discussed briefly in Sect. 3.2
[1]. Using a graphical method to analyse solutions minimising the free energy func-
tional (3.1), Cahn determined some very general results about wetting. The three
phase system of a binary fluid (phases α and β) in contact with wall (phase x) is
shown in Fig. 3.2. Wetting2 of the wall x happens when one fluid phase, say α, is
excluded from contact with the wall, such that the wall is in contact only with the
other phase β, as in Figs. 3.7 and 3.8 (this means that θ → 0 in Fig. 3.2). Wetting
by β, in which only β is in contact with the wall x , will happen if the energy of this
configuration is lower than the energy of three phase contact, in which both fluid
phases α and β are in contact with the wall x . The limit of wetting by β should occur
when the free energy of the system with three phase contact is the same as when
only one phase β is in contact with the wall x . Since the free energy depends on the
temperature T , Cahn predicted that a wetting temperature TW , less than but in the
vicinity of the critical temperature TC , is the cut-off for wetting behaviour (at TW ,
the energy of the two aforementioned configurations is the same).

Figure3.6 shows a representative phase diagramof composition c againstχ , which
for the purposes here can be considered to be the inverse temperature (however, see
Eq. (2.29)). For TW ≤ T ≤ TC (χW ≥ χ ≥ χC ), the coexisting phases with
composition ca and cb (lying on the coexistence curve between the points shown and
the critical point at the bottom of the coexistence curve) constitute perfect wetting,
with an infinitely thick layer of the preferred phase coating the wall x . For T < TW

2Wetting: when one phase of a binary phase system entirely coats a surface, excluding the other
phase from contact. Althoughwetting is strictly defined tomean that the latter configuration is stable
and the phase coating the surface is infinitely thick in a semi-∞ system (see main text throughout),
the term is usually used more loosely to describe most scenarios when a phase coats a surface.

http://dx.doi.org/10.1007/978-3-319-19399-1_2
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Fig. 3.6 A representative phase diagram of composition c against inverse temperature χ . The
wetting temperature χW is in the vicinity of the critical temperature. The compositions cb and ca
of the coexisting phases at the wetting temperature are shown. In the two-phase region between
χW and χC , one of the coexisting phases will wet the surface (which one depends on the surface
energy). Above χW , wetting no longer occurs, only positive adsorption of the preferred phase at
the surface

(χ > χW ) there is only positive adsorption of the preferred phase (an excess of the
preferred phase at the wall x). At T = TW (χ = χW ) a first-order transition occurs,
which constitutes a jump from positive adsorption to an infinitely thick layer of the
preferred phase. This jump in the wetting layer thickness, from finite to infinite, is
characteristic of first-order wetting. A schematic of this transition is given in Fig. 3.7:
wetting occurs because there is a spontaneous change in which configuration has a
lower energy, prompting the system to switch from a profile cfinite(z) to c∞(z). Cahn
also predicted prewetting (although the term was not coined here): when one of the
phases, say β, is not stable in the bulk system (because the system is still in the one
phase region) this phase can still form a non-homogeneous layer of finite thickness

Fig. 3.7 Schematic of a first-orderwetting transition,which constitutes a jump in the layer thickness
from a finite value to infinity. The jump occurs due to a spontaneous change in which composition
profile has the lower free energy, from cfinite(z) at T < TW to c∞(z) at TC > T > TW , as parameters
like the temperature are changed. At T = TW , the free energies of cfinite(z) and c∞(z) are equal
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at a surface (wetting happens in the two phase reion). When the composition of β

reaches the value for coexistence, a first-order transition can occur and the layer
thickness jumps to ∞.
Cahn therefore showed that wetting phenomena should be observed in any two-phase
system in contact with a surface (i.e. three phase system) close to the critical point
of unmixing.

3.4.2 Ising Systems with a Wall

In pioneering work utilising phase portraits (essentially plots of composition and
composition gradient, along with boundary conditions; see Chap. 4) to study phase
equilibria (composition profiles that minimise the free energy), Pandit and Wortis
studied a semi-∞ nearest neighbour Ising model with a bulk field and surface field
(and also modified spin-spin interactions in the layer of spins adjacent to the wall)
[3]. This was discussed briefly in Sect. 3.3.1 with regards to the form of the surface
energy, and the schematic of Fig. 3.3 still applies.

First-orderwettingwas found for a non-zero, large enough surfacefield (preferring
up-spins, say) and opposing bulk field (preferring down-spins, say), in the limit that
the bulk field goes to zero. At a temperature TW it is found that the minimal energy
profile for the systems changes discontinuously from a profile with a finite wetting
layer of the preferred phase to a profile in which this layer is infinite. For non-zero
bulk field (which is in analogy with a 2-phase fluid mixture away from coexistence)
pre-wetting transitions are found in which there is still a jump in the thickness of the
wetting layer, due to a sudden change of profile of minimal energy, but this jump is
from a finite value to a large but also finite value. These transitions are first-order; the
characteristic jump in wetting layer thickness can be seen as due to an instantaneous
switch of profiles to achieve a lower energy state, as represented in Fig. 3.7.

Second order wetting, which they found under the same bulk field conditions
but with smaller surface fields, was also studied. This so-called ‘critical-wetting’
temperature (as opposed to ‘wetting temperature’, which they took to mean the
temperature for a first order transition) is very close to the critical temperature of
the system. Upon approaching the critical-wetting temperature, the wetting layer
thickness goes to infinity, but continuously. This is because there is no sudden jump
to a different profile of minimal energy. Instead, upon approaching this temperature,
the profile continuously changes until the part of the profile corresponding to the
wetting layer is infinitely thick, as shown in Fig. 3.8.

3.4.3 Wetting in Polymer Systems

Nakanishi and Pincus studied wetting for simple fluids in a semi-infinite geom-
etry in which the bounding wall preferred the liquid (as opposed to the vapour)
phase [5]. The work was carried over to polymer systems too. Similar to earlier

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 3.8 Schematic of a second-order wetting transition. As the temperature approaches the
so-called ‘critical-wetting’ temperature, very close to the critical temperature, the composition
profile c∗(z) changes continuously such that the thickness of the wetting layer goes to infinity

work [3], a phase portrait method was used to study wetting and prewetting.
‘Extended wetting’ was proposed, whereby a metastably wetted state (i.e. profile)
could exist below the wetting temperature. The argument for this behaviour comes
from studying inflexion points in the free energy, in the same way that the spinodal
is defined in infinite bulk systems. This yields surface spinodals which give rise to
metastably wetted and metastably non-wetted states. However, it is noted that this
behaviour could simply be artefacts from the mean-field theory. They argued that,
for polymer blends, critical/second-order wetting should be impossible to observe,
as should extended wetting.

Schmidt and Binder studied a semi-infinite binary polymer mixture in contact
with a wall preferring one polymer species [7], using a Flory-Huggins-de Gennes
free energy functional with an additional term for the bare surface energy, given
by Eq. (3.5). First-order wetting, prewetting and second-order wetting were studied.
They found that, at two-phase coexistence, the wall is always wetted with the pre-
ferred phase, but that there is strong enhancement of the preferred component at the
wall even away from two phase coexistence. In disagreement with previous work
by Nakanishi and Pincus [5], Schmidt and Binder argued that it should be possible
to observe second-order wetting in a binary polymer mixture (in which mean-field
descriptions should work well, and the spinodal should be well defined rather than
smeared out by fluctuations, as it would be in simple fluid systems). The disagreement
arises from a difference in the magnitude of the polymer wall interactions assumed
by the authors, with the assumptions of Schmidt and Binder probably being much
more physical, since the latter work assumes that the interactions between polymer
segments and surfaces is of comparable magnitude to that between simple molecules
and surfaces, as explained in Sect. 3.3.3.
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(a) (b)

Fig. 3.9 Symmetrically attracting surfaces: Both surfaces prefer the same component of the blend.
a Trilayer profile; b Laterally coexisting profiles

3.5 Phase Separation in Finite Geometries

In this section, I discuss phenomena resulting from the confinement of a non-uniform
system between two walls that are a finite distance apart i.e. a film, Fig. 3.1b but with
finite d.

3.5.1 Laterally Coexisting Film Profiles

In the previous section, it was mentioned that in the non-wet state, there is positive
adsorption of the prefered component at the surface, but the discussion was reserved
to considering only how the composition varies with distance from the surface. Of
course, if the composition was only allowed to vary in the direction perpendicular
to the wall, then one would find in the non-wet state preferential adsorption at the
wall, and could not find cases in which there was lateral variation. However, in real
films the composition may of course vary in the direction parallel to the surface as
well, and when the surface is non-wet it is actually preferable for the film to exist
in a state of lateral segregation, as in Fig. 3.2, for which both phases α and β are in
contact with the surface x . This lateral segregation will be discussed in this section
on finite systems i.e. films (although the study of lateral segregation is still possible
for semi-infinite systems), and in Chap.4.

Surface Regimes

In a film with symmetrically attracting surfaces, Fig. 3.9, both surfaces prefer the
same component of the blend between the surfaces. More specifically, each surface
attracts a preferred component in exactly the same way as the other surface, so that
if the surfaces were swapped there would be no observable difference.

In a filmwith anti-symmetrically attracting surfaces, Fig. 3.10, one surface prefers
one component and the other surface prefers the other component. More specifically,
the surfaces attract their preferred components in exactly the same way, such that
if the labels on the components of the mixture were swapped and the surfaces were
swapped, there would be no observable difference.

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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In a film with asymmetrically attracting surfaces, the surfaces attract the compo-
nents in any combination of ways that is not specifically symmetric or antisymmetric,
hence asymmetrically attracting surfaces are the general case. One important ide-
alised case is a film of finite width in which one surface preferentially attracts a
component in the blend and the other surface has no preference (neutral). The profile
in that case would still be similar to that in Fig. 3.10 if either the upper or lower
surface were replaced by a neutral surface.

Neglect of Contact Angle

The schematics of Figs. 3.9 and 3.10 show: (a) a vertically segregated film; and (b)
a laterally segregated film. It is important to note that in the schematics (b) that
both phases make the same angle θ = 90◦ with the surface, in contrast to Fig. 3.2
in which the non-wet state has a general angle θ �= 0. In reality, the phases in the
laterally segregated state will have θ �= 90◦, but in the context of the work in this
section, consideration of how these phases exist side-by-side (thus making a specific
angle θ with the surface) is not included, due to the difficulty of this problem (which
I address and partially solve in Chap.5). In the work discussed, the composition
profiles are calculated only in the direction perpendicular to the film. Thus it is
simplest to visualize laterally coexisting composition profiles as they are given in
Figs. 3.9–3.10b, which implicitly treats the coexisting phases as if they could not
‘feel’ lateral contact with each other. As a final word on this for now, the difficultly
can be appreciated if one considers Fig. 3.2 in the case that the phases α and β

are themselves highly non-uniform, with an interface between them (hence lateral
variation) and a vertical profile due to preferential attraction by the surface.

Average Composition

Also in the Figs. 3.9 and 3.10, the average compositions of the film profiles c̄, c̄a and
c̄b are represented. It is useful to consider the average composition. In the same way
that the composition of a two-phase bulk (or semi-∞)mixture can be described by the
compositions ca and cb of the coexisting phases (determinedby the coexistence curve,
as in Fig. 3.6), it is useful to consider the average composition of laterally coexisting
phases when describing how the presence of preferentially attracting surfaces and

(a) (b)

Fig. 3.10 Antisymmetrically attracting surfaces: One surface prefers one component in the exactly
the same way as the other surface prefers the other component. a Bilayer profile; b Laterally
coexisting profiles

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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the finite thickness of a film affects the behaviour of the mixture in the film e.g. how
does the surface preference affect the compositions of the coexisting phases? This
section discusses these ideas.

3.5.2 Symmetric Confinement

No True Wetting Transition

Nakanishi studied the effects of finite film thickness for films of a binary fluid
mixture confined by symmetric walls, using mean field theory for a lattice gas [5].
It was found that all the sharp transitions found in semi-∞ systems are smeared out
in finite systems, and that true wetting no longer occurs (note that it is still usual
to use the term ‘wetting’ in finite systems to denote when having only one phase
in contact with a surface is favourable). Considering that at the wetting transition
there is a jump in the thickness of the adsorped layer from finite to infinite thickness,
and that in a finite geometry no infinitely thick wetting layer can form, this is not
too surprising. The only remaining wetting-type transition is a first-order, distorted
version of a pre-wetting transition for semi-infinite systems, whereby there is a jump
from a finite thickness to a larger, but still finite thickness of the adsorped layer. It
was found that the compatibility of the fluid components increases upon decreasing
the film thickness. This appears as a shift in the critical temperature of unmixing
(and therefore the whole coexistence curve) to lower temperatures, meaning that
the one-phase region becomes larger (more compatibility of the components). The
coexistence curve is shifted towards the component preferred by the walls, such that
the coexisting phases are richer in the component preferred by the wall (since it is
now possible to support compositions richer in that component).

Capillary Condensation

Binder and Landau studied capillary condensation via a lattice gas model, in which
a binary liquid-vapour system is confined between symmetrically attracting surfaces
(which represent a slit/pore/capillary) in order to study finite size effects i.e. effects
resulting specifically from the finite width of the slit [9]. Capillary condensation is
the phenomena in which a vapour condenses on the walls of a finite sized pore or slit
at a chemical potential different to that at which it would condense in a bulk system,
or in other words the vapour layer appears under conditions which, in the bulk, would
not give rise to this liquid layer (note that ‘the bulk’ ismeant in the sense that the slit is
infinitely thick). This can happen if the surfaces prefer the liquid component since a
liquid phasemay exist under conditionswhichwould have otherwise corresponded to
the one-phase region. The shift of the chemical potentialwas found to be in agreement
with the Kelvin equation μc(D) − μc(∞) ∝ D−1 when D, the film thickness, is
large enough. Monte Carlo simulations showed a transition from a non-wet state to a
‘wet’ state. In the wet-state there is high adsorption of the liquid at the walls for both
the gas phase and the liquid phase, with the adsorption of liquid at the walls even in
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the gas phase being very high and approaching the adsorption of the liquid phase. The
local density at the walls varies smoothly in this finite system, since the true wetting
transitions of semi-infinite systems are smeared out (again, note that it is normal to
refer to these phenomena as wetting, even though they are technically not wetting
as defined in semi-∞ systems). The critical point was shifted to lower temperatures
as the films became thinner, such that condensation occurs at lower temperatures for
thinner films (the thinner the film, the more incompatible the components of liquid
or vapour have to become for the liquid to be supported, even with the preferentially
attracting surfaces, since for thinner films there will be a higher cost in the gradient
energy arising from the interface between vapour and liquid). Also, the coexistence
curve is shifted towards higher densities i.e. towards the liquid component, since
denser phases are now supported due to the walls preferring the liquid phase.

Finite thickness effects in films between symmetric walls remove transitions seen
in equivalent semi-infinite systems. Instead, there is just a smooth increase in the
surface excess where there would be a wetting layer formed in the semi-infinite
system. For thick enough films, variations of a pre-wetting transition still exist, with
a jump in the amount of excess surface material [10]. Binder suggests a definition for
capillary condensation as follows: “Shift of the vapour liquid transition in a slit pore
due to surface effects, so that condensation of a vapour that would be under-saturated
in the bulk occurs” [11]. It can be seen from the Kelvin equation that as the thickness
of the film tends to infinity the critical point for symmetric films tends to the critical
temperature of the bulk system, (φC (D), TC (D)) → (φC,∞, TC,∞)) [11].

Polymers

Flebbe, Dunweg and Binder studied a binary polymer mixture between symmetric
walls for a finite film thickness using Flory-Huggins-de Gennes mean field the-
ory [12]. It was shown that polymer blends exhibit much of the same behaviour
as blends of simple molecules, such as enhanced compatibility of the components
upon decreasing film depth, a shift of the coexistence curve to lower temperatures
(indicating enhanced compatibility) and compositions richer in the component pre-
ferred by the walls as the preference for that component at the walls increases. It was
shown that the film thickness alone had little effect on φ̄cri t , the average composition
of the critical phase, whereas the wall interactions had a much more pronounced
effect on φ̄cri t (since the more the walls prefer a particular component, the richer
phases can be in that component, since richer phases are supported by excess at the
walls). Importantly, it was shown that only symmetric composition profiles are sta-
ble, Fig. 3.9a, and that coexistence of laterally separated phases should occur under
certain conditions, these phases richer and poorer, respectively, in one of the polymer
species, as in Fig. 3.9b. Increasing the average composition of the blend towards the
component not preferred by the walls will eventually stabilise the phase richer in the
non-preferred phase (this sudden change of minimal energy solution being a first-
order phase transition), though a significant amount of the non-preferred species in
the blend is required.
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3.5.3 Antisymmetric Confinement

Freely Fluctuating Interface

Parry and Evans took a pioneering step by studying a simple fluid or Ising magnet
in a finite thickness film confined between antisymmetric walls [13]. The phase
behaviour was found to be strikingly different from that for a film with symmetric
walls. For finite films, coexistence of two-phases can only occur for temperatures
T < TC,L (L is the film thickness), where TC,L < TW < TC,∞, TW being thewetting
temperature of the semi-infinite system (so we could say TC,L ≡ T finite

W ). Also, the
thickness of the film determines whether or not the film can exist in two laterally
separated phases or not; only for L > LC can the film exist in two phases. Parry and
Evans are accredited with the discovery that for T > TW and large enough L there
is a freely fluctuating interface in the film centre, parallel to the walls. This interface
is between phases rich in opposite components of the binary mixture, each phase
coating the wall (forming a layer on the wall) which prefers that phase’s majority
component. This can be visualised with Fig. 3.10a: between the different phases
coating each surface, there is an interface, and the less compatible the components
are, the sharper this interface will become, until at a temperature TC,L it is preferable
for the film to exist as laterally coexisting phases, as in Fig. 3.10b.

Interface Unbinding

Albano and Binder investigated the freely fluctuating interface, predicted by Parry
and Evans, using aMonte Carlo simulation of an Isingmodel between antisymmetric
walls [14]. One wall interacted with up-spins exactly as the other wall interacted with
down-spins. The results showed that in the non-wet state, T < TW (D) < TW (∞)

(where D is the film depth), the interface between the up-spins and down-spins is
‘bound’ to either wall (with no preference due to the perfect antisymmetry), whereas
in the wet state, T > TW (D), the interface is ‘unbound’, and there is “an interface
position fluctuating around the centre of the film...(which) slowly diffuses back and
forth across the strip” during the simulation (the strip needed to be wide enough to
accommodate this interface). Wetting can thus be viewed as ‘interface unbinding’.
A definition from Binder is that a wetting transition is a “singularity of the surface
excess free energy of a semi-infinite system at condition of two-phase coexistence,
characterised by the unbinding of a flat interface from a confining wall” [11]. Of
course, given the finite system size, the wetting layer cannot be infinitely thick, so
this transition is a finite-sized equivalent of wetting.

Soft-Mode

Parry and Evans built upon their previous work to investigate a ‘soft-mode’ existing
for TW < T < Tcb, (Tcb is the critical temperature for a bulk system), using a phase
portrait approach to investigate the phase equilibria of the system [15]. The soft-mode
is characterised by an interface between layers rich in one component of the blend,
each phase rich one component of the blend, such that each phase coats the surface
that prefers that component (so the soft-mode has the freely fluctuating interface
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discussed above). Since variation of the magnitude of the surface fields can push the
wetting temperature arbitrarily below the critical bulk temperature, this soft-mode
phase can exist for a wide range of temperatures. As the temperature is brought close
to the critical bulk temperature from below, T → T −

cb , the width of this interface
tends to D, the width of the film, so that the interface ceases to be well defined,
and the entire film profile is essentially interface (a single layer with a composition
gradient, rather than two clearly distinct layers with an interface between them). For
antisymmetric walls, it was shown that as D → ∞, the critical temperature required
for separation into coexisting phases tends to the wetting temperature, not the critical
bulk temperature. This is distinct from films between symmetric walls.

Polymers

Souche and Clarke developed a phase portrait approach to study binary fluid systems
in a finite film geometry, with focus on a binary polymer blend confined between
antisymmetric walls [16]. A Hamiltonian formulation was used to generate the phase
portraits, which allowed for an easy graphical study of the phase equilibria (this
method is the subject of Chap. 4). The phase portraits allow easy visualisation of the
soft-mode transition and the laterally coexisting phases. Souche and Clarke extended
their work to ternary systems, namely a binary polymer mixture with solvent, in a
finite antisymmetric wall geometry [17]. This work showed that the stable solutions
are all analogues of the solvent-free system. Increased amounts of solvent act to
increase compatibility of the polymers, and hence play a similar role to temper-
ature. The soft-mode transition from an approximate monolayer film to a bilayer
structure, Fig. 3.10a, as well as lateral phase separation into laterally coexisting
phases, Fig. 3.10b, can be induced by lowering the temperature and/or the solvent
concentration.

3.5.4 Asymmetric Confinement

Binder, Landau and Ferrenberg studied Ising strips confined between asymmetric
walls using Monte Carlo simulations [18]. The results were qualitatively the same as
those for strips between antisymmetric films, provided that the walls serve to attract
oppositely aligned spins strongly enough, so that the profiles are still similar to those
of Fig. 3.10, i.e., approximately antisymmetric. Due to the broken (anti)symmetry,
coexistence of the phases in which the interface is bound to one wall or the other
now occurs for non-zero bulk field. For T > TW (D) there is no ordering whatsoever
(i.e. the average magnetisation is zero) despite the lack of symmetry which would
otherwise suggest there might be some ordering towards the most preferred (least
not-preferred) spins, so only at T = TW (D) < TW (∞) is there symmetry breaking
and a finite magnetisation [19]. The results are exactly in analogy with the ‘interface-
localisation transition’ of Parry and Evans [13, 15].

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Crossover Behaviour

Muller, Binder and Albano studied the intermediate cases between perfect antisym-
metry and perfect symmetry, i.e. general asymmetry, with the aim of demonstrating
the crossover behaviour between capillary-condensationbehaviour (symmetricfilms)
and interface-localisation transition behaviour (antisymmetric films) [20]. Self-
consistent field calculations were used, which showed that the crossover is gradual
but non-monotonous. Keeping the interaction at one wall fixed, it was shown that the
critical temperature of the film increases from a minimum for antisymmetric walls,
to a maximum approximately when one surface is neutral. The critical temperature
then decreases again, but remaining far above the critical temperature for antisym-
metric walls, as the wall interactions are tuned to perfect symmetry. As the walls
are brought from perfect antisymmetry to perfect symmetry, such that the wall that
attracts species B (in the antisymmetric case) is changed slowly to a neutral surface
and then to anA attracting surface (bringing about the symmetric case), there comes a
point at which only capillary condensation is possible, in which only prewetting-like
enrichment of the wall(s) by A is possible, at a modified temperature and chemical
potential from that for a bulk system.

3.6 Summary

In this chapter I describe the theory of multicomponent systems in contact with a
surfacewhichmay preferentially attract a particular component. I discussed literature
for Ising systems, simple fluid systems, and polymer systems, showing that the
description of the surface-blend interaction energy is similar in all cases. I discussed
the concept of wetting, several different surface energy regimes, and the concept of
a vertically segregated film and a laterally segregated film. The next chapter, which
begins the discussion of my own research in this thesis, uses this theory to introduce
the problem of solving for equilibrium profiles of polymer-blend thin films with
preferentially attracting surfaces.
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Chapter 4
Hamiltonian Phase Portraits
for Polymer-Blend Thin Films

This chapter describes a Hamiltonian Phase Portrait method for studying the equilib-
riumprofiles of polymer-blend thinfilms, including an extension to thismethodwhich
made it suitable for general (asymmetric) wall-blend interaction regimes, rather than
only regimes with convenient symmetries. I derive the equations that equilibrium
film profiles must satisfy and the expressions for the phase portraits. I describe how
the phase portraits can be used to visualise how the equilibrium profiles change with
temperature regime and film depth, and discuss a thermodynamic mechanism of
surface roughening based on laterally coexisting profiles having different depths to
minimise the free energy. This work was published in my first paper “Surface rough-
ening in polymer blend thin films by lateral phase separation: A thermodynamic
mechanism” [1].

4.1 Introduction

This chapter describes a graphical method for studying polymer-blend films: Hamil-
tonian Phase Portraits. This method allows equilibrium film profiles, describing the
composition of a polymer-blend between selectively attracting surfaces, to be visu-
alised and calculated in phase space. This provides insight on how equilibrium pro-
files change as film depth and temperature change (and is also suitable to study how
profiles change as surface-blend interactions change, although this is not discussed
here, but is a part of Chap. 5). The work in this chapter is a direct extension of the
Hamiltonian Phase Portrait method of Souche and Clarke [2], who were the first to
use themethod to study polymer-blend thin films of finite thickness with this method,
for films with very particular symmetries which simplified the problem. My work
allowed the Hamiltonian Phase Portrait method to be extended to general cases, and
was published in a paper discussing both this extension and a possible mechanism
of surface roughening in polymer-blend thin films [1].

© Springer International Publishing Switzerland 2015
S. Coveney, Fundamentals of Phase Separation in Polymer Blend Thin Films,
Springer Theses, DOI 10.1007/978-3-319-19399-1_4

55

http://dx.doi.org/10.1007/978-3-319-19399-1_5


56 4 Hamiltonian Phase Portraits for Polymer-Blend Thin Films

4.1.1 Equilibria of Polymer-Blend Thin Films

This chapter concerns binary polymer-blends of components A and B between selec-
tively attracting surfaces/walls. The composition of the film at any point can be
described by φ ≡ φA, and ‘selectively attracting walls’ means that the walls prefer
to be in contact with fluid at a particular composition (Sect. 3.5 contains a discussion
of selectively attracting walls and different ‘surface regimes’). The profile1 φ(z) of a
polymer-blend thin film describes the volume fraction φ (composition) as a function
of position z in the film, which is usually measured from one of the film surfaces.

It is useful to calculate the equilibrium profiles, which are profiles for which the
free energy is a minimum. I shall often refer to equilibrium profiles as phase equi-
libria.2 Since a system will naturally evolve to minimise its free energy, knowledge
of equilibria informs us about how the system will evolve: which state3 the system
will end up in, whether a particular state is stable or not, and even insights into the
kinetics by which the system will evolve towards and between equilibrium states.
The subject of this chapter is the visualisation and calculation of equilibria using
Hamiltonian Phase Portraits.

Figure4.1 is a schematic of a polymer blend between selectively attracting sur-
faces, in which several profiles are represented in such a way that we assume that
the composition varies only in the vertical ‘depth’ dimension, even in the case that
several profiles coexist side-by-side in the film (the neglect of how the composition
varies laterally, such that the interface between coexisting phases is not taken into
account in the calculation of φ(z), is discussed in Sect. 3.5). Note that films may
be described by independently-existing equilibria4 as in Fig. 4.1a, or by (laterally)
coexisting equilibria5 as in Fig. 4.1b.

1Profile: description of a polymer-blend by volume fraction φ as a function of spatial variables
e.g. φ(z, y), where z is the vertical (depth) dimension and y is the lateral (parallel to substrate)
dimension. Throughout this thesis the profiles are discussed primarily in 1D as φ(z).
2(Phase) Equilibria: profiles which minimise the free energy of the film, and therefore correspond
to equilibrium. The term phase is used in analogy with bulk blends e.g. an A–B blend can exist as:
a miscible blend (one-phase); or A-rich and B-rich phases (two-phase).
3State(s): (disambiguation) the overall configuration of the film, and/or the equilibria contained in
that configuration e.g. a film in a laterally segregated state will consist of laterally coexisting states.
Non-specific term.
4Independently-Existing Equilibria: profiles which describe the film entirely and do not coexist
with other profiles, as for a laterally homogeneous film.
5Coexisting Equilibria: profiles which coexist together, describing different phases in the film, as
for a laterally inhomogeneous film of two laterally segregated phases.

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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(a) (b)

Fig. 4.1 Schematic of a binary polymer-blend film. The hatched lines represent a confining sur-
face/wall, and the composition of the blend varies with z, which measures the position in the film
(usually the distance from one of the walls). a independently-existing equilibria, in which the profile
φ(z) describes the entire film; b coexisting equilibria φ∗(z) and φ∗∗(z) which exist side-by-side
(laterally coexisting). Note that in this schematic, the interface between the coexisting phases is not
displayed. In reality, there will be an interface between these phases, this interface making an angle
with the surfaces as in Fig. 3.2

4.1.2 Phase Space, Trajectories, and Phase Portraits

The Phase Space6 of a system is a space of the variables that describe that system.
For example, a particle can be described by its position and its momentum, and so
a plot of position and momentum would constitute a phase space for the particle.
The unique state of the particle at any time will be a point in that phase space.
If the particle is moving, it will trace out a Trajectory in phase space, consisting
of all the points of position and momentum that it had as it moved. If we knew
the trajectory (path) through phase space, we could calculate the time required for
the particle to move along any part of that trajectory. A polymer blend film has an
analogywith amovingparticle: position→ composition,momentum→ composition
gradient, time → distance. The trajectory of a polymer film would consist of a curve
of composition and composition gradient over a length (depth) of film. A Phase
Portrait for a polymer film is a plot of trajectories that minimise the free energy of
the film, such that equilibria are contained in the phase portraits.

4.1.3 Previous Work

Much of the previous work that utilised a phase portrait method to study non-uniform
systems in contact with a surface(s) was discussed in Sects. 3.3 and 3.4, although
the discussion concerned the findings rather than the method. For completeness and
context, I will return very briefly to several studies here.

6Phase Space, Trajectory, Phase Portrait: definitions in main text and terminology section.

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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Pandit andWortis undertook pioneeringwork in which they developed a graphical
method useful for analysing the possible solutions of mean-field theories, for the par-
ticular case a of magnetic system with an inhomogeneity in one direction [3]. They
studied an Ising system with a free surface that could modify the magnetic field and
exchange coupling between neighbouring spins. They showed that the equilibrium
states of the system, along with first order and second order phase transitions could
be easily visualised using phase portraits. Nakanishi and Pincus utilised the method
of Pandit and Wortis to study wetting transitions for simple fluid systems in contact
with a wall/surface [4]. Their analysis included a discussion of possible metastably
wet states, and the idea of extended wetting and ‘surface spinodals’. They also dis-
cussed polymer containing systems. Once again, transitions from one equilibrium
state to another could be easily visualised using phase portraits. Parry and Evans
studied the phase behaviour of a simple fluid or Ising magnet confined between two
confining walls that exerted opposing surface fields, finding that wetting and coex-
istence phenomena were very different than for the same systems confined between
two walls that exerted the same surface fields [5]. Although they didn’t use phase
portraits, they did utilise a graphical method in a similar vein as the aforementioned
work above.

Souche and Clarke developed the Hamiltonian Phase Portrait method to study
binary polymer-blend films, with a focus on a symmetric blend confined between
antisymmetricwalls [2]. Thiswas the first time that such a technique had been applied
to films of finite thickness. The phase portraits provided excellent visualisation of the
soft-mode transition and laterally coexisting phase equilibria for this surface regime
(antisymmetric). Souche and Clarke also applied the method to ternary systems,
namely a binary polymer mixture with solvent in an antisymmetric wall regime,
showing that the stable solutions are all analogues of the solvent-free (binarypolymer-
blend) system [6]. However, they did not extend the work to asymmetric films, for
which the wall-blend interactions were not antisymmetric and/or for which the blend
was not symmetric.

4.1.4 Asymmetric Films: A More Difficult Problem

Considerable attention has been paid to symmetric binary blends of small molecules
or polymers, A and B say, confined between antisymmetric walls (for a blend A : B,
onewall attracts A in exactly the sameway as the otherwall attracts B). The reason for
this focus is that the symmetries of both the blend and the walls greatly simplifies the
study of phase equilibria: without an explicit consideration of material conservation
(requiring that the profiles satisfy ¯φ(z) = φ̄, the composition of the blend) the
equilibriumprofiles naturally conserve theblend ratio φ̄ = 1/2 for a symmetric blend,
and laterally coexisting equilibria of A-rich and B-rich phases are mirror images of
each other (having equal heights and equal excess surface free energies [5, 7]). These
conveniences vanish for a polymer-blend (whether symmetric or otherwise) confined
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between asymmetric walls. The easiest way to show why this is the case is to address
the general problem of solving for equilibria of polymer-blend thin films between
selectively attracting walls.

4.2 Phase Equilibria

For polymer-blend thin films between selectively attracting walls, the task is to find
the profiles φ(z) that minimise the free energy i.e. the task is to find profiles φ(z) that
are phase equilibria. This section describes the Euler-Lagrange treatment of a film
described by the Flory-Huggins-de Gennes free energy, which results in an Euler-
Lagrange equation that equilibrium profiles must satisfy, a boundary condition at
each surface/wall, and a material constraint.

4.2.1 Free Energy Functional

The Flory-Huggins-de Gennes free energy is discussed in Sect. 2.5 (bulk theory)
and Sect. 3.3.3 (with surface energy terms). Here, I use the notation used by Souche
and Clarke [2], with some minor changes to maintain consistency in my thesis. In
one dimension, the Flory-Huggins-de Gennes free energy of a binary polymer blend
confined between walls at z = 0 and z = d is given in units of kB T by

F [φ(z)] = 1

a

∫ d

0

[
fF H (φ) + κ(φ)(∇φ)2

]
dz + f ∗

0 (φ0) + f ∗
d (φd),

= 1

a

∫ d

0

[
fF H (φ) + κ(φ)(∇φ)2

]
dz + 1

a
f0(φ0) + 1

a
fd(φd), (4.1)

where ∇φ ≡ ∂φ/∂z, the partial derivative of φ with respect to z, where z is the
distance from the wall at z = 0. The film composition depends only on z (such that
the profiles φ(z) that we calculate are laterally uniform, even if these profiles are in
fact coexisting with other profiles in a laterally segregated film; see Fig. 4.1). a is the
cell-spacing of the underlying Flory-Huggins lattice, which has been factored out of
f ∗
S so that fS are the surface energies per unit cell (S = 0, d). The Flory-Huggins

free energy for a binary polymer blend is

fF H (φ) = φ

NA
ln (φ) + 1 − φ

NB
ln (1 − φ) + χφ(1 − φ), (4.2)

where φ is the volume fraction of component A, NA and NB are the degrees of
polymerisation of components A and B respectively, and χ is the Flory-Huggins
interaction parameter. The gradient coefficient is

http://dx.doi.org/10.1007/978-3-319-19399-1_2
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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κ(φ) = a2

36φ(1 − φ)
. (4.3)

As discussed in Chap.3, the surface energies are given by (S = 0, d)

fS(φS) = hSφS + 1

2
gSφ2

S, (4.4)

where hS and gS are phenomenological parameters, taking account of blend-wall
interactions and missing neighbour effects respectively. Note that only the local
volume fraction at the confining walls enters into the surface energies.

4.2.2 Euler-Lagrange Equation

Using Eq. (4.1) we can develop an Euler-Lagrange equation, the solutions to which
are equilibrium profiles φ(z) minimising the free energy. The Lagrangian density is
the integrand of Eq. (4.1):

L(φ,∇φ) = a−1
[

fF H (φ) + κ(φ)(∇φ)2
]
. (4.5)

Without constraints on the system, an Euler-Lagrange equation can be developed
from Eq. (4.5) as follows (constraints will be included later in Sect. 4.2.4). Using the
notation φ̇ ≡ ∇φ, the Euler-Lagrange equation is given by

∂L

∂φ
− d

dz

(
∂L

∂φ̇

)
= 0. (4.6)

For the first term we find

∂L

∂φ
= a−1

[
∂φ fF H + ∂φκ

(
φ̇
)2]

. (4.7)

∂φ f is the partial derivative of f with respect to φ. For the second term, we take two
steps. Before taking the derivative with respect to z, we find

∂L

∂φ̇
= a−1 [

2κφ̇
]
, (4.8)

and then performing the derivative with respect to z, we find

d

dz

(
∂L

∂φ̇

)
= ∂

∂z

(
∂L

∂φ̇

)
+ ∂

∂φ

(
∂L

∂φ̇

)
φ̇ + ∂

∂φ̇

(
∂L

∂φ̇

)
φ̈. (4.9)

http://dx.doi.org/10.1007/978-3-319-19399-1_3
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Since there are no explicit appearances of z, the first term on the right-hand side is
zero (the second two terms accounting for the dependence on z through φ and φ̇),
and so we have

d

dz

(
∂L

∂φ̇

)
= a−1

[
2∂φκ

(
φ̇
)2 + 2κφ̈

]
. (4.10)

Returning to Eq. (4.6) (factor a will cancel out) we then have the result

∂φ fF H = ∂φκ
(
φ̇
)2 + 2κφ̈. (4.11)

(The same result can be found by directly calculating the functional derivative, which
is done rigorously in the next chapter, and which is discussed briefly in Sect. 4.3.4).
Profiles φ(z) which satisfy Eq. (4.11) minimise the bulk free energy (note that the
surface energy terms have not entered into the Euler-Lagrange equation), but phase
equilibria for films must also satisfy other requirements.

4.2.3 Surface Boundary Conditions

Taking the functional derivative of Eq. (4.1) with respect to φ(z) to be constant at
equilibrium introduces two boundary conditions, one at each confiningwall, given by

+ 2κ(φ0)∇φ0 = +∂ f0
∂φ

≡ +h0 + g0φ0, (4.12)

+ 2κ(φd)∇φd = −∂ fd

∂φ
≡ −hd − gdφd . (4.13)

Since these boundary conditions are found in the literature as standard (having been
derived by Cahn for a wall at z = 0, Eq. (3.2), as discussed in Chap.3), and a rigorous
derivation of them is given in Sect. 5.3.1, I refrain from deriving them here.

4.2.4 Material Constraints

A binary blend can be described by an average volume fraction φ̄ of one of its
components. When calculating a film profile φ(z), it is generally necessary to ensure
that the film profile calculated has the average volume fraction of the blend, since this
is required for material conservation. This would be required for an independently-
existing profile, like that in Fig. 4.1a. A constraint equation can be written as

1

a

∫ d

0

(
φ(z) − φ̄

)
dz = 0. (4.14)

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_5
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(it is convenient to include the factor a−1). We must construct a new Lagrangian
which takes the constraints into account:

L′ = L + a−1λC. (4.15)

λ is a Lagrange multiplier and C is an expression that accounts for the constraint
(4.14). It is simplest to choose the constraint C = φ, since φ̄ in Eq. (4.14) is a
constant. Using L′, the Euler-Lagrange equation for the system is then simply

2κφ̈ + ∂φκ
(
φ̇
)2 = ∂φ fF H + λ. (4.16)

λ must be chosen such that Eq. (4.14) is fulfilled by the profile solution φ(z). There-
fore equilibrium profiles (equilibria) φ(z) must satisfy the Euler-Lagrange equation
(4.16), the boundary conditions at each wall/surface (4.12) and (4.13), and the mater-
ial constraint (4.14). It is because of this plethora of requirements that a phase portrait
method is useful.

4.3 Hamiltonian Phase Portraits

The phase portraits developed by Souche andClarke areHamiltonian phase portraits,
plotted not with the composition and composition gradient of the film, but with
the canonical position q and canonical momentum p. However, as will be shown
below, the canonical position is equivalent to the composition, and for convenience
it will suffice to think of the canonical momentum as the composition gradient. The
convenience of this formalism will become apparent.

4.3.1 Hamiltonian Formulation with Constraints

We can easily shift from a Lagrangian formulation to a Hamiltonian formulation,
and in order to honour the constraints the (constrained) Hamiltonian must be defined
using the constrained Lagrangian L′:

H(q, p) = pq̇ − L′(q, q̇), (4.17)

where q = φ and p, the canonical momentum, is given by

p = ∂L′

∂q̇
= a−12κ(q)q̇. (4.18)
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It is slightly unusual to transform to a Hamiltonian description using a constrained
Lagrangian; thiswas an important step that I recognised as necessary if the constraints
were to appear in the phase portraits. The Hamiltonian is then given by

H(q, p) = pq̇ − L′(q, q̇) (4.19)

= pq̇ − a−1
[

fF H (q) + κ(q)q̇2
]

− a−1λq

= (a−12κ(q)q̇)q̇ − a−1
[

fF H (q) + κ(q)q̇2
]

− a−1λq

= a−1{κ(q)q̇2 − fF H (q) − λq}
= a−1{9q(1 − q)p2 − fF H (q) − λq}, (4.20)

Using Eq. (4.18) simplifies Eq. (4.12) to

ap0 = +h0 + g0q0, (4.21)

apd = −hd − gdqd , (4.22)

4.3.2 Generating Hamiltonian Phase Portraits

Since z does not explicitly appear in the Hamiltonian (4.19), the Hamiltonian density
is conserved [3, 8], thusH(q, p) = H (whereH is a constant). Equation (4.19) can
then be rearranged to give an analytical expression for the phase portraits which lie
in the space (q, p):

p(q) = ±1

3

√
aH + fF H (q) + λq

q(1 − q)
, (4.23)

Particular phase portraits can be generated by choice ofH and λ. The phase por-
traits consist of the flow of canonical coordinates (q, p) which minimise the bulk
free energy of the functional F (4.1), i.e., the integral in Eq. (4.1) is minimised, the
surface energy terms not entering into the expression for the phase portraits. I will
often refer to the flow of coordinates as the Hamiltonian Flow. Trajectories along
these portraits take paths which minimise the free energy, since trajectories are paths
through phase space that follow the Hamiltonian flow of the phase portraits. Fur-
thermore, the boundary conditions at the surfaces can be plotted in the Hamiltonian
phase space, and appear as straight lines. Before directly discussing the phase por-
traits, I will give some context to how they relate to the problem of calculating phase
equilibria, so that the discussion of phase portraits will hopefully seem less arbitrary.
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4.3.3 Calculation of Equilibria

How do these phase portraits relate to the calculation of equilibrium profiles φ(z)?
If we begin at a point qi somewhere on a particular phase portrait (determined byH
and λ), we can move along the Hamiltonian flow up to a point q j , whilst performing
the path integral

z =
∫ q j

qi

dq

q̇
. (4.24)

Since there is no constant of integration, qi corresponds to z = 0, and integrating up to
q j will give a value of z = L that corresponds to a length of film over which we have
integrated. If we imagine discretising the interval qi ..q j into steps qi , qi+1, qi+2..q j ,
such that the integration 4.24 becomes a sum of sub-integrals, then for every value
of q between the limits qi and q j , we will have a unique value of z: we then have
a set of pairs of q and z values, therefore we will have calculated φ(z) ≡ q(z), a
profile minimising the bulk free energy. This film profile has φ(z = 0) = qi and
φ(z = L) = q j .

Since the boundary conditions (4.12) and (4.13) must be satisfied by equilibria,
we can only choose a value of qi = q0 on the Hamiltonian flowwhich coincides with
the boundary condition at z = 0. Similarly, we can only integrate up to q j = qd , a
value of q for which the flow coincides with the boundary condition at z = d. This
being the case, to calculate equilibrium profiles of films we must begin at a point
q0 on the z = 0 boundary condition and move along the Hamiltonian flow until we
reach a point on the z = d boundary condition, which gives us our upper limit qd .
Thus we will have performed the following path integral

z =
∫ qd

q0

dq

q̇
, (4.25)

and calculated the profile φ(z) for a film of depth d. Figure4.2 is an example
phase portrait (left) with a valid equilibrium trajectory marked by the bold coloured
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Fig. 4.2 An example phase portrait (left) and corresponding equilibrium profile (right), shown for
visualisation (figures from bottom of Fig. 4.7). The boundary conditions are straight lines in this
phase space. The bold line shows the profile trajectory that satisfies the boundary conditions, such
that qi ≡ q0 and q j ≡ qd . Arrows indicate the direction of increasing z along the Hamiltonian flow.
The x-axis is scaled to 2φ − 1 in keeping with reference [2]
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line, alongside the profile (right) that can be calculated via the integration (4.25)
(phase portraits, along with a choice of parameters, will be discussed properly later.
Figure4.2 is present here only for visualisation purposes). To summarise, solution
trajectories of equilibrium film profiles φ(z) are those parts of the phase portraits
which flow between the wall boundary conditions i.e. which begin on the z = 0
boundary condition and end on the z = d boundary condition. The boundary condi-
tions are satisfied when they cross the Hamiltonian flow.

Note that the Hamiltonian flow has a clockwise direction to it (to move in the
direction of increasing z): the orbital part of theflowshould be followed in a clockwise
manner; the left edge should be followed from top to bottom; and the right edge from
bottom to top; see Fig. 4.2. Not present in this particular phase portrait are parts of
the flow that would be above and below the orbital part. These parts can be seen in
Fig. 4.3b–d: the top part should be followed left to right and the bottom part from
right to left. Also note that the path integral does not have to stop at the first point
when the trajectory crosses the boundary condition for z = d, as long as it ends on
the boundary condition for z = d , as in Fig. 4.2 (similarly, we can choose which cross
with the z = 0 boundary condition that we begin our integration from). Equilibria
for a particular blend with average volume fraction φ̄ must also satisfy the material
constraint 4.14, which I have not yet discussed, but any trajectories that follow the
Hamiltonian flow between the boundary conditions are valid equilibria.

Drawback and Advantage

The drawback of the Hamiltonian Phase Portrait method is that we can’t know the
depth or composition of the profile we are calculating in advance of calculating it.
We must choose values for H and λ (some of which won’t generate phase portraits
that cross the boundary conditions) and calculate profiles, which will yield particular
φ(z). As can be seen fromFig. 4.2, there are a number of different possible trajectories
that could be made that begin on the z = 0 boundary condition and end on the z = d
boundary condition. This is generally the case for any particular phase portrait. It is
precisely because of this that the Hamiltonian Phase Portrait method is useful, which
will hopefully become apparent later.

4.3.4 Description of Phase Portraits

Parameters: Symmetric Blend Between Asymmetric Surfaces

Throughout the remainder of this chapter, I will specialise to a symmetric binary
polymer blend (NA = NB = N = 100) confined between a B-attracting wall
(h0 = −0.05; g0 = 0.18) at z = 0 and a neutral wall (hd = 0.0; gd = 0.0) at z = d.
This means that the z = 0 wall prefers fluid at composition φ < 0, whilst the z = d
wall has no preference since the surface energy of this wall has no dependence on
the local volume fraction. This specialisation is made in order to isolate the effects
of wall asymmetry, and simplifies my discussion of the phase portraits. From now
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on I will set a = 1 for convenience (effectively, z is then in units of a). I will assume
that χ = A + B/T , and so use χ to discuss temperature. For the symmetric blend,
the bulk critical temperature is χcb = 2/N = 0.020.

Characterising Phase Portraits: Fixed Points and the Separatrix

Figure4.3 shows examples ofHamiltonian phase portraits plotted forλ = 0, for three
temperature regimes: (b) χ = 0.015 (above the critical bulk temperature χ < χcb);
(c)χ = 0.021 (below the critical bulk temperature and above thewetting temperature
χcb < χ < χw); and (d) χ = 0.026 (below the wetting temperature χw < χ). For
estimation of χw, see the discussion of λ = 0 phase portraits below. Figure4.3a
shows three ‘separatrix’ (I use the terminology of reference [2]), the shape of which
characterises the phase portraits (the separatrix are also plotted in Fig. 4.3b–d). The
relevance of these temperature regimes and their relation to the separatrix is discussed
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Fig. 4.3 Phase portraits for λ = 0 : a separatrix only, for all three temperature regimes outlined in
the text. The fixed points q−, q0, and q+ are also shown. b–d examples of phase portraits, including
the separatrix, shown for each individual temperature regime. Within each plot (b)–(d), each set of
curves with the same colour (dashes/dots) corresponds to the same phase portrait, generated with
a single value of H (see Tables4.1 and 4.2 for comparable values of H). Note that the separatrix
and phase portraits are symmetric around p = 0 and 2q − 1 = 0, due to the symmetry of the
polymer blend. The boundary conditions arising from the surfaces are plotted in (b)–(d), appearing
as straight lines
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shortly. The phase portraits are symmetric around p = 0 and 2q − 1 = 0; this is
due to the symmetry of the polymer blend and setting λ = 0. Also plotted are the
boundary conditions for a B-attracting wall at z = 0 and a neutral wall at z = d.

Figure4.3a shows only the separatrix for three values ofχ, each value correspond-
ing to a different temperature regime. What are these separatrix? The separatrix7 are
phase portraits that flow through fixed points8 in the phase space,which are points that
satisfy q̇ = 0 and q̈ = 0 (so fixed points exist on p = 0). According to Eq. (4.16),
fixed points are the solutions of ∂φ fF H + λ = 0. Fixed points can be explained
with an analogy with moving particles: if a particle has zero velocity (composition
gradient) and is not accelerating (rate of change of composition gradient is zero),
then it takes an infinite amount of time (film depth) to cross a finite distance (film
composition). An infinite amount of film depth is required to pass through the fixed
point. As the phase portraits tend to the separatrix, the length of parts of the trajec-
tory passing near the fixed points tend to infinity (imagine a particle passing near
a region at which its speed drops to zero, thus taking a very long time to pass by
this region). Therefore, phase portraits cannot touch the separatrix or pass through
the fixed points. The separatrix characterise the general shape of the phase portraits
in each temperature regime. The relationship between fixed points, separatrix and
temperature regimes is elaborated on in the rest of this subsection.

λ = 0 Phase Portraits i.e. No Material Constraints

I will firstly discuss the separatrix for λ = 0, explaining the relevance of the temper-
ature regimes in terms of where the fixed points are located relative to the boundary
conditions. Above the critical bulk temperature, χ = 0.015, the separatrix is cross
shaped. There is only one fixed point, q0, at (q, p) = (1/2, 0), and the separatrix
passes through this point. Solution trajectories will be on the left edge of the flow,
since this allows trajectories from the z = 0 boundary condition to the z = d bound-
ary condition. Below the critical bulk temperature but above the wetting temperature,
χ = 0.021, there are three fixed points, q0, q− and q+, and the separatrix passes
through the latter two, which are located symmetrically aroundφ = 1/2. Inside those
fixed points, the Hamiltonian flow is an orbit around the fixed point q0. Note that
for the chosen surface energies, the fixed points lie inside the boundary condition
at z = 0, so this boundary condition does not cross the orbital part of the flow, so,
again, solution trajectories exist only on the left edge of the flow. Below the wet-
ting temperature, χ = 0.026, there are again three fixed points, but the boundary
condition at z = 0 lies inside the leftmost fixed point q−, thus crossing the orbital
part of the flow twice (this gives an estimation of χw [2]; see Sect. 5.3.3 for more on
estimating χw). Because of this, there are several ways in which we can construct a

7Separatrix: phase portraits that flow through fixed points in phase space. Trajectories that flow
through these fixed points (these trajectories must therefore be on the separatrix) correspond to
infinitely thick films, hence as (finite) films become thicker their corresponding phase portraits tend
to, but don’t meet, the separatrix.
8Fixed Points: regions of phase space that require an infinite depth of film to pass through, since
these points satisfy q̇ = 0 (composition gradient is zero) and q̈ = 0 (rate of change of composition
gradient is zero).

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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trajectory between the boundary conditions, so in this temperature regime we expect
to find coexisting solutions, allowing for lateral phase separation into A-rich and
B-rich phases with interfaces perpendicular to the walls, as shown in Fig. 4.1b.

λ �= 0 Phase Portraits i.e. with Material Constraints

Addressing how λ affects the fixed points, and therefore the shape of the separatrix,
allows us to characterise how λ changes the general shape of the phase portraits. The
fixed points are the values of q for which the curve y = ∂q fF H + λ crosses y = 0.
Changing λwill shift the curve ∂φ fF H +λ = 0 along the y-axis, and move the fixed
points to different values of q (along p = 0). This is demonstrated in Fig. 4.4 for
χ = 0.021 > χcb: above the bulk critical temperature, there are three solutions and
therefore three fixed points, as mentioned above for λ = 0 phase portraits. Choosing
λ < 0 shifts q0

λ < q0, meaning the separatrix cross-centre or orbit-centre is shifted
to lower q, whilst both fixed points q− and q+ are shifted to higher q. Both of these
effects are complimentary, and pull the left side of the phase portraits to the right,
which pulls the solution trajectories to higher q . For λ > 0 the fixed points shift in
the opposite direction. So λ �= 0 breaks the symmetry of the phase portraits around
2q − 1.

Material Constraints

For a symmetric blend, solutions satisfying the constraints must clearly pass through
q = 1/2, else it would not be possible to achieve φ̄ = 1/2. It is clear that
many of the trajectories between the boundary conditions in Fig. 4.3 do not pass
through q = 1/2, and so to obtain valid solutions for a polymer blend between
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Fig. 4.4 Fixed points of the Hamiltonian flow correspond to values of q solving f ′ +λ = 0, where
f ′ = ∂q fF H . This example is for χ = 0.021 > χcb, so there are three fixed points q−, q0, and
q+. The Lagrange multiplier λ shifts the fixed points, as seen by consideration of the curve f ′ + λ.
The fixed points will move along p = 0 in Fig. 4.3a–d. Note that the curve f ′ + λ for χ = 0.026
is similar to the curve presented here, but above the critical bulk temperature χ = 0.015 < χcb the
curve only crosses f ′ + λ = 0 once (for λ = 0) at 2q − 1 = 0
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attracting-neutral walls, λ must be altered until the solution trajectories pass through
q = 1/2, and more specifically until φ̄ = 1/2. Suitable choices of both λ and the
Hamiltonian constant H are necessary to produce phase equilibria trajectories of
specified depth d and average composition φ̄. This is discussed further in Sect. 4.4.1.

Interpretation of λ

Solving the Eular-Lagrange equation, Eq. (4.16), subject to constraints (4.14) with
φ̄ = 1/2, is equivalent to finding the solution φ = φ′ for which

δ

{
F(φ(z)) + λ

[
a−1

∫ d

0
φ(z)dz − 1

2
d

]} ∣∣∣∣
φ=φ′

= 0. (4.26)

such that φ is a general profile and φ′ is an equilibrium profile. When φ = φ′ such
that φ̄ = 1/2, we see from Eq. (4.26) that

δF(φ(z))

δφ(z)

∣∣∣∣
φ=φ′

= −λa−1. (4.27)

Taking the functional derivative of the free energy (4.1) and assuming φ = φ′ such
that Eq. (4.16) is satisfied, we find

a
δF(φ(z))

δφ(z)

∣∣∣∣
φ=φ′

=
(
∂φ fF H − (∂φκ)φ̇2 − 2κφ̈

) ∣∣∣∣
φ=φ′

= −λ. (4.28)

Finding φ = φ′ subject to the constraint φ̄ = 1/2 requires choosing the correct
value of λ, such that both the Euler-Lagrange equation (4.16) and the constraint
equation (4.14) are satisfied. We see, from Eq. (4.27), that the constraint is enforced
by λ acting as a constant chemical potential across the film [9, 10] (the functional
derivative δF [φ(z)] /δφ is proportional to the chemical potential. This is discussed
in depth in Sect. 5.3).

Even though the boundary conditions arising from the surface energies do not
directly affect the phase portraits, in the sense that the expression for the phase
portraits does not contain the surface energies, the effect of the boundary conditions
is then not only to pin the value of φ at the filmwalls/surface by providing integration
limits on Eq. (4.24) (often noted as being the only effect on the solution profile due
to focus on symmetric blends confined between antisymmetric walls [11, 12]) but
to effectively apply a field across the film. Of course, the surface energies only act
locally at the surfaces, and do not in reality actually apply a field across the film. But
the effect of λ on the equilibrium profiles (as opposed to the actual, physical effect
of the surfaces on the polymer blend) is as if a field is applied across the film (the
chemical potential is the conjugate field for φ). This is demonstrated by the distortion
of the symmetric (λ = 0) phase portraits into asymmetric phase portraits caused by
λ �= 0.

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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4.4 Phase Equilibria of Asymmetric Films

In this section, I will demonstrate the use of phase portraits for displaying and calcu-
lating the phase equilibria of a symmetric binary polymer blend between asymmet-
rically attracting walls, namely a B-attracting wall at z = 0 (prefers φ < 1/2) and a
neutral wall at z = d (no preference on φ). The phase portraits are useful for show-
ing how equilibria change as film depth and temperature change. The significance
of different temperature regimes will hopefully be more apparent in this section.

In some cases, there are several ways in which we can make a trajectory from the
z = 0 boundary condition to the z = d boundary condition, and in some regimes
this allows for coexisting solutions because we can find profiles of the same depth
with different trajectories (although these won’t have φ̄ = 1/2, but will be rich in
one component of the A–B blend). Note that the wall-blend interaction configuration
I am using here, namely a B-attracting wall at z = 0 and a neutral wall at z = d
is just an example, used because the neutral wall at z = d somewhat simplifies the
calculation of the profiles.

In all cases, as the phase portraits approach the separatrix the corresponding
profiles are those of thicker films, and when the phase portraits tend to the separatrix
the film thickness tends to infinity, such that the equilibria of profiles for phase
portraits tending towards the separatrix are representative of the profiles for very
thick (tending to infinite) films. The change in the profiles as the thickness tends to
infinity can be inferred from the phase portraits, without needing a calculation of the
profiles for extremely thick films to be performed.

From this point onward, I will discuss the phase portraits using q = φ and
p = 2κ∇φ (a = 1). The figures in this section are split into two columns, with the
phase portraits on the left and the composition profiles (calculated with Eq. (4.24))
on the right. The film thickness increases from the top to the bottom subfigure.
Both the trajectories and the composition profiles are coloured (shaded) in φ, from
black/blue/dark for φ = 0 (pure B) to white/yellow/light for φ = 1 (pure A). This
makes comparison of the profiles and the equilibria trajectories slightly easier.

Numerical Integration

The integration of Eq. (4.25) must be done numerically. On the task of integrating
between boundary conditions, I noted that rather than select a value of H and λ to
generate the phase portraits, it can be simpler to select a value of φ0 and λ, and
from these values calculate a value of H for which the Hamiltonian flow cross the
boundary condition at φ0. This can be done as follows: selecting a value of φ0 (q0)
gives the required value of 2κ∇φ|0 (p0) from the boundary condition (4.21). Both
q0 and p0 (as well as λ) can then be inserted into Eq. (4.23), which can then be
rearranged to give a value forH. This is sometimes useful because not all values of
H will generate a phase portrait which intersects with the z = 0 boundary condition,
but if a value of φ0 (the value at which the boundary condition crosses the flow) is
chosen first, this problem is avoided (though it does not guarantee that the flow will
also intersect with the z = d boundary condition).
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Table 4.1 λ and H for the independently-existing profiles shown in Figs. 4.5, 4.6 and 4.7

χ λ H
0.015 −0.001636 0.0040824

−0.001387 0.003942

−0.000781 0.0035997

−0.000537 0.00346405

−0.000330 0.003351899

0.021 −0.001387 0.0024925

−0.000281 0.0018621

−0.000104 0.0017598

−0.000037 0.001721

−0.000006 0.001703

0.026 −0.001144 0.0011826

−0.000829 0.001020

−0.000089 0.0007045

+0.000120 0.0007585

+0.000058 0.0008682

The order of rows corresponds to the order of appearance of the sub-figures

4.4.1 Independently-Existing Profiles

Independently-existing solutions, such as that in Fig. 4.1a, must have φ̄ = 1/2 in
order to conserve material for a symmetric polymer blend, H and λ having been
adjusted for this requirement, these values being shown in order of figure appearance
in Table4.1. We can calculate such a profile for all temperature regimes, even if it is
not the most energetically favourable profile (this is discussed in Sect. 4.4.2).

Above Critical Bulk Temperature: χ = 0.015

We see from Fig. 4.3b that the boundary conditions cross the B-rich (leftmost) part
of the flow when λ = 0. Setting λ < 0 pulls this part of the flow past φ = 1/2, and
suitable tuning of λ and H ensures material conservation φ̄ = 1/2 for the profiles.
Example phase portraits are shown in Fig. 4.5. The bold line shows the solution
trajectory that satisfies both of the boundary conditions and φ̄ = 1/2. There is an
excess of B and a composition gradient at z = 0, due to this surface preferring the
B-component.

As film depth increases, the phase portraits show that the excess of B at z = 0
increases whilst the gradient at that wall, and throughout the film, decreases. This
is a consequence of there being more bulk material to draw B-component from, and
a longer distance over which the profile can relax from the wall effects. As z → d
(the film thickness), the gradient approaches zero and the profile becomes constant
with a slight excess of A-component, due to the neutral surface at z = d enforcing
∇φ|d = 0 and depletion of A elsewhere in the film, respectively. The profiles are all
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Fig. 4.5 Phase portraits (left) and profiles (right) for a symmetric blend, χ = 0.015 < χcb
(one-phase region); increasing film depth from top to bottom. The bold (coloured) line shows the
trajectory that satisfies the boundary conditions. There is an excess of B and a gradient at z = 0 (the
B-attracting wall). As z → d, the gradient approaches zero and the profile becomes constant with
an excess of A. These profiles are a monolayer with an excess of B at the B-attracting wall, since
in this temperature the polymer blend is miscible (this means there is little change in the profiles as
film depth increases)

a monolayer9 with approximately φ = 1/2 but an excess of B at the B-attracting
wall. This is because χ < χcb and so the polymer blend is miscible (the bulk fluid
would be in the one-phase region).

9Monolayer: the profile is approximately constant φ(z) ≈ φ̄ since the blend is miscible. There may
be an excess of a component near the film surfaces due to preferential attraction, depleting that
component in the rest of the film.
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Below Critical Bulk Temperature, Above Wetting Temperature; χ = 0.021

There are three fixed points in this temperature regime, as demonstrated in Fig. 4.4.
Example phase portraits are shown in Fig. 4.6. The phase portraits approach the
fixed point q+ > q0 > 1/2 as d → ∞, developing a turning point near the z = 0
boundary condition as the trajectories circumvent the fixed point q0, which is now
orbital (the trajectories cannot tend towards this point). This turning point means
that, although the profile is monotonic, there is a region slightly displaced from the
B-attracting wall at which the rate of change of B towards that wall decreases and
the profile becomes less steep. Very close and up to this wall, the rate of change of B
then accelerates towards the wall again. The excess of B near the B-attracting wall
extends deeper into the film for χ > χcb than for χ < χcb, since the profiles are now
a bilayer, since χ > χcb (the bulk fluid would be in the two-phase region).

Bilayer10 means that the film effectively consists of two layers, each rich in a dif-
ferent component of the blend and each coating a differentwall, in this case the B-rich
(A-rich) layer coating the B-attracting (neutral) wall. In the case of an antisymmetric
wall regime (which would be achieved by making the z = d wall A-attracting in
the same way that the z = 0 wall is B-attracting) on decreasing temperature from
χ < χcb to χ > χcb there is a soft-mode transition from a monolayer to a bilayer, in
which an A(B)-rich phase exists between the A(B)-attracting wall and the centre of
the film, with a soft interface centred on φ = 1/2. There is an analogous transition
for asymmetric films.

The blend is still relatively miscible, since χ is still fairly close to χcb, and so the
interface in the bilayer is still fairly diffuse, although for thicker films the interface
is narrow compared to the layers. This can be demonstrated for films with d → ∞
from the phase portraits: the B-rich and A-rich parts of the flow approach q− and
q+ respectively as the films become thicker, and the layers corresponding to these
regions become infinitely thick in the limit d → ∞, whilst the interface corresponds
to the bump in the trajectory around φ = 1/2, and since this part of the trajectory
cannot approach the fixed point q0, the interface will tend to a finite width in the
limit d → ∞.

Below Wetting Temperature; χ > χw

Example phase portraits are shown in Fig. 4.7. The phase portraits are qualitatively
similar to those forχ = 0.021, themain difference being that the boundary conditions
now cross the orbital part of the Hamiltonian flow, so solution trajectories pass
through φ = 1/2 even for λ = 0 (non-distorted phase portraits, Fig. 4.3d). For films
above a characteristic depth, the trajectories cross the z = 0 boundary condition for
2κ∇φ < 0, so the profiles are no longer monotonic: the profiles have an inflexion
point in φ near the B-attracting wall, so there is an initial increase in B-component
on moving away from the B-attracting wall. The bilayer is far more pronounced than
for χ = 0.021, since the blend is more immiscible for χ = 0.026. As d → ∞, the
B-rich turning point in the profile trajectory will approach the q− turning point and

10Bilayer: the film is vertically segregated into two phases (layers) with an interface between them.
These phases coat the film surfaces due to preferential surface attraction.
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Fig. 4.6 Phase portraits (left) and profiles (right) for a symmetric blend, χ = 0.021 > χcb;
increasing film depth from top to bottom. The bold line shows the trajectory that satisfies the
boundary conditions. As the phase portraits tend towards the separatrix for thicker films, a minimum
appears in the phase portraits close to the z = 0 boundary condition, meaning that very near the
B-attracting wall the richness of B in the profile accelerates towards the wall, but there is a region
slightly displaced from thiswall where the steepness of the profile becomes gentler as the trajectories
near 2κ∇φ = 0. The profiles are a bilayer since χ > χcb, although the blend is still rather miscible
due to the shallow distance into the two-phase region, so the interface is still rather diffuse, hence
thicker films are required to find a more pronounced bilayer



4.4 Phase Equilibria of Asymmetric Films 75

-0.04

-0.02

 0

 0.02

 0.04

-1 -0.5  0  0.5  1

2κ
∇

φ

z=0
z=d

-1.0

-0.5

0

0.5

1.0

 0  1  2  3  4  5  6  7  8

2φ
-1

-0.04

-0.02

 0

 0.02

 0.04

-1 -0.5  0  0.5  1

2κ
∇

φ

z=0
z=d

-1.0

-0.5

0

0.5

1.0

 0  1  2  3  4  5  6  7  8  9

2φ
-1

-0.04

-0.02

 0

 0.02

 0.04

-1 -0.5  0  0.5  1

2κ
∇

φ

z=0
z=d

-1.0

-0.5

0

0.5

1.0

 0  2  4  6  8  10  12  14

2φ
-1

-0.04

-0.02

 0

 0.02

 0.04

-1 -0.5  0  0.5  1

2κ
∇

φ

z=0
z=d

-1.0

-0.5

0

0.5

1.0

 0  5  10  15  20

2φ
-1

-0.04

-0.02

 0

 0.02

 0.04

-1 -0.5  0  0.5  1

2κ
∇

φ

2φ-1  (colour bar φ: 0 to 1)

z=0
z=d

-1.0

-0.5

0

0.5

1.0

0 5 10 15 20 25

2φ
-1

z (colour bar φ: 0 to 1)

Fig. 4.7 Phase portraits (left) and profiles (right) for a symmetric blend, χ = 0.026 > χw;
increasing film depth from top to bottom. The bold line shows the trajectory that satisfies the
boundary conditions. The boundary conditions cross the orbital part of the Hamiltonian flow
for thick enough films. Above a certain depth, the trajectories at z = 0 fall below 2κ∇φ < 0,
because the trajectory begins at the first cross of the flow with the z = 0 boundary con-
dition (this is required to find trajectories corresponding to deeper films). This means that
the profiles are no longer monotonic, and the profiles are richer in B at a point near the
B-attracting wall than at the B-attracting wall. For thicker films, the latter B-rich region becomes
thicker as the phase portraits tend towards the q− fixed point. The bilayer nature of the film is quite
pronounced, as the temperature is further from the bulk critical temperature than for χ = 0.021
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this region of the B-rich layer will become infinitely thick. Similarly, the ∇φ ≈ 0
region of the A-rich layer will become infinitely thick as trajectories approach the
q+ fixed point. The interface width will tend to a finite value in the limit d → ∞,
since the part of the trajectory constituting the interface cannot approach the q0

fixed point. Note that these independently-existing solutions are not the lowest free
energy solutions available, and lateral phase separation into coexisting equilibria is
favourable.

4.4.2 Coexisting Solutions

Below the wetting temperature χ > χw, a single solution with φ̄ = 1/2 is not
energetically favourable, and a lower energy configuration for thefilmcanbeobtained
by having two coexisting solutions, one rich in A (φ̄A > 1/2) and the other rich in
B (φ̄B < 1/2). This is really the very definition of the wetting temperature: the cut-
off temperature at which an independently-existing solution, in which layers ‘wet’
the surfaces as in Fig. 4.1a, is not energetically preferable to coexisting solutions,
in which two phases are in contact with each surface as in Fig. 4.1b. Calculation
of the free energy can be done using Eq.4.1 for the calculated profiles. Wetting is
discussed in Sect. 3.2 and Fig. 3.2. These coexisting phases together conserve the
average composition of the blend by adjustment of the area of the film occupied by
each phase, and by the richness of each phase in either component.

Forming a Tractable Problem

Presently I consider λ = 0, leaving a generalisation to λ �= 0 for the discussion in
Sect. 4.6. The reason for this is as follows. The coexisting solutions in a real film
will need to have λA = λB i.e. the chemical potential of coexisting equilibria must
be the same at equilibrium. However, trying to find an A-rich and a B-rich solution
of the same depth, with the same chemical potential λA = λB �= 0, such that at this
chemical potential the pairs of profiles have a lower free energy than the profiles with
a different chemical potential, is an intractable problem (and, furthermore, we still
would not be taking into account the lateral interface between the laterally coexisting
phases in this 1D consideration). In order to make the problem of finding coexisting
phases tractable, it is simplest to restrict to λ = 0, since we guarantee λA = λB

and each coexisting phase will have a lower free energy than for any λ �= 0. λ �= 0
means that the free energy of solutions is greater than for the ‘same’ solutions with
λ = 0 (‘same’ is meant in the sense that the depth is the same, and the trajectory
is qualitatively similar except for the distortion of the phase portraits away from
symmetry by non-zero λ) because the lowest energy solutions are found subject to
no constraints at all.

With λ = 0 and χ = 0.026, it can be seen from the phase portraits of Fig. 4.3d
that there are several different trajectories between the boundary conditions available,
since each boundary condition crosses the flow more than once (in a region where
a valid trajectory between the boundary conditions can be made). With λ = 0 these

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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solutions all correspond to φ̄ �= 1/2, and depending on the trajectory will either be
A-rich (φ̄ > 1/2) or B-rich (φ̄ < 1/2).

Coexisting Phase Equilibria

The values of H used to generate Figs. 4.8 and 4.9 are given in Table4.2. A-rich
profiles, shown in Fig. 4.8, can be found for all depths above a minimum depth
D, therefore A-rich solutions must have a minimum length D. The reason for this
minimum depth can be inferred from the phase portraits: it is not possible to adjust
the phase portraits via H such that the crosses of the flow with the z = 0 and z = d
boundary conditions come arbitrarily close together (the orbital part of the flow, upon
‘shrinking’ along the x-axis direction, would no longer cross the z = 0 boundary
condition), therefore there is a limit on how small A-rich solutions can become for
λ = 0. The A-rich solutions have a high B excess near the attracting wall, but quickly
approach a constant A-rich composition away from this wall. The excess of A at the
neutral wall is due to depletion of B in the film by the B-attracting wall.

B-rich profiles can be found all depths, as can be inferred from Fig. 4.9, because
the crosses of the boundary conditions with the flow for z = 0 and z = d can be
brought together to allow d → 0. The B-rich profiles are approximately constant
and very rich in B, but a drop in B occurs close to the B-attracting wall; it appears
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Fig. 4.8 For χ = 0.026 and λ = 0, phase portraits (left) and profiles (right) for A-rich profiles.
The phase portraits are symmetrical since λ = 0 (the blend is symmetric). Longer A-rich solutions
are all similar, beginning on the rightmost cross of the z = 0 boundary condition with the flow.
d → ∞ as the phase portraits approach the separatrix, the thickness of the A-rich part of the profile,
for which ∇φ ≈ 0, tends to infinity. There is an excess of B at z = 0
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Fig. 4.9 For χ = 0.026 and λ = 0, phase portraits (left) and profiles (right) for B-rich profiles.
The phase portraits are all symmetrical since λ = 0 and the blend is symmetric. Longer B-rich
solutions are all qualitatively similar and exist for all possible film depths. The profiles are nearly
constant, but the B-attracting wall at z = 0 is less B-rich than both the bulk and the neutral wall at
z = d

Table 4.2 λ and H for the coexisting profiles shown in Figs. 4.8 and 4.9

χ λ H
0.026 A-rich 0 0.00080

0 0.00090

0 0.0009235

0.026 B-rich 0 0.00089

0 0.00092

0 0.00092384

The order of rows corresponds to the order of appearance of the sub-figures

to be unfavourable for the B-attracting wall to adsorp (excess attracted by surface)
material with the same richness of B found in the bulk.

Imposing that A-rich and B-rich solutions must have equal depths, we must infer
that films with depths less than D cannot undergo lateral phase separation and must
exist in a single state with φ̄ = 1/2, because an A-rich solution does not exist to
allow lateral phase separation. For depths greater than D, lateral phase separation is
energetically favourable, because the energy of both of these coexisting equilibria
is less than the energy of a φ = 1/2 independently-existing equilibria, and material
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conservation can be accounted for by varying the area of these laterally segregated
phases in the film. This result is an analogue of the result for blends between anti-
symmetric walls for χ > χw, for which lateral phase separation can occur only for
films above a minimum depth [2, 5].

4.5 Surface Roughening

Figure4.10 is a plot of the free energy, calculatedwithEq. (4.1), of laterally coexisting
profiles calculated forλ = 0, for profileswith a range of filmdepths d (the free energy
is calculated from Eq. (4.1)). The free energy decreases with the thickness of the film
as a consequence of the composition gradients becoming less steep as the films
become thicker. Imposing that λ = 0, consider films (before lateral phase separation
occurs) of depth slightly below D, the minimum depth of A-rich profiles. In this
case, neglecting the effects of gravity and other kinetic considerations, consideration
of the free energy shows it is thermodynamically favourable for the film to laterally
phase separate into an A-rich phase with dA ≥ D > d and a B-rich phase with
dB < d < D, since these phases still have less energy than an independently-existing
profile.

If one of the walls is a free surface then there is no need to impose that the depths
of the laterally separated phases are equal, so the A-rich phase will protrude from the
B-rich phase, since dA > dB . This is because the A-rich phase has the greater free
energy per unit area (for λ = 0) than the B-rich phase, as demonstrated by Fig. 4.10,
so we might expect the A-rich phase to be deeper and richer in A, since this accounts
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Fig. 4.10 Free energy of the A-rich and B-rich solutions for λ = 0 and χ = 0.026. Both solutions
can go to arbitrarily high depths, but there is a lower limit on the depth for the A-rich solution (not
on the B-rich solution). Of interest for the A-rich solution is that there is a region of two solutions
for the same height, which is a result of being able to calculate an A-rich solution from the leftmost
cross of the orbital flow with the z = 0 boundary condition, rather than just the rightmost cross
(although the former yields a higher energy profile; the upper branch results from calculating the
profile from the leftmost cross). The A-rich phase has a higher free energy than the B-rich phase
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for material conservation whilst minimising the area of film occupied by the A-rich
phase (if the phase with the higher free energy per unit area occupies less area by
increasing in height, we would expect the free energy to reduce). In this case, the
difference in depths arises so that an A-rich phase may exist for λ = 0, allowing
lateral phase separation. However, for films with initial depth d > D, we may expect
the same phenomena as a result of lateral phase separation, again with the A-rich
phase protruding from the film, since the A-rich phase still has a lower free energy
than the B-rich phase. Figure4.11 is a schematic of this scenario.

However, there is no need to enforce λ = 0, unlike for antisymmetric films.
Allowing λ �= 0, with the understanding that the heights of coexisting solutions may
differ, the role of λ changes subtly, since now it can act to alter the depth of the
equilibria, as well as the average volume fraction. Changing λ from zero whereby a
depth d is obtained, to λ′ whereby a depth d ′ > d is obtained, can have the effect of
decreasing the free energy, although the energy will be greater than that for a solution
of depth d ′ for λ = 0.

We then expect in general that, for a laterally phase separated film with a depth
greater than D, it is favourable for the A-rich and B-rich solutions to exist at different
heights. With λ �= 0, there can be a distortion of the phase space to obtain A-rich
solutions with dA < D, so that the minimum depth of A-rich solutions is certainly
below D. There will be a compromise between the average volume fraction φ̄A and
φ̄B , the depths dA and dB , the total area of the A-rich and B-rich phases, and λA and
λB (λA = λB at equilibrium), to obtain two solutions which may coexist together
in order to produce the lowest free energy overall. From a purely thermodynamic
argument, without any particular symmetries of the confining walls/surfaces, in gen-
eral we should not expect the coexisting solutions to have equal depths, and that a
scenario like that in Fig. 4.11b may be rather general.

(a) (b)

Fig. 4.11 Schematic of a binary polymer-blend film. a film with a free top surface, with a single
profile φ(z) describing the entire film; b coexisting equilibria φ∗(z) and φ∗∗(z)which exist side-by-
side, but at different heights, since this provides a lower energy configuration. The lateral interfaces
between the coexisting phases are not taken into account
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4.6 Summary

I have described how the phase equilibria of a binary polymer-blend thin filmbetween
selectively attracting walls can be studied with Hamiltonian Phase Portraits. This
method was originally developed and used by Souche and Clarke for the special case
of a symmetric blend between antisymmetric walls [2]. I extended the method to
include a Lagrange multiplier, allowing this method to be generalised to asymmetric
films. This chapter was restricted to a specific asymmetry, although this can be
generalised to general surface asymmetry and to asymmetric blends. Hamiltonian
Phase Portraits can be used to visualise and calculate phase equilibria in the ‘depth
dimension’, but qualitative conclusions can be drawn about the nature of laterally
coexisting phases that can exist in a laterally segregated film. This method treats
coexisting phases as if they were effectively isolated from each other, since I have
not considered the interfaces between the coexisting phases or the implications of
surface tension and surface connectivity. However, from a purely thermodynamic
perspective, surface roughening whereby one phase is deeper/higher than the other
should be a general mechanism by which a film can lower its free energy upon lateral
phase separation.

The next chapter uses Hamiltonian Phase Portraits to explain the results of 2D
simulations of polymer-blend thin films, showing how knowledge of 1D equilibria
(calculated only in the dimension extending from one film surface to the other, as in
this chapter) is sufficient to explain the kinetics of phase separation.
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Chapter 5
Lateral Phase Separation via Surface
Bifurcation

I use diffusion simulations of polymer blend films with selectively attracting sur-
faces to identify the dynamics of lateral phase separation via a transient wetting
layer, utilising Hamiltonian phase portraits of 1D phase equilibria to explain a sur-
face bifurcation mechanism. This mechanism describes how the surface values of
the equilibrium profile of a transient wetting layer, which are effectively pinned to
boundary conditions at the film surfaces, divide into two values for laterally coexist-
ing equilibria. The requirement that these effective boundary conditions be satisfied
at all times, not only at equilibrium, causes the particular dynamics of the breakup
of the transient wetting layer. This work was published in my second paper (Letter)
“Breakup of a Transient Wetting Layer in Polymer Blend Thin Films: Unification
with 1D Phase Equilibria” [1] and third paper “Lateral phase separation in polymer-
blend thin films: Surface bifurcation” [2].

5.1 Introduction

In this chapter I develop a diffusion equation for binary polymer-blend thin films
with selectively attracting surfaces. Included in this equation are often neglected
surface terms that are required so that the equilibria that appear in the simulations
match those that can be calculated using, for example, the Hamiltonian Phase Por-
traits method presented in Chap.4. I then perform simulations with this equation for
various different temperatures, depths and surface attraction regimes. I show that the
simulation results are fully consistent with the calculated phase equilibria, and show
how the coexisting equilibria that can be calculated in 1D using phase portraits do
appear in the (2D) simulations, albeit under a non-zero chemical potential due to the
lateral interfaces between the phases (which cannot be accounted for with the 1D
Hamiltonian Phase Portrait method). I also explain how effective boundary condi-
tions at the film surfaces serve to pin the profiles of the films to particular values,
even out of equilibrium.
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I use these simulations to identify the dynamics of lateral phase separation via a
transient wetting layer, which is the process by which a film initially vertically segre-
gates and then undergoes lateral phase separation into laterally coexisting equilibria
(which is favourable below the wetting temperature). Utilising Hamiltonian phase
portraits of the 1D phase equilibria that appear in the simulations, I explain a surface
bifurcation mechanism. This mechanism describes the particular way in which the
surface values of the transient wetting layer divide into two values which evolve
towards those of the laterally coexisting equilibria, but in such a way that the surface
boundary conditions are still honoured, and how this is ultimately responsible for
the particular dynamics of the breakup of the transient wetting layer.

5.1.1 The Importance of Dynamics and Kinetics

The difference between the wetting regime, in which one phase completely covers a
surface and excludes another phase from contact with that surface, and the non-wet
regime, in which both phases are in contact with a surface, was discussed throughout
Chap.3. Figure3.2 shows a binary blend in contact with a planar surface: when the
contact angle that a phase makes with the surface goes to zero, the surface is wet
by that phase. However, the discussions in Chap. 3, and the literature cited therein,
primarily concerned describing wetting transitions in the context of wetting layers
which become infinitely thick in a semi-∞ geometry, although therewas a discussion
of films of finite thickness which discussed how equilibrium in the non-wetting
regime is laterally coexisting phases which are both in contact with the surface.

Of equal importance are the kinetics by which a surface may wet or de-wet. A
film of an initially homogeneous blend does not spontaneously adopt an equilibrium
profile, and the pathway bywhich the films evolve are very important for determining
the final morphology, particularly for polymer-blend films, in which the morphology
can become ‘frozen’ far away from equilibrium (for example, when a solvent which
keeps the blend a fluid is all removed; see description of spin coating process below).
Similarly, the final morphology may not necessarily be that predicted by consider-
ation of the lowest free energy equilibria; it may be another equilibrium profile (a
metastable equilibrium) that was reached first due to the kinetics of the system.

Early numerical studies of binary blends made the distinction between the layered
morphology of Vertical Phase Separation1 (one phase in contact with a surface; see
Fig. 5.1a) and the non-wet morphology of Lateral Phase Separation2 (both phases in
contact with a surface; see Fig. 5.1b): a high surface field, low thermal noise regime
corresponded to a layered morphology, and a low surface field, high thermal noise
regime corresponded to a partially wet morphology [3]. The competition between

1Vertical Phase Separation: phase separation into vertically layered phases, e.g. a bilayer, usually
caused by preferential surface attraction.
2Lateral Phase Separation: phase separation into laterally coexisting phases, whether from an
approximately homogeneous film or a bilayer film, resulting in a laterally segregated film.

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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(a)

(b)

Fig. 5.1 Schematics of different profiles for spin-cast films: a vertically segregated (bilayer); b
laterally segregated. The process of spin-coating is shown inFig. 5.2. There is evidence that films can
in fact first undergo vertical phase separation into a bilayer, followed by a sinusoidal-like distortion
of the interface between the phases of the bilayer, which results in lateral phase separation of the
film (note that in (b) the coexisting phases are shown in common with Chaps. 3 and 4, with no
consideration of the interface between them). In this case, the temporary bilayer is referred to as
a transient wetting layer, and the process is referred to as lateral phase separation via a transient
wetting layer. A posited reason for the breakup is a Marangoni-like instability; see text

surface attraction of particular blend components and thermal noise that will gener-
ally move the blend towards a lower free energy (which may not be a layered mor-
phology with only one phase in contact with each surface) highlights the importance
of kinetics in determining the morphology of the film: vertical layering may initially
occur, but is not necessarily stable. The vertical layering of phases was realised both
experimentally [4] and computationally [5, 6], even in the non-wet regime when it
is energetically favourable for both phases to be in contact with the surface [7, 8] i.e.
vertical phase separation into layers (like in Fig. 5.1a; alternating layers extending
into the film are also possible) occurred even when lateral phase separation (like in
Fig. 5.1b) was energetically favourable. Experiments later revealed that the vertical
layers forming in the non-wet regime can break up as lateral structures appear at a
surface [9], with solvent evaporation experiments allowing frozen out-of-equilibrium
states to be studied to investigate this breakup [10].

5.1.2 Lateral Phase Separation via a Transient Wetting Layer

The main subject of this chapter is the lateral phase separation of an initially verti-
cally segregated3 film resulting in a laterally segregated4 film. The pioneering work

3Vertically Segregated (film): layered phases with interfaces parallel to the surfaces.
4Laterally Segregated (film): ‘column’ phases with interfaces perpendicular to the surfaces.

http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_4
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of Walheim highlighted the possibility of lateral phase separation via a transient
wetting layer5 [10]: the initial formation of a transient (temporary) wetting layer that
forms as the blend initially vertically phase separates, due to preferential attraction
by the film surface(s), which subsequently breaks up due to an instability. This sub-
ject has received more recent attention [11–14], with a fair amount of evidence now
suggesting that, for spin cast films, before the blend laterally phase separates into a
laterally segregated film (which is usually the final state of spin cast films) it first
undergoes vertical phase separation into a bilayer (i.e. a transient wetting layer); see
below for description of spin coating.

The most posited reason for the breakup of the bilayer is a Marangoni-like insta-
bility caused by solvent gradients in the film as solvent evaporates from the top
surface [11, 14]. This may be what causes the bilayer to develop a sinusoidal distor-
tion which leads to the breakup of the bilayer, resulting in a laterally segregated film.
Control of the evaporation rate, and therefore the steepness of the solvent gradient
in the film, has been shown to be a mechanism by which the lateral phase separation
can be prevented, allowing the final morphology to be either vertically or laterally
segregated [14]. A schematic showing the process of the breakup of a bilayer is
shown in Fig. 5.1.

Despite the recognition of lateral phase separation via a transient wetting layer,
prior to thiswork little theoreticalwork had been done to shed light on the dynamics of
the break upof the transientwetting layer, and anyunderlyingmechanisms explaining
the way in which the transient wetting layer breaks up.

Spin Coating of Polymer Blend Films

Spin coating is a widely used technique for creating polymer-blend thin films. A
polymer blend is combinedwith a common solvent (‘common’means that it dissolves
both components of the blend), and sprayed/spread onto a flat substrate which is then
spun very quickly. The fluid layer first thins from the spinning as material is rapidly
shed due to centrifugal forces, and then thins further as solvent evaporates, leaving
behind a film of the binary polymer blend. The rate of solvent evaporation can be
controlled by adjusting the vapour pressure above the film. See Fig. 5.2 for a simple
schematic of the spin-coating process. The final state of films manufactured in this
way is almost always laterally segregated, as in Fig. 5.1b, but there is evidence that
films first undergo vertical phase separation into a bilayer, as in Fig. 5.1a.

5.2 Calculating Phase Equilibria in 1D

The problem of solving for equilibrium profiles of polymer-blend thin films with
selectively attracting surfaces (walls) was addressed in Chap.4, but for completeness
it is worth restating several important aspects in this chapter.

5Lateral Phase Separation via aTransientWettingLayer: vertical phase separation initially proceeds,
due to preferential surface attraction, resulting in a vertically segregated film. This state is unstable,
and lateral phase separation occurs, resulting in a laterally segregated film.

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.2 Schematic of initial stages of the spin-coating process: two polymer species are combined,
along with a common solvent, and sprayed/spread onto a substrate, which is then spun around very
quickly. The fluid layer thins asmaterial is shed due to centrifugal forces, and thins further as solvent
evaporates, leaving behind a film of the phase-separated polymer blend at the end

5.2.1 1D Description of Polymer-Blend Film

The following description is consistent with Chap.4. The Flory-Huggins-de Gennes
free energy functionalF for a 1D binary polymer blend (monodisperse, components
A and B, volume fraction of A given by φ, depth d) confined between selectively
attracting walls (surfaces) at z = 0 and z = d is [15]

F [φ(z)] = 1

a

∫ d

0

[
fF H (φ) + κ(φ)(∇φ)2

]
dz + f ∗

0 (φ0) + f ∗
d (φd), (5.1)

where F is given in units of kB T , z measures the vertical distance from the wall at
z = 0, and ∇φ ≡ ∂zφ is the partial derivative of φ with respect to z. I will denote
film profiles, describing the volume fraction φ as a function of distance z, by φ (z). a
is the spacing of the underlying Flory-Huggins lattice. The gradient coefficient κ (φ)

in Eq. (5.1) is

κ(φ) = a2

36φ(1 − φ)
. (5.2)

The surface energies f ∗
0 and f ∗

d are given by [16, 17]

f ∗
S (φS) = h∗

SφS + 1

2
g∗

Sφ2
S = 1

a

(
hSφS + 1

2
gSφ2

S

)
≡ 1

a
fS(φS), (5.3)

where S = 0, d (the index S denotes the confining walls) and h∗
S ≡ hS/a and g∗

S ≡
gS/a are phenomenological parameters, taking account of blend-wall interactions
and missing neighbour contributions due to the walls (surfaces), respectively. Only

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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the local volume fraction φS enters into Eq. (5.3). Note that the definitions fS(φS) =
hSφS + 1

2gSφ2
S are the surface energies per unit cell. These are convenient because

hS and gS are independent of the dimensionality D of the system (which enters as
a−D in Eqs. (5.1) and (5.3), a−1 in those cases).

To isolate the symmetry-breaking effects of the film walls, I now specialise to
a symmetric binary polymer blend (average composition φ̄ = 1/2, degree of poly-
merisation NA = NB = N ), so the Flory-Huggins free energy contribution to Eq.
(5.1) in units of kB T is

fF H (φ) = φ

N
ln (φ) + 1 − φ

N
ln (1 − φ) + χφ(1 − φ), (5.4)

where χ is the Flory-Huggins interaction parameter.

5.2.2 The Chemical Potential

In Chap.4, it was briefly noted that the Lagrangemultiplier required to find equilibria
with the Hamiltonian Phase Portrait Method was equivalent to a chemical potential.
To recap: for any chosen blend ratio A:B (quantified by the average composition
φ̄) equilibria implied to exist in isolation (rather than coexisting with other phases)
must conserve φ̄, which for a symmetric binary blend means φ̄ = 1/2. The Lagrange
multiplier must be chosen to ensure that calculated profiles satisfy the latter con-
straint. In a laterally segregated film of coexisting phases φA(z) and φB(z) (rich in
components A or B i.e. φ̄B < φ̄ < φ̄A), adjustment of the area and composition of
each phase can conserve material, though λA = λB is required (λA = λB = 0 was
used in Chap.4).

In 1D, the total free energy is given by

FT OT [φ (z)] = F [φ (z)] − μ

a

∫ d

0
φ(z)dz, (5.5)

where a factor of kB T has been absorbed into the chemical potential μ, which is
multiplied by a−1 in this definition for convenience. The local chemical potential
μ(z) is related to the free energy viaμ(z) ≡ aδF/δφ(z) (using a consistent definition
as before). Since equilibrium profiles (equilibria) φ(z) correspond to a minimum in
the total free energy i.e. δFT OT /δφ(z) = 0, then for equilibrium

δF [φ (z)]

δφ(z)
≡ μ (z)

a
= μ

a
, (5.6)

meaning the local chemical potential μ (z) is a constant value μ for all z at equilib-
rium. This was mentioned briefly in Sect. 4.3.4 on the interpretation of the Lagrange

http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_4
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multiplier λ. Another way to put this is to say: for equilibrium, there are no gradients
in the chemical potential.

5.2.3 Solving for 1D Equilibria

I will briefly restate several equations relevant to the Hamiltonian Phase Portrait
method, which equilibrium profiles are required to satisfy. These equations are dis-
cussed in detail in Chap.4. Underlying the Hamiltonian phase portrait method is the
Euler-Lagrange equation for equilibrium profiles φ(z), given by

2κ∇2φ + ∂φκ (∇φ)2 = ∂φ fF H + λ, (5.7)

where ∂φ is the partial derivative with respect to φ, and λ is a Lagrange multiplier.
Equation (5.7) is not enough to fully specify a solution; we require two boundary
conditions to numerically solve for a unique solution:

+ 2κ(φ0)∇φ0 = +∂ f0
∂φ

≡ +h0 + g0φ0, (5.8)

+ 2κ(φd)∇φd = −∂ fd

∂φ
≡ −hd − gdφd . (5.9)

We also need to satisfy a material constraint for independently-existing profiles,
which for a symmetric blend φ̄ = 1/2 is

1

a

∫ d

0

(
φ(z) − 1

2

)
dz = 0. (5.10)

The boundary conditions (5.8) and (5.9) must be satisfied, along with the constraint
equation (5.10) via choice of λ, to specify equilibrium profiles φ (z) which also
satisfy the Euler-Lagrange equation (5.7) [16–18]. Of course, that equilibria must
satisfy these requirements is not specific to the Hamiltonian Phase Portrait method
in particular.

5.3 Modelling Phase Separation

In order to study phase separating films, I use diffusion simulations based upon a
diffusion equation inwhich the gradient of the local chemical potential drives the flux
of material. I use ‘simulation’ throughout to mean numerically solving the resulting
equation of motion. It is now useful to write Eq. (5.1) slightly differently, as

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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aF [φ(z)] =
∫ d

0

[
fF H (φ) + κ(φ)(∇φ)2 + f0(φ)δz0 + fd(φ)δzd

]
dz, (5.11)

where δzS represents the Kronecker delta function: δzS(z = S) = 1, δzS(z �= S) = 0
(S refers to the value of z at the walls i.e. S = 0 or S = d). Note that since the film
surfaces are rigid planar impenetrable surfaces, I will most often refer to the surfaces
as walls.

5.3.1 The Local Chemical Potential

To derive the diffusion equation, we require the local chemical potential μ(z) as
defined by μ(z) ≡ aδF [φ (z)] /δφ(z). There is a standard expression for the func-
tional derivative which can be used in cases where the boundaries of integration on
a functional, such as F [φ(z)] in Eq. (5.1), don’t introduce additional terms into the
functional derivative. In that case, for a functional of the form F = ∫

f (φ,∇φ)dz,
we could use the expression

δF [φ(z)]

δφ(z)
= ∂ f

∂φ
− ∇ · ∂ f

∂∇φ
. (5.12)

I began the research that forms this chapter by using such a derivation. However,
in order to unite the results of the simulations with the results I could obtain using
the Hamiltonian Phase Portrait method to calculate equilibrium profiles, the diffu-
sion equations for the simulations required modification. I found that terms resulting
from one-sided gradients at the boundaries of integration, required for the equilib-
rium profiles from the simulations to match those calculated, were missing if I used
Eq. (5.12). To try to find the source of the discrepancy, I instead went back to first
principles to calculate the functional derivative.

The local chemical potential μ
(
z′), given by the functional derivative of the free

energy (5.1) at z′, is:

μ
(
z′) = a

δF [φ (z)]

δφ(z′)
. (5.13)

The variational derivative in Eq. (5.13) describes how F changes when we perturb
the profile φ(z) by an infinitesimally small amount ε at the point z′:

δF [φ (z)]

δφ(z′)
= lim

ε→0

1

ε
{F [

φ (z) + εg(z, z′)
] − F [φ (z)]}. (5.14)

g(z, z′) is a test function (not rigorously a delta function or delta distribution) whose
value is zero for z �= z′ and one for z = z′. It is necessary to use such a test function
due to the finite range of the integral in the functional Eq. (5.11).
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I will begin with the variational derivative of the gradient term κ(φ) (∇φ)2 in
Eq. (5.11). I use the contractions g ≡ g(z, z′) and κ ≡ κ (φ) when convenient, and
discard all terms O(ε2) in the expanded integrands since they vanish in the limit
ε → 0. Note that the quantity we are actually interested in is the local chemical
potential μ(z) i.e. we must take z = z′, so the integrals below vanish when we take
z′ = z due to the properties of the test function g(z, z′):

1

ε

∫ d

0
κ (φ + εg) (∇(φ + εg))2 − κ(φ) (∇φ)2 dz

=
∫ d

0
2κ∇φ∇g + g(∂φκ)(∇φ)2dz

= [2κ∇φg]d0 −
∫ d

0
2κ g∇2φdz

−
∫ d

0
2∇φg∇κdz +

∫ d

0
g(∂φκ)(∇φ)2dz

= [2κ∇φ]d0 − 2κ ∇2φ − 2∇φ∇κ + (∂φκ)(∇φ)2

= [2κ∇φ]d0 − 2κ∇2φ − (∂φκ)(∇φ)2. (5.15)

The terms [2κ∇φ]d0 do not appear fromEq. (5.12), and these terms are usuallymissing
from similar work in the literature.

The variational derivative of the Flory-Huggins free energy (5.4) is simply given
by ∂φ fF H , the partial derivative with respect to φ

∂ fF H

∂φ
= 1

N
ln

φ

1 − φ
+ (1 − 2φ)χ, (5.16)

and the variational derivatives of the surface energies in Eq. (5.3) are
[
∂φ fS(φ)

]
δzS ,

due to the rewriting of the surface energies in the form given by Eq. (5.11), where
(for S = 0, d)

∂ fS

∂φ
= hS + gSφ. (5.17)

So we have for the local chemical potential μ(z) at point z:

μ(z) = − 2κ (φ)∇2φ − (∂φκ)(∇φ)2 + ∂φ fF H

+ [+2κ (φ)∇φ + ∂φ fd(φ)
]
δzd

+ [−2κ (φ)∇φ + ∂φ f0(φ)
]
δz0, (5.18)

where the surface energy terms and [2κ (φ)∇φ]d0 have been combined, since both
pairs of terms act at the walls.
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Consistency

Equation (5.6) means the chemical potential must be constant everywhere at equi-
librium, μ(z) = μ. The Euler-Lagrange equation (5.7) must also be satisfied by
equilibrium profiles φ(z). Substituting Euler-Lagrange equation (5.7) into the local
chemical potential (5.18) we obtain for equilibrium

μ(z) = −λ

+ [+2κ (φ)∇φ + ∂φ fd(φ)
]
δzd

+ [−2κ (φ)∇φ + ∂φ f0(φ)
]
δz0, (5.19)

which requires that the boundary conditions Eqs. (5.8) and (5.9) are naturally satis-
fied, indeed the requirement that μ(z) be constant at equilibrium is the origin of the
boundary conditions for equilibrium profiles. If we were to perform simulations of a
polymer-blend described by Eq. (5.11), then we would expect to find for equilibrium
profiles that

μ ≡ μsim = −λ, (5.20)

i.e. at equilibrium, the Lagrange multiplier is the negative of the chemical potential
μsim from the simulations. The relationship between λ, required to solve for profiles
in 1D, and the chemical potential from a 2D simulation in which there are lateral
interfaces between coexisting phases (not accounted for when solving for equilibria
in 1D) is discussed in Sect. 5.4.

5.3.2 The Diffusion Equation

From the local chemical potential we can develop a governing equation for the
diffusion simulations. I assume the material current at a point z can be written as
J (z) = −M∗∇δF/δφ, where M∗ is the mobility, assumed to be constant for sim-
plicity. This constitutive law (a form of Fick’s law of diffusion) assumes that the
flux of material J is proportional to the gradient of the chemical potential, meaning
that material will move so as to equalise the chemical potential. This means that
material will diffuse until equilibrium is achieved, in which the chemical potential is
constant everywhere. From the continuity equation ∂φ/∂t = −∇ · J we then obtain
(remembering the factor of a in the definition of μ)

∂φ (z)

∂t
= M∗

a
∇2μ (z) ≡ M∇2μ (z) . (5.21)
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Inserting the expression for the local chemical potential (5.18) into the above expres-
sion yields the diffusion equation for the simulations. For numerical purposes, we
scale space by z′ = |χ − χS|1/2 z/a and time by τ = N M |χ − χS|2 t/a2. χS is the
value of χ at the spinodal, which for a symmetric blend gives χS = χC , where χC is
the critical temperature of the blend (see Sect. 1.4). The rescaled units of space z′ are
of the magnitude of phase separated domains expected from bulk phase separation,
and the rescaled time τ removes the dependence on the mobility. We then obtain

∂φ (z)

∂τ
= 1

N
∇′2

(
1

|χ − χS|
∂ fF H

∂φ

+ (1 − 2φ)

φ(1 − φ)

κ

a2 (∇′φ)2 − 2
κ

a2∇′2φ

+ δzd

|χ − χS|

[
∂ fd

∂φd
+ 2

|χ − χS|1/2
a

κ∇′φ
]

+ δz0

|χ − χS|

[
∂ f0
∂φ0

− 2
|χ − χS|1/2

a
κ∇′φ

])
(5.22)

where ∂φ fF H = (1/N ) ln (φ/(1 − φ)) + χ(1 − 2φ).
Equation (5.22) must be discretised for simulations. I divide the range in z by

a mesh of D grid cells of depth �z, so the film depth d = D�z and the surface
terms act in the grid cells i = 1 and i = D respectively. As first discussed by
Henderson and Clarke [19], and later given firmer foundations by Fukuda et al. [20],
inconsistencies can arise unless we normalise surface/wall energy (5.3) to make the
free energy (5.11) invariant to the mesh size:

fi (φi ) → fi (φi )

�z
= hi

�z
φi + 1

2

gi

�z
φ2

i , (5.23)

where i = 1 or i = D. The surface gradient terms ±2κ (φ)∇φ must also be nor-
malised by �z−1, else the resulting discretised diffusion equation is not consistent
with its continuous counterpart Eq. (5.22).

I also include a second lateral dimension y running parallel to the confining walls,
using index j , and apply periodic boundary conditions in this dimension. The free
energy functional (5.1) changes such that a−1 → a−2, but the careful definitions
means that we need only replace factors of a−1 with a−2 in Sects. 5.2 and 5.3 (this
leaves Eq. (5.20) remains unchanged). I used a square simulation mesh �y = �z
for the work in this chapter. Using φi j to represent the volume fraction of A at the
grid cell i j , the 2D discrete diffusion equation for the simulations discussed in this
chapter is

http://dx.doi.org/10.1007/978-3-319-19399-1_1
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∂φi j

∂τ
= 1

N
∇′2

(
1

|χ − χS|
∂ fF H

∂φ
|i j

+ (1 − 2φi j )

φi j (1 − φi j )

κi j

a2 (∇′φ|i j )
2 − 2

κi j

a2 ∇′2φ|i j

+ δi D

�z′

[
a−1

|χ − χS| 12
∂ fd

∂φd
+ 2

κDj

a2 ∇′
zφ|Dj

]

+ δi1

�z′

[
a−1

|χ − χS| 12
∂ f0
∂φ0

− 2
κ1 j

a2 ∇′
zφ|1 j

])
, (5.24)

where κi j ≡ κ(φi j ) and ∂φ fF H |i j ≡ ∂φ fF H (φi j ). The gradient terms ∇′ and ∇′2
are now 2D, whilst∇′

z ≡ ∂z′ (the partial derivative with respect to z′). For the surface
terms ∂ fd/∂φd and ∂ f0/∂φ0, I keep the notation for the continuous spatial variable
z (0 and d), although these terms must be evaluated for grid cells with i = 1, D.
(Note that the lattice spacing a cannot be fully scaled out of the surface terms; see
Ref. [20]).

The film surfaces are impenetrable hence material conservation is required:

d

dτ

∫ d

0
φ (z) dz = 0, (5.25)

which was implemented by a no-flux condition at the walls, achieved by setting
J (i = 1 − 1/2) = 0 and J (i = D + 1/2) = 0. To discretise Eq. (5.24), I used a
central differencing scheme for spacial derivatives and a forward differencing time
step. Unless specified otherwise, simulations are started seeded with initial random
noise i.e. φ(z, y) = 0.5+ δφ, where δφ is chosen from a Gaussian distribution with
mean zero and width σ, which will be specified, and additional noise is not included
throughout the rest of the simulation. However, to show that the results are general,
I show a simulation with continuous noise in Sect. 5.6.1.

The simulations were implemented in CUDA, a programming language similar to
C++ which allows for execution of parallelised code on a CUDA-enabled NVIDIA
Graphical Processing Unit (GPU). This made the simulations much more tractable,
providing between 10× to 100× speed up over serial processing on a CPU. More
details of the implementation of my simulations for parallelised code, which may be
useful for reproducing them or for efficiently implementing other similar diffusion
simulations, along with details about the discretised gradient operators and time step,
are given in Appendix A.
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5.3.3 Parameters

Blend and Surface Parameters

Throughout this chapter, I focus on a symmetric polymer blend φ̄ = 0.5 with N =
100, hence χc = 0.020. I use the following wall parameters and terminology, in
common with Chap.4: for ‘asymmetric’ films h0 = −0.05, g0 = 0.18, hd = gd = 0
(a B-attracting wall at z = 0 and a neutral wall at z = d); for ‘antisymmetric’ films
h0 = −0.05, g0 = 0.18, hd = −0.13, gd = 0.18 (a B-attracting wall at z = 0 and an
A-attracting wall at z = d, such that the walls attract opposite components in exactly
the same way); and for ‘symmetric’ films h0 = hd = −0.05, g0 = gd = 0.18 (a
B-attracting wall at z = 0 and z = d). These different surface regimes are discussed
in Sect. 3.5. The symmetric blend between asymmetric walls is directly comparable
with the work in Chap.4.

Parameters and Units

Since scaled space depends on the temperature χ and I discuss a range of different
χ, it is easier to discuss the results in terms of ‘unscaled’ space z (setting a = 1
gives z units of a) and scaled time τ , since then the difference in behaviour for
films of the same depth at different temperatures is more transparent (the scaling of
space is nonetheless useful for numerical reasons). When discussing phase portraits,
I provide the Hamiltonian constants and Lagrange multipliers used to generate the
phase portraits.

The Wetting Temperature

Since the wetting temperature depends on the film thickness and wall interactions,
I have defined the wetting temperature χW throughout this chapter as the cut-off
temperature at which spontaneous lateral phase separation of a transient wetting
layer no longer appears to occur (i.e. the wetting layer is stable, and the contact angle
of the wetting phase with the surface remains zero) for an asymmetric film of depth
d = 20.1 (the film depth used in Sect. 5.5). This gives an estimate of 0.0213 <

χW < 0.0214 (this provides an upper limit for all of my wall configurations, since
my asymmetric configuration has one neutral wall; see Ref. [21]). It is worth restating
that defining the wetting temperature as the point at which wetting is stable is really
the fundamental definition of the wetting temperature. My more restricted definition
here is for convenience, allowing us to refer to the same value of χW throughout,
even though, for example, the ‘true’ wetting temperature of, say, an antisymmetric
film may in fact be χAS

W < χW .

5.4 1D Equilibria in 2D Films

This section relates the phase equilibria that can be calculated in 1D via the Hamil-
tonian Phase Portrait Method of Chap.4, to the equilibrium states found in my 2D
simulations. The purpose of this comparison was to investigate whether the simula-

http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_3
http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_4
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tions of the diffusion Eq. (5.24) were consistent with the equilibria calculated with
the Hamiltonian phase portrait method, in particular whether the coexisting phases
that can be calculated in 1D actually correspond to the laterally segregated phases
observed in 2D.

5.4.1 Vertically Segregated Films

To study vertically segregated films, such as Fig. 5.1a, I restricted the simulations
to quasi-1D, so that the lateral dimension y was too narrow to support laterally
segregated phases. For the Gaussian noise width I used σ = 0.0001 for an initially
nearly homogeneous film, and made a further restriction to asymmetric films. The
equilibrium profiles from the quasi-1D simulations can be directly compared with
calculated 1D film profiles of independently-existing equilibria, since restricting
the lateral width prevents lateral phase separation and therefore allows the vertically
segregated state to be accurately compared with calculated profiles, even forχ > χW

when this configuration is unstablewith respect to a laterally segregated configuration
(any lateral variation in the vertically segregated profile would make a comparison
less accurate). I studied three different temperature regimes (those used in Chap.4):
above the critical temperature χ = 0.015 (Fig. 5.3), below the critical temperature
but above the wetting temperature χ = 0.021 (Fig. 5.4), and below the wetting
temperature χ = 0.026 (Fig. 5.5).

In Figs. 5.3, 5.4 and 5.5 the three sub-figures show each film at (a) a very early
time; (b) an intermediate time away from equilibrium; and (c) at equilibrium. The
data points φi (1 ≤ i ≤ D) are averages of φi j taken over index j (the lateral
dimension) for fixed index i , and the dashed lines are the 1D equilibrium profiles of
asymmetric films calculated by the Hamiltonian phase portrait method of Chap. 4,
although anymethodwould suffice. Imade the following observations: at equilibrium
the simulation data matches the profiles; the simulations reproduce the profiles more
accurately as themesh size is reduced (�τ = 0.00004 was used for each temperature
regime); and as �z → 0, the simulation data conforms exactly to the calculated
profiles. Further proof of this is Table5.1,which shows that as�z → 0 the simulation
equilibrium chemical potential converges to the negative of the Lagrange multiplier
required to numerically solve for the film profile, as predicted by Eq. (5.20), but these
finer�z are absent in Figs. 5.3, 5.4 and 5.5 to preserve clarity. It is important that the
results of the simulation accurately and precisely match the results of a calculation
of equilibria, since this gives us confidence in the diffusion equation (5.24).

It is worth noting that for thicker films an oscillatory concentration wave may
form, in which the profile would resemble a sine-wave in concentration extending
away from the B-attracting wall. This wouldn’t necessarily become a profile like
those in Figs. 5.3, 5.4 and 5.5 (unless given an infinite amount of time), but this is a
kinetic problem that can be a particular nuisance in 1D simulations. Since the work
in Chap.4 gives us confidence that we know the nature of the true equilibria even for
infinitely thick films, and since the focus of this chapter is on lateral phase separation

http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_4
http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.3 1D simulation data
for χ = 0.015 (χ < χC ),
film depth d = 14.85 and
asymmetric walls. Times are
τ = 1 (a), τ = 2 (b), τ = 15
(c). The calculated
equilibrium profile (green
dashed line) required
λ = −0.000745, whilst
μsim = +0.000791 for
�z = 0.41. Equilibrium is a
monolayer with positive
adsorption of B material at
the B attracting wall (z = 0)
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Fig. 5.4 1D simulation
data for χ = 0.021
(χC < χ < χW ), film depth
d = 40.60 and asymmetric
walls. Times are τ < 1 (a),
τ = 9 (b), τ = 25 (c). The
calculated equilibrium
profile (green dashed line)
required λ = −0.000033,
whilst μsim = +0.000036
for �z = 0.68. Equilibrium
is a bilayer with a soft
interface separating the
B-rich phase and A-rich
phase
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Fig. 5.5 1D simulation data
for χ = 0.026 (χW < χ),
film depth d = 20.92 and
asymmetric walls. Times are
τ = 2 (a), τ = 20 (b),
τ = 100 (c). The calculated
equilibrium profile (green
dashed line) required
λ = +0.000120, whilst
μsim = −0.000118 for
�z = 0.40. The equilibrium
profile is non-monotonous
with a minimum (∇φ = 0) at
z ≈ 2.5
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Table 5.1 Lagrange multiplier λ (for the calculated 1D profile) and equilibrium chemical potential
μsim (obtained from simulations) for different temperature regimes χ, depths d, and varying mesh
size �z (including all the data from the simulations for Figs. 5.3, 5.4 and 5.5)

χ λ d �z μsim

0.015 −0.000745 14.85 0.10 +0.000745

0.41 +0.000791

0.74 +0.000832

1.24 +0.000897

1.85 +0.000985

0.021 −0.000033 40.60 0.25 +0.000033

0.68 +0.000036

1.13 +0.000037

1.69 +0.000039

0.026 +0.000120 20.92 0.20 −0.000120

0.40 −0.000118

0.65 −0.000116

1.05 −0.000112

1.74 −0.000101

As the mesh size becomes finer �z → 0, we observe μ → −λ, as predicted by Eq. (5.20). The
rate equation (5.24) is therefore accurate and precise
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via a transient wetting layer, in which the transient wetting layer is a bilayer structure
like that in Fig. 5.1b, the problem of oscillatory profiles is not relevant.

5.4.2 Pinning of Profiles at the Walls

From Figs. 5.3, 5.4 and 5.5 we see, in agreement with the literature e.g. [8], that the
value ofφ at the B-attracting wall appears to be very quickly pinned to its equilibrium
value, and from this pinning centre a concentration wave is crossing the film. On the
other hand, the profile near the neutral wall is unperturbed at very early times, and
it would appear that there is no such rapid pinning of φ at the neutral wall. For each
temperature regime, a point is reached when the concentration wave has crossed
the film, and the profiles show a monotonous increase in B towards the B attracting
wall at z = 0 and flat profile at z = d. For Fig. 5.5, the film then develops non-
monotonous behaviour at z ≈ 2.5 (characterised by a minimum in φ near but not at
the B-attracting wall) shortly prior to achieving equilibrium (metastable in the latter
case; χ > χW ).

A more careful inspection of the diffusion equation (5.24) and boundary condi-
tions (5.8) and (5.9) shows us that the profile is in fact pinned at both the B-attracting
wall and the neutral wall, but that pinning6 does not refer to just the volume frac-
tion φ, but rather to both coordinates (φ, 2κ∇zφ). The surface terms of the diffusion
equation (5.24) effectively enforce the boundary conditions (5.8) and (5.9) such that
they are fulfilled at all times during the simulation, not only at equilibrium. For the
B-attracting wall, although φ is pinned at early times, it in fact does continue to
change slightly, as does ∇zφ. For the neutral wall, Eq. (5.9) with hd = gd = 0
shows us that∇zφ = 0 solves the boundary condition for any value of φ, so although
the value of φ does not appear to be pinned, ∇zφ is pinned to zero. The wall-blend
interactions thus enforce the boundary conditions at all times, but (φ, 2κ∇zφ)0,d may
still change whilst satisfying these boundary conditions. This novel observation will
be important to my discussion of lateral phase separation in Sect. 5.5, in which a
graphical interpretation of this pinning can be made by considering phase portraits:
no matter how the trajectories of the film profiles change during film evolution, the
ends of the trajectories are pinned to the boundary conditions (5.8) and (5.9).

5.4.3 Laterally Segregated Films

I now discuss 2D simulations at χ > χW , for which global equilibrium is a laterally
segregated film (to put it another way, if the film laterally segregates after temporary
wetting, then χ > χW by definition, since wetting is not stable). I will reserve

6Pinning: values of (φ, 2κ∇zφ) at the film surfaces are determined by surface boundary conditions,
such that the ends of trajectories are always pinned to these boundary conditions.
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discussion of the dynamics of lateral phase separation for Sect. 5.5, and focus here on
showing that the coexisting equilibria that can be calculated in 1D (in the dimension
running between the walls) do in fact occur in laterally segregated 2D films.

Comparison with 1D Profiles

Figures5.6 and 5.7 show, for an asymmetric and a symmetric film respectively, only
the laterally segregated state corresponding to global equilibrium, which should
technically consist of only a single pair of coexisting phases in contact. Note that the
phases do not exist as side-by-side ‘columns’ as in previously shown schematics of
laterally segregated films in this thesis, but form distinct shapes due to the interface
between them. Although it’s not clear where one would measure a contact angle
(Fig. 3.2) with the surfaces in most cases, clearly the contact angle is generally not
90◦. I previously argued in Chap.4, on the subject of solving for these coexisting
phases in 1D, that since a Lagrange multiplier λ �= 0 always acts to increase the
free energy of a profile relative to the same profile for λ = 0 (‘same profile’ in
this context means that the solution trajectory through phase space is qualitatively
the same, except for distortion due to non-zero λ; see Sect. 5.5) that the coexisting
solutions should be calculated in 1D for λ = 0 [22]. Since actual coexistence of these
lateral phases in a 2D film requires an interface we should expect λA = λB �= 0.

To compare the 2D simulation data of Fig. 5.6 and 5.7 with the 1D coexist-
ing phases calculated via a 1D Hamiltonian method (requiring a choice of λ and

Fig. 5.6 Laterally
segregated phases for
χ = 0.026 (χ > χW ), depth
d = 20.1 and symmetric
walls, using �z = 0.36 and
�τ = 0.10 × 10−5. The
lateral dimension y ≈90
(with periodic boundary
conditions) is wide enough
to support two lateral phases
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Fig. 5.7 The laterally
segregated state for
χ = 0.026 (χ > χW ), depth
d = 20.1 and symmetric
walls, using �z = 0.36 and
�τ = 0.25 × 10−5. The
lateral dimension y ≈90
(with periodic boundary
conditions) is wide enough
to support two lateral phases
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Fig. 5.8 1D vertical cross-sections from Fig. 5.6, (data points) and calculated profiles (curves)
of coexisting phases for χ = 0.026 (χ > χW ), depth d = 20.1 and asymmetric walls. The
curves matching the data points (blue and pink) were calculated with λ = −μsim = −0.000491
(HA = 0.001357, HB = 0.000988), whilst the other curves (red and green) were alculated with
λ = 0 (HA = 0.000923, HB = 0.000924)
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Fig. 5.9 1D vertical cross-sections from Fig. 5.7, (data points) and calculated profiles (curves) of
coexisting phases for χ = 0.026 (χ > χW ), depth d = 20.1 and symmetric walls. The calculated
profiles required λ = −μsim = −0.001202 (HA = 0.001922, HB = 0.001092). It is not possible
to obtain A-rich profiles of depth d = 20.1 for λ = 0

Hamiltonian H, explained in Chap.4 and Sect. 5.5), I took 1D cross sections of the
2D data at points yA and yB , which are at the cores/centres of the A-rich and B-rich
phases respectively. The cross-sections from the asymmetric filmofFig. 5.6 (yA ≈ 20
and yB ≈ 70) are shown in Fig. 5.8, which also contains two pairs of curves. The
curves to which no data points are directly aligned were obtained from a 1D calcu-
lation of the lateral phases using λ = 0. However, the simulation for Fig. 5.8 gave
μsim = 0.000491, so it is unsurprising that the data and the 1D calculated profiles do
not coincide. The second set of curves, which are almost obscured by the data points,
are the 1D profiles calculated with Lagrange multiplier λ = −μsim = −0.000491.
These 1D cross sections, whilst describing the majority of the cores of the phases
very accurately, do not of course describe the interface between the phases. The
cross-sectional profiles obtained from the data for the symmetric film of Fig. 5.7

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.10 Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and asymmetric walls
(�z = 0.50, �τ = 1.0 × 10−5). a Metastable bilayer state with minor lateral inhomogeneities
(τ = 100); b distortion of bilayer interface with corresponding inhomogeneities at the walls
(τ = 892); c break-up of the bilayer interface as a column of B-rich material reaches the z = d
wall (τ = 1665); d laterally segregated coexisting states (τ = 3655)

(yA ≈ 40 and yB ≈ 86) are shown in Fig. 5.9, along with 1D coexisting phases
calculated for λ = −μsim = −0.001202; a pair of A-rich and B-rich coexisting
phases of depth d = 20.1 cannot be calculated for λ = 0. The relatively steep
gradients in the A-rich phase cause some minor discretisation errors, causing the
B-rich phase of the symmetric film to be slightly less B-rich than expected. No data
is shown for antisymmetric films, since in this special case λ = −μsim = 0, and so
we find that the lateral interfaces between the perfectly antisymmetric 1D phases do
not introduce a non-zero chemical potential. I conclude that the laterally segregated
state is effectively described by 1D equilibria in the dimension running perpendicular
to the confining walls.

Is There a Minimum Depth of Solution?

In Chap.4, I discussed how the minimum depth of A-rich solutions available with
λ = 0 for asymmetric films suggested a minimum depth of film required for lateral
phase separation to occur, for a particular χ. This idea is relevant here for symmetric
films. Suitable adjustment of λ could presumably produce coexisting states of any
depth, but the relevant question is really: is the free energy of a ‘thin’ A-rich phase

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.11 1D phase portraits for equilibria in Fig. 5.10 (asymmetric walls). a Metastable bilayer
(TWL) (λ = +0.000119, H = 0.000743); b Coexisting phases (λ = −μsim = −0.000497):
A-rich phase (HA = 0.001362) and B-rich phase (HB = 0.000989). φd of all three phases are
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0 and φB
0 are quite similar, but both distinct from φA

0

coexisting with a ‘thin’ B-rich phase (calculated by λ �= 0 such that a ‘thin’ A-rich
phase can actually be found) less than the free energy of an independently existing
solution of the same depth? If not, then lateral phase separation is not preferable for
that ‘thin’ film at that particular χ. This is only a minor point with regards to the
work in this chapter, since we are interested in the kinetics of phase separation, not in
identifying the wetting temperature as a function of film depth χ(d). If at a particular
value of χ lateral phase separation via a transient wetting layer occurs, then for this
particular depth of film we know that χ(d) > χW (d), and this is sufficient.

5.5 Breakup of a Transient Wetting Layer

In this section I discuss the dynamics of the breakup of a transient wetting layer, the
dynamics by which the vertically segregated state is reached having been effectively
discussed in the last section. Figures5.10, 5.12, 5.14, 5.16 and5.18 show, forχ > χW ,
simulation snapshots of films undergoing lateral phase separation via a transient
wetting later. The width of the initial noise δφ was σ = 0.05, this choice allowing
both the TWL (Transient Wetting Layer) and laterally segregated state to be probed.

It is important to highlight here that the absence of a random noise term in the
current model means that the final lateral states I present do not always consist of
‘wide’ lateral phases (resulting from the merging of narrower lateral phases, for
example) which are closer to ‘true’ global equilibrium (a single pair of laterally
coexisting phases). However, the distinction betweenmultiple lateral phases (wide or
narrow) and a single pair of laterally coexisting phases is of little practical relevance to
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Fig. 5.12 Simulation snapshots for χ = 0.023 (χ > χW ), d = 20.1 and asymmetric walls
(�z = 0.50, �τ = 0.5 × 10−5). a Metastable bilayer state (τ = 200); b distortion of bilayer
interface as lateral structures grow primarily at z = d wall (τ = 550); c a-rich phases growing from
z = d surface (τ = 700); d laterally segregated coexisting states (τ = 1500)

the mechanism I discuss here, or to most experiments. The lateral phases that appear
inmy simulations are the same phase equilibria that correspond to global equilibrium,
and I refrain from using the latter term only because it could possibly be misleading
(coarsening of the lateral phase in the simulations is technically possible). I present
a simulation in which continuous random noise was included in Fig. 5.21, which
shows that the results still hold in the case of continuous noise, and that wider lateral
phases form in that case.

The wall configuration of the asymmetric film (a B-attracting wall and a neutral
wall) is a special case in that there is only one surface field. This particular case
highlights the qualitatively different behaviour at each confining surface and does
not include any convenient symmetries that fix the chemical potential (e.g. μ(z) =
0 for antisymmetric films). General asymmetry complicates my discussion of the
phase portrait method and would leave me short of discussing behaviour at a neutral
wall. However, a neutral wall is nonetheless a special case, and so after discussing
asymmetric films in Sect. 5.5.1. I will extend my discussion to two non-zero surface
fields in Sect. 5.5.2.
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Fig. 5.13 1D phase portraits for equilibria in Fig. 5.12 (asymmetric walls). a Metastable bilayer
(TWL) state (λ = −0.000113, H = 0.001332), with two crosses of the z = 0 BC along the flow;
b coexisting phases (λ = −μsim = −0.000367): A-rich phase (HA = 0.001618) and c B-rich
phase (HB = 0.001404). φd (φ0) of all three phases are rather distinct (similar)

Phase portraits and profile pinning by boundary conditions

In this section, I make use of Hamiltonian phase portraits, Figs. 5.11, 5.13, 5.15,
5.17, and 5.19, to discuss the 1D phase equilibria. These portraits are discussed in
more detail in Chap.4, but I will briefly recap them here. The Hamiltonian phase
portraits consist of the flow of canonical coordinates (φ, 2κ∇zφ) which minimise
the bulk free energy functional F (5.11). Due to the coordinate space, the satisfied
boundary conditions enforced by the walls (Eqs. (5.8)–(5.9)) are represented by
straight lines. The solution ‘trajectories’ are those parts of the phase portraits which
flowbetween thewall boundary conditions. The phase portraits (which are symmetric
around φ = 0.5 for a symmetric blend if λ = 0) are distorted by the Lagrange
multiplier λ �= 0, which is a chemical potential. Suitable choices of both λ and
the Hamiltonian constantH (these sensitive parameters will be given to six decimal
places) are necessary to produce phase equilibria trajectories of specified depth d and
average composition φ̄. Coexisting solutions must have the same depth dA = dB ,
which for the same λ are generated with different values ofH i.e.,HA �= HB (since
for χ > χW , there are several trajectories corresponding to profiles of the same
depth, which can be obtained by producing phase portraits with different values of
H and the same value of λ).

The phase portraits themselves can provide significant insight, as the evolution
of trajectories can be tracked graphically as depth, temperature and wall interaction
parameters change. Most importantly, wemust understand that the ends of the trajec-
tories are always pinned to the boundary conditions (BCs), even out of equilibrium,
as shown in Sect. 5.4.2). This is why bifurcation of the profile at the walls is inherent
in lateral phase separation. I will denote the profile value of the TWL at the z = 0

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.14 Simulation snapshots for χ = 0.022 (χ > χW ), d = 20.1 and asymmetric walls
(�z = 0.56, �τ = 0.25 × 10−5). a Metastable bilayer state (τ = 100); b late stages of bilayer
state with visible change of φ at the z = d wall (τ = 1000); c merging of adjacent growing A-rich
lateral phases at around y ≈ 50 and y ≈ 300 (τ = 1800); d laterally segregated coexisting states
(τ = 4000)

wall by (φ, 2κ∇zφ)T W L
0 , and similarly for other cases. I have coloured (shaded) the

trajectories to match the colour range for φ shown in the final laterally segregated
film of the simulation figures, to which the phase portraits correspond.

5.5.1 One Surface Field

Figures5.10, 5.12 and 5.14 are snapshots from 2D simulations of films with χ > χW

forχ = 0.026,χ = 0.023, andχ = 0.022 respectively, for asymmetric films of depth
d = 20.1, showing direct observations of lateral phase separation via a transient
wetting layer. Time increases from sub-figure (a) to (d). In all cases the film first
evolves into a ‘bilayer’ (vertically stratified profile), which is the TWL, and this
bilayer subsequently breaks up into lateral segregated phases. Figures5.11, 5.13 and
5.15 show 1D phase equilibria (d = 20.1) in Hamiltonian phase space for the phases
that form in Figs. 5.10, 5.12 and 5.14 respectively.
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Fig. 5.15 1D phase portraits for equilibria in Fig. 5.14 (asymmetric walls). a Metastable bilayer
(TWL) (λ = −0.000184, H = 0.001580); b coexisting phases (λ = −μsim = −0.000333):
A-rich phase (HA = 0.001747) and B-rich phase (HB = 0.001589). The B-rich trajectory shows
φB ≡ 1 − φ increases towards the z = 0 wall, which was not the case for Figs. 5.10 and 5.12.
φd (φ0) of all three phases are rather distinct (similar)

Instability of a Transient Wetting Layer

Figures5.10, 5.12 and 5.14a all show a bilayer with a B-rich (A-rich) phase coating
the B-attracting (neutral) wall, respectively, and an interface separating these phases
[23] (for comparison, Figs. 5.4 and 5.5 are both bilayer profiles, whilst the profile
of Fig. 5.3 is a monolayer with positive adsorption of B at the B-attracting wall at
z = 0). As χ increases, the bilayer interface sharpens (for χ < χW , this interface
is rather diffuse, and the bilayer is stable against lateral phase separation, since a
configuration of coexisting phases no longer has a lower free energy than the bilayer
phase). Figures5.11, 5.13 and 5.15a show, in phase space, the independently existing
solution of lowest free energy (a bilayer), λ having been chosen to ensure φ̄ = 1/2.
The average chemical potential of the bilayer state in Figs. 5.10, 5.12 and 5.14 (the
average is over all grid cells) confirms that the films are in the 1D metastable bilayer
states shown in the phase portraits of Figs. 5.11, 5.13 and 5.15a (e.g. for χ = 0.026,
〈μsim〉 = 0.000112, whilst −λ = 0.000119 for the calculated profile, it is hopefully
obvious that there are no other equilibria that the films could be in at this stage).

Figures5.10, 5.12 and 5.14 show that lateral inhomogeneities in the bilayer state
continue to grow with time and the interface separating the phases of the bilayer
becomes distorted (subfigure (b)). Any distortion of the interface appears to corre-
spond to lateral inhomogeneities which have appeared at the confining walls, most
notably at the neutral wall at z = d. The average chemical potential remains approx-
imately that of the bilayer during this distortion, and only when the interface appears
to break up does the average chemical potential begin to rapidly change, indicating
that the film is now in the process of leaving its long-lived metastable equilibrium.
At later times (subfigure (c)) the interface breaks up: Fig. 5.10c shows the interface
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moments after a column of B-rich material reaches the z = d surface; Fig. 5.12c
shows the interface just prior to break up, showing significant variations in φd ; and
Fig. 5.14c shows the film after the break up of the interface as some lateral phases
merge to reduce interfacial energy. It can be seen that points where the interface
touches down on the walls and where the lateral phases develop from are exactly the
same points where the initial lateral variations at the walls took place, and in fact
it appears that the A-rich phases are growing from the neutral wall at z = d. The
final states (subfigure (d)) of Figs. 5.10, 5.12 and 5.14 show the film in the laterally
segregated state, and it is clear that the lateral phases have formed exactly where
the initial lateral variations at the walls took place. This strongly suggests that the
wall-blend interactions are controlling the dynamics of lateral phase separation.

For χ > χW , a bilayer is unstable with respect to a laterally segregated film
due to having a greater free energy as discussed in Chap.4 (again, this is really the
definition of the wetting temperature), and it is clear that the result carries across to
2D (although a 1D consideration may not be able to predict the wetting temperature,
since it cannot account for the lateral interfaces between coexisting phases, which has
an associated energy cost). I conclude that the transient wetting layer, which initially
forms due to preferential attraction by the confining walls, breaks up because it is
metastable with respect to the laterally segregated state. The intrinsic instability of
the transient wetting layer as a whole is different from an instability in the interface
between the vertically segregated phases of the bilayer. Note the similarities in the
breakup of the bilayer in my simulations and the schematics of Fig. 5.1: the interface
of the bilayer distorts in a practically identical way, and yet my simulations clearly
don’t include solvent gradients or hydrodynamic mechanisms. The bilayer breaks up
only because it is metastable. This is discussed further in Sect. 5.6.2.

Explaining the Dynamics

The phase portraits Figs. 5.11, 5.13 and 5.15 can be used to explain the dynamics
of the film evolution. Figures5.11, 5.13 and 5.15b are phase portraits of the A-rich
and B-rich laterally coexisting phases respectively, calculated using the chemical
potentials extracted from the simulations λ = −μsim when the film has achieved
a static laterally segregated state. The phase portraits describe the profiles from the
simulations exactly, and clearly show how the equilibria evolve as χ is changed,
including the increased homogeneity of the B-rich phase as χ = 0.026 → 0.023
(the trajectory becomes ‘shorter’ in phase space) and a qualitative change in the
B-rich solution for χ = 0.023 → 0.022 as the B-attracting wall becomes richer in
B material than elsewhere in the B-rich phase.

For χ = 0.022, Fig. 5.15 shows that the trajectory of the TWL passes through
each boundary condition only once (although the Hamiltonian flow crosses each
boundary condition twice, in the region of interest) and the same is true for the
A-rich and B-rich trajectories, which flow between crosses similar to that of the
TWL. In this case, we see that |φA

0 − φB
0 | � |φA

d − φB
d | (the values of φd for the

coexisting phases are more different from each other than the values of φ0 for the
coexisting phases) and |φT W L

0 − φA
0 | � |φT W L

d − φA
d |, which means that for the

A-rich phase to form from the TWL, φd must change by much more than φ0. As

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.14 shows, lateral phase separation happens as the A-rich lateral phases appear
to grow from the z = d wall. For χ = 0.023, even though the B-rich trajectory exists
on a different region in the phase space (the closed tear-shaped loop in Fig. 5.13b)
such that the ‘bulk’ of the profile is slightly different, Fig. 5.12 shows that the lateral
phases still appear to grow from the z = d surface, since the same arguments as
for the previous case can be made. For χ = 0.026, Fig. 5.11 shows that the TWL
trajectory crosses each boundary condition twice, and each coexisting phase flows
between a different cross of the flow with the boundary conditions. φ0 and φd for
both the A-rich and B-rich phases differ much more from φT W L

0,d than in the case

of χ = 0.022. This is especially true of φA
0 . Figure5.10 shows that the break up of

the interface is due to significant variations in φ at both confining walls, the largest
variations in φT W L

0 of the bilayer being precisely where the columns of A-rich phase
form. This is expected from inspection of Fig. 5.11, which shows that φT W L

0 and φB
0

are still fairly similar, but φA
0 of the A-rich phase is significantly different from both

those values. The column of B-rich phase reaches the z = d surface when φd , which
had been gradually changing during the interface distortion, suddenly undergoes a
quick transient φT W L

d → φB
d as the interface appears to reach the surface and break.

The phase portraits thus offer practical insight into the dynamics of the break-up of
the transient wetting layer.

The simulations of Figs. 5.10, 5.12 and 5.14 seem to show that the breakup of the
bilayer state proceeds from the neutral wall at z = d. Since the profiles are pinned to
the surface boundary conditions at all times, lateral phase separation clearly requires
that the single value of the volume fraction at each wall for the TWLmust undergo a
bifurcation into two values for the laterally coexisting phases: φT W L

0,d → φA
0,d ,φB

0,d ,
the bifurcation at the z = d wall being much more pronounced for asymmetric films
(clearly, due to the interface between the coexisting phases, there are more than two
values at the wall, but it is much simpler to discuss the coexisting states in terms of
the 1D phase equilibria that appear in the simulations). Note that this bifurcation at
the surface is technically (φ, 2κ∇zφ)T W L

0,d → (φ, 2κ∇zφ)A
0,d , (φ, 2κ∇zφ)B

0,d but it
is sufficient here to discuss only φ0,d (which can be experimentally measured). The
distortion of the interface in the TWL is coupled to phase separation at the walls
due to the boundary conditions enforced by the walls, causing the distortion of the
bilayer interface as the films evolve towards laterally coexisting equilibria. I have
not seen this surface bifurcation7 mechanism discussed elsewhere.

7Surface Bifurcation: mechanism explaining the dynamics of lateral phase separation via a transient
wetting layer, describing how the surface values (φ, 2κ∇zφ) of the TWL divide into two values
that evolve towards those for laterally coexisting equilibria, whilst honouring the surface boundary
conditions at all times throughout the entire process.
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Fig. 5.16 Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and antisymmetric walls
(�z = 0.50 and �τ = 1.0 × 10−5). a Metastable bilayer state (τ = 150); b rupture of coexisting
A-rich and B-rich layers of bilayer, coupled with bifurcation of φ at both walls (τ = 1300);
c continued rupture of layers distorts interface towards the walls, since the wall boundary conditions
must be satisfied (τ = 2500); d the boundary conditions of the laterally segregated states are met
(τ = 4500)

5.5.2 Two Surface Fields

Figure5.16 shows snapshots from simulations of a polymer blend between antisym-
metric confining walls. As in the case of asymmetric confinement, a bilayer (TWL)
first formswhich subsequently breaks up into laterally segregated phases. TheHamil-
tonian flow containing the bilayer trajectory, shown in Fig. 5.17a. is very similar to
the flow in Fig. 5.11a for an asymmetric film. The phase portrait of Fig. 5.17a shows
that the TWL trajectory passes through ∇φ = 0 (stationary points) near each wall,
with a corresponding maximum in φA ≡ φ (φB ≡ 1 − φ) near the A-attracting
(B-attracting) wall. The simulation in Fig. 5.16 shows that the distortion of the inter-
face in the bilayer appears to be caused by growing lateral inhomogeneities at these
stationary points, although the wall boundary conditions ensure that lateral inhomo-
geneities simultaneously grow at the walls. However, it certainly appears that rupture
of the film proceeds from the stationary points near the surfaces. Inspection of the
phase portraits of Fig. 5.17 shows that in order for the film to laterally separate, not
only does the volume fraction at the confining walls have to undergo bifurcation, but
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Fig. 5.17 1D phase portraits for equilibria in Fig. 5.16 (antisymmetric walls). a Metastable bilayer
(TWL) (λ = 0, H = 0.000752); coexisting phases (λ = −μsim = 0): b A-rich phase (HA =
0.000899) and c B-rich phase (HB = 0.000899). Since λ = 0 the phase portraits are symmetric
around φ = 0.5. The bilayer trajectory passes through ∇φ = 0 near each BC, whilst the A-rich
(B-rich) trajectories pass through∇φ = 0 only near the A-attracting (B-attracting) wall BC at z = d
(z = 0)

one of the stationary points needs to disappear. For the A-rich (B-rich) phase, the
stationary point near the A-attracting (B-attracting) wall is preserved and enriched in
A-material (B-material), whilst the other stationary point disappears exactly where
the B-rich (A-rich) phase forms. The enrichment and removal of a stationary point
happens at the same depth, so we see lateral phase separation occurring at the station-
ary points, causing a distortion of the interface towards the walls where the stationary
points disappear. Also, for lateral phase separation to occur, the required change in
the profiles at the walls is much less than the change required at the stationary points.
Whilst it is clear that lateral phase separation at the walls is inherent in this process, as
film thickness is increased the stationary points in the trajectories can pass arbitrarily
close to fixed points in the phase space (these fixed points are located at ∇zφ = 0
between the gaps in the Hamiltonian flows; see Sect. 4.3.4), meaning that the amount
of the film profile constituting a stationary point can become arbitrarily thick.

It should be noted that the final state of Fig. 5.16 does indeed contain the laterally
coexisting phases shown in the phase portraits of Fig. 5.17, and does not simply
show an oscillatory interface. Lateral phase separation in antisymmetric films is in
fact the transition from a delocalised interface (bilayer) to an interface bound to one

http://dx.doi.org/10.1007/978-3-319-19399-1_4
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Fig. 5.18 Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and symmetric walls (�z =
0.50, �τ = 1.0 × 10−5). a Metastable trilayer state (τ = 50); b A-rich (central) layer begins to
phase separate, causing corresponding changes in φ throughout the trilayer (τ = 300); c rupture
of the A-rich layer once bifurcation of φ at the walls is sufficient (τ = 450); d laterally segregated
coexisting states (τ = 1000)

of the walls (laterally coexisting phases) [23, 24]. In Fig. 5.21, I show that the lateral
domains of Fig. 5.16 will evolve into wider trapezoidal phases [25] when continuous
noise is included in the simulation.

For a film between symmetric walls, shown in Fig. 5.18, the TWL that forms first
is actually a trilayer structure. It is clear that lateral phase separation occurs when
the central layer ruptures. The phase portraits of Fig. 5.19 show that this rupture
again occurs at a stationary point in the profile, where ∇zφ = 0. The rupture of the
central layer preserves the A-rich stationary point of the trilayer for the A-rich phase,
and columns of B-rich phase form in the depleted regions caused by the enrichment
of the A-rich stationary points. Although lateral phase separation via a transient
wetting layer is usually referring to the break up of a bilayer film, this case shows
that although bifurcation of the volume fraction at the confiningwalls is necessary for
lateral phase separation to occur (andwill occur as phase separation occurs anywhere
in the transient wetting layer, due to the wall boundary conditions), the break up of
the TWLmay primarily proceed via growth of lateral inhomogeneities in some other
part of the film.
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Fig. 5.19 1D phase portraits for equilibria in Fig. 5.18 (symmetric walls). a Metastable trilayer
(TWL) (λ = −0.000750, H = 0.000968); b Coexisting phases (λ = −μsim = −0.001204): A-
rich phase (HA = 0.001922) and B-rich phase (HB = 0.001092). In all cases, ∇φ = 0 is located
exactly in the centre of the film

5.5.3 Bypassing the Wetting Layer

If the dynamics of lateral phase separation via a transient wetting layer are ulti-
mately controlled by wall-blend interactions (via boundary conditions enforced by
the walls), then it should be possible to manipulate the dynamics in the film by
attempting to control behaviour at the confining walls. Investigating this possibility
led to a possible method that may prove useful in obtaining laterally segregated films,
as opposed to a TWL or a structure in-between a TWL and a laterally segregated
film. In the case of the asymmetric confinement (B-attracting wall at z = 0, neutral
wall at z = d), if the B-attracting wall could be ‘turned off’ temporarily to become
a neutral wall, then we should suppose for a near critical mixture that a transient
wetting layer will not form, and the film should phase separate more generally. This
is because there should be no mechanism via which vertical phase separation in par-
ticular should proceed (in a non-critical blend φ �= 1/2, layering parallel to the walls
may sometimes still occur [3] even with no surface fields, simply as a way to reduce
the amount of interface between the majority and minority component of the blend,
and if the simulations were 1D then of course vertical phase separation would in fact
be the only route). If the B-attracting wall was ‘turned on’ at some later time after
‘enough’ phase separation has already happened, the laterally segregated phases may
be obtained without having formed a bilayer first.

Figure5.20 demonstrates that this may work in practice. When both walls are
‘turned off’ (subfigure (a)), we see phase separation into domains with ∇zφ = 0
(required for neutral walls, as can be inferred readily from Eqs. (5.8) and (5.9)).
There are (in terms of 1D equilibria) two values of φ at each wall. The z = 0
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Fig. 5.20 Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and asymmetric walls,
(�z = 0.84, �τ = 1.0 × 10−4). Both walls are initially neutral, then the z = 0 wall is ‘turned on’
(film becomes asymmetric) at τ = 160. a Phase separation with domains aligned to walls to satisfy
BCs requiring ∇φ = 0 (τ = 150); b moments after z = 0 wall is ‘turned on’ (τ = 160); c rapid
evolution towards the coexisting states of the asymmetric film (τ = 170); d laterally segregated
state (τ = 300) is reached an order of magnitude faster than via a transient wetting layer

wall is ‘turned on’ to attract B-material at τ = 160 in subfigure (b) (asymmetric
wall configuration) and there is immediate preferential attraction of B-material to
the z = 0 surface. However, φA

0 and φB
0 have been obtained, rather than φT W L

0 .
The TWL has been avoided and the film can evolve directly towards the laterally
segregated state, shown in the subfigure (d), and lateral segregation is achieved an
order of magnitude faster than via a TWL. In solvent evaporation processes, such
as spin coating, it might be possible to use this mechanism by choosing a solvent
to adjust the wall-blend interactions, thus allowing for greater control over film
evolution and final morphology.
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Fig. 5.21 Simulation snapshots for χ = 0.026 (χ > χW ), d = 20.1 and antisymmetric walls,
(�z = 0.84, �τ = 1.0 × 10−4). Random noise is included at every time step. a The bilayer
interface is heavily distorted (τ = 25); b lateral A-rich phase begins to form as the A-rich layer
of the bilayer ruptures (τ = 125); c A-rich phase retreats from B-attracting wall (z ≈ 150) and
neighbouring A-rich phases grow (τ = 2225); d Macroscopic trapeziodal domains form at longer
times (τ = 5000). These phase equilibria match those in Figs. 5.16 and 5.17

5.6 Discussion

5.6.1 Random Noise

The absence of a random noise term in my simulations, although maintaining clar-
ity in the results, is why many lateral phases don’t become more macroscopic at
very late times (e.g. Fig. 5.16 does not show the wide trapezoidal-shaped coexist-
ing phases expected at long times [25] although such trapezoidal-shaped phases are
simply wide versions of the phases shown), although this consideration is of little
practical relevance in many experiments including solvent evaporation, for exam-
ple the spin-coating process described in Sect. 5.1.2. Figure5.21 shows a simulation
for antisymmetric walls in which a continuous noise was included throughout the
simulation. This random noise consisted of random thermal currents J ∗, selected
from a Gaussian distribution with mean zero and amplitude/width 0.01. This gave
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an additional contribution to the diffusion Eq.5.21 of ∇ · J ∗(z, y, t), as in Ref. [25]
and in Eq. (2.65) on Cahn-Hilliard-Cook theory:

∂φ

∂t
= M∇2μ + ∇ · J ∗. (5.26)

Using random thermal currents is more physical than simply applying some random
change in volume fraction at each time step: currents guaranteematerial conservation,
both globally and locally (the local movement of material in and out of grid cells is
consistent).

Figure5.21 shows that a bilayer still forms and breaks up via themechanism I have
already presented. There are smaller scale lateral variations at the surface initially,
and wider domains form at later times. Figure5.21 appears to reproduce a contact
angle appropriate for an antisymmetric film. I did not find that the A(B)-attracting
surface is coated by B(A)-rich material, as is sometimes suggested by schematic
representations (the phase portraits of Fig. 5.17 support this; theA(B)-rich trajectories
must pass through φ = 0.5 near the B(A)-attracting wall for antisymmetric films,
which agrees with the idea that these coexisting phases have an interface ‘bound’ to
one of the walls [23, 24]).

5.6.2 Solvent Evaporation

Many practical applications using polymer films involve solvent evaporation, such
as the spin casting process discussed in Sect. 5.1.2. Here I discuss the implications
of my results for experiments involving solvent evaporation. I do this because the
model reproduces and explains the way inwhich the transient wetting layer breaks up
without needing to include solvent. Given this, and evidence (see references below)
that the rate of solvent evaporation has an effect on whether a bilayer will break up
during the spin casting process ends (i.e. before all solvent has been removed from
the film), I suggest that solvent may influence lateral phase separation in several
ways:

1. fast solvent evaporation provides lateral inhomogeneities in the transient wetting
layer due to a less even distribution of solvent (this will depend on the rate of
evaporation and the mobility of the solvent). This could provide a kinetic route
to a laterally segregated film by promoting lateral inhomogeneities in the already
unstable TWL,which could encourage the formation of a laterally segregated film
which is sometimes not achieved: my simulations and frozen out-of-equilibrium
states found in experiments [10] show strong resemblances;

2. solvent evaporation allows phase separation to initiate at the top surface, where
the solvent concentration is lowest and therefore where the film is likely to first
enter the two-phase region, this phase separation then proceeding downwards into
the film [26]. In this case, the solvent in the ‘bulk’ of the film keeps it in the one-

http://dx.doi.org/10.1007/978-3-319-19399-1_2
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phase region and prevents the formation of a TWL, and when the film enters the
two-phase region the existing lateral inhomogeneities mean that the film remains
laterally segregated, which is similar to my discussion in Sect. 5.5.3 (although my
simulations did not include solvent, the equilibria of ternary polymer-polymer-
solvent films are analogues of equilibria for binary polymer-polymer films [27]);

3. overall reduction of solvent in the film induces phase separation by taking the film
into the two-phase region, and lateral phase separation occurs in stages that appear
to match the simulations, with high, medium, and low solvent concentrations
corresponding to a bilayer, a bilayer with a distorted interface, and a laterally
segregated film, respectively [13]. Higher solvent concentrations mean that the
film is more miscible and closer to the one-phase region, therefore the time scales
on which one might expect a bilayer to break up may be expected to be longer.

Although a Marangoni-like instability has been suggested to explain the distor-
tion of the bilayer interface prior to lateral phase separation [12–14], in a manner
like in Fig. 5.1, I have shown that the intrinsic instability of the bilayer and surface
bifurcation is sufficient to cause distortion of the interface in a similar if not near-
identical way. Therefore we should consider that the phase equilibria of polymer
films and the surface bifurcation mechanism I have presented here might be respon-
sible for the film evolution seen in many experiments. Of course this is not to say
that solvent-gradients and hydrodynamic mechanisms of material transport are not
also extremely important.

5.7 Summary

I have derived a diffusion equation describing a binary polymer blend confined
between two preferentially attractingwalls/surfaces. I compared the phases produced
in the simulations with profiles calculated using a 1D Hamiltonian phase portrait
method to show that the diffusion equation correctly reproduces continuumbehaviour
and that all of the equilibria that arise in 2D are simply 1D coexisting phases, existing
in 2D under an altered chemical potential due to the lateral interfaces between these
coexisting phases. I also showed the filmprofile is pinned at the filmwalls by effective
boundary conditions.

I have identified the dynamics of lateral phase separation via a transient wetting
layer for several wall-blend interaction configurations, showing that distortion of the
interface in the transient wetting layer is coupled to changes in the film profile at
the walls. For a film with one preferentially attracting wall and one neutral wall,
the growth of lateral inhomogeneities at the confining walls causes distortion and
breakupof the interface in the transientwetting layer. Forfilmswith twopreferentially
attracting walls, phase separation appears to primarily proceed from elsewhere in the
film, but there are always corresponding inhomogeneities growing at the walls. The
instability of a transient wetting layer (below the wetting temperature) as a whole
is not the same as an instability in the interface of the transient wetting layer; in all
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cases I have studied, the growth of lateral inhomogeneities at the walls limits and
dictates the dynamics.

I have explained the dynamics of lateral phase separation via a transient wetting
layer with a surface bifurcation mechanism: the pinning of the profile at the film
walls by effective boundary conditions imposed by the film surfaces means that
the film must undergo bifurcation of the profile at the walls in order to laterally
phase separate into coexisting phases. The distortion of the interface in the wetting
layer coincides with phase separation at the surfaces. Since these results should also
extend to ternary blends, I discussed how solvent evaporationmay assist the proposed
mechanism. As far as I am aware, this is the first time that a mechanism has been
suggested that accounts for the particular way in which lateral phase separation via
a transient wetting layer occurs, without requiring solvent evaporation and/or non-
diffusive flow of material (i.e. hydrodynamics).

In the next chapter, I introduce a 3D model of coupled phase separation and
surface roughening, whereby the depth profile of the film evolves via a dewetting
mechanism. This allows for an investigation of how surface roughening, discussed
briefly in Chap.4, and lateral phase separation, discussed in this chapter, may be
coupled, resulting in particular pattern formations in polymer-blend thin films.
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Chapter 6
A 3D Model of Phase Separation Coupled
to Surface Roughening

This chapter introduces a model for thin films of multicomponent fluids which, by
successfully including a general vertical dependence of the composition, can account
for lateral and vertical phase separation, preferential component attraction at both
surfaces, and surface roughening. I demonstrate that surface roughening couples
to phase separation, study stages of surface roughening in films undergoing lateral
phase separation via a transient wetting layer, and discuss pattern formation for
different surface-blend interaction regimes. This work was published in my fourth
paper “Pattern Formation in Polymer Blend Thin Films: Surface Roughening couples
to Phase Separation” [1].

6.1 Introduction

Thework in this chapter resulted frommy attempts to build a 3Dmodel of a polymer-
blend thin film which could lend itself to simulations of simultaneous phase sepa-
ration and surface roughening. My work was an extension of that of Clarke [2], in
which a fluid film with no vertical variation of the composition (only a 2D lateral
dependence of the composition) was modelled and used to investigate coupled phase
separation and dewetting. Including this vertical dependence proved non-trivial, and
was solved by using an a priori discretisation of the film.

By a way of including a general vertical dependence of composition, I could
investigate for the first time the interplay between all of (i) both lateral and vertical
phase separation; (ii) preferential attraction of the blend by both surfaces (which
really requires a vertical dependence of the composition to be meaningful); and (iii)
film height evolution (surface roughening). I applied the model to thin films of binary
polymer blends, and used simulations of different surface-blend interaction regimes
to investigate pattern formation, demonstrating that surface roughening couples to
phase separation. For films undergoing lateral phase separation via a transientwetting
layer, this resulted in distinct stages of roughening as the film evolved into and
between states determined by the phase equilibria of polymer blend thin films.

© Springer International Publishing Switzerland 2015
S. Coveney, Fundamentals of Phase Separation in Polymer Blend Thin Films,
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6.1.1 The Literature

Semiconducting polymer devices, such as photovoltaic films of binary polymer
blends, generally rely on performance enhancements gained from phase separated
morphologies to compete with traditional technologies. Whilst understanding phase
separation assists in tailoring specific morphologies, polymer blend thin films are
also prone to surface roughening, so it follows that an understanding of how phase
separation couples to dewetting is of particular importance. Note that dewetting1 in
this context is meant in the sense of a fluid layer deweting a solid substrate: the fluid
layer does not remain uniform in height, but tends towards the formation of droplets as
regions of the substrate tend towards ‘drying’ (this does not necessarily mean that the
fluid layer will breakup into droplets; it may lead to an undulating film surface etc.).

Surface Roughening in Polymer-Blend Films

The interplay between phase separation and dewetting in domain formation in spin-
cast polymer blend films (see Chap.5 for spin-casting) was highlighted in the seminal
work ofWalheim [3], and has been repeatedly observed in similar contexts, including:
phase separation in thin films with symmetrically attracting surfaces [4–7], lateral
phase separation via a transient wetting layer [8, 9], and cases when lateral phase
separation proceeded downwards from thefilm surface as solvent evaporated from the
film [10]. Pattern formation in polymer blend thin films, in which surface roughening
shadows the phase separated morphology, is so incredibly common that it is difficult
to highlight particular studies, but the review articles of references [11, 12] are
recommended. Figure6.1 is a rough schematic of surface roughening that is fairly
typical in the literature [3, 8], showing that roughening is associated with the lateral
phase separation of a bilayer film (the particular morphology in this schematic is
only an example).

Several general theoretical results have emerged, in particular that instabilities
leading to dewetting can be triggered through the coupling of phase separation and
height variation [2, 13] and that a binary component film will be less stable due to
coupling of fluctuations of height and composition than if these fluctuations were not
coupled [14]. These studies clearly indicate the importance of the coupling between
phase separation and dewetting/surface roughening.

Models of Deformable Fluid Films

A variety of models of multicomponent fluid films with a deformable upper sur-
face have been investigated. The Clarke model, as it will be referred to in this
chapter, utilised non-equilibrium thermodynamics based upon a free energy func-
tional, demonstrating that phase separation generally couples to dewetting [2]: the
Clarke model is explained more in Sect. 6.1.2. A model based on the Navier-Stokes
Cahn-Hilliard equations in the lubrication approximation showed that concentration

1Dewetting: (disambiguation) process by which a fluid film will not uniformly coat a substrate, due
to forces which cause areas of substrate to tend towards ‘drying’; this can lead to isolated droplets
of fluid, but more generally will cause some undulation of the fluid film surface.

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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Fig. 6.1 A fairly typical
schematic of a film
undergoing roughening in
the course of lateral phase
separation via a transient
wetting layer: the laterally
segregated structure and the
surface roughening are
intimately linked

gradients can create a roughened pattern that mirrors the underlying phase separa-
tion [15]. However, the film composition has no vertical dependence in these models,
which means that a meaningful preferential surface attraction of blend components
cannot be included. A vertical dependence has been included by way of two-layer
models, including models with immiscible fluid layers [16, 17] and layers with a
diffuse boundary for films with no preferential surface attraction [18]. A schematic
of a two-layer model is given in Fig. 6.2.

A general vertical dependence of the film composition, which could allow vertical
phase separation to occur during a simulation, is typically not included [11]. Films
with a vertical dependence of the composition have been studied with regards to
stability, but not simulated [19]. An exception is a model of surface roughening of
polymer blend films, although this model is not based upon a dewetting film [20].
It is this lack of investigation into a general 3D model of a film which can undergo
phase separation and dewetting/surface roughening which inspired the work in this
chapter.

Fig. 6.2 Representation of a two-layer model, which effectively consists of two-immiscible fluid
layers with a sharp interface between them. Both of the layers are deformable, such that layer 1 (2)
is described at y by height h1(y) (h2(y)), where y is the direction parallel to the substrate
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6.1.2 The Clarke Model

Progress towards modelling pattern formation in binary blend films was made by
the Clarke model of a binary fluid film which coupled phase separation to height
variations caused by dewetting [2]. The central part of the model was a free energy
functional depending onmaterial volume fractionφ(y) and filmheight h(y), given by

F [φ(y), h(y)] =
∫

f (φ, h) + hg(φ) dy (6.1)

where f (φ, h) is the surface energy, g(φ) is the bulk free energy, and y is the lateral
direction parallel to the film substrate. In the Clarke model, only compositional vari-
ations in the lateral directions are possible, so vertical phase separation in the vertical
(depth) direction cannot be studied. This also means that a meaningful preferential
surface attraction of blend components cannot be included, since the primary way in
which preferential surface attraction affects the blend is to cause vertical variation
of the composition. Figure6.3 is a schematic of the Clarke model, which attempts to
represent the description of the film by the height h(y) and composition φ(y) at point
y (this schematic is designed to be directly compared with my model, represented
in Fig. 6.4).

6.2 A 3D Model

The model presented in this chapter is essentially an extension of the Clarke model. I
introduce a vertical dependence of the composition, and formulate a set of governing
equations. Themodel proceeds via two stages: the lateral movement ofmaterial (bulk
movement of material that causes roughening); and diffusion (as in the simulations
of Chap.5). This model is the most consistent and workable of all of the possible
formulations that I investigated, and fortunately makes the most intuitive sense out
of all of them.

Fig. 6.3 2D schematic of the Clarke Model, representing a fluid layer with a deformable upper
surface on a flat substrate. The film height at y is given by h(y), and there is no vertical dependence
of the composition φ(y) at y. φ(y) could be thought of as the average volume fraction at y, but
clearly this model would best describe films with no vertical variation of the composition at all

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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6.2.1 Vertical Dependence of Composition

I first introduce a vertical dependence z into the free energy functional used byClarke,
which I a priori discretise such that a vertical coordinate z is replaced by index i :

F [φ(i, y), h(y)] =
∫

f (φ, h) +
D∑

i=1

�z(y)g(φ) dy, (6.2)

so that h(y) = D�z(y) i.e. the height at point y is divided into D grid cells of
equal height (�z(y) does not depend on i : at any point y all �z values are the
same). Figure6.4 is a schematic of mymodel, explaining the average volume fraction
φ̄(y) = D−1 ∑D

i=1 φ(i, y) at point y and the volume fraction φ(i, y) in individual
grid cells (in the schematic Fig. 6.4, I have discretised the y direction too, although
at this point it is still continuous; it will be discretised for simulations). In order to
simplify the notation in the model, it is useful to separate the free energy F into the
following parts

F [φ(i, y), h(y)] = Fφ [φ(i, y)] + Fh [h(y)] + Fφ,h [φ(i, y), h(y)] , (6.3)

where

Fφ =
∫

f φ(φ) +
D∑

i=1

�z(y)g(φ) dy, (6.4)

Fh =
∫

f h(h) dy, Fφ,h =
∫

f φ,h(φ, h) dy. (6.5)

Fig. 6.4 2D schematic of my Model, representing a fluid layer with a deformable upper surface
on a flat substrate. Here, the film is divided into D = 4 grid cells in the vertical direction. The
cell-height is given by �z(y′) = h(y′)/D, so that the cell-height at y′ is constant. Each cell has
volume fraction φ(i, y′), where the index i runs from 1 to D. The average volume fraction φ̄(y) is
an average over i at point y
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and where I have separated the surface energy into

f (φ, h) = f φ(φ) + f h(h) + f φ,h(φ, h), (6.6)

where f h(h) and f φ(φ) depend only on h andφ respectively, and f φ,h(φ, h) contains
any cross terms. This separation of the energy into parts simply makes it easier to
write a compact form of the model, the convenience mainly being in Eq. (6.4) since
this is the only functional containing the sum.

6.2.2 Two-Stage Dynamic Model

The dynamic model proceeds via two stages: a height evolution step and a diffusion
step. For the height evolution, which involves lateral movement of material, I use the
following coupled equations [2]

∂h(y)

∂t
= ∇y ·

(
h3

3η
∇∗μc(y)

)
, (6.7)

∂φ̄(y)h(y)

∂t
= ∇y ·

(
h3φ̄

3η
∇∗μc(y)

)
, (6.8)

which is very similar to the formulation of the Clarke model [2], but with a redefined
chemical potential gradient ∇∗μc(y) which is explained in Sect. 6.2.3. This step in
the model acts to move material laterally in the film, in such a way that h(y) and φ̄(y)

change. For diffusion, I use the same form as in Chap.5 but generalised to account
for a non-uniform grid

∂φ(i, y)�z(y)

∂t
= M∇ · [

�z∇μφ�z(i, y)
]
, (6.9)

where M is the mobility, assumed to be constant.
Equation6.8 is responsible for the change in the average volume fraction φ̄(y)

at a point y. The volume fraction in each grid cell i at y must be changed by the
same amount to account for this change in φ̄(y), so we can think of this step as ‘not
knowing’ that there is any vertical dependence of the composition at all and that
the model is essentially the schematic of Fig. 6.3. This is better explained by the
implementation of the forward difference time-step for this stage of the simulation,
so I refer the reader to Section C.1 in the appendix on the numerical implementation.
(Note that the chemical potential gradient ∇∗μc(y) does actually account for the
vertical dependence of composition in order to make the model physical. This is
explained in Sect. 6.2.3).

The diffusive step allows an exchange of material between different individual
cells. We will see from the results that diffusion rapidly acts to distribute material

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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vertically, such that once initial vertical phase separation into a transient wetting
layer has occured, vertical phase separation does not have to catch-up with lateral
phase separation: at any point y, the film is as vertically separated as it can be
without requiring lateral phase separation such that the overall volume fraction at y
changes. This was true in the results of Chap. 5 too, in which lateral phase separation
takes much longer than vertical phase separation, and it was precisely the growth of
lateral inhomogeneities that caused vertical changes in the profile and allowed the
bilayer interface to become distorted. This helps justify the form of the two-stage
model, in particular themovement of lateral material in the first step which uniformly
distributes this material across the grid cells i at point y: even if this even distribution
of material is not as physical as if individual transfer between different cells i were
allowed at this stage (which would severely complicate the model and would require
variation of �z with i), diffusion rapidly redistributes material appropriately.

6.2.3 Definition of the Chemical Potentials

I have defined the following

∇∗μc(y) ≡ ∇yμh(y) + φ̄
1

D

D∑
i=1

∇yμφ�z(i, y), (6.10)

μh(y) ≡ δFh

δh
+ δFφ,h

δh
+ 1

D

δFφ

δ�z
, (6.11)

μφ�z(i, y) ≡ δFφ

δ(φ�z)
+ δFφ,h

δ(φ�z)
. (6.12)

for the gradients of the chemical potentials in Eqs. (6.7), (6.8) and (6.9).
The diffusion step equations (6.9) together with (6.12) is really a generalisation of

the diffusion equation that appeared inChap.5 forwhich�z did not vary (in appendix
B we see that the chemical potential μφ�z derived from Eq. (6.2) will actual give the
same result as δF/δφ gave in Chap.5, if �z is constant everywhere). The form of
the other equations is explained below.

Equation (6.11) can be derived as follows. It is simple to write

μh(y) ≡ δF
δh

= δ

δh

[
Fφ + Fh + Fφ,h

]

= δFφ

δh
+ δFh

δh
+ δFφ,h

δh
, (6.13)

http://dx.doi.org/10.1007/978-3-319-19399-1_5
http://dx.doi.org/10.1007/978-3-319-19399-1_5
http://dx.doi.org/10.1007/978-3-319-19399-1_5
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but the discretisation of Fφ means that h no longer seems to appear in Fφ (if I had
written Clarke’s Model down in the same formulation as we have here, we would
have found hg(φ) in Fφ, and of course I could have written h/D in place of �z in
Fφ). This artefact can be removed by observing that we can write

Fφ =
∫

f φ(φ) +
D∑

i=1

�z(y)g(φ) dy (6.14)

=
∫

f φ(φ) dy +
D∑

i=1

∫
�z(y)g(φ) dy, (6.15)

since we can swap the summation and the integration and leave the terms the same.
If we now take the functional derivative with respect to h:

δFφ

δh
= δ

δh

D∑
i=1

∫
�z(y)g(φ) dy

= δ

δh

D∑
i=1

Fφ
i = δ

δh

[
Fφ
1 + Fφ

2 + · · · Fφ
D

]

= 1

D

[
δFφ

1

δ�z
+ δFφ

2

δ�z
+ · · · δFφ

D

δ�z

]

= 1

D

D∑
i=1

δFφ

δ�z
, (6.16)

where I have used the fact that the functional derivative commutes on the second line,
and on the third line I have used the fact that h = D�z (�z does not depend on i).
Really,�z is defined as�z = h/D, so in away h does appear in Fφ. So the functional
derivative with respect to height at point y can be written as an average over i of the
functional derivativeswith respect to cell height for each grid cell at point y. The latter
step is very important, as it is one of the important insights that allowed a vertical
dependence to be included in my model. Without the a priori discretisation, how
could we write an expression for δFφ/δh with F [φ(z)] = ∫ h

0 . . . f (φ) . . . dz? That
Eq. (6.16) exactly reduces to that for the ClarkeModel (for a vertically homogeneous
film) when the values of φi (z) are all the same gives us confidence that it is correct.

The Combined Gradient of the Chemical Potential

Concerning the gradient of the chemical potential∇∗μc in Eqs. (6.7), (6.8) and (6.10),
we can see that without variation in the z direction, and therefore no variation in i ,
that (6.10) reduces down to

∇∗μc(y) ≡ ∇yμh(y) + φ∇yμφ�z(i, y), (6.17)
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in accordance with Clarke’s model. In the latter equation, we have φ ≡ φ̄, since the
model assumes the we can describe the film at a point y by the average composition
at that point. Putting the i dependence back in, and writing φ → φ̄ in accordance
with the role of φ in Clarke’s model, we can write the latter equation in the form:

φ∇yμφ�z(i, y) → φ̄
1

D

D∑
i=1

∇yμφ�z(i, y), (6.18)

where I have averaged the lateral gradients of the chemical potential μφ�z in each
individual grid cell at y, in order to better account for the ‘interface’ between the
vertical ‘columns’ at point y. It is via this averaging that the i dependence is removed.
Note that I could have also done φ̄ 1

D ∇y
∑D

i=1 μφ�z(i, y) i.e. taken the gradient of
the average chemical potential, but this would not have properly taken account of the
interface between two side-by-side ‘columns’ of fluid at point y, which would have
been less physical since I would like to properly account for the vertical variation in
the film profile. Also, I settled on using φ̄ outside of the averaging, rather than using
φ within the averaging, not because it appeared to make any difference at all, but
because this is more in line with the original formulation of Clarke, and keeps the
symmetry in Eqs. (6.7) and (6.8).

At this point themodel is completely generalised, and satisfies the thermodynamic
stability criterion required for an initially homogeneous film [2, 14], since the model
reduces down to Clarke’s model in the case of no vertical variations.

A Note on the Functional Derivatives

Note the presence of functional derivatives of Eq. (6.2), using the notations and defi-
nitions in Eqs. (6.3)–(6.5).Wemust take care in calculating the functional derivatives
in Eqs. 6.10–6.12 by writing (φ�z) /�z in place of φ when performing derivatives
[21]. This is done in the Appendix B. This makes sure that the movement of material
is with regards to gradients in the proper quantities: φ is not a conserved variable in
this system of equations, h and φ�z are conserved, and must be to satisfy material
conservation (in Chap. 5, φ was conserved because film depth was fixed).

6.3 Application to Polymer-Blend Thin Films

To illustrate the model, I apply it to a binary polymer blend of components A and B
between selectively attracting walls. The bulk free energy is given by

g(φ) = fF H (φ) + κ(φ)(∇φ)2, (6.19)

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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where fF H (φ) = (1/N ) [φ ln(φ) + (1 − φ) ln(1 − φ)] + χφ(1 − φ) and κ(φ) =
a2/φ(1−φ), where a is the underlying Flory-Huggins lattice spacing, N is the degree
of polymerization (same for both A and B) and χ is the Flory-Huggins interaction
parameter. The φ-dependant surface energy is given by

f φ(φ) = f1(φ)δi1 + fD(φ)δi D, (6.20)

where fS = hSφ + (1/2)gSφ2 and hS and gS are phenomenological parameters.
S = 1, D and δi S is the Kronecker delta function, so the surface energies only act
in the cells adjacent to the film surfaces. For the height dependant surface energy I
used [2]

f h(h) = σ(∇yh(y))2 + ε/h8, (6.21)

where the first term accounts for energy costs of curvature in the film surface and the
second term prevents complete dewetting of the substrate (which, although observed,
is to some extent is a numerical convenience). Equation (6.21) implies that the Ham-
maker constant is zero; the results do not depend on the top and lower surfaces ‘feel-
ing’ each other. Note that I have tried to keep the specific terms in themodel extremely
minimal, which should allow for general principles to be discovered through the sim-
ulations.

Specific Parameters

I performed the simulations in 3D, so that the lateral dimension comprises of x and y
directions. I scaled space by z′ = |χ − χS|1/2 z/a (applied to x and y too) and time
by τ = N M |χ − χS|2 t/a2, where χS is the value of χ on the spinodal curve. I used
the following parameters: N = 100, φ̄ = 0.5 (unless specified), a = 1, η = 1000,
M = 1, ε = 0.010, σ = 0.01 (unless specified). I used a square simulation grid
in the lateral plane, with �x ′ = �y′ = 0.173, and have used D = 16 grid cells
to discretise the vertical direction. For the results presented here, I used χ = 0.050
(this large value results from a = 1, but a and χ are both absorbed into the scaling;
this allows the films to be relatively thin, and so less area of film is need for the
simulations). Random thermal currents J T from a Gaussian distribution of width
0.01 were applied in the diffusion stage of my simulations, providing an additional
term +∇ · (

�z J T
)
to Eq. (6.9) [22], which is discussed in Appendix C.

I used the following surface parameters and terminology, in commonwithChap. 5:
for ‘antisymmetric’ films h1 = −0.05, g1 = 0.18, hD = −0.13, gD = 0.18
(a B-attracting substrate and an A-attracting surface, such that the walls attract
opposite components in exactly the same way); for ‘asymmetric’ films h1 = −0.05,
g1 = 0.18, hD = gD = 0 (a B-attracting substrate and a neutral surface); and for
‘symmetric’ films h1 = hD = −0.05, g1 = gD = 0.18 (both the substrate and the
surface are B-attracting).

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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Functional Derivatives

The expressions for the functional derivatives required in the model, the derivations
of which can be found in the Appendix B, are given by

δFφ

δ (φ�z)
= + ∂φ fF H (φ) − (

∂φκ
)
(∇φ)2 − 2κ(φ)∇2φ

+ (�z)−1 [+2κ (φ)∇zφ + ∂φ fh
]
δz

h

+ (�z)−1 [−2κ (φ)∇zφ + ∂φ f0
]
δz
0

− 2

�z
κ(φ)∇(�z) · ∇φ, (6.22)

δFφ

δ�z
= + fF H (φ) + κ (φ) (∇φ)2

− φ∂φ fF H (φ) + φ
(
∂φκ

)
(∇yφ)2 + 2φκ(φ)∇2

yφ

− 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− (�z)−1 [+2φκ (φ)∇zφ + φ∂φ fh
]
δz

h

− (�z)−1 [−2φκ (φ)∇zφ + φ∂φ f0
]
δz
0

+ 2φ

�z
κ(φ)∇(�z) · ∇φ, (6.23)

δFh

δh
= − 8ε

h9 − 2σ∇2h. (6.24)

Due to the discretisation of the free energy functional (6.2), there are two approaches
to calculating the expressions above, which yield very slightly different results. This
is explained in the Appendix B. Whilst the Model I present here does not depend on
which ‘version’ of the functional derivatives are used, since the model is supposed to
solve the general problem of simulating a dewetting film with 3D phase separation,
the different approaches may be important in someways that were not clear in testing
the model.

6.4 Results and Discussion

Figures6.5 and 6.7 show an antisymmetric and an asymmetric film, respectively,
at different stages in evolution. For these 3D plots, time increases from (a) to (d),
where (a) vertical phase separation of initially nearly homogeneous film; (b) bilayer
film; (c) breakup of the bilayer; (d) laterally segregated film. Figures6.6 and 6.8 are
2D plots showing the surface volume fraction (left-hand side, colour-bar shown in
3D plots) and the film height (right-hand side, colour-bar shown) for the films in
Figs. 6.5 and 6.7, respectively. For these 2D plots, time increases from top to bottom,
the particular plots having been selected to show the breakup of the bilayer (top),
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Fig. 6.5 Antisymmetric filmof average height h′ = 1.73.a Initial vertical phase separation τ = 25;
b bilayer film τ = 100; c breakup of bilayer τ = 500; d laterally segregated film τ = 1263. The
trapezoidal shape of the lateral phases can be clearly seen, meaning that the B-rich phase makes
less contact with the top surface than the A-rich phase. This may be responsible for the kinetics that
cause the B-rich phase to become higher than the A-rich phase, despite the symmetry of the system

Fig. 6.6 Surface view for
film shown in Fig. 6.5 (left
volume fraction, as in
Fig. 6.5; right film height,
colour-bar shown). Top
breakup of the bilayer
(τ = 500); middle
appearance of lateral phases
(τ = 830); bottom further
roughening as lateral phases
coarsen (τ = 1263). The
surface morphology is
bicontinuous, with the B-rich
phase protruding higher than
the A-rich phase

the emergence of lateral phases (middle), and the laterally segregated film (bottom:
same time as shown in (d) of the 3D plots Figs. 6.5 and 6.7). Figure6.11 shows 2D
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Fig. 6.7 Asymmetric film of average height h′ = 1.73. a Initial vertical phase separation τ = 40;
b bilayer film τ = 160; c breakup of bilayer τ = 540; d laterally segregated film τ = 1200. The
B-rich phase breaks the surface even though the film is vertically stratified (b), so that it appears
that there is a template of the laterally segregated morphology already present at this point, which
determines where the breakup of the bilayer occurs due to surface bifurcation, as in (c)

Fig. 6.8 Surface view for film shown in Fig. 6.7 (left volume fraction, as in Fig. 6.7; right: film
height, colour-bar shown). Top beginning of breakup of the bilayer, (τ = 400); middle more lateral
phases break the surface, destroying the bilayer (τ = 840); bottom further roughening as lateral
phases coarsen (τ = 1200). The A-rich phase is continuous, encapsulating islands of the B-rich
phase
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plots of the final surface volume fraction and film height of several symmetric films
with different initial average volume fractions.

6.4.1 Antisymmetric Films and Asymmetric Films

Figures6.5 and 6.7 show an antisymmetric and an asymmetric film, respectively,
at different stages in evolution. In both cases, the film initially undergoes vertical
stratification (a) due to the preferential surface attraction, forming a bilayer (b).
This bilayer then breaks up via the surface bifurcation mechanism ([1] and Chap.5)
in which the single value of the order parameter at the film surfaces divides as
laterally coexisting phases appear (c), and the film becomes laterally segregated (d).
Hence the films undergo lateral phase separation via a transient wetting layer (the
instability of the bilayer is studied in [18, 19], although due to non-diffusive transport
mechanisms).

When the film is in the bilayer state as in Figs. 6.5a and 6.7a there is no significant
roughening of the film surface. The surface plots of Figs. 6.6 and 6.8 show that
as the bilayer begins to breakup (top), showing significant phase separation at the
top surface, the surface roughens quite significantly. This may correspond to the
increased roughness of the surface prior to lateral phase separation of the bilayer,
as reported in Ref. [8]. It seems that the onset of phase separation in the lateral
direction induces this roughening. As the lateral phases emerge due to the breakup
of the bilayer, as in Figs. 6.6 (middle) and 6.8 (middle), dewetting couples strongly
to the lateral phase separation, causing the surface roughening to shadow the phase
separating morphology. Earlier signs of this coupling can also be faintly seen in the
top sub-figure of Fig. 6.8, where the B-rich material has broken the surface.

The laterally segregated morphology that results depends on the surface regime.
Figure6.6 shows that the antisymmetric film laterally phase separates into a bi-
continuous morphology of both the A-rich and B-rich phases. The simulations show
that the B-rich phase protrudes from the A-attracting film surface. From a purely
thermodynamic perspective that considers the lateral phases in 1D (as in Chap.4) it is
not clear why either phase would be higher than the other [23]. However, the kinetics
of the breakup of the bilayer appears to promote the B-rich phase, which previously
formed the bottom layer of the bilayer. This may be because of the trapezoidal shape
of the laterally coexisting phases, which means that in this case it is the B-rich phase
that makes less contact with the top surface than the A-rich, and since dewetting
appears to primarily proceed at the interface between the laterally coexisting phases,
the B-rich phase will become higher than the A-rich phase, since it is narrower at
the point where it meets the surface and thus requires less material to be transferred
into it for the same height increase. The laterally segregated state of the asymmetric
film shown in Fig. 6.8 is a continuous A-rich phase which encapsulates islands of
the B-rich phase. This is caused by depletion of B-component in the film due to the
B-attracting substrate, leading to an excess of A-component in the rest of the film.

http://dx.doi.org/10.1007/978-3-319-19399-1_5
http://dx.doi.org/10.1007/978-3-319-19399-1_4
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In the case of the asymmetric film of Fig. 6.7, an important point can be made
about the bilayer state (a), namely that the film is definitely vertically stratified into
a bilayer even though it is clear that the surface of the film would suggest that the
film is laterally segregated (the snapshot of the bilayer has been chosen to show
this). The reason for this is that lateral phase separation is proceeding from the top
surface in this case [24], as in Chap.5. The variations that can be seen in the bilayer
correspond to where the lateral phases are in the laterally segregated film. In Ref.
[25], the authors observe that a bicontinuous morphology is maintained throughout
the spin-casting process, and conclude that this means no bilayer initially formed.
Their conclusions therefore contradict earlier results reporting that a bilayer did
initially form [8]. My results bring these two contradicting interpretations together,
showing that phase separation observed at the surface does not indicate that there is
no vertical stratification.

Quantitative Analysis

Figures6.9 and 6.10 are plots, against (scaled) time τ , of the free energy [calculated
with Eq. (6.2)] per unit area, the standard deviation (S.D.) of the (scaled) height

〈(h′(y) − h′
0)

2〉 1
2 , and the S.D. of the average volume fraction 〈(φ̄(y) − φ̄0)

2〉 1
2 , for

an antisymmetric film and an asymmetric film respectively (with the same parame-

ters as Figs. 6.5 and 6.7, respectively). 〈(h′(y) − h′
0)

2〉 1
2 gives some measure of the

surface roughness of the film, and 〈(φ̄(y) − φ̄0)
2〉 1

2 gives somemeasure of the degree
of lateral segregation of the film (although it should be noted that the variable φ̄ is
not a conserved quantity). The results for the antisymmetric and asymmetric film are
qualitatively the same in every regard, and so I will only explicitly discuss Fig. 6.9
for the antisymmetric film.

Early on τ < 100, the free energy falls rapidly as the film initially vertically
phase separates into a bilayer (transient wetting layer), at which point the free energy
plateaus between τ = 100 and τ = 300 since the film is in metastable equilibrium.
Around τ = 300, lateral inhomogeneities have grown enough that the bilayer begins
to breakup (surface bifurcation) and the free energy falls away from the plateau.
At this same time, the S.D. of height changes significantly, levelling off (and even
dropping slightly) from the initial linear rise: this initial rise may be the roughening
of the bilayer prior to lateral phase separation, as mentioned above and reported in
Ref. [8]. A change in the S.D. of φ̄(y) also happens at exactly this time, the gradient
becoming shallower. I suggest that the latter observations both correspond to the
initial lateral inhomogeneities that breakup the bilayer becoming more structured as
laterally coexisting phases appear.

At around τ = 550 the laterally coexisting phases have mostly formed and there-
fore the increase in the S.D. of φ̄(y) levels off. At this point, the S.D. of height
begins to rapidly rise in a linear fashion, now that the surface roughening shadows
the underlying phase separated morphology in order to further lower the free energy
of the film, as shown in the continuous decrease in the free energy. At τ = 1000, the

free energy levels out as 〈(φ̄(y) − φ̄0)
2〉 1

2 levels out, since lateral phase separation is

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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Fig. 6.9 Antisymmetric film of average height h′ = 1.73 (with the same parameters of Fig. 6.5 but
with (3/4)2 the area). The standard deviations (S.D.) of height h′(y) and average volume fraction
φ̄(y) compliment the features that can be inferred from the 3D simulation snapshots and free energy
curve. The free energy plateaus for the bilayer (TWL), and falls off fairly rapidly as the bilayer breaks
up. As the laterally coexisting phases appear from this breakup, the film becomes more structured;
the S.D. of height and φ̄(y) reflect this. Once the laterally coexisting phases have formed, the S.D.
of height begins to rapidly increase as surface roughening shadows the underlying phase separated
morphology as a means to lower the free energy. At long times when lateral phase separation is
mostly complete, the S.D. of φ̄(y) and the free energy level out, but the surface roughness still
increases to further lower the free energy

mostly complete. The film is still roughening, which further lowers the free energy. It
seems to be energetically favourable for dewetting to occur at the interfaces between
the laterally coexisting phases, as shown in Figs. 6.6 and 6.8, as the film appears to
be able to lower its free energy in this way.

Validation of the Model

Equation (6.10) shows that the amount of material that is moved laterally is based
on the average volume fraction φ̄(y) and the average of the lateral gradients of
μφ�z(i, y).Materialmoved in thisway is evenly distributed amongst the grid cells at y
in order that the average volume fraction at y changes, as explained inAppendixCEq.
C.15 (this is ultimately because �z does not vary with i). Equations (6.7) and (6.8),
combined with Eq. (6.10), means that the height evolution step may not, in theory,
always lead to a lowering of the free energy, since both the distribution of material
across the vertical dimension and the amount of material transferred laterally may
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Fig. 6.10 Asymmetric film of average height h′ = 1.73 (with the same parameters of Fig. 6.7 but
with (3/4)2 the area). The standard deviations (S.D.) of height h′(y) and average volume fraction
φ̄(y) compliment the features that can be inferred from the 3D simulation snapshots and free energy
curve. The evolution is essentially qualitatively the same as that described in the caption of Fig. 6.9

not necessarily be optimal. However, the diffusion step rapidly distributes material
vertically to compensate for this, and the free energy in Figs. 6.9 and 6.10 show that
the model functions very well. Its not clear if this would be true at very long times,
once lateral diffusion has effectively ceased but height evolution still continues (the
simulations numerically decouple at longer times as the height differences between
simulation grid cells becomes large; much smaller �y would be needed to study
longer times).

6.4.2 Symmetric Films

I also performed simulations of symmetric films, inwhich both surfaces preferentially
attract theB-component, leaving anA-rich phase sandwiched in themiddle of the film
i.e. a trilayer structure. I used slightly thicker films for these simulations, since there
are three layers in the film and I wanted these layers to be sufficiently distinct. I will
briefly discuss the results from these simulations, although in the context of this thesis
they are of less interest than results for the lateral phase separation of a bilayer film.
I have only shown, in Fig. 6.11, the surface profiles of the final laterally segregated
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Fig. 6.11 Surface view of the laterally segregated states of three Symmetric films, with different φ̄,
which initially form a trilayer structure: both surfaces coated by a B-rich layer, with an A-rich layer
sandwiched in between (left volume fraction, as in Figs. 6.5 and 6.7; right film height, colour-bar
shown). The scaling of height depends on χS , which varies with φ̄ since the spinodal line depends
on composition (see Sects. 2.4 and 3.4). Top (σ = 0.03, φ̄ = 0.2, h′ = 2.74) droplets of A-rich
phase encapsulated by B-rich phase (τ = 700); middle (σ = 0.01, φ̄ = 0.3, h′ = 3.24) droplets
joining up as amount of A component increases (τ = 980); bottom (σ = 0.01, φ̄ = 0.5, h′ = 2.60)
the A-rich phase forms a protruding matrix encapsulating the lower B-rich phase (τ = 1200)

state, for various blend ratios (values of φ̄). For the symmetric blend φ̄ = 0.5 (top),
the final roughened morphology highly resembles that found in experiments, when
the encapsulating phase protrudes from the film [5, 7]. For blendswith a lower ratio of
A-material φ̄ = 0.3 (middle), such that the non-wetting A-component is the minority
component, the A-rich lateral phase becomes encapsulated in the B-rich phase, with
the A-rich phase protruding but no longer continuous. For φ̄ = 0.2 (bottom), droplets
of the minority phase form, which could, if other hydrodynamic flow mechanisms
like those suggested in Refs. [4, 6] were present, allow the formation of pancake-like
droplets of the minority phase.

http://dx.doi.org/10.1007/978-3-319-19399-1_2
http://dx.doi.org/10.1007/978-3-319-19399-1_3
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6.5 Summary

I have presented results from a new model for thin films of multicomponent fluids,
applied to binary polymer blend thin films. The results show that roughening couples
to phase separation, resulting in stages of surface roughening corresponding to dis-
tinct stages of phase separation. The results can be interpreted in terms of the phase
equilibria of polymer films [1, 24]: the transient wetting layer that forms before the
film laterally phase separates is a metastable state, the phase equilibria of the laterally
segregated state corresponding to the equilibria of global equilibrium. In the transient
wetting layer, there does not seem to be a route to lower the free energy of the film
by roughening, but the roughening begins with the onset of lateral phase separation,
as a means to lower the free energy of the film as lateral inhomogeneities grow.

Perhaps as important as the general results concerning coupled surface roughening
and lateral phase separation in polymer-blend thin films is the formulation of the
model so as to allow a vertical dependence of the composition, which has never been
done before in any general way. I hope that the idea behind this model can be utilised
by others to formulate similar 3D models.
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Chapter 7
Summary of Research and Outlook

In Chap.4, I extended a Hamiltonian Phase Portrait method for visualising and
calculating equilibrium profiles of polymer-blend thin films, allowing the method to
be applicable to the general case of film asymmetry, though I focussed on a symmetric
blend between an attracting surface and a neutral surface. I explained how aLagrange
multiplier distorts the phase portraits away from symmetry, and how the location of
fixed points can be used to explain the behaviour of equilibria as film depth and
temperature regimes are changed. I also discussed laterally coexisting solutions,
necessarily limiting to the case in which the phase portraits are not distorted since the
1D phase portraits are not able to take account of the lateral interface between phases.
By considering the role of the Lagrange multiplier, I argued from a thermodynamic
perspective that the coexisting phases could have different depths in order that the
free energy of the film is reduced, possibly leading to a laterally segregated film with
a roughened surface.

In Chap.5, I studied lateral phase separation via a transient wetting layer using
simulations and Hamiltonian Phase Portraits and introduced a Surface Bifurcation
mechanism, involving effective boundary conditions at the film surfaces, explaining
the particular dynamics of the breakup of the transient wetting layer. I derived a
diffusion equation suitable for studying polymer-blend films, in which I used a first-
principles derivation to derive the proper forms of the surface terms. I compared the
results from simulations to the equilibria calculated from the Hamiltonian phase por-
trait method to demonstrate that the diffusion equations were accurate and precise,
and showed that the 1D calculated equilibria actually appear in the simulations. This
means that the lateral interfaces between coexisting phases do not prevent 1D con-
siderations of equilibria from being useful, at least in terms of the states which films
evolve through and into. I showed that films evolve first towards a metastable bilayer
configuration, determined by the lowest energy independently-existing equilibria of
the films, and then evolve towards laterally coexisting phases corresponding to global
equilibrium. I explained the dynamics of the breakup of the transient wetting layers
for a variety ofwall-blend interaction regimes, explaining how the surface bifurcation
mechanism may explain many general results from spin-casting experiments.
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In Chap.6, I formulated a 3D model of coupled phase separation and surface
roughening by solving the problem of introducing a vertical dependence of the film
composition into a model of a dewetting film. I applied the model to a polymer-
blend thin film and used it to investigate surface roughening for films with different
surface-blend interaction regimes. I showed that lateral phase separation via a tran-
sient wetting layer has distinct stages of surface roughening, resulting in pattern
formation whereby the surface roughening shadows the underlying phase separated
morphology. Both the kinetics of dewetting and the shapes of the underlying equi-
libria determine the pattern formation.

The work in this thesis has hopefully revealed some very general fundamental
aspects of phase separation in polymer-blend thin films. I have implicitly focussed on
investigatingwhat is necessary and sufficient to explain phenomena in film evolution;
how stages of film evolution can be explained by phase equilibria i.e. a thermody-
namic perspective. Thework is based on amean-field description of a polymer-blend,
and so cannot necessarily be relied upon to give quantitative results. Fortunately,
mean-field descriptions of polymer blends are known to generally give good results,
and polymer blends are identified throughout the literature as ideal systems in which
to study phase transitions and related phenomena.

It would seem that this work could equally apply to simple fluid blends. This is
true in as much as the equations can be applied to either a polymer blend or a simple
fluid blend, provided an appropriate choice for the coefficient of the gradient energy.
However, mean-field descriptions of simple fluids do not work very well in practice,
for a similar reason that they don’t work well for dilute polymer solutions. In the
latter case, enthalpic interactions cause solute to clump together, leading to regions
of (nearly) pure solvent and (nearly) pure solute. A mean-field description of the
solution, derived on the basis that the probability of lattice sites being occupied by
polymer segments (solventmolecules) is given by the local polymer (solvent) volume
fraction, would fail to describe such a dilute solution. The case is not dissimilar for
simple fluid blends. Mean-field theories don’t account for local fluctuations in the
mean field, and well defined features like the spinodal curve can become artefacts of
the theory that don’t necessarily make useful predictions. In dense polymer blends
with a high molecular weight, the interconnectivity of chains means that fluctuations
are less important and mean-field descriptions generally work well.

Flory-Huggins-de Gennes theory (the mean-field theory used throughout this the-
sis) allows a polymer-blend to be identified by the interaction parameterχ, which can
be experimentally determined. As per the scaling in Chaps. 5 and 6, the length scale
of bulk phase separation is of the order |χ−χS|1/2, and so the simplicity of the theory
is that we can make predictions about film evolution based on the thickness of the
film with respect to the length scale of phase separation: if the film is of the thickness
of |χ−χS|1/2, we might expect lateral phase separation via a transient wetting layer,
since we can be reasonably certain that the film would initially vertically separate
into a bilayer; if the film thickness is many times |χ−χS|1/2, we might expect some
sort of multiple layering (an oscillatory profile) and bulk-like phase separation away
from the film surfaces.
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To what extent can the phase portraits of Chap.4 predict the results of the sim-
ulations in Chaps. 5 and 6? Throughout, I have restricted to studying lateral phase
separation via a transient wetting layer, in which case the films in the simulations can
be considered ‘thin’ and have reached the equilibrium states predicted by the phase
portraits. The phase portraits also help explain the particular way in which lateral
phase separation via a transient wetting layer occurs in terms of phase equilibria,
as shown in Chap.5. I have not included a study of thick films that form oscilla-
tory profiles or undergo bulk-like phase separation. What can the phase portraits and
phase equilibria say about ‘thick’ films, with thickness many times |χ − χS|1/2?
The behaviour of the equilibria in the limit that the thickness goes to infinity can
be easily determined from the phase portraits, by considering the film profile when
part of the corresponding phase portrait approaches a fixed point in phase space, as
discussed in Chap. 4. When thicker films don’t reach the equilibria predicted by the
phase portraits, due to bulk-like phase separation for example, this can be considered
a kinetic phenomena, since the predicted phase equilibria are still the lowest energy
states of the film.

Bulk-like phase separation in films could possibly be avoided by experimental
conditions. Thismaybe important to bear inmind because lateral phase separation via
a transient wetting layer produces a very neat laterally segregated structure. It might
be instructive for experimentalists to consider that, if a neatly laterally segregated
structure is desired, it may be best to achieve this with lateral phase separation via
a transient wetting layer, rather than allow bulk-like phase separation to ‘lock-out’
the possibility of reaching a bilayer state and the following neat laterally segregated
structure. This could perhaps be done by deliberately controlling the rate of solvent
evaporation e.g. maintaining a high solvent concentration for an extended period of
time prior to gradual removal of solvent, which might result in a bilayer initially
forming (the increased miscibility from solvent could be used to tune the length
scale of phase separation to the order of the film thickness) followed by lateral
phase separation as solvent is removed. This could be important when tailoring
morphologies to create a better functioning polymer-blend thin film solar cell.

The current form of the 3D model of coupled phase separation and dewetting that
I developed in Chap.6 is perhaps only applicable to thin films undergoing non-bulk-
like phase separation, such as lateral phase separation via a transient wetting layer.
This is because of the averaging used in the model, both in the way that material is
moved laterally and in the way that averaging is used to calculate lateral flux in the
dewetting stage of the model. However, since the dewetting process I have discussed
is primarily applicable to thin fluid films, perhaps the model is not applicable to
films that are thick enough to display bulk-like phase separation. The results of
Chap.4 would predict that an antisymmetric film would have roughened differently,
and so the results of Chap.6 highlight the importance of kinetic considerations in
determining the final roughened morphology.

The surface energy I have used throughout this thesis acts locally at the film
surfaces, so it is not clear how results might change if a different form of the surface
field (e.g. one that extends a finite distance into the film) might lead to different
findings. An approximate idea of surface energies would allow the plotting of simple
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qualitative phase portraits and a prediction of the sort of equilibria that might be
expected to occur. The work of Chap.5 would suggest that we can simply generalise
surface energy regimes to a few cases, and therefore understand the way phase
separation generally proceeds in each regime.

I will briefly suggest possible future work that might be of interest. It might be
instructive to investigate more bulk-like phase separation in thicker films, to see how
the idea about phase equilibria determining film evolution (as per thin films) performs
alongside bulk-like behaviour, and what structures form as a result of this. In that
case, the inclusion of solvent, and particularly the use of 3D simulations, would be
very important.

Givenmore understanding of how thicker films evolve, it would also be instructive
to include solvent evaporation, and a systematic investigation of how this affects the
resulting structures. This may help us understand how removal of solvent in the
spin-coating process can be used to control the final morphology. This might be
especially important in trying to obtain desired structures in thicker films. These
sorts of investigations, combined with knowledge of how phase equilibria determine
the stages of phase separation, might prove very useful in predicting and controlling
film evolution and morphology. Since the depth profile of films cannot be measured
during spin-coating, theoretical predictions may be a good way to reveal what is
happening within the film, based on what can be observed during the process and on
the final morphology.

Another possible route for study, in a different direction, would be the use of the
structures produced from the simulations described above in simulations of charge
transport, as a means of determining, and perhaps cataloguing, which types of struc-
tures lead to better performing photovoltaic films. This is essentially a percolation
problem: charges created in the film need to be able to navigate through the phase
separated structure to reach the electrodes at the film surfaces. The phase separated
structure, both in the centre of the film and at the film surfaces, is therefore extremely
important. It is not clear whichmorphologies give better performances or why, and so
combining understanding of this with understanding of how to tailor morphologies,
as mentioned above, could be extremely promising.

In this thesis, I have explored the phase equilibria of polymer-blend thin films using
a Hamiltonian phase portrait method, and used phase portraits and simulations to
identify that phase equilibria calculated in 1D can explain the evolution of films in
the case of lateral phase separation via a transient wetting layer. Using a 3D model
of coupled phase separation and dewetting, I have demonstrated pattern formation
whereby surface roughening shadowsunderlyingphase separation.Theoverall theme
of this thesis is then simply this: a polymer-blend thin film will evolve to lower its
free energy, and most of the behaviour can be explained entirely by evolution to and
between different equilibria. I hope that my research contributes to understanding of
the fundamentals of phase separation in polymer blend thin films.

http://dx.doi.org/10.1007/978-3-319-19399-1_5


Appendix A
Diffusion Simulations on GPUs with CUDA

I implemented my simulations in CUDA, a programming language extension to
C++ that can be used to write code that can be executed on a CUDA-enabled
Graphical Processing Unit (GPU). A GPU allows thousands of tasks to be performed
in parallel, with different threads performing each task. I have written this section
to assist somebody writing GPU code for a diffusion simulation of the sort given in
this thesis. Rather than go into too many details of GPU programming, I will try to
cover some general principles for efficient parallelised GPU code focussing on the
simulations used for Chap. 5.

A.1 Principles of Parallelised GPU code

Avoid Branching in Code

GPU code is most efficient when all the tasks to be done are identical, such that each
thread is executing the same code but with ‘different numbers’ e.g. different values of
φi j . This point is important, since it means that branching in code should be minimal
i.e. there should be as few if-else statements (which cause parrallel threads to execute
different code) as possible. The reason for this is: if 10 parallel tasks encounter an
if-else branch in code and 5 tasks follow ‘if’ and the other 5 tasks follow ‘else’, in
fact all 10 tasks follow both branches, which therefore takes twice the amount of
time that would be expected. Only if all 10 tasks follow only ‘if’ or only ‘else’ do the
tasks not have to do twice the work (note that this point about branching concerns
only threads within the same block).

Application of Boundary Conditions

Because of this, when boundary conditions such as ‘no material flux through a sur-
face’ have to be enforced during a simulation involving ‘moving material around’,
it is better to separate the tasks of ‘enforcing no material flux through a surface’
and ‘moving material around’ rather than to implement a boundary condition of
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‘no material flux through a surface’ while ‘moving material around’ (which would
require more branching in code). So the general principle is to separate steps that
enforce numerical boundary conditions from steps which then use those boundary
conditions, in order to avoid branching. This also simplifies code, making it easier to
write optimised parallelised code; the best optimisation (memory retrieval etc.) for
‘movingmaterial around’ may not be the best optimisation for enforcing ‘nomaterial
flux through a surface’.

A.2 Steps of Simulation

My simulations required storage of both the volume fraction and the chemical po-
tential, each set of values being stored on a separate array on the GPU i.e. two arrays
(it is better to have structures-of-arrays than arrays-of-structures, for more efficient
memory access with GPUs). My simulations were broken down into 4 sub-steps,
which were performed for every time-step in the simulation:

1. Apply ‘central-differencing at surfaces’ boundary conditions;
2. Calculate the chemical potential for every grid cell;
3. Apply ‘no flux through surfaces’ boundary conditions;
4. Update values of φ for every grid cell.

1: Central-differencing at surfaces

This section is concerned with calculating gradients of the volume fraction in the
vertical direction i.e. ∇zφ. The first-order central-differencing scheme used in my
simulations was

∇cφi =
(
1

2
φi+1 − 1

2
φi−1

)
/�z, (A.1)

∇2
c φi = (φi+1 − 2φi + φi−1) / (�z)2 , (A.2)

where the z-direction between the walls is discretised with index i (this central differ-
encing scheme was also used to calculate gradients in chemical potential, explained
later, and also for the lateral dimension).

FigureA.1 shows a schematic of the simulation grid: the bold lines represent the
surfaces at z = 0 and z = d, the grid cells containing the results are those between
these surfaces i.e. from i = 1 to i = D. As shown in the schematic, there are actually
two more layers of ‘virtual’ grid-cells (shaded) beyond the surfaces, so the array was
actually D + 2 wide. This was also true of the array storing the chemical potential,
but I will only discuss the relevance to φ for now.

To calculate ∇cφ2 or ∇2
c φ2, the gradients in ‘bulk’ cells not directly adjacent to

the surface, is very simple, requiring a simple application of Eq. (A.1) for i = 2.
The sets of three shaded cells between the film surfaces represents the cells required
for this calculation. But how does one calculate the gradient for i = 1, for cells
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Fig. A.1 Simulation grid. The surface/walls of the film are given by the bold lines. Between the
bold lines are the parts of the grid representing the cells i = 1..D, which are the cells representing
the polymer blend i.e. the cells containing the simulation results. Beyond the surfaces are ‘virtual
cells’ i = 0 and i = D + 1, which are also stored in memory in the same array as the cells
between the walls. The sets of three shaded cells are for visualisation of the cells required for
central-differencing in the vertical direction: central differencing for ‘bulk’ cells is simple (i = 2
and i = D − 1), but how does one do central differencing for cells adjacent to the surfaces (i = 1
and i = D)? See main text above.

directly adjacent to the surface at z = 0? Technically, there is no cell at i = 0, since
all of the polymer fluid is within the impenetrable walls; the sets of three shaded
cells which overlap the film surfaces represent this problem. This point is usually,
and frustratingly, glossed over, so I present my solution to the problem here. For the
i = 1 cells next to the surface, consider the central differencing scheme for the first
derivative for the cell i = 1:

∇cφ1 =
(
1

2
φ2 − 1

2
φ0

)
/�z, (A.3)

and also consider the forward differencing scheme for the first derivative, to second
order accuracy:

∇ f φ1 =
(

−3

2
φ1 + 2φ2 − 1

2
φ3

)
/�z. (A.4)

If we set ∇cφ1 = ∇ f φ1 then we find that if we set

φ0 = +3φ1 − 3φ2 + φ3. (A.5)

then the result of the central difference Eq. (A.3) using φ0 is the same as doing
forward-differencing to second order accuracy, which is a very nice result (since we
help nullify the use of forward differencing by having increased the accuracy of this
derivative). Similarly for the z = D wall, we obtain

φD+1 = +3φD − 3φD−1 + φD−2. (A.6)
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The advantage of setting the ‘virtual’ cells at i = 0 and i = D + 1 to expressions
in (A.5) and (A.6) respectively is that the central differencing regimes in Eq. (A.1)
can be applied to the cells at i = 1 and i = D, as if these cells were not any
different from grid cells ‘in the bulk’ of the film (this avoids the need to obtain from
memory the ‘next-nearest neighbour’ cells φ3 and φD−2, which would otherwise
be required to use second-order forwards and backwards differencing in step (ii) of
the simulation). It can easily be verified that central differencing for ∇2

c in Eq. (A.1)
using φ0 is equivalent to first order forward differencing ∇2

f (similarly for backward
difference using φD+1).

These substitutions, which are essentially numerical boundary conditions applied
prior to calculations involving the gradient, are useful for speeding up and simpli-
fication of GPU code. The same idea can be extended to higher-order differencing
schemes.

2: Calculate the chemical potential for every grid cell

Comparing the governing diffusion equation (5.24) with the general diffusion equa-
tion (5.21) reveals that we canwrite the governing diffusion equation in the following
simplified form:

∂φi j

∂τ
= 1

N
∇′2μ′′

i j , (A.7)

where the scaled chemical potential in each grid cell, which I have denoted μ
′′
i j since

several scaling factors have been absorbed into this expression, is therefore given by

μ
′′
i j = 1

|χ − χS|
∂ fF H

∂φ
|i j + (1 − 2φi j )

φi j (1 − φi j )

κi j

a2 (∇′φ|i j )
2 − 2

κi j

a2 ∇′2φ|i j

+ δi D

�z′

[
a−1

|χ − χS| 12
∂ fd

∂φd
+ 2

κDj

a2 ∇′
zφ|Dj

]

+ δi1

�z′

[
a−1

|χ − χS| 12
∂ f0
∂φ0

− 2
κ1 j

a2 ∇′
zφ|1 j

]
. (A.8)

If we calculate and store the values μ
′′
i j , then we can easily apply the central

differencing operator ∇′2 to these values to calculate Eq. (A.7). This means that we
only need to calculate μ

′′
i j from Eq. (A.8) once per time step. If we tried to calculate

∂φi j/∂τ without this intermediate step, for example by applying Eq. (5.24) without
storing the value in the round brackets (i.e. μ

′′
i j ), then we would end up actually

calculating μ
′′
i j three times: once for each ∂φi j/∂τ , ∂φi+1, j/∂τ , and ∂φi−1, j/∂τ

(actually, including the second dimension j , wewould end up calculating this value 5
time, and seven times for three dimensions). To summarise, it is much more efficient
to calculate and store values of the chemical potential, so that they can be used
multiple times without requiring recalculation.
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3: Apply ‘no flux through surfaces’ boundary conditions

In order to conserve the amount ofmaterial in the film, such that Eq. (5.25) is fulfilled,
we can implement a simple numerical boundary condition, thanks to the virtual grid
cells i = 0 and i = D + 1 for the grid storing values of the chemical potential.
This boundary condition must be implemented after the calculation of the chemical
potential μ

′′
but before calculation of ∂φi j/∂τ using Eq. (A.7). This step simply

consists of setting

μi=0 = μi=1, (A.9)

μi=D = μi=D+1. (A.10)

This has the effect of making the material current across the walls equal to zero, (e.g.
the material current across the z = 0 wall is J−1/2 ∝ μi=1 − μi=0) hence material
is conserved. Also, this means that every grid cell can be treated the same in step 4,
and we don’t have to make exceptions for grid cells adjacent to the surfaces in order
to conserve material.

4: Update values of φ for every grid cell

We used a forward-differencing time-step to update φ:

φτ+�τ
i j = φτ

i j + �τ
∂φi j

∂τ
. (A.11)

After the steps outlined above, this step is incredibly simple, simply requiring the
application of Eq. (A.7) to calculate the change in φi j , and then applying Eq. (A.11)
to update φi j . It may be worth noting that forward time differencing can be unstable,
requiring fairly small time-steps, but I did not find that I had significant problemswith
this, and the program would have become much more complicated using a different
type of time differencing method.

A.3 Improving Efficiency

Use mixed precision code

Experience with these sorts of simulations has convinced me that the variables φ

and μ should be stored as double-precision floats (‘doubles’) to ensure material
conservation (which can not be honoured over time due to accumulating numerical
errors if these values are stored as floats) while calculations should all be floating-
point precision (floating-point calculations, especially for functions like ‘log’ and
‘exp’, are several times faster than double precision equivalents, especially onGPUs).

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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Shared Memory and ‘Halo’ Cells

A slightly technical point can bemade about utilising ‘sharedmemory’ onGPUs, and
how to make fetches from the ‘global memory’ into shared memory more efficiently.
The information that follows may be difficult to understand for readers not familiar
with GPU programming.

Threads are actually executed in batches called blocks, which can be 2D e.g. if I
need to do 100 × 100 calculations in parallel requiring 100 × 100 threads, I could
do this using 10× 5 blocks containing 10× 20 threads. Note that each thread in the
block has an index, in this case a 2D index i j , that identifies it within the block. If
shared memory is allocated when a GPU process is executed, then a block can have
access to a certain amount of shared memory, and all threads within that block have
access to this shared memory. The benefits of shared memory are that it is incredibly
fast to read from, compared to global memory (where the arrays required to store

Fig. A.2 Representation of a block of threads with dimensions 6 × 6 fetching memory from part
of an array: the part of array is the 8 × 8 grid, and the 6 × 6 grid within the bold square represents
the block of threads such that each thread is represented by a grid-cell in the 6×6 grid. Each thread
in the block can fetch an element from the array, such that the thread with index i j can fetch the
array element Ai j : this is represented by the light (yellow) shading. However, several threads need
to do extra work and fetch more array elements in the ‘halo’ around the block of threads, these
halo elements having darker (pink) shading. This is because each thread needs ‘nearest-neighbour’
information. The lines going from threads within the bold square to array elements beyond the
square represents a possible configuration for threads fetching these extra elements, such that, in
theory, no thread has to do more than two fetches. I used this configuration in my simulations. Since
nearest-neighbour information is required, I gave an X × Y block of threads (X + 2) × (Y + 2)
elements of shared memory. (Note: due to branching, it is not clear whether the configuration I have
shown is significantly better than if the threads in the corners of the block fetched two ‘neighbour’
elements, one to either the left or right and one to either the top or bottom. I did find a small speed-up
with my represented configuration, but at the expense of more complicated code.)
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simulation data, e.g. φ and μ, would be stored in these simulations) which is very
slow to read from. If data is going to be used repeatedly by a block of threads, it is
often better to read from global memory as few times as possible, so storing data
retrieved from global memory in shared memory, and then accessing this data via
shared memory, can significantly speed up simulations by several times. Also, to
mention again, all the threads within a block have access to this memory, which is
very useful.

In my simulations, every thread needs access to nearest neighbour information
due to the central differencing scheme e.g. a thread calculating μ

′′
(i = 5, j = 5)

needs to access φ(i = 5, j = 5), but also φ(i = 4, j = 5), φ(i = 6, j = 5),
φ(i = 5, j = 4), and φ(i = 5, j = 6). A 6 × 6 block of threads actually needs
access to (8 × 8) − 4 values of φ, and since every thread needs access to 5 values,
it is much more efficient if all of the threads cooperatively read these values from
global memory to shared memory. A schematic representation of this idea, showing
a block of threads reading values from global memory into shared memory, is given
in Fig.A.2, which is explained by its caption.



Appendix B
Functional Derivatives for Dewetting Model

There are two slightly different approaches to calculating the functional derivatives
required for Chap. 6, which I will denote the ‘continuous derivation’ and the ‘discrete
derivation’. While the calculations of the functional derivatives do not have any
bearing on the presented model, I feel that it is important to be explicit here in the
derivations.

Variations with Respect to Conserved Quantities: As a reminder, we must write
(φ�z)/�z in place of φ when performing functional derivatives, such that (φ�z)
and �z can be treated as variables in there own right. To simplify this notation, I
sometimes write ψ ≡ φ�z.

B.1 ‘Continuous Derivation’

B.1.1 The Sum

We can take the second term of Eq. (6.4),
∑

�zg(φ), and in the same vein to thework
in Chap.5, focus only on the vertical dimension z (ignoring the lateral dimension y
for the time being) and the term in g(φ) containing the gradient, κ(φ) (∇φ)2, since
this is the most difficult term. Now we write

∑ → ∫
dz (hence why I have denoted

this method the ‘continuous derivation’), despite the vertical grid spacing which we
can then consider to be in the limit �z → 0, and therefore write the functional
derivative of the gradient containing term in (6.4) as:

δ

δψ

[∫
dz(�z)κ(φ) (∇φ)2

]
=

lim
ε→0

1

ε

∫
dz

[
(�z)κ

(
ψ + εp

�z

) (
∇

(
ψ + εp

�z

))2

− (�z)κ (φ) (∇φ)2

]
, (B.1)
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where p is a test function (playing the role of g(z, z′) fromChap.5).Wemake several
expansions:

κ

(
ψ + εp

�z

)
= κ

(
ψ

�z
+ 1

�z
εp

)

= κ (φ) + 1

�z

(
∂φκ

)
εp, (B.2)

(
∇

(
ψ + εp

�z

))2

=
(

∇
(

ψ

�z
+ 1

�z
εp

))2

=
(

∇φ + ∇
(

1

�z

)
εp + 1

�z
ε∇ p

)2

= (∇φ)2 + 2∇φ

(
∇

(
1

�z

)
εp + 1

�z
ε∇ p

)

= (∇φ)2 + 2ε∇φ

(
− 1

�z2
∇(�z)p + 1

�z
∇ p

)
. (B.3)

Inserting these expansions into Eq. (B.1), part way through the calculation we arrive
at

δ

δψ

[∫
dz(�z)κ(φ) (∇φ)2

]
=

∫
dz

[
p

(
−2

1

�z
κ (φ) ∇φ∇h + (

∂φκ
)
(∇φ)2

)
+ ∇ p (2κ(φ)∇φ)

]
, (B.4)

and calculating the rightmost term, similar to the work in Chap.5:

∫
dz [∇ p (2κ(φ)∇φ)] = [2κ (φ) ∇φ]h0 −

∫
dz∇ (2κ (φ)∇φ) p

= [2κ (φ) ∇φ]h0 −
∫

dz p
(
2κ (φ) ∇2φ + 2

(
∂φκ

)
(∇φ)2

)
,

(B.5)

and then putting it all together we arrive at:

δ

δψ

[∫
dz(�z)κ(φ) (∇φ)2

]
= − (

∂φκ
)
(∇φ)2 − 2κ(φ)∇2φ + [2κ (φ)∇φ]h0

− 2

�z
κ(φ)∇(�z) · ∇φ. (B.6)
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The functional derivative of the term �z fF H (φ) in �zg(φ) simply gives us
+∂φ fF H (φ). Including the lateral dimension y simply makes the gradient opera-
tors 2D, so we arrive at

δ

δψ

[∫
dz(�z)g(φ)

]
=

+ ∂φ fF H (φ) − (
∂φκ

)
(∇φ)2 − 2κ(φ)∇2φ + [2κ (φ)∇φ]h0

− 2

�z
κ(φ)∇(�z) · ∇φ. (B.7)

A similar derivation can be done for the functional derivative with respect to �z,
beginning with:

δ

δ�z

[∫
dz(�z)κ(φ) (∇φ)2

]
=

lim
ε→0

1

ε

∫
dz

[
(�z + εp)κ

(
ψ

�z + εp

) (
∇

(
ψ

�z + εp

))2

− (�z)κ (φ) (∇φ)2

]
,

(B.8)

with the result being

δ

δ�z

[∫
dz(�z)g(φ)

]
= + fF H (φ) + κ (φ) (∇φ)2

− φ∂φ fF H (φ) + φ
(
∂φκ

)
(∇φ)2 + 2φκ(φ)∇2φ − [2φκ (φ) ∇φ]h0

+ 2φ

�z
κ(φ)∇(�z) · ∇φ, (B.9)

which we can be confident in since it can be verified fairly easily that if F =∫
�zg (φ,∇φ) dz, then δF/δh = g(φ,∇φ) − φδF/δ (φh).

B.1.2 The Surface Energy Depending on φ

Now for the fS part of Eq. (6.4), which can be written as

fS = hφ + 1

2
gφ2

= h

(
ψ

�z

)
+ 1

2
g

(
ψ

�z

)2

. (B.10)
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We then have

∂ fS

∂ψ
= h

(
1

�z

)
+ 1

2
g

(
2ψ

(�z)2

)

=
(

1

�z

)
[h + gφ] , (B.11)

and

∂ fS

∂�z
= h

( −ψ

(�z)2

)
+ 1

2
g

(−2ψ2

(�z)3

)

= −
(

φ

�z

)
[h + gφ] . (B.12)

However, this dependence on �z at this point is an artefact, so I remove it, since
really the surface energies really ought to act only at a surface rather than across an
entire grid cell adjacent to a surface.

B.1.3 Before Normalising of Surface Terms

We can now write

δFφ

δ (φ�z)
= + ∂φ fF H (φ) − (

∂φκ
)
(∇φ)2 − 2κ(φ)∇2φ

+ [2κ (φ)∇φ]h0 + ∂φ f0δ
z
0 + ∂φ fhδz

h

− 2

�z
κ(φ)∇(�z) · ∇φ, (B.13)

δFφ

δ�z
= + fF H (φ) + κ (φ) (∇φ)2

− φ∂φ fF H (φ) + φ
(
∂φκ

)
(∇φ)2 + 2φκ(φ)∇2φ

− [2φκ (φ) ∇φ]h0 − φ∂φ f0δ
z
0 − φ∂φ fhδz

h

+ 2φ

�z
κ(φ)∇(�z) · ∇φ. (B.14)

B.1.4 Normalising of Surface Terms

We can scale the surface terms by (�z)−1 and group the surface terms, as was done
in Chap.5. This then gives us the final equations for the chemical potentials:

http://dx.doi.org/10.1007/978-3-319-19399-1_5
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δFφ

δ (φ�z)
= + ∂φ fF H (φ) − (

∂φκ
)
(∇φ)2 − 2κ(φ)∇2φ

+ (�z)−1 [+2κ (φ)∇zφ + ∂φ fh
]
δz

h

+ (�z)−1 [−2κ (φ)∇zφ + ∂φ f0
]
δz
0

− 2

�z
κ(φ)∇(�z) · ∇φ, (B.15)

δFφ

δ�z
= + fF H (φ) + κ (φ) (∇φ)2

− φ∂φ fF H (φ) + φ
(
∂φκ

)
(∇φ)2 + 2φκ(φ)∇2φ

− (�z)−1 [+2φκ (φ) ∇zφ + φ∂φ fh
]
δz

h

− (�z)−1 [−2φκ (φ) ∇zφ + φ∂φ f0
]
δz
0

+ 2φ

�z
κ(φ)∇(�z) · ∇φ. (B.16)

B.1.5 the Surface Energy Depending on h

From Eq. (6.5) we obtain

δFh

δh
= −8ε

h9 − 2σ∇2h. (B.17)

B.2 ‘Discrete Derivation’

Since I used a priori discretisation to include a vertical dependence on composition
(Eq. (6.2)) it is possible that we should follow a slightly different derivation, which
actually yields a slightly different result for δFφ/δ�z.

B.2.1 An a Priori Discretised Gradient

Equation (6.4) contains the bulk energy g(φ), which contains gradient terms ∇φ.
We could account for discretisation of this gradient prior to taking the functional
derivative of Fφ : ∇y will be continuous (e.g. ∇yφ = ∂yφ) whereas ∇z will already
be discrete (e.g. ∇zφ|i = (φi+1 − φi−1)/2�z). To investigate this, I include 2
dimensions in the derivation, and we can first break Fφ into two parts, accounting
for a ‘continuous’ part Fφ

C and a ‘discrete’ part Fφ
D:

http://dx.doi.org/10.1007/978-3-319-19399-1_6
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Fφ =
∫

f φ(φ) dy +
D∑

i=1

∫
�z(y)g(φ) dy (B.18)

=
∫

f φ(φ) dy +
D∑

i=1

[
Fφ

C + Fφ
D

]
, (B.19)

where the ‘continuous’ part (no discrete gradient) is

Fφ
C =

∫
�z

[
fF H (φ) + κ(φ)

(∇yφ
)2]

dy, (B.20)

and the ‘discrete’ part (discrete gradient) is

Fφ
D =

∫
�z

[
κ(φ)

(
φi+1 − φi−1

2�z(y)

)2
]

dy. (B.21)

I have used central differencing for the gradient in Eq. (B.21), although the particular
differencing is not important; that the gradient now contains �z in the denominator
is what makes a difference.

B.2.2 Continuous Part of δFφ/δ(φ�z)

This yields the same results as before:

δFφ
C

δ(φ�z)
= + ∂φ fF H − (

∂φκ
)
(∇yφ)2 − 2κ(φ)∇2

yφ

− 2

�z
κ(φ)∇y(�z) · ∇yφ, (B.22)

δFφ
C

δ(�z)
= + fF H (φ) + κ(φ)

(∇yφ
)2

− φ∂φ fF H + φ
(
∂φκ

)
(∇yφ)2 + 2φκ(φ)∇2

yφ

+ 2φ

�z
κ(φ)∇y(�z) · ∇yφ, (B.23)

which is not surprising.
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B.2.3 Discretised Part of δFφ/δ(φ�z)

Since the gradient term is now expressed in terms of�z, there is no longer an explicit
gradient term in Fφ

D , and so the functional derivative can be found by performing
the partial derivative of the integrand with respect to the relevant variables. A similar
derivation was done by Fukuda et al. [1]. For 1 < i < D, ‘layers’ of cells that are
not directly adjacent to the film surfaces, we obtain:

δFφ
D

δ(φ�z)
= − 1

2�z
{+2κ(φi+1)(∇zφ|i+1)) − 2κ(φi−1)(∇zφ|i−1))} + (∂φκ)(∇zφ|i )2

= −∇z{2κ(φi )∇zφ|i } + (∂φκ)(∇zφ|i )2
≈ −2κ(φ)∇2

z φ − (∂φκ)(∇zφ)2. (B.24)

The second line expresses the first line using central differencing. In the last step,
I have approximated the result of the second-to-last step, which replaces the terms
derived from the discretised gradient with the terms that would have been derived
from a continuous gradient. It can be seen that the last two lines are equivalent to
each other, apart from artefacts left over from the initial discretisation. I thus dispense
of these artefacts, so that we may better approximate the real system and do away
with numerical problems that appear when using the discretised result (which, I have
observed, usually lead to numerical decoupling).

However, what do we do at the boundary of summation, in the cells i = 1 and
i = D? Performing the functional derivative in the cells i = D, we obtain:

δFφ
D

δ(φ�z)
|D = − 1

2�z
{−2κ(φD−1)(∇zφ|D−1))} + (∂φκ)(∇zφ|D)2

= − 1

2�z
{+2κ(φD+1)(∇zφ|D+1) − 2κ(φD−1)(∇zφ|D−1))}

+ κ(φD+1)(∇zφ|D+1) + (∂φκ)(∇zφ|D)2

= −∇z{2κ(φD)∇zφ|D} + (∂φκ)(∇zφ|D)2 + κ(φD+1)(∇zφ|D+1)

≈ −2κ(φ)∇2
z φ − (∂φκ)(∇zφ)2 + κ(φD+1)(∇zφ|D+1), (B.25)

where I have introduced terms for ‘virtual grid-cells’ at i = D + 1. However, we
can’t leave these grid-cells in the final answer, we should remove these artefacts
of the discretisation (and include the missing factor of 2 in the final term that has
disappeared because central differencing has a factor of 2 in the denominator) and
keep the continuous result. Using a similar argument for the layer of grid-cells at
i = 1, and combining the answers for i = 1 and i = D with the answer for the cells
1 < i < D, we obtain:
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δFφ
D

δ(φ�z)
= −2κ(φ)∇2

z φ − (∂φκ)(∇zφ)2 + [2κ(φ)∇zφ]D
0 . (B.26)

Therefore the terms δFφ
D/δ(φ�z) are the same as in the first derivation.

B.2.4 Discretised Part of δFφ/δ(�z)

For the derivative of the discretised part with respect to �z, we will not obtain the
same result, because �z is present in the denominator of the discretised gradient.
We obtain for cells 1 < i < D

δFφ
D

δ(�z)
= ∂

∂�z

(
�z

[
κ(φ)

[
φi+1(y) − φi−1(y)

2�z

]2])

= ∂

∂�z

(
�z

[
κ(φ)

[
ψi+1(y) − ψi−1(y)

2 (�z)2

]2])

= −3κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

= κ(φ)(∇zφ)2 − 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2, (B.27)

and, if we make the leap of faith (necessary for the model to reproduce calculated
equilibria when film height is held constant; see Chap.5) to include the surface terms
produced from a continuous gradient in the vertical direction (the different terms
obtained here are a result of the gradient changing as �z changes, and since the
surfaces terms should act only at the surface, and not across a volume of fluid, it
seems sensible to keep the continuous result that take into account that the surface
terms are completely local) we obtain

δFφ
D

δ(�z)
= κ(φ)(∇zφ)2 − 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− [2φκ(φ)∇zφ]D
0 . (B.28)

B.2.5 Scaling and Final Equations

For δFφ/δ (φ�z) we have the same result as before:

δFφ

δ (φ�z)
= + ∂φ fF H (φ) − (

∂φκ
)
(∇φ)2 − 2κ(φ)∇2φ

+ (�z)−1 [+2κ (φ)∇zφ + ∂φ fh
]
δz

h
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+ (�z)−1 [−2κ (φ)∇zφ + ∂φ f0
]
δz
0

− 2

�z
κ(φ)∇(�z) · ∇φ, (B.29)

but for δFφ/δ(�z) the result is modified:

δFφ

δ�z
= + fF H (φ) + κ (φ) (∇φ)2

− φ∂φ fF H (φ) + φ
(
∂φκ

)
(∇yφ)2 + 2φκ(φ)∇2

yφ

− 4κ(φ)(∇zφ)2 − φ(∂φκ)(∇zφ)2

− (�z)−1 [+2φκ (φ)∇zφ + φ∂φ fh
]
δz

h

− (�z)−1 [−2φκ (φ)∇zφ + φ∂φ f0
]
δz
0

+ 2φ

�z
κ(φ)∇(�z) · ∇φ. (B.30)

Since ∇z (�z) = 0 in the model, I have written ∇(�z) · ∇φ using 3D gradient
operators. The surface energy depending on film height can be calculated as in the
continuous derivation, giving Eq. (B.17). It is the expressions above resulting from
performing the functional derivative on a discretised functional that have been used
to test the model in this chapter. This method is more consistent with how we have
discretised the free energy, and should also account for a reduction in the energy
cost of vertical composition gradients as the film becomes thicker in places, and vice
versa.



Appendix C
Numerical Implementation for 3D Dewetting
Model

Most of the general principles behind the implementation of my simulations in
CUDA, to utilise a CUDA-enabled Graphical Processing Unit (GPU), are discussed
in Appendix A, but here I will outline a few key points relevant to the simulations
of Chap.6. The particular implementation I used conserved material (of course) and
kept the program simple, but there may very well be better implementations. Also,
although I scaled the equations, I have not remarked at all on this scaling in this
section, since it would confuse the matter.

Correct implementation of the rate Eqs. (6.7), (6.8) and (6.9) and time-step is
crucial for material conservation to be honoured; the governing equations of course
conserve material, but it can be easy to misinterpret the equations upon implementa-
tion. In my implementation I stored values of h(y) and φ(i, y), although one could
probably store the values h(y) and φ(i, y)�z(y) instead.

Suggestion for 2D simulations → 3D simulations

In order to make use of shared memory effectively, in the same way discussed in
Appendix A, it seemed that the best way to run 3D simulations was to divide the
simulation up into 2D slices.When launching a process (kernel) on the GPU, I would
then loop over these 2D slices. This was also the simplest way to turn a 2D simulation
into a 3D simulation. This made the program simpler, andmadememory access from
global memory and storage of values using shared memory much more efficient and
manageable.

While calculating values for a set of simulation grid cells within a 2D slice of
the array, values corresponding to the previous, current and next 2D slices can be
stored in sharedmemory, and current slice→ previous slice and next slice→ current
slice as the 3D array is traversed by stepping through the 2D layers. This means we
can efficiently use memory and make efficient memory accesses. I would highly
recommend implementing a 3D simulation in a similar way.
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C.1 Lateral Transport Step

The equations governing the lateral transport step inwhichmaterial ismoved laterally
such that the height of the film can change, Eqs. (6.7) and (6.8), involve the transfer
of material in the form of h(y) and φ̄(y)h(y), which together specify the amount of,
and type of, fluid that is transferred.

C.1.1 Explicit Definition of Material Currents

To keep track of everything and make sure that material conservation is locally
correct, it is easier to explicitly introduce material currents

−→
J . In 3D there are two

components to these currents (for the lateral transport step there is only the lateral
movement of material, so the currents I define here don’t have a vertical component)
thoughmy discussionwill only discuss one component for simplicity. Thesematerial
currents can be defined at the centre of a grid cell j (i.e. J j ) or between grid cells
j and j + 1 (i.e. J j+1/2) (note that by grid cell I mean the result of discretising the
system so that it can be simulated on a computer). The lateral grid has a spacing
�y, whilst the vertical grid (arising already from the a priori discretisation of the
film) has spacing �z( j) (where the lateral spacial variable y has been replaced by a
discrete index j):

Assuming that the chemical potentials have already been calculated from
Eqs. (6.11) and (6.12) (as discussed in Appendix A, it is best to calculate and store
the chemical potentials before using them. Calculation and storage of the average
φ̄( j) in the same way is also recommended) we can define the following currents:

∇∗μc( j) ≡ ∇ jμh( j) + φ̄( j)
1

D

D∑
i=1

∇ jμφ�z(i, j)

≡ −J ∗
h ( j) − J ∗̄

φ�z
( j), (C.1)

J ∗
h ( j) ≡ −∇ jμh( j), (C.2)

J ∗̄
φ�z

( j) ≡ −φ̄( j)
1

D

D∑
i=1

∇ jμφ�z(i, j), (C.3)

where ∇ jμφ�z(i, j) ≡ [
μφ�z(i, j + 1) − μφ�z(i, j − 1)

]
/2�y for example i.e.

central differencing. We can then define the currents

Jh( j) ≡ h( j)3

3η
J ∗

h , (C.4)

Jφ̄�z( j) ≡ h( j)3

3η
J ∗̄
φ�z

, (C.5)
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and then

∂h( j)

∂t
= −∇ j ·

(
Jh + Jφ̄�z

)
, (C.6)

∂φ̄( j)h( j)

∂t
= −∇ j ·

(
φ̄ Jh + φ̄ Jφ̄�z

)
. (C.7)

Using central differencing on the latter equations, we then obtain

∂h( j)

∂t
= − Jh( j + 1) − Jh( j − 1)

2�y
− Jφ̄�z( j + 1) − Jφ̄�z( j − 1)

2�y
, (C.8)

∂φ̄( j)h( j)

∂t
= − φ̄( j + 1)Jh( j + 1) − φ̄( j − 1)Jh( j − 1)

2�y

− φ̄( j + 1)Jφ̄�z( j + 1) − φ̄( j − 1)Jφ̄�z( j − 1)

2�y
. (C.9)

C.1.2 Forward-Difference Time-Step

The values for the rate of change of material can be calculated with the equations
above. To update the values of h( j) and φ(i, j) such that matter is conserved, we
can perform the following

[
φ̄(t + dt)h(t + dt)

] = φ̄(t)h(t) + dt
∂φ̄h

∂t
, (C.10)

h(t + dt) = h(t) + dt
∂h

∂t
, (C.11)

φ̄(t + dt) = [
φ̄(t + dt)h(t + dt)

]
/h(t + dt), (C.12)

such that we can, in this order, store the values
[
φ̄(t + dt)h(t + dt)

]
in the array for

φ, update the values in the height array, and then convert the φ array back to storing
φ values, in such a way that material is correctly conserved.

Note that the steps above concern the change of h and φ̄: the change in �z is
implied very simply through �z = h/D where D is the number of grid cells in the
vertical dimension. To account for a change in φ̄(y), the cells φ(i, y) must change.
This is done very simply by evenly distributing the amount of material that is moved
in the lateral step amongst the grid cells i : if the average amount of material over
grid cells i at y must change, then changing the amount of material in each grid cell
i at y by how much the average at y changes will account for this. Of course, it is
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really
[
φ̄h

]
that changes and so it is this value that must be evenly distributed, as

can be seen by following the steps above (Eq. (C.12) simply converts back to φ̄ for
convenience). So we can implement the aforementioned equations as

[φ(i, y)(t + dt)�z(t + dt)] = φ(i, y)(t)�z(t) + dt
1

D

∂φ̄h

∂t
, (C.13)

�z(t + dt) = �z(t) + dt
1

D

∂h

∂t
, (C.14)

φ(i, y)(t + dt) = [φ(i, y)(t + dt)�z(t + dt)]

�z(t + dt)
. (C.15)

C.2 Diffusion Step

�z( j) doesn’t change in these steps because the film height h( j) doesn’t change,
therefore in my implementation of the diffusion step I did not find the need to ex-
plicitly calculate and store any currents (although the currents between grid cells are
implicit in my implementation nonetheless).

C.2.1 Diffusion from Chemical Potential

We must implement the following equation

∂φ(i, j)�z( j)

∂t
= M∇ · (

�z( j)∇μφ�z(i, j)
)
, (C.16)

where the gradient operator is now for both directions represented by i and j , rather
than just the lateral direction j . My implementation was

∂φ(i, j)�z( j)

∂t
= M

�y

[(
μ j+1 − μ j

)
�y

(
�z j+1 + �z j

)
2

−
(
μ j − μ j−1

)
�y

(
�z j + �z j−1

)
2

]

+ M

�z

[
+

(
μi+1 − μi

)
�z

�z −
(
μi − μi−1

)
�z

�z

]
, (C.17)

where
(
μ j+1 − μ j

)
/�y is essentially a current between grid cells j + 1 and j , and(

�z j+1 + �z j
)
/2 can be thought of as the grid-cell wall through which this current

passes (the average of the heights of the grid-cells j + 1 and j). Diffusion in the
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vertical direction is simpler, since the lateral grid spacing�y is constant everywhere.
Of course, the currents throught the surfaces must be set to zero. Updating the value
of φ with a forward-difference time-step is then very simple, because �z( j) does
not change in this diffusion step

φ(t + dt) = φ(t) + dt
1

�z( j)

∂φ(i, j)�z( j)

∂t
. (C.18)

C.2.2 Random Thermal Currents

The RHS of Eq. (C.17) can also include random thermal currents, as in my simula-
tions. From any particular random distribution, one can sample currents

−→
J T whose

components are the random numbers selected from the distribution, such that these
currents are between grid cell. A noise term that can be added to (C.17) can then be
written in terms of these currents as

noise = 1

�y

[
J T

j+1/2
�z( j + 1) + �z( j)

2
− J T

j−1/2
�z( j) + �z( j − 1)

2

]

+ 1

�z

[
+J T

i+1/2�z − J T
i−1/2�z

]
. (C.19)

Throughout the entire diffusion step, the currents through the film surfaces must be
set to zero, and this includes the random thermal currents.



Glossary

Bilayer The film is vertically segregated into two phases (layers) with an interface
between them. These phases coat the film surfaces due to preferential surface
attraction.

Blend A liquid mixture of two components (e.g. a blend of two polymers).
Coexisting Equilibria Profileswhich coexist together, describing different phases

in the film, as for a laterally inhomogeneous film of two laterally segregated
phases.

Dewetting (Disambiguation) process by which a fluid filmwill not uniformly coat
a substrate, due to forces which cause areas of substrate to tend towards ‘drying’;
this can lead to isolated droplets of fluid, but more generally will cause some
undulation of the fluid film surface.

Fixed Points Regions of phase space that require an infinite length of film to pass
through, since these points satisfy q̇ = 0 (composition gradient is zero) and q̈ = 0
(rate of change of composition gradient is zero).

Independently-Existing Equilibria Profiles which describe the film entirely and
do not coexist with other profiles, as for a laterally homogeneous film.

Lateral Phase Separation Phase separation into laterally coexisting phases,
whether from an approximately homogeneous film or a bilayer film, resulting
in a laterally segregated film.

Lateral Phase Separation via a Transient Wetting Layer Vertical phase sepa-
ration initially proceeds, due to preferential surface attraction, resulting in a ver-
tically segregated film. This state is unstable, and lateral phase separation occurs,
resulting in a laterally segregated film.

Laterally Segregated (film) ‘Column’ phaseswith interfaces perpendicular to the
surfaces.

Mean-field Average interactions are used in place of counting up individual
interactions, such that the local behaviour can be written in terms of macroscopic
average properties.Workswell for polymer systems, but rarely for fluids of simple
molecules in which fluctuations mean the description fails.

© Springer International Publishing Switzerland 2015
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Springer Theses, DOI 10.1007/978-3-319-19399-1
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Monolayer The profile is approximately constant φ(z) ≈ φ̄ since the blend is
miscible. There may be an excess of a component near the film surfaces due to
preferential attraction, depleting that component in the rest of the film.

Phase Diagram Adiagram, drawn in a space of variables such as composition and
temperature, that separates regions corresponding to different stable phases with
lines, which correspond to the limits of stability of these phases. e.g. for water,
a phase diagram in the temperature-pressure plane separates regions of vapour,
liquid and solid.

(Phase) Equilibria Profiles which minimise the free energy of the film, and there-
fore correspond to equilibrium. The term phase is used in analogywith bulk blends
e.g. an A-B blend can exist as: a miscible blend (one-phase); or A-rich and B-rich
phases (two-phase).

Phase Portrait Plot of trajectories in phase space that minimise free energy.
Phase Space A space of the variables that describe a system e.g. position and

momentum, composition and composition gradient.
Pinning Values of (φ, 2κ∇zφ) at the film surfaces are determined by surface

boundary conditions, such that, in phase space, the ends of trajectories are
always pinned to these boundary conditions.

Polymer Amolecule consisting of repeated units, like a string of beads or a chain.
These repeat units are calledmonomers. A chain segment usually refers to a single
monomer, butmay refer to severalmonomer units in order that the chain beflexible
around these segments.

Profile Description of a polymer-blend by volume fraction φ as a function of
spatial variables e.g. φ(z, y), where z is the vertical (depth) dimension and y is
the lateral (parallel to substrate) dimension. Throughout this thesis the profiles
are discussed primarily in 1D as φ(z).

Separatrix Phase portraits that flow through fixed points in phase space. Trajec-
tories that flow through these fixed points (these trajectories must therefore be on
the separatrix) correspond to infinitely thick films, hence as (finite) films become
thicker their corresponding phase portraits tend to, but don’t meet, the separatrix.

Simple molecule Molecules that can be treated as spheres, because they consist of
a few atoms at most and their internal structure need not be explicitly considered.

Solution A liquid mixture of solvent (e.g. water, toluene) and solute (e.g. sugar,
polymer), in which the solute is dispersed in the solvent.

State(s) (Disambiguation) the overall configuration of the film, and/or the equi-
libria contained in that configuration e.g. a film in a laterally segregated state will
consist of laterally coexisting states. Non-specific term.

Surface Bifurcation Mechanism explaining the dynamics of lateral phase separa-
tion via a transient wetting layer, describing how the surface values (φ, 2κ∇zφ) of
the TWL divide into two values that evolve towards those for laterally coexisting
equilibria, whilst honouring the surface boundary conditions at all times.

Surface/Wall The boundary formed by the interface between the fluid and, for
example, air or a vacuum. While the terms will often be used interchangeably, a
Wall is specifically meant to be a rigid planar surface, while a Surface could be
non-rigid and deformable. A substrate such as a silicon wafer, on which a fluid
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film may rest, is therefore a wall, whereas the fluid-air boundary may be referred
to as either a wall or a surface depending on the context.

Trajectory Path through phase space e.g. path of all the points of position and
momentum that a particle had as it moved.

Vertical Phase Separation Phase separation into vertically layered phases, e.g.
a bilayer, usually caused by preferential surface attraction.

Vertically Segregated (film) Layered phases with interfaces parallel to the
surfaces.

Wetting When one phase of a binary phase system entirely coats a surface,
excluding the other phase from contact. Although wetting is strictly defined to
mean that the latter configuration is stable and the phase coating the surface is
infinitely thick in a semi-∞ system (see main text throughout), the term is usually
used more loosely to describe most scenarios when a phase coats a surface.

Reference
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